
A new attack on RSA with a composed
decryption exponent

Abderrahmane Nitaj1 and Mohamed Ould Douh1,2
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Abstract. In this paper, we consider an RSA modulus N = pq, where
the prime factors p, q are of the same size. We present an attack on RSA
when the decryption exponent d is in the form d = Md1 + d0 where M
is a given positive integer and d1 and d0 are two suitably small unknown
integers. In 1999, Boneh and Durfee presented an attack on RSA when
d < N0.292. When d = Md1 + d0, our attack enables one to overcome
Boneh and Durfee’s bound and to factor the RSA modulus.
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1 Introduction

The RSA cryptosystem [13] (see also [1] and [3]) was invented in 1978 by Rivest,
Shamir and Adleman and is today one of the most popular cryptosystems. The
main parameters in RSA are the modulus N = pq, which is the product of two
large primes of the same bit-size, that is q < p < 2q, and a public exponent
e such that gcd(e, φ(N)) = 1 where φ(N) is Euler’s totient function. The pub-
lic exponent e is related to the private exponent d by an equation of the form
ed − kφ(N) = 1. For efficiency reasons, it might be tempting to select a small
RSA private exponent d. In 1990, Wiener[14] showed that RSA is insecure if
d < 1

3N
0.25. His attack makes use of the continued fractions method and had

an important impact on the design of RSA. Wiener’s bound was later subse-
quently improved to d < N0.292 by Boneh and Durfee[4]. Their method is based
on Coppersmith’s technique[6] for finding small solutions of modular polynomial
equations, which in turn is based on the LLL lattice reduction algorithm [10].
A related problem is to attack the RSA cryptosystem when an amount of bits
of the private exponent d are known to the adversary. This problem was in-
troduced by Boneh, Durfee and Frankel [5] in 1998. It is called the partial key
exposure problem and is related to the study of side channel attacks such as fault
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attacks, timing attacks and power analysis. In most cases, the partial key expo-
sure attacks are based on the knowledge of the most significant bits or the least
significant bits of the private exponent d. Boneh, Durfee and Frankel showed
that for low public exponent e and full private exponent d, that is d ≈ N ≈ 2n,
if d = Md1 +d0 where d0 and M ≥ 2

n
4 are known, then all d can be computed in

polynomial time. Their method makes use of Coppersmith’s technique [6]. More
partial key exposure attacks are presented by Blömer and May in [2] and by
Ernst, Jochemsz, May and de Weger in [7]. These attacks extend the size of the
public exponent e up to N .

All partial key exposure results on RSA presented so far have in common
that the private exponent d is of the shape d = Md1 + d0 where M ≥ 2

n
4 and

d0 are known, or of the shape d = d1 + d0 where d1 is known and d0 is small. In
this paper, we consider the situation with d = Md1 + d0 where M is known and
d1 and d0 are unknown. We show that one can find the factorization of N if d1

and d0 are suitably small. Namely, suppose that

e = Nα, M = Nβ , d1 < Nδ, d0 < Nγ .

We show that if

δ <
1
4

(
5− 4γ −

√
12α+ 12β − 12γ + 3

)
,

then there is a polynomial time algorithm to factor the modulus N , which breaks
the RSA cryptosystem. The starting point of the attack is the key equation
ed− kφ(N) = 1, which can be rewritten as

ed0 − kN + k(p+ q − 1)− 1 ≡ 0 (mod Me).

From the left side, we derive a polynomial f(x, y, z) = ex−Ny+ yz− 1 and use
Coppersmith’s method to solve the modular equation f(x, y, z) ≡ 0 (mod Me).
When we perform the LLL algorithm in Coppersmith’s method, we find three
polynomials hi(x, y, z) for 1 ≤ i ≤ 3. Since (d0, k, p+ q− 1) is a small solution of
the equation f(x, y, z) ≡ 0 (mod Me), then, using the resultant process or the
Gröbner basis computation, we can find z0 such that z0 = p+ q−1. Hence using
p + q − 1 = z0 and pq = N , one can find p and q. We note that Coppersmith’s
method applied with multivariate polynomials relies on the following heuristic
assumption which is supposed to hold true for n ≥ 3 variables.

Assumption 1. The resultant computations for the polynomials hi(x, y, z) for
1 ≤ i ≤ 3 yield nonzero polynomials.

The rest of the paper is organized as follows. In Section 2, we give some basics on
lattices, lattice reduction and Coppersmith’s method. In Section 3, we present
our attack on RSA when the private exponent d satisfies d = Md1 + d0 with
known M . We conclude in Section 4.
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2 Preliminaries

In this section, we present a few basic facts about lattices, lattice basis reduction,
Coppersmith’s method for solving modular polynomial equations and Howgrave-
Graham’s theorem.

Let b1, · · · , bω ∈ Rn be ω linearly independent vectors where ω and n are
two positive integers satisfying ω ≤ n. The lattice L spanned by {b1, · · · , bω}
is the set of linear combinations of the vectors b1, · · · , bω ∈ Rn using integer
coefficients, that is

L =

{
ω∑
i=1

λibi | xi ∈ Z

}
.

We say that the set {b1, · · · , bω} is a lattice basis for L, and ω is its dimension.
This is denoted as dim(L) = ω. The lattice is called full rank if ω = n. When
ω = n, the determinant is equal to the absolute value of the determinant of the
matrix whose rows are the basis vectors b1, · · · , bω, that is

det(L) = |det(b1, · · · , bω)|

If b =
∑ω
i=1 λibi is a vector of L, the Euclidean norm of b is

‖b‖ =

(
ω∑
i=1

λ2
i

) 1
2

.

A lattice has infinitely many bases with the same determinant and it is useful
to find a basis of small vectors. However, finding the shortest nonzero vector
in a lattice is very hard in general. In 1982, Lenstra, Lenstra and Lovász [10]
invented the so-called LLL algorithm to reduce a basis and to approximate a
shortest lattice vector in time polynomial in the bit-length of the entries of the
basis matrix and in the dimension of the lattice. In the following theorem, we
state a general result on the size of the individual reduced basis vectors. A proof
can be found in [11].

Theorem 1 (LLL). Let L be a lattice of dimension ω. In polynomial time, the
LLL- algorithm outputs a reduced basis {v1, · · · , vω} that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)
4(ω+1−i det(L)

1
ω+1−i ,

for all 1 ≤ i ≤ ω.

In 1996, Coppersmith [6] proposed rigorous techniques to compute small roots
of bivariate polynomials over the integers and univariate modular polynomials
using the LLL algorithm. The methods extend heuristically to more variables.
In 1997, Howgrave-Graham [8] reformulated Coppersmith’s techniques and pro-
posed the following result in terms of the Euclidean norm of the polynomial
f(x1, . . . , xn) =

∑
ai1,...,inx

i1
1 · · ·xinn which is defined by

‖f(x1, . . . , xn)‖ =
√∑

a2
i1,...,in

.
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Theorem 2 (Howgrave-Graham). Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a
polynomial which is a sum of at most ω monomials. Suppose that

f
(
x

(0)
1 , . . . , x(0)

n

)
≡ 0 (mod (Me)m),∣∣∣x(0)

1

∣∣∣ < X1, . . . ,
∣∣∣x(0)
n

∣∣∣ < Xn,

‖f(x1X1, . . . , xnXn)‖ < (Me)m√
ω

.

Then f
(
x

(0)
1 , . . . , x

(0)
n

)
= 0 holds over the integers.

Using Theorem 1, if

2
ω(ω−1)

4(ω+1−n) det(L)
1

ω+1−n ≤ (Me)m√
ω

,

then we can find n polynomials vi(x1, . . . , xn), 1 ≤ i ≤ n, that share the root(
x

(0)
1 , . . . , x

(0)
n

)
over the integers.

We terminate this section by two useful results (see. [12]). Let N = pq be
an RSA modulus with q < p < 2q. Then the prime factors p and q satisfy the
following properties

√
2
√
N

2
< q <

√
N < p <

√
2
√
N, (1)

2
√
N < p+ q <

3
√

2
√
N

2
. (2)

3 The Attack

In this section, we present our new attack on RSA when the private exponent is
in the form d = Md1 + d0 with a known integer M and suitably small unknown
integers d1 and d2. A typical example is M = 2m for some positive integer m.

Theorem 3. Let N = pq be an RSA modulus with q < p < 2q. Let M = Nβ be
a positive integer and e = Nα a public exponent satisfying ed− kφ(N) = 1 with
d = Md1 + d0. Suppose that d1 ≤ Nδ and d0 < Nγ . Then one can factor N in
polynomial time if

δ <
1
4

(
5− 4γ −

√
12α+ 12β − 12γ + 3

)
.

Proof. Let M be a known integer. Suppose that d = Md1 + d0. The starting
point is the RSA key equation ed−kφ(N) = 1 where φ(N) = N−p−q+1. Hence
e (Md1 + d0)−k(N−p−q+1) = 1 and Med1+ed0−kN+k(p+q−1) = 1. Taking
this equation modulo Me, we get ed0 − kN + k(p + q − 1) − 1 ≡ 0 (mod Me).
Consider the polynomial

f(x, y, z) = ex−Ny + yz − 1.
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Then (x0, y0, z0) = (d0, k, p+ q − 1) is a root modulo Me. Define

e = Nα, M = Nβ , X = Nγ , Y = 2Nα+β+δ−1, Z =
3
√

2
2
N

1
2 . (3)

Suppose that d1 < Nδ and d0 < Nγ where γ < β + δ. Then d = Md1 + d0 <
2Nβ+δ. Hence, since φ(N) ≈ N , we get

k =
ed− 1
φ(N)

<
ed

φ(N)
<

2Nα+β+δ

φ(N)
≈ 2Nα+β+δ−1 = Y.

On the other hand, using (2), we get p + q < 3
√

2
2 N

1
2 . Summarizing, the root

(x0, y0, z0) = (d0, k, p+ q − 1) modulo Me of the polynomial f(x, y, z) satisfies

x0 < X, y0 < Y, z0 < Z.

To apply Coppersmith’s method [6] to find the small modular roots of the equa-
tion f(x, y, z) ≡ 0 (mod Me), we use the extended strategy of Jochemsz and
May [9]. Define the set

Mk =
⋃

0≤j≤t

{xi1yi2zi3+j
∣∣∣ xi1yi2zi3 monomial of fm(x, y, z)

and
xi1yi2zi3

(yz)k
monomial of fm−k}.

Observe that fm(x, y, z) is in the form

fm(x, y, z) =
m∑
i1=0

m−i1∑
i2=0

i2∑
i3=0

ai1,i2,i3x
i1yi2zi3 ,

where the coefficients ai1,i2,i3 do not depend on x, y nor z. This gives the fol-
lowing properties

xi1yi2zi3 ∈ fm if i1 = 0, . . . ,m, i2 = 0, . . . ,m− i1, i3 = 0, . . . , i2,
xi1yi2zi3 ∈ fm−k if i1 = 0, . . . ,m− k, i2 = 0, . . . ,m− k − i1, i3 = 0, . . . , i2.

Hence, if xi1yi2zi3 is a monomial of fm(x, y, z), then xi1yi2zi3

ykzk is a monomial of
fm−k(x, y, z) for

i1 = 0, . . . ,m− k, i2 = k, . . . ,m− i1, i3 = k, . . . , i2.

For 0 ≤ k ≤ m, we obtain

xi1yi2zi3 ∈Mk if i1 = 0, . . . ,m− k, i2 = k, . . . ,m− i1, i3 = k, . . . , i2 + t.

From this, we deduce

xi1yi2zi3 ∈Mk+1 if i1 = 0, . . . ,m−k−1, i2 = k+1, . . . ,m−i1, i3 = k+1, . . . , i2+t.
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For 0 ≤ k ≤ m, define the polynomials

gk,i1,i2,i3(x, y, z) =
xi1yi2zi3

ykzk
f(x, y, z)k(Me)m−k with xi1yi2zi3 ∈Mk

∖
Mk+1.

These polynomials reduce to the following sets
k =0, . . . ,m,
i1=0, . . . ,m− k,
i2=k, . . . ,m− i1,
i3=k,

or


k =0, . . . ,m,
i1=0, . . . ,m− k,
i2=k,
i3=k + 1, . . . , i2 + t.

(4)

Consequently, the polynomials gk,i1,i2,i3(x, y, z) are in one of the following forms

Gk,i1,i2,i3(x, y, z) = xi1yi2−kf(x, y, z)k(Me)m−k,
for k = 0, . . .m, i1 = 0, . . .m− k, i2 = k, . . . ,m− i1, i3 = k,

Hk,i1,i2,i3(x, y, z) = xi1zi3−kf(x, y, z)k(Me)m−k,
for k = 0, . . .m, i1 = 0, . . . ,m− k, i2 = k, i3 = k + 1, . . . , i2 + t.

Define the lattice L spanned by the coefficients of the vectors Gk,i1,i2,i3(x, y, z)
and Hk,i1,i2,i3(x, y, z). For m = 2 and t = 1, the matrix of L is presented in
Table 1. The non-zero elements are marked with an ‘~’.
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Notice that the matrix is triangular so that the values marked with the
symbol ~ do not contribute in the calculation of the determinant. Indeed, the
determinant is in the form

det(L) = (Me)neXnXY nY ZnZ . (5)

Using the bounds (4), we get

ne =
m∑
k=0

m−k∑
i1=0

m−i1∑
i2=k

k∑
i3=k

(m− k) +
m∑
k=0

m−k∑
i1=0

k∑
i2=k

i2+t∑
i3=k+1

(m− k)

=
1
24
m(m+ 1)(m+ 2)(3m+ 8t+ 9).

Similarly, we have

nX =
m∑
k=0

i1∑
i1=0

m−i1∑
i2=k

k∑
i3=k

i1 +
m∑
k=0

m−k∑
i1=0

k∑
i2=k

i2+t∑
i3=k+1

i1

=
1
24
m(m+ 1)(m+ 2)(m+ 4t+ 3).

and

nY =
m∑
k=0

m−k∑
i1=0

m−i1∑
i2=k

k∑
i3=k

i2 +
m∑
k=0

m−k∑
i1=0

k∑
i2=k

i2+t∑
i3=k+1

i2

=
1
12
m(m+ 1)(m+ 2)(m+ 2t+ 3).

and finally

nZ =
m∑
k=0

m−k∑
i1=0

m−i1∑
i2=k

k∑
i3=k

i3 +
m∑
k=0

m−k∑
i1=0

k∑
i2=k

i2+t∑
i3=k+1

i3

=
1
24

(m+ 1)(m+ 2)(m2 + 3m+ 4tm+ 6t2 + 6t).

On the other hand, the dimension of L is

ω =
m∑
k=0

m−k∑
i1=0

m−i1∑
i2=k

k∑
i3=k

1 +
m∑
k=0

m−k∑
i1=0

k∑
i2=k

i2+t∑
i3=k+1

1

=
1
6

(m+ 1)(m+ 2)(m+ 3t+ 3).
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In the following, we set t = τm. For sufficiently large m, the exponents ne, nX ,
nY , nZ as well as the dimension ω reduce to

ne = 1
24 (8τ + 3)m4 + o(m4),

nX= 1
24 (4τ + 1)m4 + o(m4),

nY = 1
24 (4τ + 2τ + 1)m4 + o(m4),

nZ = 1
24 (6τ2 + 4τ + 1)m4 + o(m4),

ω = 1
24 (12τ + 4)m3 + o(m3).

(6)

Applying the LLL algorithm, we get a new basis {v1, . . . , vω}. Using Theorem 1,
such a bais is LLL-reduced and satisfies

‖v1‖ ≤ ‖v2‖ ≤ ‖v3‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

According to Theorem 2, we need ‖v3‖ ≤ (Me)m

√
ω

. This is satisfied if

2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 <

(Me)m√
ω

.

From this, we deduce

det(L) <
1(

2
ω(ω−1)
4(ω−2)

√
ω
)ω−2 (Me)m(ω−2) < (Me)mω.

Using (5), we get the inequality

(Me)neXnXY nY ZnZ < (Me)mω.

Using the values (6) as well as the values (3) and taking logarithms, neglecting
low order terms and after simplifying by m4, we get

2(α+ β)(3 + 8τ) + 2γ(1 + 4τ) + 2(α+ β + δ − 1)(2 + 4τ) + 1 + 4τ + 6τ2

< 2(4 + 12τ)(α+ β).

Transforming this inequality, we get

6τ2 + (8δ + 8γ − 4)τ + 2α+ 2β + 4δ + 2γ − 3 < 0.

The left hand side is minimized with the value τ0 = 1
3 (1− 2δ− 2γ). Plugging τ0

in the former inequality, we get

δ <
1
4

(
5− 4γ −

√
12α+ 12β − 12γ + 3

)
.

From the three vectors v1(xX, yY, zZ), v2(xX, yY, zZ), and v3(xX, yY, zZ), we
obtain three polynomials h1(x, y, z), h2(x, y, z), h3(x, y, z) with the common root
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(x0, y0, z0). Next, we use Assumption 1. Let g1(y, z) be the resultant polynomial
of h1(x, y, z) and h2(x, y, z) with respect of x. Similarly, let g2(y, z) be the resul-
tant polynomial of h1(x, y, z) and h3(x, y, z) with respect of x. Then, computing
the resultant of g1(y, z) and g2(y, z) with respect to y, we find a polynomial g(z)
with the root z0. Using z0 = p+q−1 and pq = N , the factorization of N follows.
This terminates the proof. ut

In Table 2, we present some values of δ and δ+β. Recall that M = Nβ , d1 < Nδ,
d0 < Nγ and d = Md+ d0 < 2Nδ+β . Notice that in all the presented cases, we
have δ + β > 0.292. This shows that Wiener’s attack [14] as well as Boneh and
Durfee’s method [4] will not give the factorization of the RSA modulus in these
situations.

α = logN (e) β = logN (M) γ = logN (d0) δ = logN (d1) β + δ

1 0.5 0.1 0.03 0.53

1 0.4 0.1 0.07 0.47

1 0.3 0.2 0.04 0.34

1 0.3 0.1 0.10 0.40

1 0.25 0.25 0.03 0.28

0.75 0.5 0.3 0.003 0.50

0.75 0.4 0.2 0.10 0.50

0.75 0.3 0.2 0.14 0.44

0.75 0.25 0.25 0.13 0.38

Table 2. Values of δ and β + δ in terms of α, β and γ.

To test the validity of Assumption 1, we performed several experiments with
various parameters α, β and γ. We implemented the new attack on an Intel Core
2 Duo running Maple 17. All the experiments gave the factorization of the RSA
modulus N .

Using the trivariate polynomial f(x, y, z) = ex−Ny+yz−1, we constructed
a set of polynomials with the same root (x0, y0, z0) and at most ω monomials.
Using this set of polynomials, we constructed a basis of a lattice L and applied the
LLL ALgorithm to find a set of trivariate polynomials hi(x, y, z) for 1 ≤ i ≤ ω.
The shortest three polynomials h1(x, y, z), h2(x, y, z), h3(x, y, z) are such that
they satisfy Theorem 1. Then, we forced them to verify Howgrave-Graham’s
Theorem 2, that is we set

‖h1(x, y, z)‖ ≤ ‖h2(x, y, z)‖ ≤ ‖h3(x, y, z)‖ ≤ 2
ω(ω−1)
4(ω−2) det(L)

1
ω−2 .

This implies that the small root (x0, y0, z0) of h1(x, y, z), h2(x, y, z) and h3(x, y, z)
hold over the integers. Then, we take the resultants with respect to x, and then
another resultant with respect to y, which gives an univariate polynomial leading
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to the solution z0 = p+ q− 1. Using the RSA modulus N = pq, it is easy to find
p and q and then factor N . We note that all the experiments were successful
and that Asssumption 1 was verified in all cases. We note also, that in the most
of the cases, the size of the private exponent d was such that d > N0.292 which
implies that the classical method of Boneh and Durfee will not give a solution
in this situation.

4 Conclusion

In this paper, we consider an RSA instance N = pq with a private exponent
d of the form d = Md1 + d0. Unlike the partial key exposure attacks where
M and d0 are known, we suppose that M is the only known parameter. We
show that when d1 and d0 are suitably small, then one can find the factorization
of N . The method is based on transforming the key equation ed − kφ(N) =
1 into the modular equation f(x, y, z) = ex − Ny + yz − 1 ≡ 0 (mod Me)
where (x0, y0, z0) = (d0, k, p + q − 1) is a small solution. Using Coppersmith’s
technique and the LLL algorithm, we can easily find z0 = p + q − 1, which
leads to the factorization of N . We note that the classical attacks on RSA gives
the factorization of N when d < N0.292 as it is the case with the attack of
Boneh and Durfee. Our method enables us to find the private exponent d even
when d > N0.292 depending on the possibility that d has the form d = Md1 +
d0 for a suitable known integer M and suitable unknown parameters d1 and
d0. The encryption and decryption in RSA require taking heavy exponential
multiplications modulus the large integerN and many ways have been considered
using special private exponent d. Once again, our results show that one should
be more careful when using RSA with special private exponents.
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