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Abstract. Group homomorphic encryption represents one of the most
important building blocks in modern cryptography. It forms the basis of
widely-used, more sophisticated primitives, such as CCA2-secure encryp-
tion or secure multiparty computation. Unfortunately, recent advances
in quantum computation show that many of the existing schemes com-
pletely break down once quantum computers reach maturity (mainly
due to Shor’s algorithm). This leads to the challenge of constructing
quantum-resistant group homomorphic cryptosystems.
In this work, we prove the general impossibility of (abelian) group ho-
momorphic encryption in the presence of quantum adversaries, when
assuming the IND-CPA security notion as the minimal security require-
ment. To this end, we prove a new result on the probability of sampling
generating sets of finite (sub-)groups if sampling is done with respect to
an arbitrary, unknown distribution. Finally, we provide a sufficient con-
dition on homomorphic encryption schemes for our quantum attack to
work and discuss its satisfiability in non-group homomorphic cases. The
impact of our results on recent fully homomorphic encryption schemes
poses itself as an open question.

Keywords: Public-Key Cryptography, Homomorphic Encryption, Se-
mantic Security, Quantum Algorithms, Sampling Group Generators

1 Introduction

Since the introduction of public-key cryptography by Diffie and Hellman [12] in
1976, researchers strived to construct encryption schemes that are group homo-
morphic. This property can be characterized by requiring the encryption scheme
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to have a homomorphic decryption procedure, while the plaintext and cipher-
text spaces form groups. Ever since, the topic of homomorphic encryption is of
central importance in cryptography. The recent advances in fully homomorphic
encryption (FHE) [6, 15, 16] constitute just one example of this trend. In prac-
tice, group homomorphic encryption schemes lie at the heart of several important
applications, such as electronic voting [8], private information retrieval [23], or
multiparty computation [7] to name just a few. Moreover, the group homomor-
phic property comes quite naturally, as witnessed by a number of encryption
schemes, for example RSA [28], ElGamal [13], Goldwasser-Micali [19], where the
homomorphic property was not a design goal, but rather arose “by chance”.

So far, these cryptosystems were all analyzed in the classical model of com-
putation. However, it is reasonable to assume that the quantum model of compu-
tation will become more realistic in the future. Unfortunately, in this model all
aforementioned cryptosystems are insecure due to Shor’s algorithm [29], which
allows to efficiently solve the discrete logarithm problem and to factor large
integers. That is, until today nobody has been able to come up with a group
homomorphic encryption scheme that can withstand quantum attackers.

It seems that such a scheme would require other design approaches. For
instance, when considering ElGamal-like encryption schemes, simply replacing
the underlying computational hardness assumption by a supposedly quantum-
resistant one, say code-based, is not enough [2]. In fact although there is a sub-
stantial number of classical cryptographic primitives that can be proven secure
against quantum attackers, e.g. [21], we still know little about what classical
primitives can be realized in the quantum world and what not. Indeed this ap-
plies to the case of group homomorphic encryption schemes as well: so far it
was even undecided whether group homomorphic encryption can exist at all in
the quantum world. In other words, does the absence of a quantum secure group
homomorphic encryption scheme so far imply that the right approach has not
been found yet (but may be in the future) or are there universal reasons that
prevent the existence of such schemes?

1.1 Our Contributions

Basic Impossibility Result. The central contribution of this work is to give
a negative answer to the above question:

It is impossible to construct secure group homomorphic encryption in the
quantum world, if the plaintext and ciphertext spaces form abelian groups.

More precisely, we prove that any such scheme4 cannot meet the minimial se-
curity notion of IND-CPA security in the presence of quantum adversaries. Ob-
serve that this result not only re-confirms the insecurity of existing schemes,
but shows that all group homomorphic encryption schemes (including all yet to
come schemes) are inevitably insecure in the quantum world.

4 Although we postulate that our result is extendible to arbitrary solvable groups,
we focus on the abelian case, since it is the most important one for reasons of
practicability in real-world applications.



Quantum Attack. In order to prove this impossibility, we start by exhibit-
ing the fact that the IND-CPA security of any group homomorphic encryption
scheme can be reduced to an abstract Subgroup Membership Problem (SMP),
introduced by Cramer and Shoup [9], which is much easier to analyze. Roughly
speaking, this problem states that given a group G with subgroup H and a
randomly sampled (according to some arbitrary distribution D) element g ∈ G,
decide whether g ∈ H or not. This reduction to the SMP tells us that in order to
break the IND-CPA security of a given group homomorphic encryption scheme
in the quantum world, it is sufficient to give a quantum algorithm that breaks
the SMP. Now, the basic idea for breaking the SMP for groups (G,H) is to
use Watrous’ variant [30] of the famous group order-finding quantum algorithm,
which will effectively decide membership.

Sampling Generators in Finite Groups. Unfortunately, this algorithm only
works when given a set of generators ofH which we commonly do not have. Hence
we restrict to the generic case that an attacker has only access to an efficient
sampling algorithm for H that samples according to some distribution D. We
distinguish between the following two cases:

– Uniform Distribution. If D is uniform, Erdös and Rényi [14] show that
sampling polynomially many times from H will give a generating set with
high probability—a result that has been improved by Pak and Bratus [26]: If
k = dlog2(|H|)e, then k+4 samples are enough to get a set of generators with
probability ≥ 3/4. After obtaining a generating set for H, we use Watrous’
quantum algorithm to decide membership in H, and hence efficiently break
the SMP for (G,H).

– Arbitrary/Unknown Distribution. In general, the distribution D does
not have to be uniform, but can be arbitrary, or completely unknown. In-
terestingly, we prove that, even then, breaking the SMP is possible with
(almost) linearly many samples only. Observe that as we do not make any
restrictions on the sampling algorithm, we cannot exclude seemingly exotic
cases where regions of H are hardly (or never) reached by the sampling
algorithm. Thus, the best we can aim for is to find a generating set for a
subgroup H∗ of H such that the probability that a random sample (with
respect to D) does fall into H∗ is above an arbitrarily chosen threshold δ. We
call such subgroups to be δ-covering. It turns out that having a generating
set for such a subgroup is enough to break the SMP for (G,H). The main
challenge, however, is to find a generating set for a δ-covering subgroup. To
this end, we prove a new result on the probability of sampling generating sets
of finite (sub-)groups with unknown sampling distribution. More precisely,
we show that for any chosen probability threshold δ∗, there exists a value N ,
which grows at most logarithmically in k and does not depend on D, such
that N · k+ 1 samples yield a generating set for a δ-covering subgroup with
probability at least δ∗. This result represents one of the main technical con-
tribution of our work. We believe that it is also applicable in other research
areas, e.g., computational group theory, and hence might be of independent
interest.



Possible Extensions to Fully Homomorphic Encryption Schemes. Fi-
nally, we provide a general sufficient condition on a homomorphic encryption
scheme for our quantum attack to work and discuss the applicability in FHE
schemes. The decision of whether our attack breaks any of the existing FHE
schemes [6, 15, 16] proves itself to be a highly non-trivial task and lies outside
the scope of this paper. We leave it as interesting future work.

1.2 Related Work

There are many papers dealing with the construction of IND-CPA secure group
homomorphic encryption schemes [25, 17, 11, 2, 27]. Some of these works attempt-
ed to build such schemes using post-quantum primitives [1], which did not suc-
ceed (for a good reason as our results show). Also, for a restricted class of group
homomorphic schemes, [2] shows the impossibility of using linear codes as the ci-
phertext group. Furthermore, we mention the impossibility (even in the classical
world) of algebraically homomorphic encryption schemes [5], which are deter-
ministic encryption schemes and thus do not fall into the class IND-CPA secure
cryptosystems.

In the quantum world, there is an even more efficient algorithm for break-
ing such algebraically homomorphic schemes [10]. In this vein, there are many
variants of Shor’s algorithm [29] that are being used to solve different compu-
tational problems [24, 30], leading to the breakdown of certain cryptosystems.
On the other hand, there are several papers dealing with the analysis of classi-
cal primitives in the presence of quantum adversaries [20, 21]. However, none of
these works show a general impossibility of group homomorphic cryptosystems.

With respect to the sampling from finite groups, there are many papers that
are concerned with the improvement of probability bounds on finding generating
sets when sampling uniformly at random [14, 4, 26]. Similar strong results for the
arbitrary sampling from finite groups are not known.

Finally, we mention the recent advances in fully homomorphic encryption
(FHE) [6, 15, 16]. These schemes are not classified as being group homomorphic,
as they follow a different design approach. Rather than having a group homo-
morphic decryption algorithm, the decryption is only guaranteed to run correctly
for polynomially many evaluations of the group operation. Interestingly enough,
our results show that since current FHE schemes are based on post-quantum
hardness assumptions, they had to follow a different approach than the group
homomorphic one.

1.3 Outline

We recall standard notation in Section 2 and show some basic observations on
group homomorphic encryption and the Subgroup Membership Problem (SMP)
in Section 3. Section 4 covers the main Theorem, showing the impossibility of
group homomorphic encryption in the quantum world, thereby giving our new
insights in the sampling of group generators. We discuss non-group homomorphic
encryption, such as somewhat and (leveled) fully homomorphic encryption in
Section 5 and conclude our work in Section 6.



2 Notation

Throughout the paper, we use some standard notation that we briefly want to
recall. We write x ←− X if X is a random variable or distribution and x is to
be chosen randomly from X according to its distribution. In the case where X

is solely a set, x
U←− X denotes that x is chosen uniformly at random from X.

If we sample an element x from X by using a specific distribution D, we write

x
D←− X (or x ←− X when there is no doubt about the distribution D). For a

distribution D on X, the term D(x) for x ∈ X expresses the probability with
which x is sampled according to D, i.e., the probability mass function at x ∈ X.

For an algorithm A we write x ←− A(y) if A outputs x on fixed input y
according to A’s distribution. Sometimes, we need to specify the randomness of
a probabilistic algorithm A explicitly. To this end, we interpret A in the usual
way as a deterministic algorithm A(y; r), which has access to values r ←− Rnd
that are randomly chosen from some randomness space Rnd. Moreover, two dis-
tribution ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N taking values in a finite
set Sλ (indexed by a parameter λ) are said to be computationally indistinguish-
able, if for all probabilistic polynomial time (PPT) algorithms A there exists a
negligible function negl such that

AdvX,YA (λ) :=

∣∣∣∣ Pr
x←−Xλ

[A(x) = 1]− Pr
y←−Yλ

[A(y) = 1]

∣∣∣∣ ≤ negl(λ).

We denote this by X
c
= Y .

For a group G, we denote the neutral element by 1, and denote the binary
operation on G by “·”, i.e., G is written in multiplicative notation. We recall
that a subgroup H of a group G is said to be normal if z · h · z−1 ∈ H for all
z ∈ G, h ∈ H. In particular, this means that if G is an abelian group, then every
subgroup H is normal.

In general, we will consider sequences of abelian groups (Gλ)λ indexed by
a parameter λ, where any element of every Gλ admits a representation of size
at most polynomial in λ. We might assume, without loss of generality, that the
choice of this polynomial is the identity, and in particular that every Gλ has
order upper bounded by 2λ. We will just write G instead of Gλ for any fixed
choice of λ.

By a description of a finite group G we mean an efficient (i.e., PPT in λ)
sampling algorithm (where sampling is denoted by x←− G), the neutral element
1, an efficient algorithm for performing the group operation on G, and one for the
inversion of group elements. Notice that the output distribution of the sampling
algorithm does not have to be necessarily uniform. We abuse notation and write
G both for the description and for the group itself. Furthermore, for elements
x1, . . . , xk ∈ G, we write 〈x1, . . . , xk〉 for the subgroup generated by x1, . . . , xk.



3 Group Homomorphic Encryption

We recall the notion of public-key group homomorphic encryption, which roughly
can be described as usual public-key encryption where the decryption algorithm
is a group homomorphism.

Definition 1 (Group Homomorphic Encryption [2, 22]). A public key en-
cryption scheme E = (KeyGen,Enc,Dec) is called group homomorphic, if for ev-
ery output (pk, sk) of KeyGen(λ), the plaintext space P and the ciphertext space

Ĉ are non-trivial groups such that

– the set of all encryptions C := {Encpk(m; r) | m ∈ P, r ∈ Rnd} is a non-trivial

subgroup of Ĉ
– the decryption Decsk is a group homomorphism on C, i.e.

Decsk(c · c′) = Decsk(c) · Decsk(c′), for all c, c′ ∈ C.5

Notice that the scheme does not include a membership testing algorithm (i.e.,
an algorithm to test whether a group element is a valid encryption or not).
The standard security notion for such homomorphic encryption schemes is that
of indistinguishability under chosen-plaintext attack, denoted by IND-CPA [2].
Informally, this notion states whenever an adversary picks two plaintext mes-
sages of his choosing and gets to see an encryption of either of them, it should
be computationally infeasible for him to decide which of the two messages was
encrypted. Formally, for a given security parameter λ, group homomorphic en-
cryption scheme E = (KeyGen,Enc,Dec), and PPT adversary A, we consider the

experiment Expind-cpa
A,KeyGen(λ), where A chooses two different plaintexts m0,m1

and is then provided an encryption Encpk(mb) for a randomly chosen bit b and
a public key pk output by KeyGen(λ). The experiment succeeds (outputs 1) if b
is guessed correctly. We say that E is IND-CPA secure if the advantage∣∣∣∣Pr

[
Expind-cpa

A,KeyGen(λ) = 1
]
− 1

2

∣∣∣∣ is negligible for all PPT adversaries A.

Moreover, we recall a fact showing the strong group-theoretic structure of the
set of encryptions of 1 ∈ P for any group-homomorphic encryption scheme. For
this, we introduce the set of all encryptions of m ∈ P

Cm := {c ∈ C | Decsk(c) = m}.

Fact 1 (Basic Properties [2]) Let E = (KeyGen,Enc,Dec) be an arbitrary
group homomorphic encryption scheme. It holds that

1. Cm = Encpk(m; r) · C1 for all m ∈ P and all r ∈ Rnd, and

5 Note that the decryption might output an error ⊥ on inputs in Ĉ \ C. Therefore,
requiring it to be homomorphic on C is as general as possible since we do not give
any restriction on its behaviour outside of C.



2. C1 is a proper normal subgroup of C such that |C1| = |Cm| for all m ∈ P.

It follows that the set {Encpk(m; r) | m ∈ P} for a fixed r is a system of repre-
sentatives of C/C1.

With this notation, the IND-CPA security of E is equivalent to saying that the
distribution on Cm0

(induced by the encryption algorithm Encpk(m)) is compu-
tationally indistinguishable from the distribution on Cm1

for any two messages

m0 and m1 [18, Ch. 5.2], i.e., Cm0

c
= Cm1 .

Necessary Security Condition. We briefly recall the Subgroup Membership
Problem (SMP) which was introduced by Cramer and Shoup in [9].

Definition 2 (Subgroup Membership Problem). Let Gen be a PPT algo-
rithm that takes a security parameter λ as input and outputs descriptions (G,H)
where H is a non-trivial, proper subgroup of a finite group G. Additionally, we
assume here that there is an algorithm that allows for the efficient sampling from
G \ H. We consider the following experiment for a given algorithm Gen, algo-
rithm A and parameter λ:

Experiment Expsmp
A,Gen(λ):

1. (G,H)←− Gen(λ)

2. Choose b
U←− {0, 1}. If b = 1: z ←− G \H. Otherwise: z ←− H.

3. d←− A(G,H, z) where d ∈ {0, 1}
4. The output of the experiment is defined to be 1 if d = b and 0 otherwise.

We say that the SMP is hard for (G,H) (or relative to Gen) if the advantage∣∣∣∣Pr
[
Expsmp

A,Gen(λ) = 1
]
− 1

2

∣∣∣∣ is negligible for all PPT algorithms A.

We stress the fact that the efficient sampling from G \ H does not have
to be uniform. Let E = (KeyGen,Enc,Dec) be a group homomorphic encryption
scheme with the group C of all encryptions and the subgroup C1 of all encryptions
of the neutral element 1. In fact, the hardness of SMP for (C, C1) (i.e., relative
to KeyGen) is a necessary condition for E to be IND-CPA secure. Recall that
the sampling algorithms for the groups C and C1 are the ones inherited from the
encryption algorithm of E . In particular, sampling an element c from C \ C1 is
done by choosing a random message m ∈ P with m 6= 1 and then computing c
as Encpk(m; r) for r ←− Rnd. We have the following immediate result:

Theorem 1 (Necessary Condition on IND-CPA Security). For a group
homomorphic encryption scheme E = (KeyGen,Enc,Dec) we have:

E is IND-CPA secure =⇒ SMP is hard (relative to KeyGen).

The above holds regardless of the type of adversary (i.e., classical vs quantum)
taken into account. A straightforward proof of this Theorem can be found in



Appendix A. Since it is a popular belief (and for reasons of completeness), we
want to point out that the converse of the Theorem does not hold in general. This
can be seen by considering a somewhat pathological example, which we present
in Appendix B. Note that the converse of Theorem 1 does, however, hold for so-
called shift-type homomorphic encryption schemes [3], which describe a certain
subclass of group homomorphic encryption schemes that actually encompasses
all existing instances. Furthermore, it also holds for bit encryption schemes, since
there are only two messages, 0 and 1.

4 General Impossibility in the Quantum World

Let Gen be a PPT algorithm that takes a security parameter λ as input and
outputs descriptions (G,H) where H is a non-trivial, proper subgroup of a
finite group G with an additional algorithm for the efficient sampling from
G \ H (cf. Section 3). Now, assume that for any such algorithm Gen, we can
construct a quantum algorithm AQ that breaks the hardness of SMP rela-
tive to Gen. In particular, for a given group homomorphic encryption scheme
E = (KeyGen,Enc,Dec) this means that we have a quantum algorithm AQ that
breaks the hardness of SMP relative to KeyGen. However, by Theorem 1, this
implies that we can construct an algorithm that breaks the IND-CPA security of
E . Since we had no restriction on the encryption scheme E , this would imply that
any group homomorphic encryption scheme E is insecure in terms of IND-CPA
in the quantum world. This is the result we want to prove in this section, at
least for the abelian case, i.e., when G is an abelian group. Therefore, let Gen be
as above but with G being abelian.

It is well-known that a modification of the famous order-finding quantum
algorithm [30] can efficiently find the order of an abelian group, given that we
have its description by a set of generators.

Theorem 2 (Quantum Order-Finding Algorithm with Generators [30]).
Let G be a finite abelian group with k = dlog2(|G|)e. Then, there exists a quan-
tum algorithm which, given a generating set of G and an error probability ε
as an input, outputs the order of G with probability at least 1 − ε in time
o(poly(k + log2(1/ε))).

This Theorem already is sufficient to break the hardness of SMP (relative to
Gen), if the description of H contains a set of generators, as the next Theorem
shows.

Theorem 3 (Quantum Attack on SMP with Generators). Let (G,H)
be the output of Gen(λ), for some security parameter λ, such that H contains
a set of generators g1, . . . , gr. Since Gen is a PPT algorithm, this implies that
k = k(λ) = dlog2(|H|)e is a polynomial in λ. There exists a quantum algorithm
which, given g1, . . . , gr (i.e., the description of H), breaks the hardness of SMP

with probability at least (1− ε)2 in time o(poly(k + log2(1/ε))).



Proof. Let z denote the challenge in the SMP game (Def. 2), i.e., z ∈ G \ H
if b = 1, and z ∈ H otherwise. Since H contains a set of generators g1, . . . , gr,
we can run the quantum algorithm in Theorem 2 twice: the first time on the
generating set and the second time on the generating set plus the element z.
Provided that both runs succeed, we have that z ∈ H (i.e., b = 0) if and only if
the two subgroup orders, obtained from the two algorithm runs, are the same.
But both runs succeed with probability (1− ε)2. This proves the Theorem. �

Recall that the original definition of SMP gives no set of generators for H a
priori, since the description of a group only contains standard algorithms for
the group operations and a sampling algorithm (cf. Section 2). However, we
show that the previous Theorem extends to this case, i.e., when only having a
sampling algorithm. For the sake of readability, we will first treat the case of
sampling uniformly at random from H (Section 4.1), and will then show the
general case with arbitrary (possibly unknown) sampling from H (Section 4.2).

4.1 Breaking SMP with Uniform Sampling

It is well-known that if we have a sampling algorithm for H that samples uni-
formly at random, we can obtain a set of generators by sampling polynomially (in
the base-2 logarithm of the order of H) many times from H. If k = dlog2(|H|)e,
Pak and Bratus [26] show that k+ 4 samples are sufficient to generate the whole
group with probability > 3/4. This result is an improvement over a result by
Erdös and Rényi [14]. We recall it in the following Theorem:

Theorem 4 (Probability of Finding a Generating Set with Uniform
Sampling [26]). Let H be a finite abelian group of order n where k = dlog2(n)e.
Then:

Pr
x1,...,xk+4

U←−H
[〈x1, . . . , xk+4〉 = H] >

3

4
.

As an immediate corollary of this Theorem and Theorem 3 we have the main
result of this section.

Theorem 5 (Quantum Attack on SMP with Uniform Sampling). Let
(G,H) be the output of Gen(λ) with k = dlog2(|H|)e, for some security parameter
λ, such that the sampling algorithm in the description of H samples uniformly at
random from H. Then, there exists a quantum algorithm which breaks the hard-
ness of SMP with probability at least 3

4 (1− ε)2 in time o(poly(k + log2(1/ε))),
and by sampling only k + 4 times from H.

We remark that the constant 3
4 can be greatly improved by increasing the num-

ber of samples we take from H, approximating 1 very quickly. In general, by
performing k + l random sampling, the success probability approximates 1 ex-
ponentially fast in l.



4.2 Breaking SMP with Arbitrary/Unknown Sampling

In this section, we show an extension of Theorem 5 to the general case, where
the description of H only contains a sampling algorithm with unknown/arbitrary
distribution D. Observe that as we do not make any restrictions on the sampling
algorithm, we cannot exclude seemingly exotic cases where parts of H are hardly
(or not at all) reached by the sampling algorithm. Consider the following exam-
ple:

Example 1. Let λ ≥ 1 be the security parameter. We define a family of groups
by Gλ := GF (2)λ together with sampling distributions Dλ on Gλ as through
the probability mass function

Dλ(v1, . . . , vλ) :=

{
1

2λ−1 − 1
2λ·(λ−1)

, if v1 = 0
1

2λ·(λ−1)
, otherwise.

(1)

Here, (v1, . . . , vλ) denotes an arbitrary element from GF (2)λ. Observe that the
probability of sampling one vector (v1, . . . , vλ) with v1 = 1 is 2−λ. However, at
least one such sample is necessary for a generating set of the whole group. This
shows that the probability of sampling a generating set for the whole group is
negligible in λ.

As the examples illustrates, the best we can aim for (in general) is to find a
generating set for a subgroup of H such that the probability that a random
sample (with respect to D) does fall into this group is sufficiently large. This
gives raise to the following definition:

Definition 3 (Covering Subgroup). Let a finite group H be given, together
with a sampling distribution D. For a value 0 ≤ δ ≤ 1, we say that a subgroup
H∗ ≤ H is a δ-covering subgroup of H with respect to D if

Pr
x
D←−H

[x ∈ H∗] ≥ δ. (2)

Example 2. Observe that the whole group H is trivially a δ-covering subgroup.
A less trivial example is the following. We order the elements h ∈ H in descend-
ing order according to their probabilities of being sampled, that is h1, h2, . . .
with D(hi) ≥ D(hi+1) for all i. Now, let b denote the smallest index such that∑b
i=1D(hi) ≥ δ. Then 〈h1, . . . , hb〉 is for sure a δ-covering subgroup.

Obviously, it follows directly from Theorem 3 that given generators of a
δ-covering subgroup, there exists a quantum attack on SMP with success prob-
ability at least δ · (1− ε)2 in time o(poly(k+ log2(1/ε))). Thus in the remainder
of this section, we consider the task of finding, with probability ≥ σ, a gener-
ating set for a δ-covering subgroup (for fixed, but arbitrary values δ, σ) if only
a sampling algorithm Sample is given which samples according to an arbitrary
(possibly unknown) distribution D. To this end, we prove the following new re-
sult on the probability of finding a δ-covering subgroup (with generators) of a
finite group with arbitrary/unknown sampling distribution and a given value δ.



Algorithm 1 Sample generating set of a δ-covering subgroup

Given: A group H with sampling algorithm Sample, an integer k = dlog2 |H|e, a
membership testing procedure that efficiently tests for any subset S ⊆ H and any
x ∈ H whether x ∈ 〈S〉, two real values 0 ≤ δ, σ ≤ 1.

Output: A set S of elements that generate a δ-covering subgroup ofH with probability
at least σ.

1:
2: x← Sample, S ← {x} {Initial candidate for a generating set}
3: N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
{Number of samples per round}

4:
5: for j = 1, . . . , k do
6: xi ← Sample, i = 1, . . . , N {Sample N elements from H}
7: if xi ∈ 〈S〉 for all i = 1, . . . , N then
8: Abort for-loop {Abort as all samples are already in 〈S〉}
9: else

10: S ← S ∪ {x1, . . . , xN} {Extend candidate generating set}
11: end if
12: end for
13:
14: return S

Theorem 6 (Sampling a Generating Set for a δ-covering Subgroup).
Let H be a finite group, together with a sampling algorithm Sample that sam-
ples according to a (possibly unknown) distribution D, and let k = dlog2(|H|)e.
Moreover, fix two values 0 ≤ δ, σ ≤ 1 and set N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
.

Let x1, . . . , xN ·k+1 ∈ H be N ·k+1 samples from H by invoking the sampling
algorithm, i.e., xi ← Sample for i = 1, . . . , N · k + 1. Then with probability at
least σ, the group H∗ := 〈x1, . . . , xN ·k+1〉 is a δ-covering subgroup of H.

Observe that like in the case of uniform sampling, a polynomial number of sam-
ples (almost linear in k) is sufficient. Interestingly, this number of samples is
independent of the distribution.

For the sake of readability, we prove Theorem 6 in two steps. In the first step,
we present an algorithm (Algorithm 1) that makes at most N · k + 1 samples
and outputs a set S ⊆ H. We prove that S is a generating set for a δ-covering
subgroup with probability at least σ. The algorithm relies on the assumption of
the existence of an efficient membership testing procedure. But in the second
step we present a modification of the algorithm, Algorithm 2, that works without
the membership testing procedure and has at least the same success probability.
In fact, Algorithm 2 makes exactly N · k+ 1 samples, hence proving Theorem 6.

We start with Algorithm 1 and prove the following result:

Theorem 7 (Correctness of Algorithm 1). With a probability of at least σ,
the output S of Alg. 1 is a generating set for a δ-covering subgroup.



Algorithm 2 Sample generating set of a δ-covering subgroup

Given: A group H with sampling algorithm Sample, an integer k = dlog2 |H|e, and
two real values 0 ≤ δ, σ ≤ 1

Output: A set S of elements that generate a δ-covering subgroup ofH with probability
≥ σ

1:
2: x← Sample, S ← {x} {Initial candidate for a generating set}
3: N :=

⌈
log(1−σ)−log(k)

log(δ)

⌉
{Number of samples per round}

4:
5: for j = 1, . . . , k do
6: xi ← Sample, i = 1, . . . , N {Sample N elements from H}
7: S ← S ∪ {x1, . . . , xN} {Extend candidate generating set}
8: end for
9:

10: return S

Proof. Let S denote the output of Alg. 1 and H∗ := 〈S〉. There are two possi-
bilities: (i) the algorithm aborted the for-loop for some value j < k or (ii) the
algorithm executed all k for-loops.

First, we consider case (i). At the same time, assume that H∗ is not a δ-
covering subgroup, that is

δ∗ := Pr
[
x ∈ H∗|x D←− H

]
< δ

(this would be a failure of the algorithm). As the algorithm aborted the for-loops
for some value j < k by assumption, this can only happen if xi ∈ 〈S〉 =: H∗

for all N samples made in round j although δ∗ < δ. As the samples are made
independently, the probability of this error event happening at a certain round
is (δ∗)

N
< δN ; since there are at most k− 1 independent rounds in case (i), the

probability that an error verifies in any of them is at most 1 −
(
1− δN

)k−1 ≤
k · δN < 1− σ by definition of N . Hence, the probability that no error happens
and the output is correct, i.e., is a generating set of a δ-covering subgroup, is at
least 1− (1− σ) = σ. This concludes the first case.

Now, we consider case (ii), i.e., the algorithm has executed all k for-loops. For
simplicity, we index the sets S according to the round number. More precisely,
let S0 denote the initial candidate for the generating set (line 2). Moreover, let
S` denote the set S at the end of the while loop (after being extended - see
line 10) and we define H` := 〈S`〉 for ` ≥ 0. Observe that H` ⊆ H for all `
by construction. The output of the algorithm is S = Sk. We make use of the
following inequalities that we prove afterwards:

ord(H`) ≥ 2` ,∀` ≥ 0. (3)

A consequence of (3) is that ord(Hk) ≥ 2k ≥ ord(H) which implies that Hk = H.
Hence, H∗ = Hk = H is the whole group and trivially a δ-covering group for
any value 0 ≤ δ ≤ 1.



It remains to prove the inequalities in (3), i.e., ord(H`) ≥ 2` for all 0 ≤ ` ≤ k.
Observe that H` is a proper subgroup of H`+1 for every ` < k. Thus, the number
|H`+1|
|H`| (which is an integer, by Lagrange’s Theorem), must be strictly greater

than 1. Hence |H`+1| ≥ 2 · |H`|, and this proves (3) since |H0| = 1. �

Observe that Alg. 1 runs at most k for-loops and uses the membership test
procedure only for deciding if the algorithm can be stopped earlier. Hence, we
consider a variant, namely Alg. 2, which simply drops this test and always runs
all k loops. That is, the only difference between Algorithms 1 and 2, respectively,
is that the latter may run longer (but still at most k loops) and outputs a
superset S′ of the output S of Alg. 1. Of course, if S is a generating set for a
δ-covering subgroup, then this is certainly true for S′ as well. This shows that
Alg. 2 “inherits” the success probability of Alg. 1:

Corollary 1. [Correctness of Algorithm 2] With a probability of at least σ, the
output S of Algorithm 2 is a generating set for a δ-covering subgroup.

Observe that Alg. 2 simply outputs N · k + 1 samples. Hence, the proof of
Theorem 6 is a direct consequence of Cor. 1. The remainder of this section is
straightforward. Given a generating set S of a δ-covering subgroup, we can apply
Theorem 3 in order to break the SMP for (G,H).

Theorem 8 (Quantum Attack on SMP with Arbitrary Sampling). Let
(G,H) be the output of Gen(λ) with k = dlog2(|H|)e, for some security param-
eter λ. We denote the distribution of the sampling algorithm contained in the
description of H by D. Let 0 ≤ ε∗ ≤ 1 be an arbitrary fixed positive value. Then,
there exists a value N = N(k, ε∗) (which only grows at most logarithmically in
k) and a quantum algorithm which breaks the hardness of SMP with probability

at least (1− ε∗) (1− ε)2 in time o(poly(k + log2(1/ε))), and by sampling only
N · k + 1 times from H (where ε is the error probability of Theorem 2).

In particular, we can construct a quantum algorithm that breaks SMP with
probability at least 3

4 (1− ε)2 in time o(poly(k+ log2(1/ε))) while only sampling
7k · (2 + dlog(k)e) + 1 times from H.

Proof. In principle, the attacker A is the same as described in Theorems 3 and 5,
the only difference being the approach for finding an appropriate generating
set. Given the value ε∗, the attacker chooses two positive values δ, σ such that
δ · σ ≥ (1 − ε∗), for example δ = σ =

√
1− ε∗. Then, the attacker makes

N · k+ 1 samples as explained in Theorem 6. Let H∗ denote the subgroup of H
that is generated by these N · k + 1 samples. Due to Corollary 1, we know that
H∗ is a δ-covering subgroup of H with probability σ. From this point on, the
attack continues as specified in Theorem 3, while using the N · k + 1 samples
as generators, i.e., we let z denote the challenge in the SMP game (Def. 2), so
z ∈ G\H if b = 1, and z ∈ H otherwise. If b = 1 (which happens with probability
1
2 ), we know that z 6∈ H∗ and the attacker A will recognize this with probability
≥ (1 − ε)2 (as in the proof of Theorem 3). If b = 0 (which also happens with
probability 1

2 ), several sub-cases do exist (depending on whether H∗ is δ-covering



and whether z ∈ H∗). In case that both properties are true (which happens with
probability ≥ σ · δ), the attacker recognizes that z ∈ H∗ again with probability
≥ (1− ε)2. As the success probabilities in the other sub-cases are at least zero,
it follows that

Pr
[
Expsmp

A,Gen(λ) = 1
]
≥
(
(1− ε)2 + δσ(1− ε)2

)
2

≥ δσ(1− ε)2 ≥ (1− ε∗)(1− ε)2

which concludes the proof of the first part of the Theorem. For the second part,
we see that when choosing ε∗ = 1

4 and δ = σ = 1
2

√
3, the above attacker A has

a success probability of at least 3
4 (1− ε)2 by sampling only N · k+ 1 times from

H where N =
⌈
log(1−σ)−log(k)

log(δ)

⌉
≤ 7 (dlog(k)e+ 2). �

Finally, Theorems 8 and 1 together immediately imply our main result: the
general impossibility of group homomorphic encryption in the quantum world,
if the plaintext and ciphertext groups are abelian.

Theorem 9 (Impossibility of Group Homomorphic Encryption in the
Quantum World). Let E = (KeyGen,Enc,Dec) be an IND-CPA secure group
homomorphic encryption scheme with abelian plaintext and ciphertext groups.
Then, there exists a quantum PPT algorithm that breaks the security of E with
non-negligible probability.

5 Discussion

In this section, we provide an informal discussion about the applicability of
our quantum attack to non-group homomorphic encryption schemes and elabo-
rate on fully homomorphic encryption (FHE). In abstract terms, existing FHE
schemes are standard public-key encryption schemes E = (KeyGen,Enc,Dec)
with the following extras [15]:

– the plaintext space P and ciphertext space Ĉ are rings,
– there is an algorithm Eval that takes as input a public key pk, a circuit C, a

tuple (c1, . . . , ct) of ciphertexts (one for every input node of C), and outputs
another ciphertext c, and

– for all outputs (pk, sk) by KeyGen(λ), all polynomials p(λ) in λ, all t ≤
poly(λ), all plaintexts m1, . . . ,mt ∈ P corresponding to fresh encryptions
ci ←− Encpk(mi), i = 1 . . . t, and all t-input circuits C of depth ≤ p(λ), we
have the following correctness condition:

Decsk(Evalpk(C, c1, . . . , ct)) = C(m1, . . . ,mt). (4)

Homomorphic encryption schemes for which the polynomial depth p(λ) of the
circuits C is bounded a priori (i.e., fixed in the public key pk) are called leveled
FHE. For very small polynomials p(λ), we say that the scheme is somewhat
homomorphic. At a first glance, there a two main differences to the notion of
group homomorphic encryption (see Fig. 1 for a pictorial explanation):



1. The set of all (fresh) encryptions C = {Encpk(m; r) | m ∈ P, r ∈ Rnd} is only

a subset (and not necessarily a subgroup) of the ring Ĉ.
2. The decryption is not necessarily a group homomorphism as it is only guar-

anteed to run correctly with circuits that are polynomially bounded in depth;
this polynomial bound can be dynamically chosen in the “pure” FHE case,
while it is fixed in the public key for leveled FHE and somewhat homomor-
phic schemes. But if the decryption is group homomorphic, it particularly
must run correctly (at least theoretically) on all unbounded circuits consist-
ing only of group-operation gates.

ciphertext group

mC

m'C

ciphertext ring

(fresh encryptions)

mC

(A)  Group Homomorphic Encryption (B)  Fully Homomorphic Encryption

m'C

ciphertext ring

(after less than

poly(  ) evaluations)

mS

m'S

ciphertext ring

(after more than

poly(  ) evaluations)

decryption fails!

λ

λ

Fig. 1. Differences between group homomorphic encryption and FHE: (A) shows that
each Cm is a coset of C1 in C (Fact 1), while the decryption is a group homomorphism;
(B) shows first that Cm and Cm′ are subsets and not necessarily cosets in C, second that
the decryption runs correctly on poly(λ) evaluations of ciphertexts, and third that the
decryption might fail if exponentially many evaluations have been performed, meaning
that the decryption is not necessarily group homomorphic.

If the decryption is not a group homomorphism, the set of fresh encryptions
of the neutral element in P is not necessarily a group, but only a subset of
Ĉ. However, the quantum order-finding algorithm of Theorem 2 only works on
(solvable) groups. This immediately gives us the first important observation:

Observation 1 Our quantum attack from Section 4 on group homomorphic en-
cryption schemes is not immediately applicable to more general homomorphic
encryption schemes, such as somewhat and (leveled) FHE schemes.

A sufficient condition that we need a homomorphic scheme to have for our quan-
tum attack to work is the following:



Sufficient Condition (Quantum Attack). For any output (pk, sk) by KeyGen(λ),

there exist two plaintexts m,m′ ∈ P and a subgroup G of Ĉ such that

1. there exists an efficient PPT algorithm which outputs a generating set for
G of size at most poly(λ),

2. the probability Pr
c←−Encpk(m)

[c ∈ G] is non-negligible in λ, and

3. the probability Pr
c′←−Encpk(m′)

[c′ /∈ G] is non-negligible in λ.

In the setting of group homomorphic encryption schemes, the plaintext m would
be the neutral element 1, while m′ 6= 1 can be any other plaintext. The group
G satisfying the above conditions would be a δ-covering subgroup of the group
C1 of all (fresh) encryptions of 1, for a sufficiently small δ. For more general
homomorphic encryption schemes, such as somewhat or (leveled) FHE schemes,
the situation looks more like in Fig. 2.

(A)  Condition fulfilled

low

probability

high

probability

(B)  Condition not fulfilled

G

mC

mC

m'C

m'C

G

Fig. 2. Our condition in the FHE case: (A) shows pictorially when the condition is
fulfilled; (B) shows the case when item 3 of the condition is not met and G intersects
with a large part of encryptions of m′.

The important observation here is, that as long as only polynomially many evalu-
ations of the ciphertexts have been performed, the decryption still runs correctly
(cf. correctness condition in Equation (4)). But for any scheme to be IND-CPA
secure, the set of encryptions of a given message m must be exponentially large,
so in particular, a group G that fulfills condition 2 is required to be exponen-
tially large. Hence, the decryption is not guaranteed to run correctly on G and
might fail. More precisely, condition 3 for our attack to work will most likely be
unsatisfied. However, proving or disproving that any of the existing somewhat
or (leveled) FHE schemes satisfies our sufficient condition is a highly non-trivial
task (due to the very general and abstract nature of the requirement) and lies
outside the scope of this work. We leave it as interesting future work. Inter-
estingly enough, since most of the existing FHE schemes base their security on
supposedly quantum-resistant hardness assumptions (such as LWE), spotting
a scheme that is susceptible to our quantum attack will effectively break the
underlying hardness assumption and thereby disprove its quantum-resistance.



6 Conclusion

We proved the general impossibility of (abelian) group homomorphic encryp-
tion schemes in the quantum world. To this end, we developed new insights
into the theory of sampling a set of generators of finite (sub-)groups with arbi-
trary, unknown sampling distribution. By adjusting known quantum algorithms
to our setting, we were then able to break the security of any given group homo-
morphic encryption scheme, if the plaintext and ciphertext groups are abelian,
which is the most realistic assumption for practical purposes. Our newly devel-
oped theory on δ-covering subgroups is very natural in the setting of compu-
tationally bounded adversaries and might therefore be of independent interest.
Moreover, we were able to provide a sufficient condition on homomorphic en-
cryption schemes for our quantum attack to work and discussed its satisfiability
for non-group homomorphic schemes. Proving or disproving that the condition
is met by any of the existing somewhat or (leveled) FHE schemes is non-trivial.
We leave it as interesting future work.
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A Proof of Theorem 1

We prove the theorem by contradiction and show that if we have a PPT algorithm
A that breaks the hardness of SMP with non-negligible advantage Γ (λ), we can
construct (in PPT) an algorithm B that breaks the IND-CPA security with
non-negligible advantage Γ (λ). To this end, we fix an SMP-adversary A and
construct an IND-CPA-adversary B = (B1,B2).

We start by letting B1 choose m0 = 1 ∈ P and a random message m1 ←− P
withm 6= 1. Next, B1 sends the two messagesm0,m1 to the IND-CPA-challenger.
The challenger chooses a random bit b ∈ {0, 1} and returns the ciphertext c←−
Encpk(mb). Then, B2 simply relays the ciphertext c to the SMP-adversary A who
will output a bit d ∈ {0, 1}, which in turn is forwarded by B2 to the IND-CPA-
challenger.

It remains to be shown that d = b with a non-negligible advantage, i.e., that∣∣∣∣Pr
[
Expind-cpa

B,KeyGen(λ) = 1
]
− 1

2

∣∣∣∣ is non-negligible.

By the assumption on A, we know that A’s advantage is non-negligible, namely
Γ (λ). Moreover, the ciphertext c is formatted as in SMP so A behaves as in the
SMP-game (it is either a fresh encryption of 1 or of a random message different
from 1), meaning that d = b with A’s advantage Γ (λ), i.e.,∣∣∣∣Pr

[
Expind-cpa

B,KeyGen(λ) = 1
]
− 1

2

∣∣∣∣ =

∣∣∣∣Pr
[
Expsmp

A,KeyGen(λ) = 1
]
− 1

2

∣∣∣∣ = Γ (λ).

This concludes the proof of the Theorem. �

B Example: Hardness of SMP does NOT imply
IND-CPA Security

We construct a group homomorphic encryption scheme that is not IND-CPA
secure, but whose corresponding SMP is hard. In a nutshell, the idea is to start
with a IND-CPA secure scheme but to change the encryption process as fol-
lows. For a fixed message m∗ 6= 1 the encryption process becomes deterministic
for a significant probability (e.g., 1/2). An IND-CPA attacker can misuse this
to easily distinguish encryptions of m∗ from other ciphertexts. However, if the
plaintext space is sufficiently large, the probability that the SMP-sampling al-
gorithm chooses m∗ is negligible, leaving the SMP still hard.

More precisely, let E = (KeyGen,Enc,Dec) be an IND-CPA secure group
homomorphic encryption scheme with a plaintext group P that is exponentially
large in the security parameter such that the sampling algorithm, contained in
the description of P, samples according to the uniform distribution—for instance,
this property is satisfied by the ElGamal cryptosystem [13]. By Theorem 1, we
know that the SMP relative to KeyGen is hard. Now, the idea is to slightly modify
E such that the corresponding SMP remains hard but the IND-CPA security can



be easily broken. Therefore, we fix a public value r∗ ∈ Rnd, a public message
m∗ ∈ P \{1}, and construct a scheme E∗ which is exactly the same as E , except
for the encryption algorithm. We denote the encryption algorithm of E∗ by Enc∗

and define it as follows:
Encryption. Enc∗ takes the public key pk, a message m, and a random value
r ∈ Rnd as input. Furthermore, it uniformly samples a random bit b∗ ∈ {0, 1}.
The output is defined as follows:

Enc∗pk(m; r) :=

Encpk(m; r∗) , if m = m∗ and b∗ = 0
Encpk(m; r) , if m = m∗ and b∗ = 1
Encpk(m; r) , otherwise.

Recall that r∗ ∈ Rnd and m∗ ∈ P are fixed and public values corresponding to
E∗.

Our new scheme E∗ certainly is not IND-CPA secure: Assume an adversary
chooses two messages m0,m1 ∈ P where m0 = m∗. Upon the retrieval of an
encryption c of either of the two messages, the adversary checks whether c =
Encpk(m; r∗). If so, she knows that m0 was encrypted. Otherwise she assumes
that c is an encryption of message m1. Her advantage is 1/4.

On the other hand, we see that the SMP corresponding to E∗ is still hard:
Recall that in the SMP game, the challenger flips a coin b ∈ {0, 1}. If b =

1, the challenger samples a randomly chosen message m
U←− P with m 6= 1

(recall that sampling from P is done according to the uniform distribution)
and sends c = Enc∗pk(m) to an SMP-adversary. If b = 0, the challenger simply
sends c = Enc∗pk(1) to the adversary. It is obvious that this SMP instance (using
Enc∗) behaves exactly in the same way as our orginial SMP game (with Enc)
corresponding to E if b = 0. But also if b = 1, it is clear that the advantage of
an adversary in the SMP with Enc∗ is negligibly close to the advantage of an
adversary in the SMP with Enc. This is due to the fact that the plaintext space
is exponentially large in the security parameter and the particular message m∗

will only be chosen with a negligible probability. Therefore, the two games SMP
with Enc∗ and SMP with Enc are computationally indistinguishable, and so our
SMP corresponding to E∗ is hard.


