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Abstract. We present Lyra, a password-based key derivation scheme
based on cryptographic sponges. Lyra was designed to be strictly sequen-
tial (i.e., not easily parallelizable), providing strong security even against
attackers that use multiple processing cores (e.g., custom hardware or a
powerful GPU). At the same time, it is very simple to implement in soft-
ware and allows legitimate users to fine-tune its memory and processing
costs according to the desired level of security against brute force pass-
word guessing. We compare Lyra with similar-purpose state-of-the-art
solutions, showing how our proposal provides a higher security level and
overcomes limitations of existing schemes. Specifically, we show that if
we fix Lyra’s total processing time t in a legitimate platform, the cost of a
memory-free attack against the algorithm is exponential, while the best-
known result in the literature (namely, against the scrypt algorithm) is
quadratic. In addition, for an identical same processing time, Lyra allows
for a higher memory usage than its counterparts, further increasing the
cost of brute force attacks.

Keywords: Password-based key derivation, memory usage, cryptographic
sponges

Note 1. Updated the Setup phase, since the originally published was outdated,
an unfortunate mistake that was noticed only after publication.

1 Introduction

User authentication is one of the most vital elements in modern computer se-
curity. Even though there are authentication mechanisms based on biometric
devices (“what the user is”) or physical devices such as smart cards (“what the
user has”), the most widespread strategy still is to rely on secret passwords
(“what the user knows”). This happens because password-based authentication
remains as the most cost effective and efficient method of maintaining a shared

? This paper can be seen as an updated of the paper “Lyra: Password-Based Key De-
rivation with Tunable Memory and Processing Costs” published at JCEN – Journal
of Cryptographic Engineering, ISSN 2190-8508, Springer, pages 1-15, 2014.
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secret between a user and a computer system [12, 15]. For better or for worse, and
despite the existence of many proposals for their replacement [11], this preva-
lence of passwords as one and commonly only factor for user authentication is
unlikely to change in the near future.

Password-based systems usually employ some kind of key derivation functions
(KDFs), cryptographic algorithms that allow the generation of a pseudorandom
string of bits from the password itself [32]. Typically, the output of a key deriva-
tion is employed in one of two manners [36]: it can be locally stored in the form
of a “token” for future verifications of the password or used as the secret key for
encrypting and/or authenticating data. Whichever the case, such solutions em-
ploy internally a one-way (e.g., hash) function, so that recovering the password
from the key derivation’s output is computationally infeasible [26, 36].

Despite the popularity of password-based authentication, the fact that most
users choose quite short and simple strings as passwords leads to a serious issue:
they commonly have much less entropy than typically required by cryptographic
keys [33]. Indeed, a study from 2007 with 544,960 passwords from real users
has shown an average entropy of approximately 40.5 bits [21], against the 128
bits usually required by modern systems. Such weak passwords greatly facilitate
many kinds of “brute-force” attacks, such as dictionary attacks and exhaus-
tive search [24, 12], allowing attackers to completely bypass the non-invertibility
property of the key derivation process. For example, an attacker could apply the
key derivation function over a list of common passwords until the result matches
the locally stored token or the valid encryption/authentication key. The feasi-
bility of such attacks depends basically on the amount of resources available to
the attacker, who can speed up the process by performing many tests in paral-
lel. Indeed, such attacks commonly benefit from platforms equipped with many
processing cores, such as modern GPUs [44, 20] or custom hardware [20, 29].

A straightforward approach for addressing this problem is to force users to
choose complex passwords. This is unadvised, however, because such passwords
would be harder to memorize and, thus, more easily forgotten or stolen due to the
users’ need of writing them down, defeating the whole purpose of authentication
[12]. For this reason, modern key derivation solutions usually employ mecha-
nisms for increasing the cost of brute force attacks. Schemes such as PBKDF2
[26] and bcrypt [38], for example, include a configurable parameter that controls
the number of iterations performed, allowing the user to adjust the time required
by the key derivation process. A more recent proposal, scrypt [36], allows users
to control both processing time and memory usage, raising the cost of password
recovery by increasing the silicon space required for running the KDF in cus-
tom hardware, or the amount of RAM required in a GPU. There is, however,
considerable interest in the research community in developing new (and better)
alternatives, which recently led to the creation of a competition with this specific
purpose [37].

Aiming to address this need for stronger alternatives, in this paper we propose
Lyra, a new mode of operation of cryptographic sponges [8, 9] for password-based
key derivation. Lyra combines security, flexibility and some of the most appealing
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features of the above-mentioned key derivation solutions, including the ability to
configure the desired amount of memory, processing time and parallelism to be
used by the algorithm. In addition, Lyra provides higher security than its coun-
terparts. For example, the processing cost of memory-free attacks against the
algorithm grows exponentially with its time-controlling parameter, surpassing
scrypt’s quadratic growth in the same conditions. Hence, with a suitable choice
of parameters, the attack approach of using extra processing for circumventing
(part of) the algorithm’s memory needs becomes quickly impractical. In addi-
tion, for an identical processing time, Lyra allows for a higher memory usage
than its counterparts, further raising the costs of any possible attack venue.

The rest of this paper is organized as follows. Section 2 outlines the concept of
cryptographic sponges. Section 3 describes the main requirements of KDFs and
discusses the related work. Section 4 presents the Lyra algorithm and its design
rationale, while Section 5 analyses its security. Section 6 shows our preliminary
benchmark results. Finally, Section 7 presents our final remarks and ideas for
future work.

2 Cryptographic Sponges

The concept of cryptographic sponges was formally introduced by Bertoni et al.
in [8] and is described in detail in [9]. The elegant design of sponges has also
motivated the creation of more general structures, such as the Parazoa family
of functions [1]. Indeed, their flexibility is probably among the reasons that led
Keccak [10], one of the members of the sponge family, to be elected as the new
Secure Hash Algorithm (SHA-3).

In what follows and throughout this document, we use the following notation:
⊕ denotes the XOR operation, ‖ represents concatenation, and |x| denotes the
number of bits required for representing x.

Fig. 1. Overview of the sponge construction Z = [f,pad, b](M, `). Adapted from [9].
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2.1 Cryptographic Sponges: Basic Structure

In a nutshell, sponge functions provide an interesting way of building hash func-
tions with arbitrary input and output lengths. Such functions are based on the
so-called sponge construction, an iterated mode of operation that uses a fixed-
length permutation (or transformation) f and a padding rule pad. More specif-
ically, and as depicted in Figure 1, sponge functions rely on an internal state of
w = b+c bits, initially set to zero, and operate on an (padded) input M cut into
b-bit blocks. This is done by iteratively applying f to the sponge’s internal state,
operation interleaved with the entry of input bits (during the absorbing phase)
or the subsequent retrieval of output bits (during the squeezing phase). The pro-
cess stops when all input bits consumed in the absorbing phase are mapped into
the resulting `-bit output string.

Typically, the f transformation is itself iterative, being parameterized by
a number of rounds (e.g., 24 for Keccak operating with 64-bit words [10]). The
parameters w, b and c are called, respectively, the width, bitrate, and the capacity
of the sponge.

2.2 The duplex construction

A similar structure derived from the sponge concept is the Duplex construction
[9], depicted in Figure 2.

Unlike regular sponges, which are stateless in between calls, a duplex function
is stateful: it takes a variable-length input string and provides a variable-length
output that depends on all inputs received so far. In other words, although the
internal state of a duplex function is filled with zeros upon initialization, it is
stored after each call to the duplex object rather than repeatedly reset. In this
case, the input string M must be short enough to fit in a single b-bit block after
padding, and the output length ` must satisfy ` 6 b.

Fig. 2. Overview of the duplex construction. Adapted from [9].
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3 Key Derivation Functions (KDFs)

As previously discussed, the basic requirement for a password-based KDF is to
be non-invertible, so that recovering the password from its output is computa-
tionally infeasible. Moreover, a good KDF’s output is expected to be indistin-
guishable from random bit strings, preventing an attacker from discarding part of
the password space based on perceived patterns [27]. In principle, those require-
ments can be easily accomplished simply by using a secure hash function, which
by itself ensures that the best attack venue against the derived key is through
brute force (possibly aided by a dictionary or “usual” password structures [47,
33]).

What modern KDFs do, then, is to include techniques that raise the cost of
brute-force attacks. A first strategy for accomplishing this is to take as input not
only the user-memorizable password pwd itself, but also a sequence of random
bits known as salt. The presence of such random variable thwarts several attacks
based on pre-built tables of common passwords, i.e., the attacker is forced to
create a new table from scratch for every different salt [27, 26]. The salt can,
thus, be seen as an index into a large set of possible keys derived from pwd, and
need not to be memorized or kept secret [26].

A second strategy is to purposely raise the cost of every password guess in
terms of computational resources, such as processing time and/or memory usage.
This certainly also raises the cost of authenticating a legitimate user entering
the correct password, meaning that the algorithm needs to be parameterized
so that the burden placed on the target platform is minimally noticeable by
humans. Therefore, the legitimate users and their platforms are ultimately what
impose an upper limit on how computationally expensive the KDF can be for
themselves and for attackers. For example, a human user running a single KDF
instance is unlikely to consider a nuisance that the derivation process takes 1 s
to run and uses a small part of the machine’s free memory, e.g., 20 MB. On the
other hand, supposing that the key derivation process cannot be divided into
smaller parallelizable tasks, achieving a throughput of 1,000 passwords tested
per second requires 20 GB of memory and 1,000 processing units as powerful as
that of the legitimate user.

A third strategy, especially useful when the KDF involves both processing
time and memory usage, is to use a design with low parallelizability. The rea-
soning is as follows. For an attacker with access to p processing cores, there is
usually no difference between assigning one password guess to each core or par-
allelizing a single guess so it is processed p times faster: in both scenarios, the
total password guessing throughput is the same. However, a sequential design
that involves memory usage imposes an interesting penalty to attackers who do
not have enough memory for running the p guesses in parallel. For example,
suppose that testing a guess involves m bytes of memory and the execution of n
instructions. Suppose also that the attacker’s device has 100m bytes of memory
and 1000 cores, and that each core executes n instructions per second. In this
scenario, up to 100 guesses can be tested per second against a strictly sequential
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algorithm (one per core), the other 900 cores remaining idle because they have
no memory to run.

Aiming to provide a deeper understanding on the challenges faced by KDFs,
in what follows we discuss the main characteristics of platforms used by attackers
and then how existing solutions counter those threats.

3.1 Attack platforms

The most dangerous threats faced by KDFs comes from platforms that benefit
from “economies of scale”, especially when cheap, massively parallel hardware
is available. The most prominent examples of such platforms are Graphics Pro-
cessing Units (GPUs) and custom hardware synthesized from FPGAs [20].

Graphics Processing Units (GPUs). Following the increasing demand for
high-definition real-time rendering, Graphics Processing Units (GPUs) have tra-
ditionally carried a large number of processing cores, boosting its parallelization
capability. Only more recently, however, GPUs evolved from specific platforms
into devices for universal computation and started to give support to standard-
ized languages that help harness their computational power, such as CUDA [34]
and OpenCL [28]). As a result, they became more intensively employed for more
general purposes, including password cracking [44, 20].

As modern GPUs include a few thousands processing cores in a single piece
of equipment, the task of executing multiple threads in parallel becomes simple
and cheap. They are, thus, ideal when the goal is to test multiple passwords inde-
pendently or to parallelize a KDF’s internal instructions. For example, NVidia’s
Tesla K20X, one of the top GPUs available, has a total of 2,688 processing cores
operating at 732 MHz, as well as 6 GB of shared DRAM with a bandwidth of
250 GB per second [35]. Its computational power can also be further expanded
by using the host machine’s resources [34], although this is also likely to limit
the memory throughput. Supposing this GPU is used to attack a KDF whose
parameterization makes it run in 1 s and take less than 2.23 MB of memory,
it is easy to conceive an implementation that tests 2,688 passwords per second.
With a higher memory usage, however, this number is deemed to drop due to
the GPU’s memory limit of 6 GB. For example, if a sequential KDF requires 20
MB of DRAM, the maximum number of cores that could be used simultaneously
becomes 300, only 11% of the total available.

Field Programmable Gate Arrays (FPGAs). An FPGA is a collection
of configurable logic blocks wired together and with memory elements, forming
a programmable and high-performance integrated circuit. In addition, as such
devices are configured to perform a specific task, they can be highly optimized
for its purpose (e.g., using pipelining [19, 25]). Hence, as long as enough resources
(i.e., logic gates and memory) are available in the underlying hardware, FPGAs
potentially yield a more cost-effective solution than what would be achieved
with a general-purpose CPU of similar cost [29]. When compared to GPUs,
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FPGAs may also be advantageous due to the latter’s considerably lower energy
consumption [14, 22], which can be further reduced if its circuit is synthesized in
the form of custom logic hardware (ASIC) [14].

A recent example of password cracking using FPGAs is presented in [20].
Using a RIVYERA S3-5000 cluster [40] with 128 FPGAs against PBKDF2-
SHA-512, the authors reported a throughput of 356,352 passwords tested per
second in an architecture having 5,376 password processed in parallel. It is in-
teresting to notice that one of the reasons that made these results possible is the
small memory usage of the PBKDF2 algorithm, as most of the underlying SHA-
2 processing is performed using the device’s memory cache (much faster than
DRAM) [20, Sec. 4.2]. Against a KDF requiring 20 MB to run, for example, the
resulting throughput would presumably be much lower, especially considering
that the FPGAs employed can have up to 64 MB of DRAM [40] and, thus, up
to three passwords can be processed in parallel rather than 5,376.

Interestingly, a KDF that requires a similar memory usage would be trouble-
some even for state-of-the-art clusters, such as the newer RIVYERA V7-2000T
[41]. This powerful cluster carries up to four Xilinx Virtex-7 FPGAs and up to
128 GB of shared DRAM, in addition to the 20 GB available in each FPGA [41].
Despite being much more powerful, in principle it would still be unable to test
more than 2,600 passwords in parallel against a KDF that strictly requires 20
MB to run.

3.2 Scrypt

Arguably, the main password-based key derivation solutions available in the
literature are [37]: PBKDF2 [26], bcrypt [38] and scrypt [36]. Since scrypt is
only KDF among them that explores both memory and processing costs and,
thus, is directly comparable to Lyra, its main characteristics are described in
what follows. For the interested reader, a discussion on PBKDF2 and bcrypt is
provided in Appendices A and B.

The design of scrypt [36] focus on coupling memory and time costs. For this,
scrypt employs the concept of “sequential memory-hard” functions: an algorithm
that asymptotically uses almost as much memory as it requires operations and
for which a parallel implementation cannot asymptotically obtain a significantly
lower cost. As a consequence, if the number of operations and the amount of
memory used in the regular operation of the algorithm are both O(R), the
complexity of a memory-free attack (i.e., an attack for which the memory usage
is reduced to O(1)) becomes Ω(R2), where R is a system parameter. We refer
the reader to [36] for a more formal definition.

The following steps compose scrypt’s operation (see Algorithm 1). First, it
initializes p b-long memory blocks Bi. This is done using the PBKDF2 algo-
rithm with HMAC-SHA-256 [31] as underlying hash function and a single itera-
tion. Then, each Bi is processed (incrementally or in parallel) by the sequential
memory-hard ROMix function. Basically, ROMix initializes an array V of R
b-long elements by iteratively hashing Bi. It then visits R positions of V at
random, updating the internal state variable X during this (strictly sequential)
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Algorithm 1 Scrypt.
Param: h . BlockMix ’s internal hash function output length

Input: pwd . The password
Input: salt . A random salt

Input: k . The key length

Input: b . The block size, satisfying b = 2r · h
Input: R . Cost parameter (memory usage and processing time)

Input: p . Parallelism parameter

Output: K . The password-derived key

1: (B0...Bp−1)←PBKDF2HMAC−SHA−256(pwd, salt, 1, p · b)
2: for i← 0 to p− 1 do
3: Bi ←ROMix(Bi, R)

4: end for

5: K ←PBKDF2HMAC−SHA−256(pwd,B0||B1||...||Bp−1, 1, k)
6: return K . Outputs the k-long key

7: function ROMix(B,R) . Sequential memory-hard function
8: X ← B

9: for i← 0 to R− 1 do . Initializes memory array V

10: Vi ← X ; X ←BlockMix(X)
11: end for

12: for i← 0 to R− 1 do . Reads random positions of V

13: j ← Integerify(X) mod R
14: X ←BlockMix(X ⊕ Vj)

15: end for

16: return X
17: end function

18: function BlockMix(B) . b-long in/output hash function
19: Z ← B2r−1 . r = b/2h, where h = 512 for Salsa20/8

20: for i← 0 to 2r − 1 do

21: Z ← Hash(Z ⊕ Bi) ; Yi ← Z
22: end for

23: return (Y0, Y2, ..., Y2r−2, Y1, Y3, Y2r−1)

24: end function

process in order to ascertain that those positions are indeed available in mem-
ory. The hash function employed by ROMix is called BlockMix , which emulates
a function having arbitrary (b-long) input and output lengths; this is done using
the Salsa20/8 [7] stream cipher, whose output length is h = 512. After the p
ROMix processes are over, the Bi blocks are used as salt in one final iteration
of the PBKDF2 algorithm, outputting key K.

Scrypt displays a very interesting design, being one of the few existing so-
lutions that allow the configuration of both processing and memory costs. One
of its main shortcomings is probably the fact that it strongly couples memory
and processing requirements for a legitimate user. Specifically, scrypt’s design
prevents users from raising the algorithm’s processing time while maintaining a
fixed amount of memory usage, unless they are willing to raise the p parameter
and allow further parallelism to be exploited by attackers. Another inconve-
nience with scrypt is the fact that it employs two different underlying hash
functions, HMAC-SHA-256 (for the PBKDF2 algorithm) and Salsa20/8 (as the
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core of the BlockMix function), leading to increased implementation complexity.
Finally, even though Salsa20/8’s known vulnerabilities [3] are not expected to
put the security of scrypt in hazard [36], using a stronger alternative would be
at least advisable, especially considering that the scheme’s structure does not
impose serious restrictions on the internal hash algorithm used by BlockMix .
In this case, a sponge function could itself be an alternative. However, sponges’
intrinsic properties make some of scrypt’s operations unnecessary: since sponges
support inputs and outputs of any length, the whole BlockMix structure could
be replaced; in addition, sponges can operate in the stateful and sequential du-
plexing mode, meaning that the state variable X used by ROMix would become
redundant.

Inspired by scrypt’s design, Lyra builds on the properties of sponges to pro-
vide not only a simpler, but also more secure solution. Indeed, Lyra stays on the
“strong” side of the memory-hardness concept: the processing cost of attacks
involving less memory than specified by the algorithm grows much faster than
quadratically, surpassing the best achievable with scrypt and effectively prevent-
ing any (useful) time-memory trade-off. This characteristic greatly discourages
attackers from trading memory usage for processing time, which is exactly the
goal of KDFs in which both resources are configurable. In addition, Lyra allows
for a higher memory usage for a similar processing time, increasing the cost of
any possible attack venue beyond that of scrypt’s.

4 Lyra

As any KDF, Lyra takes as input a salt and a password, creating a pseudo-
random output that can be then be used as key material for cryptographic
algorithms [32]. Internally, the scheme’s memory is organized as a matrix that
is required during the whole key derivation process. This matrix is iteratively
accessed as many times as defined by the user, allowing Lyra’s execution time to
be fine-tuned according to the target platform’s resources. The construction and
visitation of the matrix is done using a stateful combination of the absorbing,
squeezing and duplexing operations of the underlying sponge (i.e., its internal
state is never reset to zeros), ensuring the sequential nature of the whole process.

In this section, we first describe the Lyra algorithm in detail, and then discuss
its design rationale and possible variants.

4.1 Structure

Lyra’s steps are detailed in Algorithm 2.
The first part of the algorithm is the Setup Phase (lines 1 – 8). This phase

comprises the construction of a R × C memory matrix whose cells are b-long
blocks, where R and C are user-defined parameters and b is the underlying
sponge’s bitrate (in bits). This is accomplished first by allowing the sponge to
absorb the (properly padded) salt and password, initializing a highly random,
salt- and pwd-dependent internal state (line 2). The padding rule adopted by
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Algorithm 2 The Lyra Algorithm.
Param: Hash . Sponge with block size b (in bits) and underlying permutation f

Param: ρ . Number of rounds of f in the Setup and Wandering phases
Input: pwd . The password

Input: salt . A random salt

Input: T . Time cost, in number of iterations
Input: R . Number of rows in the memory matrix

Input: C . Number of columns in the memory matrix

Input: k . The desired key length, in bits
Output: K . The password-derived k-long key

1: . Setup: Initializes a (R× C) memory matrix whose cells have b bits each
2: Hash.absorb(pad(salt ‖ pwd)) . Padding rule: 10∗1

3: M [0]← Hash.squeezeρ(C · b)
4: for row ← 1 to R− 1 do
5: for col← 0 to C − 1 do

6: M [row][col]← Hash.duplexingρ(M [row − 1][col], b)
7: end for

8: end for

9: .Wandering: Iteratively overwrites blocks of the memory matrix
10: row ← 0

11: for i← 0 to T − 1 do . Time Loop
12: for j ← 0 to R− 1 do . Rows Loop: randomly visits R rows

13: for col← 0 to C − 1 do . Columns Loop: visits blocks in row

14: M [row][col]←M [row][col] ⊕ Hash.duplexingρ(M [row][col], b)
15: end for

16: col←M [row][C − 1] mod C

17: row ← Hash.duplexing(M [row][col], |R|) mod R
18: end for

19: end for

20: .Wrap-up: key computation

21: Hash.absorb(pad(salt)) . Uses the sponge’s current state

22: K ← Hash.squeeze(k)

23: return K . Outputs the k-long key

Lyra is the multi-rate padding pad10∗1 described in [9], hereby denoted simply
pad, which appends a single bit 1 followed by as many bits 0 as necessary followed
by a single bit 1.

Without resetting the state of the sponge, its (reduced) duplexing operation
Hash.duplexingρ is then repeatedly called until all rows of the memory matrix
are filled (line 6). Here, “reduced” means that the duplexing may actually be
done with a reduced-round version of f , denoted fρ for indicating that ρ rounds
are executed rather than the regular number of rounds ρmax. This approach
accelerates the duplexing operation and, thus, allows more memory positions
to be covered in the same amount of time than what would be possible with
the application of a full-round f . Using reduced-round primitives in the core of
cryptographic constructions is not unheard in the literature, as it is the main
idea behind the Alred family of message authentication algorithms [17, 18, 42,
43]. As further discussed in Section 4.2, even though the requirements in the
context of KDFs are different, this strategy does not decrease the security of the
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scheme as long as fρ is non-cyclic and highly non-linear, which should be the
case for the vast majority of secure hash functions. After the memory matrix is
completely filled, the sponge’s internal state is not reset to zeros, but once again
kept so it can be used in the next phase.

The most resource consuming of all phases, the Wandering Phase (lines 10
– 19), takes place after the Setup phase is finished. A total of (T ·R) rows of the
memory matrix are iteratively visited, R rows per iteration of the loop starting
at line 11, called the Time Loop. Every row visited has all of its cells read
and combined with the output of the underlying sponge’s (reduced) duplexing
operation Hash.duplexingρ (line 14).

The visitation order in the Wandering phase is determined by the row in-
ternal variable of the algorithm. Since row is initialized to zero in line 10, the
first row M [0] is always visited first. The remainder rows are then visited in a
pseudo-random fashion, as the row variable is updated after each visit (line 17).
This update is done by fully duplexing one of the cells in the most recently vis-
ited row, which results in a highly random value of row while further increasing
the entropy of the underlying sponge’s state. The index of the cell chosen in this
manner is M [row][C − 1] mod C, so it can only be determined after the last cell
of the corresponding row is actually processed. This entire process is intended
to ensure that all positions of the memory matrix need to remain available for
the whole duration of the key derivation process.

Finally, in the Wrap-up Phase (lines 21 – 22), the final key is computed by
first absorbing the salt one last time and then squeezing the (full-round) sponge,
once again using its current internal state. The number of bits generated in this
manner, k, can be as arbitrary as allowed by the underlying sponge. The stateful,
full-round sponge employed in this last stage ensures that the whole process is
both non-invertible and of sequential nature.

4.2 Strictly sequential design

Like with PBKDF2 and other existing KDF, Lyra’s design is strictly sequential,
as the sponge’s internal state is iteratively updated whenever it processes a cell
of the memory matrix. Specifically, and without loss of generality, assume that
the sponge’s state before processing the cell ci = M [row][col + i] is si; then,
after ci is processed and becomes c′i, the updated state is si+1. Now, suppose
the attacker wants to parallelize the Columns Loop (lines 13 – 15), processing
{c0, c1, c2} faster than sequentially computing c′0 = s0, c′1 = s0 ⊕ c0, c′2 = c′1 ⊕ c1,
s3 = c′2 ⊕ c2.

If the sponge’s transformation f was affine, the above task would be quite
easy. For example, if f was the identity function, the attacker could use four
processing cores of a GPU to make x = s0 ⊕ c0, y = c0 ⊕ c1, z = c1 ⊕ c2
in parallel and then, in a second step, make c′0 = s0, c′1 = x, c′2 = x ⊕ c1,
s3 = x ⊕ z. With an FPGA and adequate wiring, this could be done even faster,
in a single step. However, for a highly non-linear transformation fρ, it should be
hard to decompose two iterative duplexing operations fρ(fρ(s0 ⊕ c0) ⊕ c1) into
an efficient parallelizable form, let alone several iterations of fρ. Interestingly, if
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fρ has some obvious cyclic behavior, always resetting the sponge to a known state
s0 after v cells are visited, then the attacker could easily parallelize the visitation
of ci and ci+v. Nonetheless, any reasonably secure fρ is expected to prevent such
cyclic behavior by design, since otherwise this property could be easily explored
for finding internal collisions against the full f itself. In summary, even though
an attacker may be able to parallelize internal parts of fρ, the stateful nature of
the Wandering phase creates several “serial bottlenecks” that prevent cells from
being visited in parallel.

Assuming that the above-mentioned structural attacks are unfeasible, paral-
lelization can still be achieved in a “brute-force” manner. Namely, the attacker
could create two different sponge instances, I0 and I1, and try to initialize their
internal states to s0 and s1, respectively. If s0 is known, all the attacker needs
to do is to compute s1 faster than actually processing c0 with I0. For example,
the attacker could rely on a large table mapping states and input blocks to the
resulting states, and then use the table entry (s0, c0) 7→ s1. For any reasonable
cryptographic sponge, however, the state and block sizes are expected to be quite
large (e.g., 512 or 1,024 bits), meaning that the amount of memory required for
building a complete map makes this approach unpractical.

Alternatively, the attacker could simply initialize several I1 instances with
guessed values of s1, and apply them to c1 in parallel. Then, when I0 finishes
running and the correct value of s1 is inevitably determined, the attacker could
compare it to the guessed values, keeping only the results obtained with the
correct instantiation. At first sight, it might seem that a reduced-round f facil-
itates this task, since the consecutive states s0 and s1 may share some bits or
relationships between bits, thus reducing the number of possibilities that need
to be included among the guessed states. Even if that is the case, however, any
transformation f is expected to have a complex relationship between the in-
put and output of every single round and, to speed-up the visitation of a cell,
the attacker needs to explore such relationship faster than actually processing
ρ rounds of f . Otherwise, the process of determining the target guessing space
will actually be slower than simply processing cells sequentially. In addition, to
guess the state that will be reached after v cells are visited, the attacker would
have to explore relationships between roughly v ·ρ rounds of f faster than simply
running v · ρ rounds of f . Hence, even in the (unlikely) case that guessing two
consecutive states can be made faster than running ρ of f , this strategy scales
poorly since any existing relationship between bits should be diluted as v · ρ
approaches ρmax.

An analogous reasoning applies to the Rows Loop and the Time Loop. The
difference for the former is that, to determine the next row to be visited and
start processing it in parallel, the attacker needs to find the internal state that
will result from the visitation of the current row without actually visiting it,
which involves C ·ρ rounds of f . For the latter, the state to be determined would
be that resulting from the visitation of several rows chosen in a random fashion,
which involves C ·R · ρ rounds of f .
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Therefore, even if highly parallelizable hardware is available to attackers, it is
unlikely that they will be able to take full advantage of this parallelism potential
for speeding up the operation of any given instance of Lyra.

4.3 Configuring memory usage and processing time

The total amount of memory occupied by Lyra’s memory matrix is given by
m = b · R · C. The value of b corresponds to the underlying sponge function’s
bitrate. With this choice of b, there is no need to pad the incoming blocks as
they are processed by the duplex construction, which leads to a simpler im-
plementation. The R and C parameters, on the other hand, are user defined,
thus allowing the configuration of the amount of memory required during the
algorithm’s operation.

Ignoring ancillary operations, the processing cost of Lyra is basically de-
termined by the number of calls to the sponge’s underlying f function. Hence,
considering all of the algorithm’s phases and supposing that both (|pwd|+ |salt|)
and k are smaller than b, Lyra’s total cost is approximately: 1+(R−1)·C ·ρ/ρmax
for the Setup phase, plus T ·R · (1 +C ·ρ/ρmax) for the Wandering phase, plus 2
for the Wrap-up phase, leading roughly to (T+1)·R·C ·ρ/ρmax calls to f . There-
fore, while the amount of memory used by the algorithm imposes a lower bound
on its total running time, the latter can be linearly increased without affecting
the former by choosing a suitable T parameter. This allows users to explore the
most abundant resource in a (legitimate) platform with unbalanced availability
of memory and processing power. This design also allows Lyra to use more mem-
ory than scrypt for a similar processing time: while scrypt employs a full-round
hash for processing each of its elements, Lyra employs a reduced-round, faster
operation for the same task.

4.4 On the underlying sponge

Even though Lyra is compatible with any hash functions from the sponge family,
the newly approved SHA-3, Keccak, does not seem to be the best alternative for
this purpose. This happens because Keccak excels in hardware rather than in
software performance. Hence, for the specific application of password-based key
derivation, it gives more advantage to attackers using custom hardware than to
legitimate users running a software implementation.

Our recommendation, thus, is toward using a secure software-oriented algo-
rithm with low parallelism as the sponge’s f transformation. One example is
Blake2b’s compression function [5], which has been shown to be a good permu-
tation [4, 30] and displays a security level similar to that of Keccak [13].

4.5 Practical considerations

Lyra displays a quite simple structure, building as much as possible on the intrin-
sic properties of sponge functions operating on a fully stateful mode. Indeed, the
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whole algorithm is composed basically of loop controlling and variable initializa-
tion statements, while the data processing itself is done by the underlying Hash
function. Therefore, we expect the algorithm to be very easily implementable in
software, especially if a sponge function is already available.

Lyra’s memory matrix was also designed to allow users to take advantage
of memory hierarchy features, such as caching and prefetching. As observed in
[36], such mechanisms usually make access to consecutive memory locations in
real-world machines much faster than accesses to random positions, even for
memory chips classified as “random access”. As a result, a memory matrix for
which R = 1 is likely to be visited faster than a matrix having C = 1, even for
identical values of R · C.

Therefore, by choosing adequate R and C values, Lyra can be optimized
for running faster in the target (legitimate) platform while still imposing penal-
ties to attackers under different memory-accessing conditions. For example, by
matching b · C to approximately the size of the target platform’s cache lines,
memory latency can be significantly reduced, allowing T to be raised without
impacting the algorithm’s performance in that specific platform.

Another practical concern taken into account in Lyra refers to how long the
original password provided by the user needs to remain in memory. Specifically,
the memory position storing pwd can be overwritten right after the first absorb
operation (line 2 of Algorithm 2). This avoids situations in which a careless
implementation ends up leaving pwd in the device’s volatile memory or, worse,
leading to its storage in non-volatile memory due to memory swaps performed
during the algorithm’s memory-expensive phases. Hence, it meets the general
guideline of purging private information from memory as soon as it is not needed
anymore, preventing that information’s recovery in case the device is stolen [23,
49].

4.6 Parallelism on legitimate platforms: the Lyrap variant

Even though a strictly sequential KDF is interesting for thwarting attacks, this
may not be the best choice if the legitimate platform itself has multiple processing
units available, such as a multicore CPU or even a GPU. In such scenarios, users
may want to take advantage of this parallelism for (1) raising the KDF’s usage
of memory, abundant in a desktop or GPU running a single KDF instance, while
(2) keeping the KDF’s total processing time within humanly acceptable limits.

Against an attacker making several guesses in parallel, this strategy instantly
raises the memory costs proportionally to the number of cores used by the le-
gitimate user. For example, if the key is computed from a sequential KDF that
uses 10 MB of memory and takes 1 second to run in a single core, an attacker
who has access to 1,000 processing cores and 10 GB of memory could make 1,000
password guesses per second (one per core). If the key is now computed from the
output of instances of the KDF, testing a guess would take 20 MB and 1 second,
meaning that the attacker would need 20 GB of memory in order to obtain the
same throughput as before.
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Therefore, aiming to allow legitimate users to explore their own parallelism
capabilities, we propose a slightly tweaked version of Lyra. We call this variant
Lyrap, where the p > 1 parameter is the desired degree of parallelism. Lyrap’s
operation is as follows. During the Setup phase, p sponge copies are generated,
each of which is responsible for initializing and processing a single R×C matrix.
This is done similarly to Lyra, the difference being that each sponge i (0 6 i 6
p−1), right after being bootstrapped in line 2 of Algorithm 2, must perform p−1
full-round and stateful absorb operations on an extra block of value pad(i), where
i is represented as a |p − 1|-bit value. For example, for p = 2, the first sponge
absorbs once a properly padded bit 0, while the second sponge does the same for
a single bit 1; for p = 4, the padded 2-bit representations of integers 0, 1, 2, and
3 are absorbed three times by each sponge. This approach ensures that each of
the p sponges is initialized with distinct internal states even though they absorb
identical values of salt and pwd. In addition, the fact that the number of absorb
operations performed by each sponge depends on p ensures that computations
made with p′ 6= p cannot be reused in an attack against Lyrap, an interesting
property for scenarios in which the attacker does not know the correct value of
p. The rest of the Setup phase (lines 4 – 8 of Algorithm 2) proceeds as usual for
each of the p sponges, and so do their own Wandering and Wrap-up phases. The
operation of these sponges can, thus, be fully parallelized, with each processing
thread taking approximately the same amount of memory for a target processing
time. After all sponges finish processing, the p sub-keys generated are XORed
together, yielding the KDF’s output K.

It is important to notice that, for p = 1, Lyrap behaves exactly like Lyra,
meaning that both algorithms are fully compatible. Therefore, Lyra itself can be
seen as a shorthand for Lyra1.

5 Security analysis

Lyra’s design is such that (1) the derived key is non-invertible, due to the ini-
tial and final hashing of pwd and salt; (2) attackers are unable to parallelize
Algorithm 2 using multiple instances of the cryptographic sponge Hash, so they
cannot significantly speed up the process of testing a password by means of mul-
tiple processing cores; (3) once initialized, the memory matrix needs to remain
available during most of the key derivation process, meaning that the optimal
operation of Lyra requires enough (fast) memory to hold its contents.

For better performance, a legitimate user is likely to store the whole memory
matrix in volatile memory, facilitating its access in each of the several iterations
of the Wandering and Wrap-up phases. An attacker running multiple instances of
Lyra, on the other hand, may decide not to do the same, but keep a smaller part
of the matrix in fast memory aiming to reduce the memory costs per password
guess. Even though this alternative approach inevitably lowers the throughput
of each individual instance of Lyra, the goal with this strategy is to allow more
guesses to be independently tested in parallel, thus raising the overall throughput
of the process. There are basically two methods for accomplishing this. The first
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is to trade memory for processing time, i.e., storing only the sponge’s internal
state after each row is processed and recomputing the next row to be visited from
scratch, when (and only when) it becomes necessary; we call this a Low-Memory
attack. The second it to use low-cost (and, thus, slower) storage devices, such as
magnetic hard disks, which we call a Slow-Memory attack.

In what follows, we discuss both attack venues and evaluate their relative
costs, showing the drawbacks of such alternative approaches. Our goal with this
discussion is to demonstrate that Lyra’s design discourages attackers from mak-
ing such memory-processing trade-offs while testing many passwords in parallel.
In other words, we show that they are more likely to pay the memory costs as
parameterized by the legitimate user, which in turn limits the attackers’ ability
to take advantage of highly parallel platforms, such as GPUs and FPGAs, for
password cracking.

5.1 Low-Memory attacks

Before we discuss low-memory attacks against Lyra, it is instructive to consider
how such attacks can be perpetrated against scrypt’s ROMix structure (see
Algorithm 1), since its “sequential memory hard” design is mainly intended to
provide protection against this particular attack venue. Specifically, as a direct
consequence of scrypt’s its memory hard design, we can formulate Theorem 1
below:

Theorem 1. Whilst the memory and processing costs of scrypt are both O(R)
for a system parameter R, one can achieve a memory cost of O(1) (i.e., a
memory-free attack) by raising the processing cost to O(R2).

Proof. The attacker runs the loop for initializing the memory array V (lines
9 – 11), which we call ROMixini. Instead of storing the values of Vi, however,
the attacker keeps only the value of the internal variable X. Then, whenever an
element Vj of V should be read (line 14 of Algorithm 1), the attacker simply runs
ROMixini for j iterations, determining the value of Vj and updating X. Ignoring
ancillary operations, the average cost of such attack is R + (R · R)/2 iterative
applications of BlockMix and the storage of a single b-long variable (X), where
R is scrypt’s cost parameter. ut

In comparison, an attacker trying to use a similar low-memory attack against
Lyra would proceed as follows. First, the attacker runs the Setup phase, but
stores only the sponge’s resulting internal state. Since row is set to 0 at the
start of the Wandering phase, the first row is always initially visited and, thus,
only salt and pwd are required the very first time the Columns Loop is executed.

When line 17 is reached for the first time and the row variable is updated
to a random r, the attacker can run the Setup phase for r iterations, keeping
in memory only M [r] rather than the entire memory matrix. After M [r] is pro-
cessed, its value can be removed from memory to give space for the next row to
be visited. However, those subsequent visits have an extra complicating factor:
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if the row to be visited, M [r′], has been previously visited and, thus, modified,
simply running (part of) the Setup phase will give the attacker an outdated
value of M [r′]. To obtain the actual value to be fed to the sponge with a low
memory cost, the attacker needs to run the whole Setup phase and also all steps
of the Wandering phase prior to the last visitation of M [r′]. Nonetheless, since
such steps of the Wandering phase may once again depend on rows that have
been modified after Setup, those rows need to be recomputed as well, leading to
recursive calls that grow in number as the algorithm progresses and more rows
are modified.

Providing a tight bound on the complexity of such attack against Lyra is,
thus, an involved task. Indeed, the attack can be accelerated by keeping in
memory some intermediate states, adding even more variables to the analysis.
Nevertheless, aiming to give some insight on how the attacker could (but is
unlikely to want to) utilize such memory-processing trade-offs, in what follows
we consider some slightly simplified attack scenarios. In each scenario, we try
to match the total memory or processing complexities appearing in Theorem 1,
which allows a more direct comparison between Lyra and scrypt’s security when
the attacker tries to take advantage of such trade-offs.

Preliminaries. Following the notation shown in Algorithm 2, let sij denote the
state of the sponge when the Time Loop and Rows Loop control variables are i
and j, respectively, and before the corresponding row is effectively visited. Let
M j [r] denote the r-th row of the memory matrix during the j-th iteration of
the Time Loop, once again considering that this row has not yet been visited
during this iteration. Finally, let M j [r(i,j)] denote the row that is visited when
the sponge’s internal state is sij . This is illustrated in Figure 3.

To simplify the analysis, we consider that each row is visited only once during
each Time Loop, meaning that every row is visited per iteration j and all rows
are visited T times in total. We argue that this is a reasonable simplification for
an average-case analysis because, as the row visitation should follow a uniform
distribution, all rows are expected to be visited approximately the same number
of times.

For conciseness, we also ignore the small difference in cost between creating a
row in the Setup phase and visiting it in the Wandering phase, using simply σ to
denote both processes. In this manner, the cost of σ is approximately C ·ρ/ρmax
calls to f .

Scenario 1: storing all intermediate states. We first consider a simple
attack, in which the adversary never stores a given row M [r], but instead stores
the sponge’s state right before that row is processed. Then, whenever that row
is required during iteration j, he/she computes M0[r] from the salt and pwd —
making r calls to σ, — uses the j previously stored states for computing M j [r]
— with j extra iterative calls to σ — and finally proceeds with the Wandering
phase as usual — calling σ once again for visiting M j [r]. The idea behind this
approach is that, since a sponge’s state is usually smaller than an entire row
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Fig. 3. Simplified example of Lyra’s operation, showing part of the Wandering phase.
Highlighted cells represent rows that are computed in sequence, considering that a
single visit is made to them in each iteration of the Time Loop.

of the matrix (assuming that w < b · C), the attacker might be able to reduce
the total amount of memory required by the algorithm storing the former rather
than the latter, paying the toll in terms of processing.

For example, in the scenario shown in Figure 3, the attacker could decide
never to store M [3], but only the sponge’s states prior to its visitations. In that
case, among the states shown, sj−2i+1 and sj−1i−1 would be in storage when the
Wandering phase reaches its j-th iteration. At that point, the i-th row to be
visited is M j [r(i,j)] = M j [3], which needs to be computed from scratch. This is
done by running the Setup phase until M0[3] is obtained and then by iteratively
running σ with the sponge states stored — e.g., M j [3] is obtained by calling σ
with state sj−1i−1 over M j−1[3], and the latter by calling σ with state sj−2i+1 over
M j−2[3].

The total cost of repeating this strategy for all 0 6 j < T and any single row
is, thus, (R/2) ·T +T (T − 1)/2 calls to σ on average, and the storage of (T − 1)
intermediate sponge states. Extending this strategy so that no row is stored,
but only sponge states, the cost is multiplied by R, becoming approximately
(R+T ) ·R ·T/2 calls to σ on average and R · (T −1) intermediate sponge states.

Storing only a few memory rows in addition to the sponge states does acceler-
ate this process: for example, storing the strategically positioned rows M j [R/2]
for all j does allow the computation of any single row using only (R/4) calls
to σ on average. This happens because any desired row visited before M j [R/2]
during iteration j can be computed from it approximately twice faster than do-
ing so from scratch. In this case, the total cost of processing a row drops to
(R/4) ·T +T (T − 1)/2) for all iterations 0 6 j < T . Generalizing this approach,
the storage of n rows should lead to a total cost of R((R/2n)·T+T (T−1)/2) calls
to σ on average for the whole process. However, since any row is C times larger
than a state, the total memory cost becomes equivalent to R · (T − 1) +n · T ·C
intermediate sponge states.
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These observations allow the formulation of Theorem 2. This theorem shows
that, using the above strategy so that no row is stored, the attacker already raises
its processing costs quadratically on parameter R, the best achievable with a
memory-hard algorithm such as scrypt. However, and unlike what happens with
scrypt, such trade-off is not enough to reduce the algorithm’s memory usage to
O(1); instead, the total memory cost remains quite high.

Theorem 2. Consider that Lyra operates with parameters T , R and C. Whilst
the regular algorithm’s memory and processing costs are, respectively, O(R · C)
bits and O(T ·R) calls to σ, one can achieve a memory cost of O(R · T ) bits by
raising the processing cost to O((R+ T ) ·R · T ).

Proof. The costs involved in the regular operation of Lyra are discussed in section
4.3, while the mentioned memory-processing trade-off can be achieved with the
attack described above. ut

Scenario 2: storing a few intermediate states or none. The attacker can
reduce the memory costs even further by storing a smaller number of interme-
diate states, computing them on demand as done with the rows of the memory
matrix. Specifically, the attacker can determine state sji+1 if he/she knows the

immediately previous state sji and the row visited by the sponge in this latter
state, M jr(i,j). By recursively doing so, all iterations of the algorithm can be
computed with minimal storage, reaching O(1). As shown in Theorem 3, how-
ever, the computational cost of this process is much higher than what would be
attainable with a memory-hard algorithm.

Theorem 3. Consider that Lyra operates with parameters T , R and C. Whilst
the regular algorithm’s memory and processing costs are, respectively, O(R · C)
bits and O(T · R) calls to σ, one can achieve a memory cost of O(1) bits by
raising the processing cost to O(RT+1).

Proof. Suppose the attacker stores only the very last state computed, as well
as the intermediate states obtained at the beginning of each Wandering phase,
sj0, discarding all others. When the algorithm enters the Wandering phase (i.e.,
for j = 0), the attacker can obtain state s0i+1 from s0i by computing the corre-
sponding row M0[r(i,0)] from scratch. This means that the Setup phase is run
for r(i,0) iterations, leading to an average cost of R/2 calls to σ for each value of
i. For j = 1, however, the average cost of such step grows to R2/4: computing
s1i+1 from s1i requires the computation of M1[r(i,1)] from s10 (the nearest known
state), meaning that the Setup phase is run i+1 times, once for each M1[r(α,1)],
where 0 6 α 6 i.

Following the same principle above, the average cost of computing a single
state update sji+1 from sji , is given by (R/2)j+1 calls to σ, leading to R ·(R/2)j+1

calls during the whole iteration j. For the last iteration of the Wandering phase
alone, the total cost is R · (R/2)T , which should dominate Lyra’s running time
in this memory-free scenario. ut
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Summary. At this point, it becomes easier to see that Lyra provides a higher
level of security than scrypt (and memory-hard algorithms in general), even for
small values of T . For example, suppose that Lyra runs as fast as scrypt for
some T > 2, and that both algorithms operate over the same number of memory
elements R, yielding identical memory usages. In this case, a memory-free attack
(Scenario 2) against Lyra has a complexity of O(RT+1) > O(R3), while against
scrypt this cost would be O(R2). On the other hand, if the attacker can go only
as far as raising the processing cost quadratically (Scenario 1), he/she would be
able to attack scrypt with a O(1) memory cost. However, the memory costs in
the same conditions would be far from dropping that much against Lyra.

5.2 Slow-Memory attacks

Providing protection against slow-memory attacks is a more involved task. This
happens because the attacker acts approximately as a legitimate user during the
algorithm’s operation, keeping in memory all information required. The main
difference resides on the bandwidth and latency provided by the memory device
employed, which ultimately impacts the time required for testing each password
guess.

Lyra, similarly to scrypt, explores the properties of low-cost memory devices
by visiting memory positions in a pseudo-random pattern. In particular, this
strategy increases the latency of intrinsically sequential memory devices, such
as hard disks, especially if the attack involves multiple instances simultaneously
accessing different memory sections. Furthermore, as discussed in Section 4.5,
such visitation pattern combined with a small C parameter may also diminish
speedups obtained from mechanisms such as caching and prefetching, even when
the attacker employs (low-cost) random-access memory chips.

When compared with scrypt, a slight improvement introduced by Lyra against
such attacks is that the memory positions are not only repeatedly read, but also
written. As a result, Lyra requires data to be repeatedly moved up and down
the memory hierarchy. The overall impact of this feature on the performance of
a slow-memory attack depends, however, on the exact system architecture. For
example, it is likely to increase traffic on a shared memory bus, while caching
mechanisms may require a more complex circuitry/scheduling to cope with the
continuous flow of information from/to a slower memory level.

Another appealing aspect about Lyra’s design is the fact that its Wander-
ing phase XORs the value of a row with the sponge’s output, preventing the
memory positions corresponding to that row from becoming quickly replaceable.
This property is, thus, likely to hinder the attacker’s capability of reusing that
memory region in a parallel thread. Obviously, such properties may also impact
a legitimate user, stressing the need of configuring the R, C and T parameters
according to the target platform.
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Fig. 4. Lyra’s performance for C = 64, ρ = 1, and different T and R settings.

6 Performance for recommended parameters

In a preliminary assessment of Lyra’s performance in software, we used a ref-
erence implementation of Blake2b’s compression function [5] as the underly-
ing sponge’s f function. The implementations employed are available at www.

lyra-kdf.net.
The results are depicted in Figure 4, in which Lyra is parameterized with

C = 64, ρ = 1 and different T and R settings, giving an overall idea of possible
combinations of parameters and the corresponding usage of resources. As shown
in this figure, Lyra can run in less 1 s while using 200 MB of memory (with
R = 6.4 · 104), or in less than 5 s with 1GB (with R = 3.2 · 105). All tests were
performed on an Intel Core i7-2670QM (2.20 GHz Quad Core, 64 bits) equipped
with 8 GB of DRAM, running Fedora 18 64 bits and using the gcc compiler with
-O3 optimization.

Figure 4 also compares Lyra with the scrypt “optimized non-SSE2” imple-
mentation publicly available at www.tarsnap.com/scrypt.html, using the param-
eters suggested by scrypt’s author in [36] (namely, b = 8192 and p = 1). The
“non-SSE2” version of scrypt was chosen aiming at a fair comparison, since our
preliminary Lyra implementation does not explore SSE2 instructions either. The
results obtained show that, in order to achieve a memory usage and processing
time similar to that of scrypt, Lyra should be parameterized with T ≈ 5.

6.1 Expected attack costs

Considering that the cost of DDR3 SO-DIMM memory chips is currently around
U$5.00/GB [45], Table 1 shows the cost added by Lyra with T = 5 when an
attacker tries to crack a password in 1 year using the above reference hardware,
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for different password strengths. These costs are obtained considering the total
number of instances that need to run in parallel to test the whole password
space in 365 days, ignoring costs related to wiring and energy consumption and
supposing that testing a password takes the same amount of time as in our
testbed. We refer the reader to [33, Appendix A] for a discussion on how to
compute the entropy of passwords.

We notice that if the attacker uses a faster platform (e.g., an FPGA or a
more powerful computer), these costs should drop proportionally, since a smaller
number of instances (and, thus, memory chips) would be required for this task.
Similarly, if the attacker employs memory devices faster than regular DRAM
(e.g., SRAM or registers), the processing time is also likely to drop, reducing
the number of instances required to run in parallel. Nonetheless, in this case the
resulting memory-related costs may actually be significantly higher due to the
higher cost per GB of such memory devices. All in all, the numbers provided
in Table 1 are not intended as absolute values, but rather a reference on how
much extra protection one could expect from using Lyra, since this additional
memory-related cost is the main advantage of KDFs that explore memory usage
when compared with those that do not.

Finally, when compared with existing solutions that do explore memory us-
age, Lyra is advantageous due to the elevated processing costs of attack venues in
which attackers try to avoid memory-related costs, effectively discouraging such
approaches. Indeed, considering the final Wandering phase alone and T = 5,
the additional processing cost of a memory-free attack against Lyra is approxi-
mately (6.4·104)6 = 6.9·1028 calls to σ if the algorithm operates with 200 MB, or
(3.2 · 105)6 = 1.1 · 1033 for a memory usage of 1GB. For the same memory usage
settings, the total cost of a similar memory-free attack against scrypt would be
approximately (2 · 105)2 = 4 · 1010 and (1 · 106)2 = 1 · 1012 calls to BlockMix ,
whose processing time is quite similar to that of σ for the parameters used in
our experiments. As expected, such elevated processing costs are prone to dis-
courage attack venues that try to avoid the memory costs of Lyra by means of
extra processing.

Password Memory usage (MB)

entropy (bits) 200 600 1,000 1,500 2,000

35 880.8 8.4k 22.8k 51.8k 89.1k

40 28.2k 270.3k 728.4k 1.7M 2.8M

45 901.9k 8.6M 23.3M 53.0M 91.2M

50 28.9M 276.8M 745.9M 1.7B 2.9B

55 923.6M 8.8B 23.9B 54.3B 93.4B

Table 1. Memory-related cost (in U$) added by Lyra with T = 5, for attackers trying
to break passwords in a 1-year period using an Intel Core i7-2670QM.
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7 Conclusions

We presented Lyra, a password-based key derivation scheme that allows legiti-
mate users to fine tune memory and processing costs according to the desired
level of security and resources available in the target platform. For achieving this
goal, Lyra builds on the properties of sponge functions operating in a stateful
mode, creating a strictly sequential process. Indeed, the whole memory matrix
of the algorithm can be seen as a huge state, which changes together with the
sponge’s internal state.

The ability to control Lyra’s memory usage allows legitimate users to thwart
attacks using parallel platforms. This can be accomplished by raising the memory
required by the several cores beyond the amount available in the attacker’s de-
vice. In summary, the combination of a strictly sequential design, the high costs
of exploring memory-processing trade-offs, and the ability to raise the memory
usage beyond what is attainable with similar-purpose solutions (e.g., scrypt)
for a similar security level and processing time make Lyra an appealing KDF
alternative.

As future work, we plan to provide detailed performance analyses of Lyra and
Lyrap in different (software and hardware) platforms, using different underlying
sponges.
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Appendix A: PBKDF2

The Password-Based Key Derivation Function version 2 (PBKDF2) algorithm
[26] was originally proposed in 2000 as part of RSA Laboratories’ PKCS#5. It is
nowadays present in several security tools, such as TrueCrypt [46] and Apple’s
iOS for encrypting user passwords [2], and has been formally analyzed in several
circumstances [48, 6].

Basically, PBKDF2 (see Algorithm 3) iteratively applies the underlying pseu-
dorandom function Hash to the concatenation of pwd and a variable Ui, i.e.,
it makes Ui = Hash(pwd, Ui−1) for each iteration 1 6 i 6 T . The initial value
U0 corresponds to the concatenation of the user-provided salt and a variable l,
where l corresponds to the number of required output blocks. The l-th block of
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Algorithm 3 PBKDF2.
Input: pwd . The password

Input: salt . The salt
Input: T . The user-defined parameter

Output: K . The password-derived key

1: if k > (232 − 1) · h then
2: return Derived key too long.

3: end if
4: l← dk/he ; r ← k − (l − 1) · h
5: for i← 1 to l do

6: U [1]← PRF (pwd, salt||INT (i)) . INT(i): 32-bit encoding of i
7: T [i]← U [1]

8: for j ← 2 to T do

9: U [j]← PRF (pwd, U [j − 1]) ; T [i]← T [i] ⊕ U [j]
10: end for

11: if i = 1 then K ← T [1] else K ← K || T [i] end if

12: end for
13: return K

the k-long key is then computed as Kl = U1 ⊕ U2 ⊕ . . . ⊕ UT , where k is the
desired key length.

PBKDF2 allows users to control its total running time by configuring the
T parameter. Since the key derivation process is strictly sequential (one cannot
compute Ui without first obtaining Ui−1), its internal structure is not paral-
lelizable. However, as the amount of memory used by PBKDF2 is quite small,
the cost of implementing brute force attacks against it by means of multiple
processing units remains reasonably low.

Appendix B: Bcrypt.

Another solution that allows users to configure the key derivation’s processing
time is bcrypt [38]. The scheme is based on a customized version of the 64-
bit cipher algorithm Blowfish [39], called EksBlowflish (“expensive key schedule
blowfish”).

Both algorithms use the same encryption process, differing only on how they
compute their subkeys and S-boxes. Bcrypt consists in initializing EksBlowfish’s
subkeys and S-Boxes with the salt and password, using the so-called EksBlowfish-
Setup function, and then using EksBlowfish for iteratively encrypting a constant
string, 64 times.

EksBlowfishSetup starts by copying the first digits of the number π into
the subkeys and S-boxes Si (see Algorithm 4). Then, it updates the subkeys
and S-boxes by invoking ExpandKey(salt, pwd), for a 128-bit salt value. Ba-
sically, this function (1) cyclically XORs the password with the current sub-
keys, and then (2) iteratively blowfish-encrypts one of the halves of the salt,
the resulting ciphertext being XORed with the salt’s other half and also replac-
ing the next two subkeys (or S-Boxes, after all subkeys are replaced). After all
subkeys and S-Boxes are updated, bcrypt alternately calls ExpandKey(0, salt)
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Algorithm 4 Bcrypt.
Input: pwd . The password

Input: salt . The salt
Input: T . The user-defined cost parameter]

Output: K . The password-derived key

1: s← InitState() . Copies the digits of π into the sub-keys and S-boxes Si
2: s←ExpandKey(s, salt, pwd)

3: for i← 1 to 2T do
4: s←ExpandKey(s, 0, salt)

5: s←ExpandKey(s, 0, pwd)

6: end for
7: ctext← ”OrpheanBeholderScryDoubt”

8: for i← 1 to 64 do

9: ctext← BlowfishEncrypt(s, ctext)
10: end for

11: return T ‖ salt ‖ ctext
12: function ExpandKey(s, salt, pwd)

13: for i← 1 to 32 do

14: Pi ← Pi ⊕ pwd[32(i− 1) . . . 32i− 1]
15: end for

16: for i← 1 to 9 do

17: temp← BlowfishEncrypt(s, salt[64(i− 1) . . . 64i− 1])
18: P0+2(i−1) ← temp[0 . . . 31]

19: P1+2(i−1) ← temp[32 . . . 64]

20: end for
21: for i← 1 to 4 do

22: for j ← 1 to 128 do

23: temp← BlowfishEncrypt(s, salt[64(j − 1) . . . 64j − 1])
24: Si[2(j − 1)]← temp[0 . . . 31]

25: Si[1 + 2(j − 1)]← temp[32 . . . 63]
26: end for

27: end for

28: return s
29: end function

and then ExpandKey(0, pwd), for 2T iterations. The user-defined parameter T
determines, thus, the time spent on this subkey and S-Box updating process,
effectively controlling the algorithm’s total processing time.

Like PBKDF2, bcrypt allows users to parameterize only its total running
time. In addition to this shortcoming, some of its characteristics can be consid-
ered (small) disadvantages when compared with PBKDF2. First, bcrypt employs
a dedicated structure (EksBlowfish) rather than a conventional hash function,
leading to the need of implementing a whole new cryptographic primitive and,
thus, raising the algorithm’s code size. Second, EksBlowfishSetup’s internal loop
grows exponentially with the T parameter, making it harder to fine-tune bcrypt’s
total execution time without a linearly growing external loop. Finally, bcrypt dis-
plays the unusual (albeit minor) restriction of being unable to handle passwords
having more than 56 bytes.
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Appendix C: On the algorithm’s name

The name Lyra comes from Chondrocladia lyra, a recently discovered type of
sponge [16]. While most sponges are harmless, this harp-like sponge is carnivo-
rous, using its branches to ensnare its prey, envelope it in membrane and com-
pletely digest it.

Lyra’s memory matrix displays some similarity with this species’ external
aspect, and we expect it to be at least as much aggressive against adversaries
trying to attack it. ,


