
Channel Equalization for Side Channel Attacks

Colin O'Flynn and Zhizhang (David) Chen

Dalhousie University, Halifax, Canada
{coflynn, z.chen}@dal.ca

Abstract. This paper introduces the use of channel equalization as a
method of simplifying side channel analysis attacks, by e�ectively col-
lapsing all points in a power measurement trace into a single random
variable. This uses a simple Finite Impulse Response (FIR) linear equal-
izer, which has been studied extensively in communications systems. In
addition the estimation of a channel model is used in developing the
Channel Estimation Analysis (CEA), which is a generic attack requiring
similar assumptions to the Correlation Power Analysis (CPA) attack.
Both channel equalization and the CEA attack are straight-forward to
apply to real systems, and Python examples are provided. Results of
attacking unprotected AES-128 and protected AES-256RSM on a mi-
crocontroller are provided.

Keywords: side-channel analysis, multivariate, higher order DPA, equal-
ization

1 Introduction

An attack which uses a single point of data in each power trace is a univari-
ate attack, since the statistics of a single random variable are considered. More
powerful attacks consider the statistics of several points (i.e. several random
variables) related to the leaked information, known as multivariate attacks, or
alternatively as Higher-Order attacks. The number of points considered is de-
clared the `Order' of the attack, a 2nd order attack using two points in the power
trace for example as in [1].

Countermeasures that have been presented may protect against the univari-
ate attack, but can be broken by multivariate attacks. This is generally accepted
due to the added complexity of multivariate cases, making multivariate attacks
a less practical threat. It has been previously reported how the use of physi-
cal e�ects of the measurement channel could combine measurements from many
points into one, e�ectively breaking systems with univariate attacks, despite the
algorithms being theoretically secure [2]. This was mostly empirical observations,
and does not for example demonstrate how to perform this optimally, or how to
evaluate countermeasures with such assumptions.

This work introduces the use of channel equalization to e�ectively collapse the
entire measured power trace to a single point, which allows the simpler `univari-
ate' attack methods to be applied. Compared to existing multivariate attacks,

the method presented here is considerably less complex, as it requires no special
knowledge of the system under attack. There is no requirement to select points
to apply the analysis, since the equalization procedure will generate a suitable
matrix for point selection.

This work also approaches the problem from the background of a communi-
cations systems. Some background into communications will be given, with an
analysis of the Correlation Power Analysis (CPA) attack in the lens of commu-
nications.

This background will motivate the use of a channel model along with equal-
ization, which will generate a single data-point using a given power traces and
known leakage assumption. This procedure requires a `training set' to gener-
ate the equalizer. Once the equalizer is available for a given system setup,
an extremely low-complexity selection criteria is available called minimum dis-
tance decoding. The combination of using a linear equalizer to generate a single
data-point and minimum-distance decoding allows processing of extremely large
datasets.

If a training set is not available, an attack called Channel Estimation Analysis
(CEA) is also presented. The CEA attack requires similar assumptions to the
CPA, but takes into consideration all data-points for the attack instead of being
applied on a single data-point. This attack is fairly e�cient, requiring only one
complex operation (a pseudoinverse) on the trace set.

The attacks will be demonstrated on physical devices implementing unpro-
tected software AES-128, along with protected software AES-256 using RSM
(Rotating SBox Mask)[3].

2 Correlation Power Analysis and the Matched Filter

As a precursor to the introduction of channel estimation, the well-known Corre-
lation Power Analysis (CPA) [4] attack will be considered in lens of communica-
tions theory. The basic equation for a CPA attack, where ri,j is the correlation
coe�cient at point j for hypothesis i, the actual power measurement is td,j of
trace number d at point j, and pd,i is the hypothetical power consumption of
hypothesis i for trace number d, with a total of D traces is given in equation (1).
This equation is simply an application of the Pearson's correlation coe�cient
given in equation (2), where X = p, and Y = t.

ri,j =

∑D
d=1

[
(pd,i − pi)

(
td,j − tj

)]√∑D
d=1 (pd,i − pi)

2∑D
d=1

(
td,j − tj

)2 (1)

ρX,Y =
cov (X,Y)

σXσY
=

E [(X − µX) (Y − µY)]√
E
[
(X − µX)

2
]√

E
[
(Y − µY)

2
] (2)

The form given in these equations is referred to as the normalized cross-

correlation, and frequently used in image processing applications for matching
known templates to an image.

2.1 Basic Communications Principles

In communications theory, the most basic problem statement is how to receive
a signal that has been corrupted by Additive White Gaussian Noise (AWGN).
The continuous-time and discrete-time interpretations of this problem are given
as follows:

r(t) = As(t) + n(t) (3)

r[n] = As[n] + w[n] (4)

The transmitted signal or sequence s(t) or s[n] is one of several valid signals,
the speci�c signal depending on the system. The objective of the communi-
cation systems is for the receiver to determine which of the possible symbols
s1(t), s2(t) · · · , sN (t) was sent based on the received signal r(t).

2.2 Correlation Implementation of the Matched Filter

The objective of receiving a known signal in Additive White Gaussian Noise
(AWGN) has a well known solution, the matched �lter (or `North �lter'), �rst
described in 1943[5]. In the case of receiving the signal s(t) given in (3), the
impulse response h(t) of the matched �lter should be a time-reversed and shifted
copy of the transmitted signal:

h(t) = s(T − t), 0 ≤ t ≤ T

Which will maximize the output of the �lter at time t = T when the trans-
mitted signal is s(t). Applying the �lter to a received signal means convolving
this impulse response with the received signal, which gives us:

y(t) =

t∫
0

y(τ)s(T − t+ τ)dτ (5)

Where we will sample this result only time t = T . If we are attempting to
select which of the possible signals s1(t), · · · , sN (t) was sent, we would simply
perform N convolutions, each for a candidate sn(t). Selecting the most likely
candidate than becomes:

argmax
n

y(T) = argmax
n

T∫
0

y(τ)sn(τ)dτ (6)

As sn(t) is only de�ned over the internal 0 ≤ t ≤ T , this could also be written
as the correlation of the received signal r(t) with all candidates sn(t) at t = 0,
which would be:

argmax
n

(r(t) ? sn(t)|t=0) = argmax
n

T∫
0

y(τ)sn(τ)dτ (7)

The forms given in equations (2) force both r(t) and s(t) to be zero-mean
and normalized by standard deviation. This is necessary for us as we do not have
proper scaling of the template s(t) used at the receiver.

One critical di�erence between communications systems and side-channel
power analysis is the de�nition of the argument of s(t). In communications we
are sending a known signal sn(t), which may be drawn from a set of `allowed'
signals s1(t), s2(t), · · · , sN (t). Each of these signals is typically a �nite-length
signal as a function for time (or samples in the discrete case). At the receiver
we can use the matched �lter to determine which of the N possible signals was
transmitted.

For side-channel analysis, our function s(t) is actually de�ned over the num-
ber of cryptographic operations we observed. In equation (1) this was the `trace
index' d, and thus will be referred to as s(d). Each of the possible functions
s1(d), s2(d), · · · , sN (d) re�ects the hypothetical value for the byte of the secret
key we are attacking. Thus the matched �lter comparison is always done at the
same sample (i.e. time point) in each power measurement trace td.

3 Channel Estimation & Equalization

z-1 z-1 z-1

h
0

h
1

h
2

h
N

S S S

p[n]

t[n]

Fig. 1. Simple channel model, where noise can be added to the output if w[n] also
needs to be modelled.

In equation (4) the received signal is corrupted only with AWGN, and pos-
sibly a �xed scaling factor. This does not account for realistic channels between
the transmitter and receiver, which may include the signal coming from multiple
paths. Instead the model shown in Fig. 1 is used, which is described by equation
(8). The objective of `channel estimation' is to discover the value of the taps,
given by the hchannel vector.

t[n] =

J−1∑
j=0

hjp[n− j] + w[n] (8)

Estimating the coe�cients at the receiver requires that the transmitter sends
a known `training sequence'. In communications systems the channel estimation
has several complicating factors: it must be performed in real-time to be use-
ful, and the channel will change over time so one must track the channel. By

comparison in side-channel analysis the computation must simply be possible in
reasonable time, and the channel varies little over time since the measurement
setup is �xed.

3.1 Applicability to Side Channel Analysis

Using a channel model for side-channel analysis means we assume that a single
piece of data generated the entire power trace, via the channel model. If we
use the inverse of this channel model at the receiver, we can thus generated a
single point from each trace, this single point containing all of the relevant infor-
mation from the entire trace for a speci�c subkey. Thus note that each subkey
s requires a di�erent channel estimate to be formed. Rather than forming the
channel hchannel, we will instead directly estimate the inverse. This inverse will
be the required linear equalizer for our unknown channel. As we will generate
a separate equalizer hs for each subkey being attacked, but it is trivial to also
use a H matrix instead by combining the hs vectors, which would generate in-
formation for all attacked subkeys. This is analogous to Multiple Input Multiple
Output (MIMO) systems, where the channel matrix is used to generate several
independent communications channels. In our world the `independent channels'
means the di�erent information about each subkey s.

In communications systems a sequence at the transmitter is disrupted by
the physical channel. We will be considering the `known sequence' to instead
be the leaked information, typically the hamming weight or hamming di�erence
of sensitive data. The channel is considered everything in between the leaked
information and the power measurement: thus we also group countermeasures
into this channel and other details of the implementation.

The model used is given in equation (9). The information being leaked by
the device is pd,s (e.g.: hamming weight or hamming distance) about subkey s
related to trace d, the equalization vector for subkey s is hs, and td is the vector
of power measurements.

pd = (td − µtd) · hs + µp (9)

Note in this form we make no assumption about td or pd being zero-mean. If
both are assumed to be zero-mean, this can simplify the notation by removing
references to µtd and µp. In which case (9) can simply be written as:

pd,s = td · hs (10)

The value of µtd will not be known, and instead the estimate µ̂td be formed
from the received data. The value of µp is known, which will simply be 1

2 of the
maximum hamming weight (e.g. µp = 4 on our 8-bit microcontroller).

The vector hs is the linear equalizer coe�cients. Unlike in communications
systems we have no control over the `transmitter' and thus will always use the
form in equation (10). Attempting to solve the form of equation (8) and then
invert the matrix for use in equation (10) would be equivalent, however the form
in (10) simpli�es notation and computation in side channel analysis problems.

3.2 Equalizer Coe�cients from Training Set

The equalizer coe�cients will be built from leakage measurements (or simulated
leakages) on a device with a known secret key. Finding equalizer coe�cients
without a known key will be discussed in section 5. If the coe�cients are required
to be independent of the secret key, the training set should be generated using
many di�erent (known) keys.

For a traces with a given secret key, the expected leakage measurement is
considered the known value of pd,s. Each of the power measurements is td, and
then the error between the estimated value p̂d and the `known' pd is:

e(d) = pd,s − p̂d,s = pd,s −
(
ĥs · td

)
(11)

For notational simplicity this uses the form of (10), if the zero-mean assump-
tion is not made the form in (9) should instead be substituted. Two di�erent
options for minimizing this option will be considered: the Least Square (LS) and
the Mean Square Error (MSE).

Least Squares Error For the LS cost function, the objective is to minimize
the sum of square errors over all traces:

D−1∑
d=0

e2(d) (12)

This can be accomplished with a least-squares (LS) error estimator (or `solver'),
with the solution ĥs. These solvers are frequently built into numeric packages
such as MATLAB, SciPy, etc. A faster method is to use the pseudoinverse to
solve the LS problem, which has a known solution given by (11.12) in [6]:

ĥs = t+ · ps (13)

Where t+ is the pseudoinverse of t (also known as the Moore�Penrose pseu-
doinverse). Note that t+ needs to be calculated only once for any set of traces,
and can then be reused for many steps in the algorithm. For generating ĥs over
s = {0, 1, · · · , S−1} the t+ is calculated once for example, instead of performing
S least-square estimators.

To calculate the pseudoinverse, we can use a singular value decomposition
(SVD)[6]. If we perform the SVD on a matrix A, we will have:

A = U ·Σ · V ∗

Then we de�ne the pseudoinverse as:

A+ = V ·Σ+ ·U∗

As Σ is a diagonal matrix, the pseudoinverse Σ+ is found by taking the inverse
of each non-zero entry on the diagonal. In the implementation of this algorithm,
there is a limit below which entries are considered to be zero, and any diagonal
elements below this limit in Σ are replaced with zero.

Minimum Mean Square Error The optimal Minimum Mean Square Error
(MMSE) estimate of ˆpd,s for a given measurement td, under the linear model
assumption given by (9), will be given by:

p̂d,s = µp +CptsCtts
−1 (td − µtd) (14)

For a derivation of this solution see e.g. equation (5.659) in [7]. We do not
know the true values of the cross-covariance matrix Ĉtt and Ĉpt, so will have to

estimate them. The unbiased estimates of Ĉtt and Ĉpt will be calculated from
the training set. If we have a total of D measurements of the data stored in td,
where each measurement corresponds to our known value of pd,s, we can �nd:

Ĉtts =
1

D − 1

D−1∑
d=0

(td − µtd) (td − µtd)
T

(15)

Ĉpts =
1

D − 1

D−1∑
d=0

(pd,s − µp) (td − µt)
T

(16)

Where (14) � (16) can be directly solved. As Ctts is a square matrix the
inverse may exist, unlike in LS where the t matrix must be inverted, which is
likely not square and thus the pseudoinverse must be used.

3.3 Applying the Equalizer Information

Once the equalizer coe�cients ĥs are acquired for each subkey s, it can be used
to convert power traces into a single point containing all information linearly
related to the leakage.

This single point can be processed per existing attack algorithms such as the
CPA attack given in (1), although without the subscript j. The use of the equal-
izer results in an output with expected valid values, which allows a simpli�ed
selection algorithm discussed next.

4 Minimum Distance Decoding

We can consider a sequence ofD power traces td, which having processed through
all equalizers ĥs have an output of p̂d,s. Based on the known input to the system,
we can generate hypothetical outputs of the system pd,s,i based on hypothesis i
of subkey s for trace number d.

For each trace d, we aim to minimize |p̂d,s − pd,s,i| by selecting i. Thus the
objective is simply to minimize this sum over all traces D, which means �nding
the value of i which minimizes e(s, i), given in equation (17).

e (s, i) =

D−1∑
d=0

|p̂d,s − pd,s,i| (17)

Note this assumes that the equalizer has resulted in an unbiased estimator,
i.e. E[p̂s] = ps. If one plotted the distributions we would expect to see them
centred around the `valid' values of ps, such as 0, 1, · · · , 8 for the 8-big hamming
weight case. If the linear channel model was not valid, instead the distribu-
tions may be centred around other values, p

′

s. This requires the use of p
′

s as the
`expected' value in (17), and mapping from ps to p

′

s.

In communications systems, it is unreasonable to directly (i.e. via brute force)
calculate the minimum distance. A 32-bit sequence for example requires a com-
parison between 232 values, and is expected to run in close to real time every
32 bits of received signal. The number of comparisons grows exponentially with
length of data. By comparison the use of minimum-distance decoding in side-
channel analysis grows linearly with the length of traces used, since the size
I depends only on the bit-width of the hypothesis. A byte-wise implementa-
tion of AES-128 means only I = 28 = 256 comparisons. Implementations may
have larger values of I such as 232, resulting in large calculation complexity. The
problem is still considerably less constrained than with general communications,
since the real-time requirement is removed, and implementations may use large
amounts of memory such as disk-based arrays.

4.1 Reduced-Memory Decoding

Algorithms exist for performing the minimum distance processing with consid-
erably reduced memory requirements, which in applications with a large I may
be necessary. The well known Viterbi decoder will be demonstrated here. First
assume that using the channel model each trace has been reduced to p̂d,s, and
the objective of this algorithm is to recover the vector p̂s = [p0,s, p1,s, · · · , pD,s].
If the device under attack leaked the hamming weight, p̂s would be a vector rep-
resenting the measured hamming weight corresponding to each input plaintext.
Additional work will be required to recover the secret key from p̂s.

The general form of the Viterbi decoder is shown in Fig. 2, which corresponds
to a 3-bit hamming weight (HW) leakage, with 4 traces measured. Initially, the
system starts with a received value p̂0,s. The error is calculated for each possible
value j of the HW, so that e0,j = |p̂0,s − j|. In the general case of N bits,
j = {0, 1, · · · , N}.

We wish to calculate the sum of the absolute error over every valid path
through the decoder, and will select the path which minimizes this error. The
result will be the sequence p̂s indicating the most likely value of the hamming
weights used by the device under attack. The innovation of the Viterbi decoder is
to realize that one does not need to keep a memory of the value of every possible
path. Instead only the most likely incoming path at each node is kept. See for
example the trace d = 2 in Fig. 2. The best error case is kept only, and the
other paths in red are trimmed. This greatly limits the memory required, since
we only need to store N elements. Note this assumes all paths are equally likely
through the decoder: while true for communications theory, this is not the case
for the side-channel attacks, where some paths may be impossible. Thus it may

Fig. 2. Viterbi-style decoding trims the search path at each received signal to include
only the most likely paths, i.e. the path with least error. This most-probable path is
propagated forward. For clarity only the paths starting at HW=1 and passing through
HW=0 are shown, the full search would include all possible paths.

be desired to either keep additional paths when trimming, or use a threshold
that throws away paths only when their error grows too large.

Finally we must map from p̂s to the leaked information. As the hamming
weight (HW) or hamming distance (HD) functions are a many-to-one mapping,
there is no unique inverse, so additional work is needed. For the HW, one can
see that a N -bit number with a HW of p has

(
N
p

)
solutions. Assume we are again

dealing with an 8-bit AES implementation that has a HW leakage. In which case
the value pd,s,i indicating the hamming weight of subkey s for trace p with guess
i, and having known input text bd would be:

pd,s,i = HW (SBox (i⊕ bd,s)) (18)

Thus for each value of p̂d,s from the decoder, we can enumerate all possible
outputs of the SBox() which would generate the same HW. This enumeration
function is called here HW−1(p) Finally we can generate a vector of guesses for
the subkey s of the encryption key, Es, based on information in trace d:

Es,d = SBox−1
(
HW−1 (p̂d,s)

)
⊕ bd,s (19)

Taking the intersection of all vectors should result in a single value for Es

common to all vectors. The number of possibilities enumerated by HW−1(p)
will depend on the the value of p, where each value is a solutions to:

HW (HW−1(p)) = p

The number of solutions will be given by
(
N
p

)
. The minimum number of solutions

will be for p = 0 or p = N , with only N possibilities. For the most e�cient
calculation, one should �rst �nd the value of p̂d,s resulting in the minimum
number of solutions. This initial set can then be further reduced by removing
guesses which cannot satisfy equation (18).

5 Equalizer Without Training Set

For evaluation of a speci�c cryptographic device, the most accurate equalizer
coe�cients will be generated with pro�ling (i.e. a training set). As a consideration
of the use of these methods in practical `attack' scenarios, it may be required to
form the equalizer coe�cients without knowledge of the secret key. This means
that an attacker does not have a device they can characterize, and instead the
problem is similar to a Correlation Power Analysis (CPA). This type of attack
will be referred to as a Channel Estimation Analysis (CEA).

For CEA the attacker records D power traces, each trace td containing a
number of points. The attacker also knows the input text (or cipher text) bd
for each power trace. The attacker than partitions the traces & texts into two
arbitrary sets: a �tting set tfd with Df elements, and a test set ttd with Dt

elements. The majority of traces will belong to the �tting set, with a smaller
number in the test set. Similarly the known text is split into bfd and btd for the
�tting set and test set.

We now solve equation (9) where td is the �tting set tfd . We do not have the
known leakage information ps in this case, and instead a hypothetical leakage
vector corresponding to the �tting set p̃fs will be generated. If there are i =
{0, 1, · · · , N − 1} possible hypothetical values for each subkey, there will be N

hypothetical p̃fs,i. The generation of leakage information is the same as in the
CPA case, where the predicted leakage value depends on having a power model,
the guess i, and the known text btd[4]. An example of the generation of pd,s,i is
given in equation (18), when when generated over all values of d gives the vector

p̃fs,i.

The result of the least-squares �tting will generate a hypothetical equalizer
coe�cients vector h̃s,i for subkey s & hypothesis i. Note this �tting is computa-
tionally intensive, and accomplishing the attack in reasonable times will instead
use a pseudoinverse discussed in section 6.2.

Finally we use the test set tt of power traces, and again will generate hypo-
thetical vector p̃ts,i based on b

t
d and i. We will pass each test set trace ttd through

the hypothetical equalizer, and compare the �t based on the test set hypothetical
value. Conceptually, we are simply attempting to obtain the equalizer coe�cients
for each hypothetical key. The equalizer with the best �t is deemed to be the
most likely key. It is required to partition the traces into a �tting set and a test
set to avoid being fooled by noise, which may have the smallest residuals from
the least-squares with the original dataset.

Equation (20) shows the function e(s, i) which should be minimized over i
for every subkey s. The value of i which minimizes e(s, i) is thus the most likely
hypothetical value for subkey s.

e (s, i) =

Dt−1∑
d=0

((
h̃s,i · ttd

)
− p̃ts,d,i

)2
(20)

6 Implementation Performance

This section brie�y mentions some practical considerations of implementing the
algorithms from this paper. Of particular importance is the use of the pseudoin-
verse for the least-squares estimation of the channel.

6.1 Decoding with Known Equalizer Coe�cients

If the equalizer coe�cients ĥ are known, the application of minimum-distance
decoding is a lightweight process. Each incoming trace is multiplied by the equal-
izer coe�cients to produce the leaked information about each subkey. Trivially
the sum in equation (17) can be converted to an update equation. Thus for each
guess of each subkey only the value of the summation is stored. The memory
requirements are such that implementation in an embedded system is simple. In
addition it is also possible to implement the system in hardware (e.g. FPGA)
which can process the incoming trace measurement a point at a time, avoiding
the need to store traces. Such improvements are of limited use, and probably
only of interest if one wishes to verify the security of a target with an extremely
high number of traces (>10E6), where the storage requirements and record-
ing/processing time may become problematic.

In general, the use of equalization will greatly reduce computational require-
ments, as the output of equation (9) is a single point for each trace, regardless
of the length of each input trace. Applying equation (9) for a single subkey s,
where the input trace has J points, over a total of D traces, would require J ·D
multiplications, and (J − 1) ·D additions.

6.2 Pseudoinverse for Solving for Equalizer Coe�cients

As mentioned, solving the pseudoinverse greatly simpli�es the least-squares prob-
lem. In particular, for the CEA attack given in equation (20), only a single t+

calculation is needed, which is reused for all key-guesses i across all subkeys s.
For the CEA algorithm on byte-wise AES-128 for example, this means 1 pseu-
doinverse compared to 40961 least-squares estimation operations.

A variety of existing libraries for calculating the pseudoinverse exist which
simpli�es calculation of the equalizer coe�cients, since equation (13) can almost
directly be coded. Examples of packages implementing the pseudoinverse include
MATLAB, NumPy, SciPy, LAPACK, and OpenCV.

7 Attack Results

7.1 Unprotected Software AES-128

An unprotected software AES implementation is used as the �rst example de-
vice. The code is the AVR-Crypto-Lib AES code in C2, programmed into an

1 16× 256
2 Available from: http://avrcryptolib.das-labor.org/trac/wiki/AES

http://avrcryptolib.das-labor.org/trac/wiki/AES

AtMega328p microcontroller. The device runs at 7.3728 MHz, and power mea-
surements are taken from a 50-ohm resistive shunt inserted into the VCC lines.
Measurements are perfectly synchronized with a trigger generated by the device.

Two separate attacks are considered: the �rst is a pro�led attack, which �rst
solves the equalizer coe�cients equation (9) using power measurements taken
with a known plaintext and encryption key. A number of the traces are used for
generation of the equalizer, and once the equalizer is known a di�erent set of
traces (i.e. not the ones used for pro�ling) is used to generate attack statistics.

Each trace measurement with the unknown key is multiplied by the estimated
ĥs to form a datapoint, which is then ranked by the classic CPA attack algorithm.

Finally an example of the CEA attack is given, where no prior information
is known.

Correlation Power Analysis (CPA) For this attack the standard CPA is
used. The most likely subkeys are ranked by the correlation coe�cient given by
equation (1), where it is calculated for each datapoint. The resulting PGE is
shown in Fig. 3.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

Trace Number

A
ve

ra
ge

 P
G

E
 (

20
2

T
ria

ls
)

PGE for CPA on AES−128

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 3. CPA performed on unprotected AES-128.

CPA with Equalization For this attack the equalizer coe�cients are generated
from 5000 traces with a known encryption key & plaintext. An attack is then
performed on a di�erent set of traces from the same setup, having passed those
traces through a linear estimator based on ĥs. The results are ranked by the
output of the correlation coe�cient given by (1). The resulting PGE is shown
in Fig. 4.

The linear equalizer used here was found using the LS solver based on the
pseudoinverse. Equalizers were also built with a regressive LS solver and the
linear MSE solutions given in this paper � the resulting PGE was almost identical
to that given in Fig. 4. To avoid cluttering the graph these have not been shown.

1 2 3 4 5 6 7 8 9 10
0

50

100

150

Trace Number

A
ve

ra
ge

 P
G

E

CPA on Unprotected AES−128 using Channel Equalization

No Equalization (avg)
Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 4. CPA performed on unprotected AES-128, where traces have been preprocessed
by the linear equalizer. The average PGE across all subkeys in shown for an attack
without equalization, corresponding to the data in Fig. 3.

Channel Estimation Analysis For this attack no prior knowledge is assumed
beyond the assumption about the device leaking the hamming weight. The spec-
i�ed number of traces for each datapoint are split into half; one part becoming
the �tting set, one part becoming the test set. The resulting PGE is given in Fig.
5, which can be compared with a CPA attack in Fig. 3. Due to the partitioning
of traces, the CEA attack requires more traces compared to the CPA attack.

20 40 60 80 100 120 140 160 180
0

50

100

150

Trace Number

A
ve

ra
ge

 P
G

E
 (

50
 T

ria
ls

)

PGE for CEA on AES−128

Subkey 0
Subkey 1
Subkey 2
Subkey 3
Subkey 4
Subkey 5
Subkey 6
Subkey 7
Subkey 8
Subkey 9
Subkey 10
Subkey 11
Subkey 12
Subkey 13
Subkey 14
Subkey 15

Fig. 5. CEA performed on unprotected AES-128.

7.2 Protected Software AES-256

An protected software AES implementation is used as another example device.
The AES-256 code protected by Rotating SBox Mask [3]. This code is the same

as used in the DPA Contest v4, but programmed into an AtMega328p micro-
controller. The device runs at 7.3728 MHz, and power measurements are taken
from a 50-ohm resistive shunt inserted into the VCC lines. Measurements are
perfectly synchronized with a trigger generated by the device.

These examples will use both equalization with training set (i.e. pro�ling) and
unpro�led. Note the pro�ling phase is completely unaware of any details of the
implementation. The channel estimation procedure, including the power leakage
model, is exactly the same as in the unprotected AES-128 case; these simple
assumptions are the main advantage of linear equalization & CEA compared to
other techniques.

In these examples only the �rst 16 bytes of the AES-256 key are attacked.

Correlation Power Analysis (CPA) For this attack the standard CPA is
used. The most likely subkeys are ranked by the correlation coe�cient given by
equation (1), where it is calculated for each datapoint. The results are shown
in Table 1. There is not movement of subkey PGE with increasing traces, even
with 14 000 traces.

Table 1. A standard CPA attack on a AES-256 RSM Implementation, only �rst 16
key bytes shown.

Traces Subkey Partial Guessing Entropy
Used 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4000 3 25 55 167 230 57 118 117 0 36 71 35 85 72 5 71
6000 3 31 56 161 192 80 139 132 0 80 74 37 84 47 8 54
8000 4 27 46 153 169 60 132 112 1 61 72 59 84 39 9 67
10000 2 32 39 145 176 82 134 96 2 55 80 67 81 80 17 103
12000 2 33 41 135 175 77 141 79 4 59 73 51 79 78 26 109
14000 3 25 45 119 171 104 131 79 4 47 72 48 83 80 26 138

CPA with Equalization Using Least-Squares Estimator For this attack
the equalizer coe�cients are generated from 5 000 traces with a known key &
plaintext. The coe�cients are found using a least-squares estimator using the
pseudoinverse. An additional 10 000 traces are recorded and used for generation
of the statistics. The results are ranked by the output of the correlation coe�cient
given by equation (1). The resulting PGE is shown in Fig. 6. Three di�erent tests
are performed: in the �rst test, the equalizer was generated from traces where
the encryption key changes on each trace. This equalizer should work well with
any secret key, which is shown in Fig. 6A. The second equalizer is used in both
Fig. 6B & Fig. 6C, and is generated from 5 000 traces with a �xed key. When this
equalizer is used on test traces generated from the same secret key, it performs
better than the random-key equalizer, as in Fig. 6B. However using this equalizer

on test traces generated with a di�erent secret key, as in Fig. 6C, it performs
poorly.

Thus the most realistic attack is one where the channel equalizer is generated
from a randomly changing key, since the equalizer will be agnostic of the secret
key. For test purposes the equalizer generated with a �xed key performs similarly,
but this equalizer will be very sensitive to changes in the key.

Channel Estimation Analysis For this attack no prior knowledge is assumed
beyond the assumption about the device leaking the hamming weight, i.e., the
same assumption made in the unprotected case. The speci�ed number of traces
are again split into two groups: a training set and a test set. The results of this
attack are shown in Table 2 for each subkey � the cost of the pseudoinverse on
large trace sets makes calculating many datapoints a lengthy process, which is
why this data is shown in tabular forms instead of a graph. Whilst a complete
attack was unsuccessful, the PGE of subkeys is considerably better compared to
the CPA attack given in Table 1. Both the CPA & CEA attack are using the
same assumptions � the device leaks the Hamming Weight at the output of an
SBox.

Table 2. A standard CEA attack on a AES-256 RSM Implementation, only �rst 16
key bytes shown.

Traces Subkey Partial Guessing Entropy
Used 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4000 6 29 10 57 14 34 2 0 2 11 66 5 3 25 0 1
6000 39 1 180 29 7 70 0 0 2 84 104 0 0 0 0 0
8000 37 0 49 22 3 13 0 0 0 82 3 0 0 0 0 7
10000 26 0 15 0 7 2 2 2 0 49 1 1 0 0 0 6
12000 25 0 20 0 15 2 0 1 0 14 19 2 0 1 0 7
14000 26 0 13 0 25 5 0 0 0 4 12 1 3 6 0 1

8 Future Work

8.1 Classifying Countermeasure E�ectiveness

The use of equalization can also be used to quantify the e�ectiveness of counter-
measures. This is particularly useful for the simulated environment � it was pre-
viously reported for example how a physical measurement setup which `blended'
several measurements together resulting in an attack on a physical device be-
ing far more successful than the simulation predicted [9]. If instead the channel
estimation and equalization process is used for the simulated environment, the
equalized attack algorithm will combine all linearly related leakage points.

0 500 1000 1500 2000 2500
0

50

100

150

200

250

Trace Number

A
v

e
ra

g
e

 P
G

E

CPA on Protected AES−256RSM using Channel Equalization from Random Training

Subkey 0

Subkey 1

Subkey 2

Subkey 3

Subkey 4

Subkey 5

Subkey 6

Subkey 7

Subkey 8

Subkey 9

Subkey 10

Subkey 11

Subkey 12

Subkey 13

Subkey 14

Subkey 15

0 500 1000 1500 2000 2500
0

50

100

150

200

250

Trace Number

A
v

e
ra

g
e

 P
G

E

CPA on Protected AES−256RSM using Channel Equalization from Fixed Training (same key)

Subkey 0

Subkey 1

Subkey 2

Subkey 3

Subkey 4

Subkey 5

Subkey 6

Subkey 7

Subkey 8

Subkey 9

Subkey 10

Subkey 11

Subkey 12

Subkey 13

Subkey 14

Subkey 15

0 500 1000 1500 2000 2500
0

50

100

150

200

250

Trace Number

A
v

e
ra

g
e

 P
G

E

CPA on Protected AES−256RSM using Channel Equalization from Fixed Training (Di"erent Key)

Subkey 0

Subkey 1

Subkey 2

Subkey 3

Subkey 4

Subkey 5

Subkey 6

Subkey 7

Subkey 8

Subkey 9

Subkey 10

Subkey 11

Subkey 12

Subkey 13

Subkey 14

Subkey 15

(A)

(B)

(C)

Fig. 6. CPA performed on AES-256 protected with RSM, where traces have been
preprocessed by Channel Equalization. Three di�erent systems are tested: in (A) the
equalizer is generated from traces with a random key changing on each trace, in (B)
and (C) the equalizer is generated from traces with a �xed key.

Note that whist the channel equalizer is linear, the channel itself may be
non-linear. Thus the real system may be able to combine `non-linear' e�ects to
break the countermeasures, even though in the simulated channel the system is
perfectly secure. Work in comparing simulated to physical channels is required to
understand these e�ects. Using non-linear channel models may also improve the
performance, but solving the LS or MSE cost functions for non-linear channels
is more complex.

In addition as the output of the linear equalizer results in a single datapoint,
this simpli�es comparison of statistical properties such as the variance of the
measurement, which is linked to the Signal to Noise Ratio (SNR). It thus becomes
possible to discuss the speci�c e�ect on the SNR a countermeasure has on the
system.

8.2 Multiple Leakage Combining

The issue of combining multiple leakages from the same device (i.e.: shunt mea-
surement with electromagnetic probe) may also be solvable via the equalizer.
In the original case we had a power trace measurement td corresponding to a
plaintext input bd. Assume instead we record the power across a shunt resistor
into vector tshuntd , and the EM Field emitted into vector temd . Both of these mea-
surements occurred for the same input bd. We now create a uni�ed vector td,
where td = [tshuntd , temd]. If both vectors have some relation to the leaked value,
the equalizer h will combine these into a single point.

8.3 Online Calculation of CEA

For security analysis, it is often desired to determine the progression of a met-
ric over increasing number of observed traces. The results section for example
shows the Partial Guessing Entropy (PGE) vs. observed traces. This requires a
calculation of the pseudoinverse for 1, 2, 3, · · · , D traces. An improvement would
be to use update equations, which takes an existing matrix with a known pseu-
doinverse, and appends a row/column to this matrix.

8.4 Other Ranking Metrics

The ranking metrics used here are very basic � either the CPA attack or the
minimum-distance rank. Ideas such as variance based distinguishers[10] could be
extended to analyse higher order moments for the output of equation (9).

9 Conclusions

Using channel equalization is a simple method of compensating for all disrup-
tions to the leaked data of a device. With proper selection of the channel, even
intended disruptions such as countermeasures can be compensated for. This work
has used a simple linear FIR equalizer, where the equalizer is found using least

squares (LS) or Mean Square Error (MSE) metrics. The improvement in attack
performance for unprotected AES 128 is demonstrated, along with proving the
ability of channel estimation to attack protected implementations. While chan-
nel equalization requires a pro�ling phase, some initial work using the channel
estimation without the pro�ling phase was also demonstrated, under the name
of the Channel Estimation Attack (CEA).

The advantage of both the equalizer with pro�ling and the CEA is they re-
quire minimal assumptions about the device being attacked. In the case of CEA
the attack requires no more information than a CPA attack, for example being
completely agnostic to any countermeasures inserted into the device. Compared
to typical multivariate or higher-order DPA attacks, this is a considerable re-
duction in attack complexity. It was demonstrated how the channel equalization
& CEA could both be used to break a protected AES implementation.

Complete code for implementation of all attacks, including measurements, is
available at [Removed from Anonymous].

Acknowledgements Removed from anonymous version.

References

1. Messerges, T.: Using second-order power analysis to attack dpa resistant soft-
ware. In Koç, e., Paar, C., eds.: Cryptographic Hardware and Embedded Systems
- CHES 2000. Volume 1965 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2000) 238�251

2. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivariate
to univariate. In Bertoni, G., Coron, J.S., eds.: Cryptographic Hardware and
Embedded Systems - CHES 2013. Volume 8086 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2013) 1�20

3. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: Rsm: A small and fast counter-
measure for aes, secure against 1st and 2nd-order zero-o�set scas. In Rosenstiel,
W., Thiele, L., eds.: DATE, IEEE (2012) 1173�1178

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
Cryptographic Hardware and Embedded Systems - CHES 2004 (2004) 135�152

5. North, D.: An analysis of the factors which determine signal/noise discrimination
in pulsed-carrier systems. RCA Labs. (1943)

6. Trefethen, L.N., Bau III, D.: Numerical linear algebra. Number 50. Siam (1997)
7. Van-Trees, H., Bell, K.: Detection, Estimation, and Modulation Theory: Part 1.

2nd edn. Wiley (2013)
8. Liavas, A., Tsipouridou, D.: On the performance of the mismatched mmse and the

ls linear equalizers. Trans. Sig. Proc. 55(7) (July 2007) 3302�3311
9. Moradi, A., Mischke, O.: On the simplicity of converting leakages from multivari-

ate to univariate - (case study of a glitch-resistant masking scheme). In: CHES,
Springer (2013) 1�20

10. Standaert, F.X., Gierlichs, B., Verbauwhede, I.: Partition vs. comparison side-
channel distinguishers: An empirical evaluation of statistical tests for univariate
side-channel attacks against two unprotected cmos devices. In Lee, P., Cheon, J.,
eds.: Information Security and Cryptology - ICISC 2008. Volume 5461 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2009) 253�267

	Channel Equalization for Side Channel Attacks

