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Abstract. We provide new provable polynomial time solutions of a number of problems in
noncommutative-algebraic cryptography. In contrast to the linear centralizer method of [2],
the new method is very simple: In order to solve linear equations on matrices restricted to
matrix groups, solve them over the generated algebras. We name this approach the algebraic
span method.

The resulting algorithms are have substantially better performance than those of [2].
These algorithms constitute cryptanalyses of the motivating protocols that cannot be foiled
by changing the distributions used in the protocols, and are practical for most affordable
parameter settings.

1. Introduction

Since this is a preliminary, brief announcement, we refer the reader to our earlier paper [2]
for history and background. We abbreviate Key Exchange Protocol as KEP. We demonstrate
the method by applying it to the Commutator KEP. It is then straightforward to apply it
to all other KEPs that were cryptanalyzed in [2].

2. The Commutator KEP

We will use, throughout, the following basic notation.

Notation 1. For a noncommutative group G and group elements g, x ∈ G, gx = x−1gx, the
conjugate of g by x.

Useful identities involving this notation, that are easy to verify, include gxy = (gx)y, and
gc = g for every central element c ∈ G, that is, such that ch = hc for all h ∈ G.

The Commutator KEP [1] is described succinctly in Figure 1.1 In some detail:

(1) A noncommutative group G and elements a1, . . . , ak, b1, . . . , bk ∈ G are publicly
given.2

(2) Alice and Bob choose free group words in the variables x1, . . . , xk, v(x1, . . . , xk) and
w(x1, . . . , xk), respectively.3
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1In our diagrams, green letters indicate publicly known elements, and red ones indicate secret elements,
known only to the secret holders. Results of computations involving elements of both colors may be either
publicly known, or secret, depending on the context. The colors are not necessary to follow the diagrams.

2By adding elements, if needed, we assume that the number of ai’s is equal to the number of bi’s.
3A free group word in the variables x1, . . . , xk is a product of the form x ε1i1 x

ε2
i2
· · ·x εmim , with i1, . . . , im ∈

{1, . . . , k} and ε1, . . . , εm ∈ {1,−1}, and with no subproduct of the form xix
−1
i or x−1

i xi.
1
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(3) Alice substitutes a1, . . . , ak for x1, . . . , xk, to obtain a secret element a = v(a1, . . . , ak) ∈
G. Similarly, Bob computes b = w(b1, . . . , bk) ∈ G.

(4) Alice sends the conjugated elements b1
a, . . . , bk

a to Bob, and Bob sends a1
b, . . . , ak

b

to Alice.
(5) The shared key is the commutator a−1b−1ab.

As conjugation is a group isomorphism, we have that

v(a1
b, . . . , ak

b) = v(a1, . . . , ak)b = ab = b−1ab.

Thus, Alice can compute the shared key a−1b−1ab as a−1v(a1
b, . . . , ak

b), using her secret
a, v(x1, . . . , xk) and the public elements a1

b, . . . , ak
b. Similarly, Bob computes a−1b−1ab as

w(b1
a, . . . , bk

a)−1b.

Alice Public Bob

v(x1, . . . , xk) ∈ Fk a1, . . . , ak ∈ G w(x1, . . . , xk) ∈ Fk

a = v(a1, . . . , ak) b1, . . . , bk ∈ G b = w(b1, . . . , bk)

b1
a, . . . , bk

a

//

a1
b, . . . , ak

b

oo

a−1b−1ab = a−1v(a1
b, . . . , ak

b) a−1b−1ab = w(b1
a, . . . , bk

a)−1b

Figure 1. The Commutator KEP

In the passive adversary model, the security of the Commutator KEP is determined by
the difficulty of the following problem. As usual, for a group G and elements g1, . . . , gk ∈ G,
〈g1, . . . , gk〉 denotes the subgroup of G generated by g1, . . . , gk. Throughout, we assume that
the given groups are represented in an efficient way.

Problem 2 (Commutator KEP Problem). Let G be a group. Let a1, . . . , ak, b1, . . . , bk ∈ G.
Let a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉.
Given a1, . . . , ak, b1, . . . , bk, a

b
1, . . . , a

b
k, b

a
1, . . . , b

a
k, compute a−1b−1ab.

The braid group BN was proposed as a platform group for this KEP, but it was demon-
strated in [2] that we may assume that the platform group is a matrix group over a finite
field.

3. Algebraic spans

We solve the Commutator KEP Problem in matrix groups. Let F be a finite field. For
a set S ⊆ Mn(F), let Alg(S) be the algebra generated by S, that is, the smallest Algebra
A ⊆ Mn(F) that contains S as a subset. Every subalgebra of Mn(F) is also a vector space
over F. For a group G ≤ GLn(F), we have that Alg(G) = span(G).
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Proposition 3. Let G = 〈g1, . . . , gk〉 ≤ GLn(F). A basis for the vector space Alg(G) can be
computed in time O(kn6).

Proof. Initialize S = (e), the identity element of S. For each i from 1 to the length of S, do
the following:

(1) Let s be the ith element of S.
(2) For j = 1, . . . , k, if sgi /∈ spanS, then append sgi at the end of S . If no element was

appended to S in this step, terminate.

The resulting set S \ {e} is a basis for spanG. �

We believe that there are much faster algorithms for Proposition 3. One possible route
may be to move (using a variation of Meataxe, perhaps) to a direct sum of irreducible blocks,
and then take the standard basis for each block. This requires further study.

Lemma 4. Let x, x̃ ∈ GLn(F) and G = 〈g1, . . . , gk〉 ≤ GLn(F). If gi
x = gi

x̃ for all i =
1, . . . , k, then gx = gx̃ for all g ∈ Alg(G).

Proof. Conjugation is an automorphism of the matrix algebra. �

We are ready to present our solution of the Commutator KEP problem. There are two
options for our algorithm. The first one divides between offline and online phases, and the
second is all online.

Input: a1, . . . , ak, b1, . . . , bk, a
b
1, . . . , a

b
k, b

a
1, . . . , b

a
k ∈ G, where a ∈ 〈a1, . . . , ak〉, b ∈ 〈b1, . . . , bk〉

are unknown.

3.1. Offline–Online version.

(1) Offline: Generate bases for Alg(A) and Alg(B). Let d be the maximum of the sizes
of these bases.

(2) Online:
(a) Solve the following homogeneous system of linear equations in the unknown

matrix x ∈ Alg(A):

b1 · x = x · b1a
...

bk · x = x · bka,
a system of linear equations on the d coefficients determining x.

(b) Fix a basis for the solution space, and pick random solutions x until x is invert-
ible.

(c) Solve the following homogeneous system of linear equations in the unknown
matrix y ∈ Alg(B):

a1 · y = y · a1b
...

ak · y = y · akb,
a system of linear equations on the d coefficients determining y.

(d) Fix a basis for the solution space, and pick random solutions y until y is invert-
ible.

(e) Output: x−1y−1xy.

That the algorithm terminates follows from the Invertibility Lemma [2]. We show that
the output is correct.
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As y ∈ Alg(B), we have by Lemma 4 that yx = ya, and therefore

(y−1)x = (yx)−1 = (ya)−1 = (y−1)a.

It follows that

x−1y−1xy = (y−1)xy = (y−1)ay = a−1y−1ay = a−1ay.

As a ∈ Alg(A), we have by Lemma 4 that ay = ab, and thus

x−1y−1xy = a−1ab = a−1b−1ab.

3.2. Online only version.

(1) Generate a basis for Alg(A). Together with each element g of this basis, store also
gb.4 Let d = dim Alg(A).

(2) Solve the following homogeneous system of linear equations in the unknown matrix
x ∈ Alg(A):

b1 · x = x · b1a
...

bk · x = x · bka,
a system of linear equations on the d coefficients determining x.

(3) Fix a basis for the solution space, and pick random solutions x until x is invertible.
(4) Compute xb, using the representation of x as a linear combination of basis elements

whose b-conjugates are known.
(5) Output: x−1xb.

Correctness:

x−1xb = x−1b−1xb = (bx)−1b = (ba)−1b = a−1b−1ab.

The complexity of the step with linear equations is kdω, which is at most kn2ω.

The approach also applies to some other schemes, including the Centralizer KEP, the
Braid Diffie–Hellman KEP (and, more generally, the Double Coset KEP). It does not seem
to apply to the Triple Decomposition KEP. Descriptions of all mentioned KEPs are available
in [2].

4. Comments

The overall complexity of the first algorithm presented here, in field operations, is kn6

offline and kn2ω online. We have mentioned briefly why we expect that the offline complexity
can be improved so that it becomes at most kn2ω. The complexity of the linear centralizer
algorithm [2] for the same problem was kn2ω+2.

Consider the Commutator KEP in the braid group BN . To make it comparable to RSA,
for example, in terms of space and time complexities, the braid index N should not be
larger than 64. The reduction in [2] to matrix groups embeds the corresponding problem
into GLn(F) with n =

(
N
2

)
. The number of field operations thus becomes about k267,

which is feasible. The complexity of the field operations can be kept affordable by Chinese
remaindering (to see how, one has to consider the actual reduction, available in [2]). We
believe that a careful analysis would render this approach applicable.

Acknowledgements. We thank Craig Gentry for intriguing discussions.

4Note that this can be done, using solely Bob’s “public key”.
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