
Channel Equalization for Side Channel Attacks

Colin O’Flynn and Zhizhang (David) Chen

Dalhousie University, Halifax, Canada
{coflynn, z.chen}@dal.ca

Revised: July 10, 2014

Abstract. This paper introduces the use of channel equalization as a
method of reducing the computational complexity of side channel anal-
ysis (SCA), by effectively collapsing all points in a power measurement
trace into a single random variable. This uses a simple Finite Impulse
Response (FIR) linear equalizer, which has been studied extensively in
communications systems. In addition the estimation of a channel model
is used in developing the Channel Estimation Analysis (CEA), which is
a generic attack requiring similar assumptions to the Correlation Power
Analysis (CPA) attack. Both channel equalization and the CEA attack
are straight-forward to apply to real systems, and Python examples are
provided. Results of attacking unprotected AES-128 and protected AES-
256RSM on a microcontroller are provided, and compared to a standard
CPA attack along with a template attack.

Keywords: side-channel analysis, multivariate, equalization, channel
estimation

1 Introduction

This work introduces the use of channel equalization to effectively collapse an
entire measured power trace to a single point. This work is motivated in part
by previous reports of the physical measurement channel combining measure-
ments from many points into one, effectively breaking systems with univariate
attacks, despite the algorithms being theoretically secure against such attacks[1].
This was mostly empirical observations, and does not for example demonstrate
how to perform this optimally, or how to evaluate countermeasures under such
assumptions.

After covering the related work, we will begin with a description of the model
of a side channel analysis (SCA) attack as a communications system in Section 2.
The use of Channel Estimation in communications systems will be covered in
Section 3, which then applies this knowledge to the problem of side channel anal-
ysis. In Section 4 a proposal will be made about the use of channel equalization
itself as a non-profiled attack. Section 5 will briefly cover details of improving
the implementation performance, before finally bringing forth results of channel
equalization in Section 6.

The attacks will be demonstrated on physical devices implementing unpro-
tected software AES-128, along with protected software AES-256 using RSM
(Rotating SBox Mask)[2]. It will be demonstrated that the proposed channel
estimation is capable of breaking the AES-256 RSM without any knowledge of
the implementation beyond the standard Hamming Weight assumption — i.e.
without considering that the implementation is using masking.

Finally future work and conclusions follows in Section 7 and 8.

1.1 Related Work

The Stochastic Model [3] assumes that a physical observation t is composed of
a data-dependant part related to the subkey s and data x, along with a random
noise part. This can be seen as analogous to the channel model which will be
introduced in Section 3.1. The stochastic method is still selecting points within
the trace however, whereas the work in this paper is using the points to map
back to an indicator of the original data.

The proposed channel estimator is a simple linear filter, implemented as a
Finite Impulse Response (FIR) structure. Previous work in finding an optimal
linear filter for a CPA attack is given in [4]. The authors use a FIR filter as a
preprocessing step for a CPA attack, where the FIR filter is designed to maximize
the ratio between the output of the CPA equation (discussed in Section 2) for
correct and incorrect inputs.

Similarly in [5] the FIR structure is used, although instead of optimizing a
metric based on the correlation equation as in [4], an attempt is made to directly
optimize the FIR coefficients to improve the SNR. An advantage the method
proposed in [5] is it doesn’t require a profiling stage where a known key is being
used. The work in [5] cannot however compensate for certain countermeasures
as the proposal here does.

The work presented here instead attempts to use the same FIR structure
to improve the fit of the leakage to a given hypothetical model. This will allow
the FIR structure to determine all related points, including determining if it
is possible to use combinations of points to break masking countermeasures.
This work also has advantages when implementing analysis algorithms in real-
time. The use of SCA for verifying device integrity has been presented in [6] for
example. It is possible to implement the FIR structure in real time, for example
if it is desired for an embedded system to use SCA as part of a verification
system. Since the output requires comparison to only a single template, the
computational complexity is minimized.

2 Correlation Power Analysis and the Matched Filter

As a precursor to the introduction of channel estimation, the well-known Corre-
lation Power Analysis (CPA) [7] attack will be considered in lens of communica-
tions theory. The basic equation for a CPA attack, where ri,j is the correlation
coefficient at point j for hypothesis i, the actual power measurement is td,j of

trace number d at point j, and pd,i is the hypothetical power consumption of
hypothesis i for trace number d, with a total of D traces is given in equation (1).
This equation is simply an application of the Pearson’s correlation coefficient
given in equation (2), where X = p, and Y = t.

ri,j =

∑D
d=1

[
(pd,i − pi)

(
td,j − tj

)]√∑D
d=1 (pd,i − pi)

2∑D
d=1

(
td,j − tj

)2 (1)

ρX,Y =
cov (X,Y)

σXσY
=

E [(X − µX) (Y − µY)]√
E
[
(X − µX)

2
]√

E
[
(Y − µY)

2
] (2)

The form given in these equations is referred to as the normalized cross-
correlation, and frequently used in image processing applications for matching
known templates to an image.

2.1 Basic Communications Principles

In communications theory, the most basic problem statement is how to receive
a signal that has been corrupted by Additive White Gaussian Noise (AWGN).
The continuous-time and discrete-time interpretations of this problem are given
as follows:

r(t) = As(t) + n(t) (3)

r[n] = As[n] + w[n] (4)

The transmitted signal or sequence s(t) or s[n] is one of several valid signals,
the specific signal depending on the system. The objective of the communi-
cation systems is for the receiver to determine which of the possible symbols
s1(t), s2(t) · · · , sN (t) was sent based on the received signal r(t).

2.2 Correlation Implementation of the Matched Filter

The objective of receiving a known signal in Additive White Gaussian Noise
(AWGN) has a well known solution, the matched filter (or ‘North filter’), first
described in 1943[8]. In the case of receiving the signal s(t) given in (3), the
impulse response h(t) of the matched filter should be a time-reversed and shifted
copy of the transmitted signal:

h(t) = s(T − t), 0 ≤ t ≤ T

Which will maximize the output of the filter at time t = T when the trans-
mitted signal is s(t). Applying the filter to a received signal means convolving
this impulse response with the received signal, and sampling the output of this

convolution at time t = T . If we are attempting to select which of the possi-
ble signals s1(t), · · · , sN (t) was sent, we would simply perform N convolutions,
each for a candidate sn(t). Selecting the most likely candidate than becomes the
argmax of the convolution over all candidates at t = T , which can also be writ-
ten as the correlation of received signal r(t) with all candidates sn(t) at t = 0,
which would be:

argmax
n

(r(t) ? sn(t)|t=T) = argmax
n

T∫
0

y(τ)sn(τ)dτ (5)

The forms given in equations (2) force both r(t) and s(t) to be zero-mean
and normalized by standard deviation. This is necessary for us as we do not have
proper scaling of the template s(t) used at the receiver.

One critical difference between communications systems and side-channel
power analysis is the definition of the argument of s(t). In communications we
are sending a known signal sn(t), which may be drawn from a set of ‘allowed’
signals s1(t), s2(t), · · · , sN (t). Each of these signals is typically a finite-length
signal as a function for time (or samples in the discrete case). At the receiver
we can use the matched filter to determine which of the N possible signals was
transmitted.

For side-channel analysis, our function s(t) is actually defined over the num-
ber of cryptographic operations we observed. In equation (1) this was the ‘trace
index’ d, and thus will be referred to as s(d). Each of the possible functions
s1(d), s2(d), · · · , sN (d) reflects the hypothetical value for the byte of the secret
key we are attacking. Thus the matched filter comparison is always done at the
same sample (i.e. time point) in each power measurement trace td.

3 Channel Estimation & Equalization

z-1 z-1 z-1

h
0

h
1

h
2

h
N

S S S

p[n]

t[n]

Fig. 1. Simple channel model, where noise can be added to the output if w[n] also
needs to be modelled.

In equation (4) the received signal is corrupted only with AWGN, and pos-
sibly a fixed scaling factor. This does not account for realistic channels between
the transmitter and receiver, which may include the signal coming from multiple

paths. Instead the model shown in Fig. 1 is used, which is described by equation
(6). The objective of ‘channel estimation’ is to discover the value of the taps,
given by the hchannel vector. Again p is the original transmitted data.

t[n] =

J−1∑
j=0

hjp[n− j] + w[n] (6)

Estimating the coefficients at the receiver requires that the transmitter sends
a known ‘training sequence’. In communications systems the channel estimation
has several complicating factors: it must be performed in real-time to be use-
ful, and the channel will change over time so one must track the channel. By
comparison in side-channel analysis the computation must simply be possible in
reasonable time, and the channel varies little over time since the measurement
setup is fixed.

3.1 Applicability to Side Channel Analysis

Using a channel model for side-channel analysis means we assume that a single
piece of data generated the entire power trace, via the channel model. If we
use the inverse of this channel model at the receiver, we can thus generated a
single point from each trace, this single point containing all of the relevant infor-
mation from the entire trace for a specific subkey. Thus note that each subkey
s requires a different channel estimate to be formed. Rather than forming the
channel hchannel, we will instead directly estimate the inverse. This inverse will
be the required linear equalizer for our unknown channel. As we will generate
a separate equalizer hs for each subkey being attacked, but it is trivial to also
use a H matrix instead by combining the hs vectors, which would generate
information for all attacked subkeys. This is analogous to Multiple Input Mul-
tiple Output (MIMO) systems, where the channel matrix is used to generate
several independent communications channels. In our example the ‘independent
channels’ means the different information about each subkey s. Extensions to
generate a channel estimate for a single bit within a subkey are of course valid,
and would just require additional channel estimates.

In communications systems a sequence at the transmitter is disrupted by
the physical channel. We will be considering the ‘known sequence’ to instead
be the leaked information, typically the hamming weight or hamming difference
of sensitive data. The channel is considered everything in between the leaked
information and the power measurement: thus we also group countermeasures
into this channel and other details of the implementation.

The model used is given in equation (7). The information being leaked
by the device is pd,s (e.g.: hamming weight or hamming distance) about sub-
key s related to trace d. For example using the classic HW CPA assumption,
pd,s = HW (SubByte(b⊕ k)), where b is the plaintext byte and k is a key value.

The equalization vector for subkey s is hs, and td is the vector of power mea-
surements.

pd,s = (td − µtd) · hs + µp,s (7)

Note in this form we make no assumption about td or pd being zero-mean. If
both are assumed to be zero-mean, this can simplify the notation by removing
references to µtd and µp. In which case (7) can simply be written as:

pd,s = td · hs (8)

The value of µtd will not be known, and instead the estimate µ̂td is formed
from the received data. The value of µp is known, which will simply be 1

2 of the
maximum hamming weight (e.g. µp = 4 on our 8-bit microcontroller).

The vector hs is the linear equalizer coefficients. Unlike in communications
systems we have no control over the ‘transmitter’ and thus will always use the
form in equation (8). Attempting to solve the form of equation (6) and then
invert the matrix for use in equation (8) would be equivalent, however the form
in (8) simplifies notation and computation in side channel analysis problems.

3.2 Equalizer Coefficients from Training Set

The equalizer coefficients will be built from leakage measurements on a device
with a known secret key. Finding equalizer coefficients without a known key will
be discussed in section 4. If the coefficients are required to be independent of the
secret key, the training set should be generated using many different (known)
keys, although the sensitivity to this is explored in Section 6.

For a traces with a known secret key, the expected leakage measurement is
considered the known value of pd,s. Each of the power measurements is td, and
then the error between the estimated value p̂d and the ‘known’ pd is:

e(d) = pd,s − p̂d,s = pd,s −
(
ĥs · td

)
(9)

For notational simplicity this uses the form of (8), if the zero-mean assump-
tion is not made the form in (7) should instead be substituted. Two different
options for minimizing this option are commonly used: the Least Square (LS) and
the Mean Square Error (MSE). Results of experiments using both minimization
options were almost identical, so only the LS will be described here.

For the LS cost function, the objective is to minimize the sum of square errors
over all traces:

D−1∑
d=0

e2(d) (10)

This can be accomplished with a least-squares (LS) error estimator (or ‘solver’),
with the solution ĥs. These solvers are frequently built into numeric packages

such as MATLAB, SciPy, etc. A faster method is to use the pseudoinverse to
solve the LS problem, which has a known solution given by (11.12) in [9]:

ĥs = t+ · ps (11)

Where t+ is the pseudoinverse of t (also known as the Moore–Penrose pseu-
doinverse). Note that t+ needs to be calculated only once for any set of traces,
and can then be reused for many steps in the algorithm. For generating ĥs over
s = {0, 1, · · · , S−1} the t+ is calculated once for example, instead of performing
S least-square estimators.

To calculate the pseudoinverse, we can use a singular value decomposition
(SVD)[9]. If we perform the SVD on a matrix A, we will have:

A = U ·Σ · V ∗

Then we define the pseudoinverse as:

A+ = V ·Σ+ ·U∗

As Σ is a diagonal matrix, the pseudoinverse Σ+ is found by taking the inverse
of each non-zero entry on the diagonal. In the implementation of this algorithm,
there is a limit below which entries are considered to be zero, and any diagonal
elements below this limit in Σ are replaced with zero.

3.3 Applying the Equalizer Information

Once the equalizer coefficients ĥs are acquired for each subkey s, it can be used
to convert power traces into a single point containing all information linearly
related to the leakage.

This single point can be processed per existing attack algorithms such as the
CPA attack given in (1), although without the subscript j. The use of the equal-
izer results in an output with expected valid values, which allows a simplified
selection algorithm discussed next.

3.4 Template and Minimum Distance

The objective of the equalizer is to generate outputs p, which is the supposed
‘input’ to the channel in (6). Again for our 8-bit HW assumption, this would
mean p ∈ {0, 1, · · · , 8}. This work assumes these values p are given by a leakage
function, such as the HW of a sensitive value. In reality, the output p̂ of the
equalizer ĥ will not match the values given by the leakage function, or p̂ /∈
{0, 1, · · · , 8}.

Instead templates can be generated based on the output of the estimated
channel for the training set. This output of the estimated channel is p̂s,i for a
given subkey s with leakage i. This simply means finding the value of µp̂s,i

and
σ2
p̂s,i

, and then matching the templates using a maximum likelihood hypothesis
test.

As an alternative, the minimum distance approach is also considered. Here
we consider the most likely template to be the one which minimizes the absolute
difference between the received value and the template mean, or:

îs = argmin
i

D−1∑
d=0

|p̂d,s − µp̂d,s,i
| (12)

In the case where the values of µp̂s,i
are equally spaced and σ2

p̂s,i
are all equal

these two approaches (minimum distance and maximum likelihood) will produce
the same results.

4 Equalizer Without Training Set

For evaluation of a specific cryptographic device, the most accurate equalizer
coefficients will be generated with profiling (i.e. a training set). As a consideration
of the use of these methods in practical ‘attack’ scenarios, it may be required to
form the equalizer coefficients without knowledge of the secret key. This means
that an attacker does not have a device they can characterize, and instead the
problem is similar to a Correlation Power Analysis (CPA). This type of attack
will be referred to as a Channel Estimation Analysis (CEA).

For CEA the attacker records D power traces, each trace td containing a
number of points. The attacker also knows the input text (or cipher text) bd
for each power trace. The attacker than partitions the traces & texts into two
arbitrary sets: a fitting set tfd with Df elements, and a test set ttd with Dt

elements. The majority of traces will belong to the fitting set, with a smaller
number in the test set. Similarly the known text is split into bfd and btd for the
fitting set and test set.

We now solve equation (7) where td is the fitting set tfd . We do not have the
known leakage information ps in this case, and instead a hypothetical leakage
vector corresponding to the fitting set p̃fs will be generated. If there are i =
{0, 1, · · · , N − 1} possible hypothetical values for each subkey, there will be N
hypothetical p̃fs,i. The generation of leakage information is the same as in the
CPA case, where the predicted leakage value depends on having a power model,
the guess i, and the known text btd[7].

The result of the least-squares fitting will generate a hypothetical equalizer
coefficients vector h̃s,i for subkey s & hypothesis i. Note this fitting is computa-
tionally intensive, and accomplishing the attack in reasonable times will instead
use a pseudoinverse discussed in section 5.2.

Finally we use the test set tt of power traces, and again will generate hypo-
thetical vector p̃ts,i based on btd and i. We will pass each test set trace ttd through
the hypothetical equalizer, and compare the fit based on the test set hypothetical
value. Conceptually, we are simply attempting to obtain the equalizer coefficients
for each hypothetical key. The equalizer with the best fit is deemed to be the
most likely key. It is required to partition the traces into a fitting set and a test

set to avoid being fooled by noise, which may have the smallest residuals from
the least-squares with the original dataset.

Equation (13) shows the function e(s, i) which should be minimized over i
for every subkey s. The value of i which minimizes e(s, i) is thus the most likely
hypothetical value for subkey s.

e (s, i) =

Dt−1∑
d=0

((
h̃s,i · ttd

)
− p̃ts,d,i

)2
(13)

5 Implementation Performance

This section briefly mentions some practical considerations of implementing the
algorithms from this paper. Of particular importance is the use of the pseudoin-
verse for the least-squares estimation of the channel.

5.1 Decoding with Known Equalizer Coefficients

If the equalizer coefficients ĥ are known, the application of minimum-distance
decoding is a lightweight process. Each incoming trace is multiplied by the equal-
izer coefficients to produce the leaked information about each subkey. Trivially
the sum in equation (12) can be converted to an update equation. Thus for each
guess of each subkey only the value of the summation is stored. The memory
requirements are such that implementation in an embedded system is simple.
In addition it is also possible to implement the system in hardware (e.g. FPGA
or ASIC) which can process the incoming trace measurement a point at a time,
avoiding the need to store traces.

For general side-channel analysis, such improvements are of little value. If,
however, once wishes to perform side channel analysis in real time as part of a
validation system[6], the simplified processing requirements are of a great benefit.

In general, the use of equalization will greatly reduce computational require-
ments as the output of equation (7) is a single point for each trace, regardless
of the length of each input trace. Applying equation (7) for a single subkey s,
where the input trace has J points, over a total of D traces, would require J ·D
multiplications, and (J − 1) ·D additions. There is of course an additional cost
to initially generate the equalizer.

5.2 Pseudoinverse for Solving for Equalizer Coefficients

As mentioned, solving the pseudoinverse greatly simplifies the least-squares prob-
lem. In particular, for the CEA attack given in equation (13), only a single t+
calculation is needed, which is reused for all key-guesses i across all subkeys s.
For the CEA algorithm on byte-wise AES-128 for example, this means 1 pseu-
doinverse compared to 40961 least-squares estimation operations.
1 16× 256

A variety of existing libraries for calculating the pseudoinverse exist which
simplifies calculation of the equalizer coefficients, since equation (11) can almost
directly be coded. Examples of packages implementing the pseudoinverse include
MATLAB, NumPy, SciPy, LAPACK, and OpenCV.

6 Attack Results

6.1 Unprotected Software AES-128

An unprotected software AES implementation is used as the first example de-
vice. The code is the AVR-Crypto-Lib AES code in C2, programmed into an
AtMega328p microcontroller. The device runs at 7.3728 MHz, and power mea-
surements are taken from a 50-ohm resistive shunt inserted into the VCC lines.
Measurements are perfectly synchronized with a trigger generated by the device.

Two separate attacks are considered: the first is a profiled attack, which first
solves the equalizer coefficients equation (7) using power measurements taken
with a known plaintext and encryption key, both of which randomly change for
every trace. Once the equalizer is known a different set of traces with a fixed key
and randomly changing plaintext is used to generate attack statistics.

Each trace measurement with the unknown key is multiplied by the esti-
mated ĥs to form a single datapoint, which is then processed by several different
algorithms. The results of this compared to both a standard CPA attack along
with a template attack is given in Fig. 2. Details of the various attacks are given
in the follow subsections.

Correlation Power Analysis (CPA) For this attack the standard CPA is
used[7]. The most likely subkeys are ranked by the correlation coefficient given
by equation (1), where the intermediate value attacked is the Hamming Weight
at the output of the S-Boxes from the first round.

Template Attack For this attack a template[10] of the Hamming Weight (HW)
at the output of the S-Boxes from the first round of AES is generated using 2500
traces with a known (random) encryption key & plaintext. A total of 16 × 9
templates are generated, each template targeting 3 Points of Interest (POI) in the
trace for each subkey. The POI are selected based on the sost criteria as detailed
in [11]. Template matching is done using a multivariate normal distribution, as
given in [10].

Equalized Attacks For this attack the equalizer coefficients are generated
from 2500 traces with a known (random) encryption key & plaintext. An attack
is then performed on a different set of traces from the same setup, having passed
those traces through a linear estimator ĥs. The output of the linear estimator,
a 1× 1 random variable, is used in several different attacks.
2 Available from: http://avrcryptolib.das-labor.org/trac/wiki/AES

http://avrcryptolib.das-labor.org/trac/wiki/AES

The most basic attack uses that datapoint as the input to a CPA attack,
which is exactly the same as the CPA attack used in Section 6.1. As in [4], this
type of preprocessing should be more resilient to noise, since it’s not dependant
on specific templates (i.e. value of mean).

The CPA attack does not use all available information — we can use the
existing training set to generate templates based on the output of the equalizer.
Two versions as described in Section 3.4 are tested — one using a univariate
normal distribution (‘Equalizer Template’) to generate probabilities against each
candidate HW template, and one using a simple absolute difference between
candidate HW template means.

The linear equalizer used here was found using the LS solver based on the
pseudoinverse. Equalizers were also built with a regressive LS solver and the
linear MSE solutions given in this paper – the resulting PGE was almost identical
to that given in Fig. 2. To avoid cluttering the graph these have not been shown.

Channel Estimation Analysis The final attack graphed does not have a
profiling phase, this is the Channel Estimation Analysis (CEA). The specified
number of traces for each datapoint are split into half; one part becoming the
fitting set, one part becoming the test set, as described in Section 4. The CEA
appears to have poor performance, in part due to the partitioning of traces. The
CEA achieves an average PGE < 10 in about 300 traces, although this is off-
scale for the graph. The advantage of CEA will be demonstrated when instead
attacking a masking scheme.

5 10 15 20 25 30 35 40 45 50
0

10

25

50

75

100

125

150

Number of Traces Used in Attack

A
tt

ac
k

R
es

u
lt

s,
 A

ve
ra

g
e

P
G

E

Comparison of Channel Equalization

CPA
Template (3 POI)
Equalized CPA
Equalized Minimum Distance
Equalized Template
Channel Estimation Analysis

Fig. 2. Comparison of channel equalization attacks on AES-128.

6.2 Protected Software AES-256

A protected software AES implementation is used as another example device;
the AES-256 code is protected by the Rotating SBox Mask [2]. This code is the
same as used in the DPA Contest v43, but programmed into an AtMega328p
microcontroller. The device runs at 7.3728 MHz, and power measurements are
taken from a 50-ohm resistive shunt inserted into the VCC lines. Measurements
are perfectly synchronized with a trigger generated by the device.

These examples will use both equalization with training set (i.e. profiling) and
unprofiled. Note the profiling phase is completely unaware of any details of the
implementation. The channel estimation procedure, including the power leakage
model, is exactly the same as in the unprotected AES-128 case; these simple
assumptions are the main advantage of linear equalization & CEA compared to
other techniques. It will be appreciated that considerably better attack results on
this specific implementation are published on the DPAv4 Hall of Fame4, however
they are normally aware of some details of the implementation.

CPA with Equalization Using Least-Squares Estimator For this attack
the equalizer coefficients are generated from 5000 traces with a known key &
plaintext. The coefficients are found using a least-squares estimator using the
pseudoinverse. An additional 10 000 traces are recorded and used for generation
of the statistics. The results are ranked by the output of the correlation coefficient
given by equation (1). The resulting PGE is shown in Fig. 3. Note the most useful
results are generated from a randomly changing training key, since the equalizer
will be agnostic of the secret key. For test purposes the equalizer generated with
a fixed key performs similarly, but this equalizer will be very sensitive to changes
in the key.

It is important to note that an equalizer generated with a single fixed secret
key does still provide some useful information about the channel. Consider that
an attacker is unable to change keys but does know the value of a key. This
could be the case where there is a default key on a device; the key is not used for
any trusted operations, but is processed with the same operations as a trusted
key. Using this key for training the channel equalizer, and then attacking the
unknown secret key, provides improved results compared to a standard CPA
attack.

Channel Estimation Analysis and Comparison to First-Order Attacks
Two first-order attacks are mounted, which would be expected to fail on the
AES-256RSM implementation. The first is the standard CPA using the Hamming
Weight (HW) assumption, where the output of the S-Box is targeted. The most
likely subkeys are ranked by the correlation coefficient given by equation (1),
where it is calculated for each datapoint. Next, a template attack is used. The
template attack again targets the first-round S-Box output, where templates
3 http://www.dpacontest.org/v4/
4 See http://www.dpacontest.org/v4/hall_of_fame.php

http://www.dpacontest.org/v4/
http://www.dpacontest.org/v4/hall_of_fame.php

0 500 1000 1500 2000 2500
0

20

40

60

80

100

120

140

Trace Number

A
ve

ra
ge

 P
G

E

CPA on Protected AES−256RSM using Channel Equalization

Random Training Key
Fixed Training Key (same)
Fixed Training Key (different)

Fig. 3. CPA performed on AES-256 protected with RSM, where traces have been pre-
processed by Channel Equalization. Three different training key setups are compared:
a randomly varying key, a fixed key that is the same as the secret key (i.e. as someone
testing the system), and a fixed key that differs from the secret key (i.e. as an attacker
that cannot control the key).

are generate for the Hamming Weight (HW) of this value (i.e. the same leakage
assumption being used for the channel estimation attack and CPA attack). These
results are shown in Fig. 4, note after 10 000 traces no changes in the average
PGE are found.

Note that it is possible for first-order attacks to succeed, as given in [12]. This
required changes to the leakage model, and it was also noted that a standard
HW leakage model of the S-Box input or output failed to recover the secret key.

Next, we will consider the CEA attack. For this attack no prior knowledge is
assumed beyond the assumption about the device leaking the hamming weight,
i.e., the same assumption made in the unprotected case. The specified number
of traces are again split into two groups: a training set and a test set. The results
of this attack are shown in Fig. 4. Whilst a complete attack was unsuccessful,
the PGE of subkeys is considerably better compared to the other attacks, and a
progression of the PGE towards zero is present.

7 Future Work

7.1 Classifying Countermeasure Effectiveness

The use of equalization can also be used to quantify the effectiveness of counter-
measures. This is particularly useful for the simulated environment — it was pre-
viously reported for example how a physical measurement setup which ‘blended’
several measurements together resulting in an attack on a physical device be-
ing far more successful than the simulation predicted [1]. If instead the channel
estimation and equalization process is used for the simulated environment, the
equalized attack algorithm will combine all linearly related leakage points.

4000 5000 6000 7000 8000 9000 10000
0

25

50

75

100

Trace Number

A
ve

ra
ge

 P
G

E

Attacks on AES−256RSM

CEA
Template (First−Order, 5 POI)
CPA (First−Order)

Fig. 4. Comparing the CEA to two first-order attacks.

Note that whist the channel equalizer is linear, the channel itself may be
non-linear. Thus the real system may be able to combine non-linear effects to
break the countermeasures, even though in the simulated channel the system is
perfectly secure. Work in comparing simulated to physical channels is required to
understand these effects. Using non-linear channel models may also improve the
performance, but solving the LS or MSE cost functions for non-linear channels
is more complex.

7.2 Multiple Leakage Combining

The issue of combining multiple leakages from the same device (i.e.: shunt mea-
surement with electromagnetic probe) may also be solvable via the equalizer.
In the original case we had a power trace measurement td corresponding to a
plaintext input bd. Assume instead we record the power across a shunt resistor
into vector tshuntd , and the EM Field emitted into vector temd . Both of these mea-
surements occurred for the same input bd. We now create a unified vector td,
where td = [tshuntd , temd]. If both vectors have some relation to the leaked value,
the equalizer h will combine these into a single point.

8 Conclusions

Using channel equalization is a simple method of compensating for all disrup-
tions to the leaked data of a device. With proper selection of the channel, even
intended disruptions such as countermeasures can be compensated for. This work
has used a simple linear FIR equalizer, where the equalizer is found using least
squares (LS) or Mean Square Error (MSE) metrics. The improvement in attack
performance for unprotected AES 128 is demonstrated, along with proving the
ability of channel estimation to attack protected implementations. While chan-
nel equalization requires a profiling phase, some initial work using the channel

estimation without the profiling phase was also demonstrated, under the name
of the Channel Estimation Attack (CEA).

The advantage of both the equalizer with profiling and the CEA is they
require minimal assumptions about the device being attacked. In the case of
CEA the attack requires no more information than a CPA attack, for example
being unaware of any countermeasures inserted into the device. Compared to
typical multivariate or higher-order DPA attacks, this is a considerable reduction
in attack complexity. It was demonstrated how the channel equalization & CEA
could both be used to break a specific protected AES implementation.

Complete code for implementation of all attacks, including measurements, is
available at [link removed as would violate request for anonymous submissions].

References

1. Moradi, A., Mischke, O.: On the Simplicity of Converting Leakages from Multi-
variate to Univariate. In Bertoni, G., Coron, J.S., eds.: Cryptographic Hardware
and Embedded Systems - CHES 2013. Volume 8086 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2013) 1–20

2. Nassar, M., Souissi, Y., Guilley, S., Danger, J.L.: Rsm: A small and fast counter-
measure for aes, secure against 1st and 2nd-order zero-offset scas. In Rosenstiel,
W., Thiele, L., eds.: DATE, IEEE (2012) 1173–1178

3. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Cryptanalysis. In Rao, J., Sunar, B., eds.: Cryptographic Hardware and
Embedded Systems - CHES 2005. Volume 3659 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2005) 30–46

4. Oswald, D., Paar, C.: Improving Side-Channel Analysis with Optimal Linear
Transforms. In Mangard, S., ed.: Smart Card Research and Advanced Applications.
Volume 7771 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2013) 219–233

5. Hajra, S., Mukhopadhyayd, D.: On the Optimal Pre-processing for Non-Profiling
Differential Power Analysis. In: International Workshop on Constructive Side-
Channel Analysis and Secure Design (COSADE). (2013)

6. Mehari Msgna, K.M., Mayes, K.: Verifying Software Integrity in Embedded Sys-
tems: A Side Channel Approach. In: International Workshop on Constructive
Side-Channel Analysis and Secure Design (COSADE). (2013)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
Cryptographic Hardware and Embedded Systems - CHES 2004 (2004) 135–152

8. North, D.: An analysis of the factors which determine signal/noise discrimination
in pulsed-carrier systems. RCA Labs. (1943)

9. Trefethen, L.N., Bau III, D.: Numerical linear algebra. Number 50. Siam (1997)
10. Chari, S., Rao, J., Rohatgi, P.: Template attacks. In Kaliski, B., Koç, e., Paar, C.,

eds.: Cryptographic Hardware and Embedded Systems - CHES 2002. Volume 2523
of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003) 13–28

11. Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In
Goubin, L., Matsui, M., eds.: Cryptographic Hardware and Embedded Systems -
CHES 2006. Volume 4249 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (2006) 15–29

12. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In Boureanu, I.,
Owesarski, P., Vaudenay, S., eds.: Applied Cryptography and Network Security.
Volume 8479 of Lecture Notes in Computer Science. Springer International Pub-
lishing (2014) 324–342

	Channel Equalization for Side Channel Attacks

