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Abstract. We describe a new method for obtaining polynomial time solutions of problems
in noncommutative algebraic cryptography. This method is easier to apply and more efficient
than the linear centralizer method. We use it to provide a cryptanalysis of the Triple
Decompostion key exchange protocol, the only classic group theory based key exchange
protocol that was not cryptanalyzed thus far.

1. Introduction

Since Diffie and Hellman’s 1976 key exchange protocol, few alternative proposals for key
exchange protocols withstood cryptanalysis, all based on commutative algebraic structures.
In 1999, Anshel, Anshel, and Goldfeld [1] introduced the Commutator key exchange protocol,
a general method for constructing key exchange protocols based on noncommutative algebraic
structures. Concurrently, Ko, Lee, Cheon, Han, Kang and Park [8] introduced the Braid
Diffie–Hellman key exchange protocol, another general method achieving the same goal.
The security of these protocols is based on variations of the conjugacy problem in groups.
Both papers [1, 8] proposed to use Artin’s braid group BN , a finitely presented, infinite
noncommutative group parameterized by a natural number N , as the platform group.

The introduction of the Commutator key exchange protocol and the Braid Diffie–Hellman
key exchange protocol was followed by a number of heuristic attacks (see references in [23]).
These attacks were foiled by changing the distributions on the group [4, 22]. In the break-
through papers [3, 23], polynomial time algorithms were found for the precise computational
problems on which these, and a number of related key exchange protocols, are based. These
algorithms constitute cryptanalyses of these key exchange protocols that do not depend on
the distributions used to generate their keys. In a series of works ([14, 15, 16, 17], see also
[13] and references therein), Roman’kov developed a provable polynomial time cryptanaly-
sis method that applies to key exchange protocols with certain commuting substructures.
He applied this method successfuly to a large number of group-theory based key exchange
protocols.

The Triple Decomposition key exchange protocol was introduced by Kurt in 2006 [9, 10].
Its security is based on a problem very different from those of the above-mentioned key
exchange protocols. The Triple Decomposition key exchange protocol is well known and
appears in the first textbooks in the field [11, 12]. It is mentioned in [23] as a distinguished
key exchange protocol that remains challenging.

We present a general approach for provable polynomial time solutions of computational
problems in groups with efficient, faithful representation as matrix groups. This approach
improves upon those of [3, 23], in simplicity of application and efficiency. This approach
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covers all problems that were solved by earlier provable polynomial time methods. More-
over, with a novel view at the public information provided by the Triple Decomposition key
exchange protocol, it provides the first cryptanalysis of this key exchange protocol.

History. The preliminary note [24] is incorporated into the present paper (Sections 1–3).
Section 4 is joint work of all three authors. Comprehensive accounts of the field of group
theory based cryptography are provided in the textbooks [12, 6].

Acknowledgements. We thank Avraham (Rami) Eizenbud and Craig Gentry for intrigu-
ing discussions. A part of this work was carried out while the third named author was in
a Sabbatical leave at the Weizmann Institute of Science. This author thanks his hosts for
their kind hospitality.

2. Algebraic span cryptanalysis in a nutshell

Let F be a finite field. For a set S ⊆ Mn(F), let Alg(S) be the algebra generated by S, that
is, the smallest Algebra A ⊆ Mn(F) that contains S as a subset. Every subalgebra of Mn(F)
is also a vector space over F. For a group G ≤ GLn(F), we have that Alg(G) = span(G),
the vector space spanned by G. For simplicity we assume, throughout, that the dimension
of the vector space Alg(G) is at least a positive constant times n. Notice that even for cyclic
groups G, this is typically the case.

Throughout, let ω be the linear algebra constant, the minimal real number such that the
complexity of n× n matrix multiplication is O(nω) field operations.

Proposition 1. Let G = 〈g1, . . . , gk〉 ≤ GLn(F) be a group. A basis for the vector space
Alg(G) can be computed in time O(kd2n2), measured by number of field operations, where
d ≤ n2 is the dimension of this vector space.

Proof. Initialize a sequence s = (I), the identity matrix, and i := 1. Repeat the following as
long as there is an element in position i of the sequence s:

(1) For j = 1, . . . , k, if sigj /∈ spanS, append sigj at the end of s.
(2) i := i + 1.

The resulting sequence S is a basis for spanG. Let d be the dimension of Alg(G). For each
i and each j, the complexity of computing the products sigj is nω field operations. Assume
that the matrices are stored in S in a vector form, and the matrix S is kept in Echelon
normal form throughout the process. Since there are at most d vectors in S, each of length
n2, the complexity of checking whether a vector is in spanS is at most O(dn2). Thus, the
overall complexity is O(kd(nω + dn2)) field operations. Since we assume that d is at least a
constant multiple of n, the second term dominates the first one. �

Proposition 1 holds, more generally, for semigroups of matrices; but this will not be
used here. There are advanced methods, via representation theory, to slightly reduce the
complexity of this computation [7].

Algebraic span cryptanalysis is applied as follows. Let G1, . . . , Gk ≤ GLn(F) be given,
and g1 ∈ G1, . . . , gk ∈ Gk be unknown elements. Assume that we have a system of linear
equations (or constraints) on the entries of these unknown matrices, and we wish to find
f(g1, . . . , gk) for some prescribed function f . Instead of solving the given linear equations
subject to the restrictions g1 ∈ G1, . . . , gk ∈ Gk (which may be computationally hard), we
solve the linear equations subject to the linear constraints g1 ∈ Alg(G1), . . . , gk ∈ Alg(Gk).
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We then try to prove (or at least verify by experiments) that, for each solution g̃1, . . . , g̃k,
we have that f(g̃1, . . . , g̃k) = f(g1, . . . , gk).

This method applies in all cases of noncommutative algebraic cryptography where polynomial-
time algorithms are known [8, 23, 14, 15, 16, 17, 13], and in a case that was not cryptanalyzed
thus far. We provide some details later.

The equations do not have to be given as linear. For example, an equation g1ag2 = b
with a and b known can be transformed to the equation ag2 = g−1

1 b, which is linear in the
entries of g−1

1 and g2. Also, if (as in the latter example) some elements in our solution have
to be invertible, we may pick random solutions until they are. Since there is an invertible
solution, namely, (g1, . . . , gk), we have by the Invertibility Lemma [23, Lemma 9] that random
solutions will be invertible with probability bounded away from zero, provided that the field
is not too small.

The next section provides concrete applications of this approach to several problems in
the field of noncommutative algebraic cryptography. Enough examples are provided so that
the reader can apply this method to additional problems in the field, including essentially
all known key exchange protocols based on groups with efficient representations as matrix
groups. The final section addresses a hitherto unsolved problem. In these examples, the
proposed platform group is the braid group BN . However, the problems can be transformed
into a matrix group G ≤ GLn(F), where F is a finite field of cardinality that is much
to our choice [8, 23]. The reduction uses the the Lawrence–Krammer representation, and
thus the matrices are of rank n = ( N

2 ). In this reduction, the cardinality of F is, roughly,

2M3N2
, for some length parameter M . We may assume that M ≈ N . Then the cost of field

multiplication is about N5, ignoring a logarithmic factor. Tighter scrutiny of this reduction
is likely to lead to substantially smaller field sizes; the extra factor of N5 should not be
considered definite.

3. Sample applications

3.1. The Commutator key exchange protocol. For a noncommutative group G and
group elements g, x ∈ G, we use the notation gx = x−1gx. Useful identities involving this
notation include gxy = (gx)y, and gc = g for every element c ∈ G that commutes with g,
such that cg = gc.

The Commutator key exchange protocol [1] is described succinctly in Figure 1.1 In some
detail:

(1) A noncommutative group G and elements a1, . . . , ak, b1, . . . , bk ∈ G are publicly
given.2

(2) Alice and Bob choose free-group words in the variables x1, . . . , xk, v(x1, . . . , xk) and
w(x1, . . . , xk), respectively.3

(3) Alice substitutes a1, . . . , ak for x1, . . . , xk, to obtain a secret element a = v(a1, . . . , ak) ∈
G. Similarly, Bob computes b = w(b1, . . . , bk) ∈ G.

1In our diagrams, green letters indicate publicly known elements, and red ones indicate secret elements,
known only to their holders. Results of computations involving elements of both colors may be either publicly
known, or secret, depending on the context.

2By adding elements, if needed, we assume that the number of elements ai is equal to the number of
elements bi.

3A free group word in the variables x1, . . . , xk is a product of the form x ε1i1 x
ε2
i2
· · ·x εmim , with i1, . . . , im ∈

{1, . . . , k} and ε1, . . . , εm ∈ {1,−1}, and with no subproduct of the form xix
−1
i or x−1

i xi.
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(4) Alice sends the conjugated elements b1
a, . . . , bk

a to Bob, and Bob sends a1
b, . . . , ak

b

to Alice.
(5) The shared key is the commutator a−1b−1ab.

As conjugation is a group isomorphism, we have that

v(a1
b, . . . , ak

b) = v(a1, . . . , ak)b = ab = b−1ab.

Thus, Alice can compute the shared key a−1b−1ab as a−1v(a1
b, . . . , ak

b), using her secret
a, v(x1, . . . , xk) and the public elements a1

b, . . . , ak
b. Similarly, Bob computes a−1b−1ab as

w(b1
a, . . . , bk

a)−1b.

Alice Public Bob

v(x1, . . . , xk) ∈ Fk a1, . . . , ak ∈ G w(x1, . . . , xk) ∈ Fk

a = v(a1, . . . , ak) b1, . . . , bk ∈ G b = w(b1, . . . , bk)

b1
a, . . . , bk

a

//

a1
b, . . . , ak

b

oo

a−1b−1ab = a−1v(a1
b, . . . , ak

b) a−1b−1ab = w(b1
a, . . . , bk

a)−1b

Figure 1. The Commutator key exchange protocol

The security of the Commutator key exchange protocol is determined by the difficulty of
the following problem. As usual, for a group G and elements g1, . . . , gk ∈ G, 〈g1, . . . , gk〉
denotes the subgroup of G generated by g1, . . . , gk.

Problem 2. Let G be a group. Let a1, . . . , ak, b1, . . . , bk ∈ G. Let a ∈ 〈a1, . . . , ak〉, b ∈
〈b1, . . . , bk〉.
Given a1, . . . , ak, b1, . . . , bk, a

b
1, . . . , a

b
k, b

a
1, . . . , b

a
k, compute a−1b−1ab.

We solve the Problem 2 in matrix groups.

Lemma 3. Let x, x̃ ∈ GLn(F) and G = 〈g1, . . . , gk〉 ≤ GLn(F). If gi
x = gi

x̃ for all i =
1, . . . , k, then gx = gx̃ for all g ∈ Alg(G).

Proof. Conjugation is an automorphism of the matrix algebra. �

We apply the algebraic span method to the Commutator key exchange protocol problem:

(1) Compute bases for the vector spaces Alg(A) and Alg(B). Let d be the maximum of
the sizes of these bases.
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(2) Solve the following homogeneous system of linear equations in the unknown matrix
x ∈ Alg(A):

b1 · x = x · b1a
...

bk · x = x · bka,

a system of linear equations on the d coefficients determining x.
(3) Fix a basis for the solution space, and pick random solutions ã until ã is invertible.
(4) Solve the following homogeneous system of linear equations in the unknown matrix

y ∈ Alg(B):

a1 · y = y · a1b
...

ak · y = y · akb,

a system of linear equations on the d coefficients determining y.
(5) Fix a basis for the solution space, and pick random solutions b̃ until b̃ is invertible.

(6) Output: ã−1b̃−1ãb̃.

That Step (3) terminates quickly follows from the Invertibility Lemma [23]. We show that

the output is correct. As b̃ ∈ Alg(B), we have by Lemma 3 that b̃ã = b̃a, and therefore

(b̃−1)ã = (b̃ã)−1 = (b̃a)−1 = (b̃−1)a.

It follows that

ã−1b̃−1ãb̃ = (b̃−1)ãb̃ = (b̃−1)ab̃ = a−1b̃−1ab̃ = a−1ab̃.

As a ∈ Alg(A), we have by Lemma 3 that ab̃ = ab, and thus

ã−1b̃−1ãb̃ = a−1ab = a−1b−1ab.

The step with linear equations computes the nullspace of a kn2 × d matrix. Thus, its
complexity is O(kn

2

d
dω) = O(kn2dω−1), which is dominated by the complexity O(kd2n2) of

computing the algebraic spans.

3.2. The Centralizer key exchange protocol. For a group G and an element g ∈ G, the
centralizer of g in G is the set

CG(g) := {h ∈ G : gh = hg}.

The Centralizer key exchange protocol, introduced by Shpilrain and Ushakov in 2006 [20],
is described in Figure 2. In this protocol, a1 commutes with b1 and a2 commutes with b2.
Consequently, the keys computed by Alice and Bob are identical, and equal to a1b1ga2b2.

The security of the Centralizer key exchange protocol is determined by the difficulty of
the following problem.

Problem 4. Let G ≤ GLn(F). Assume that g, a1, b2 ∈ G, g1, . . . , gk ∈ CG(a1), h1, . . . , hk ∈
CG(b2), a2 ∈ 〈h1, . . . , hk〉, and b1 ∈ 〈g1, . . . , gk〉.
Given g, g1, . . . , gk, h1, . . . , hk, a1ga2, b1gb2, compute a1b1ga2b2.
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Alice Public Bob

a1 ∈ G g ∈ G b2 ∈ G

g1, . . . , gk ∈ CG(a1) //

h1, . . . , hk ∈ CG(b2)oo

a2 ∈ 〈h1, . . . , hk〉 b1 ∈ 〈g1, . . . , gk〉
a1ga2 //

b1gb2oo

K = a1 · b1gb2 · a2 K = b1 · a1ga2 · b2

Figure 2. The Centralizer key exchange protocol

The algebraic span method applies to this problem: We note that a−1
1 (a1ga2) = ga2. Find

a solution to the system

x(a1ga2) = gy

xg1 = g1x
...

xgk = gkx

with x invertible and y ∈ Alg({h1, . . . , hk}). In practice, we may start with y which has d
variables, and this determines x and then we solve for x.

Let (ã1, ã2) = (x−1, y). Then ã1gã2 = x−1gy = a1ga2. As ã1 = x−1 commutes with
g1, . . . , gk, it commutes with b1. As b2 commutes with h1, . . . , hk and ã2 ∈ Alg({h1, . . . , hk}),
we have that b2ã2 = ã2b2. Thus,

ã1b1gb2ã2 = b1ã1gã2b2 = b1a1ga2b2.

Here, too, the complexity is O(kd2n2).

3.3. The Braid Diffie–Hellman key exchange protocol and the Double Coset key
exchange protocol. The Braid Diffie–Hellman key exchange protocol, introduced by Ko,
Lee, Cheon, Han, Kang and Park [8], is illustrated in Figure 3. For subsets A,B of a group
G, [A,B] = 1 means that a and b commute, that is, ab = ba for all a ∈ A and b ∈ B. Since,
in the Braid Diffie–Hellman key exchange protocol, the subgroups A and B of G commute
element-wise, the keys computed by Alice and Bob are identical.

The security of the Braid Diffie–Hellman key exchange protocol for a platform group G
(Figure 3) is captured by the following problem.

Problem 5. Let A and B be subgroups of GLn(F) with [A,B] = 1 and g ∈ GLn(F) be given.
Given a pair (ga, gb) where a ∈ A and b ∈ B, find gab.
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Alice Public Bob

a ∈ A A,B ≤ G, g ∈ G, [A,B] = 1 b ∈ B

ga
//

gb
oo

K = (gb)a = gba K = (ga)b = gab

Figure 3. The Braid Diffie–Hellman key exchange protocol

To apply the algebraic span method to this problem, solve the equation gx = ga subject
to x ∈ Alg(A), finding an invertible solution ã. Then

(gb)ã = gbã = gãb = (gã)b = (ga)b = gab.

Again, the complexity of the solution is dominated by the computation of Alg(A).
A generalization of the Braid Diffie–Hellman key exchange protocol was proposed by Cha,

Ko, Lee, Han and Cheon [2]. A variation of this protocol was proposed in 2005, by Shpilrain
and Ushakov [19]. These protocols are both special cases of the Double Coset key exchange
protocol, illustrated in Figure 4.

Alice Public Bob

a1 ∈ A1, a2 ∈ A2 A1, A2, B1, B2 ≤ G, g ∈ G, [Ai, Bi] = 1 b1 ∈ B1, b2 ∈ B2

a1ga2 //

b1gb2oo

K = a1 · b1gb2 · a2 K = b1 · a1ga2 · b2

Figure 4. The Double Coset key exchange protocol

One may state the underlying problem as before. Here is how to solve it: Solve the
equation x1(a1ga2) = gx2 subject to x1 ∈ Alg(A1) and x2 ∈ Alg(A2), with x1 invertible. Let
(ã1, a2) = (x−1

1 , x2). Then

ã1(b1gb2)ã2 = b1ã1gã2b2 = b1a1ga2b2.

3.4. Stickel’s key exchange protocol. We conclude with an example where the com-
plexity of the cryptanalysis is surprisingly small. The key exchange protocol described in
Figure 5 was introuduced by Stickel in 2005 [21].
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Alice Public Bob

k, l ∈ {1, . . . , N} A,B ∈ Mn(F) m,n ∈ {1, . . . , N}

AkBl
//

AmBn
oo

K = Ak · AmBn ·Bl K = Am · AkBl ·Bn

Figure 5. Stickel’s key exchange protocol

A successful heuristic cryptanalysis of complexity roughly n2ω was presented by Shpil-
rain [18]. Shpilrain’s cryptanalysis turned out provable [23]. The algebraic span method
provides a simple alternative, of smaller complexity.

The dimension of the algberas spanned by the matrices A and B is, by the Cayley–Hamilton
Theorem, at most n. Find a matrix Ã ∈ Alg({A}) and an invertible matrix D ∈ Alg({B})
such by solving the linear equation Ã = AkBlD. Since the dimension is O(n), the complexity
is O(n4). Let B̃ = D−1. A cyclic algebra is commutative. Moreover, the matrix B̃ is a finite
power of D, and is thus in Alg({B}). Thus,

Ã · AmBn · B̃ = AmÃB̃Bn = AmAkBlBn = K.

4. Cryptanalysis of the Triple Decomposition key exchange protocol

Kurt’s Triple Decomposition key exchange protocol ([10], [12, 4.2.5]) is described in Figure
6. In this figure, uppercase letters denote subgroups. An edge between two subgroups means
that these subgroups commute elementwise. This ensures that the keys computed by Alice
and Bob are both equal to ab1a1b2a2b.

Let c := x−1
1 a1x2. By moving the matrix x1 or x2 to the other side of the equation,

the public information x−1
1 a1x2 provides a quadratic equation, and similarly for the public

information y−1
1 b2y2. Solving quadratic equations may be very difficult. This prevented the

application of earlier methods to this key exchange protocol. The natural approach would
be to ignore this part of the pubic information, and solve the linear equations provided by
the other public items. This works for generic matrix groups, but fails, according to our
experiments, for the actual groups proposed in [10]. We provide here a way that takes the
triple products into account, in a linear way, which still provably obtains the correct key. In
the framework of algebraic spans, this solution is natural.

The following sets can be computed from the public information:

Alg(B1)y1 = Alg(B1) · b1y1
Alg(B2 ∪ Y2)y1 = Alg(B2 ∪ Y2) · y−1

2 b−1
2 y1 = Alg(B2 ∪ Y2) · (y−1

1 b2y2)
−1

Alg(A2)x2 = Alg(A2) · a−1
2 x2

Alg(A1 ∪X1)x2 = Alg(A1 ∪X1) · x−1
1 a1x2
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Alice Public Bob

a, a1, a2, x1, x2

A A1 A2 X1 X2

| | | |
Y1 Y2 B1 B2 B

≤ G y1, y2, b1, b2, b

ax1, x
−1
1 a1x2, x

−1
2 a2 //

b1y1, y
−1
1 b2y2, y

−1
2 b

oo

K = ab1y1a1y
−1
1 b2y2a2y

−1
2 b K = ax1b1x

−1
1 a1x2b2x

−1
2 a2b

Figure 6. The Triple Decomposition key exchange protocol

The invertible matrices y1 and x2 are, respectively, in the following intersections of subspaces
of Mn(F):

span(Y1) ∩ Alg(B1)y1 ∩ Alg(B2 ∪ Y2)y1;

span(X2) ∩ Alg(A2)x2 ∩ Alg(A1 ∪X1)x2.

By the Invertibility Lemma [23, Lemma 9], we can pick invertible elements ỹ1 and x̃2 in
these intersections, respectively. Then:

(1) Since the elements y1 and ỹ1 are in Alg(Y1), they commute with the elements of A1.
(2) Since ỹ1 ∈ Alg(B1)y1, we have that ỹ1y

−1
1 ∈ Alg(B1), and thus the element ỹ1y

−1
1

commutes with the elements of X1. By (1), it also commutes with the elements of
A1.

(3) Since ỹ1 ∈ Alg(B2 ∪ Y2)y1, we have that ỹ1y
−1
1 ∈ Alg(B2 ∪ Y2).

Similarly, we have that:

(1) The elements x2 and x̃2 commute with the elements of B2.
(2) The element x̃2x

−1
2 commutes with the elements of Y2 ∪B2.

(3) x̃2x
−1
2 ∈ Alg(A1 ∪X1).

It suffices to use one of the items numbered (3). We will use here the former.
Using the public information, compute

K̃ := ax1 · b1y1 · ỹ−1
1 · x−1

1 a1x2 · x̃−1
2 · ỹ1 · y−1

1 b2y2 · x̃2 · x−1
2 a2 · y−1

2 b.

We claim that K̃ = K = ab1a1b2a2b, the key that Alice and Bob established.
Since X1 commutes with B1 elementwise and ỹ1y

−1
1 ∈ Alg(B1), we have that

x1 · b1 · y1ỹ−1
1 · x−1

1 = b1y1ỹ
−1
1 .

Since x̃2x
−1
2 commutes with the elements of Y2 ∪B2 and ỹ1y

−1
1 ∈ Alg(B2 ∪ Y2), we have that

x2x̃
−1
2 · ỹ1y−1

1 · b2 · y2 · x̃2x
−1
2 = ỹ1y

−1
1 b2y2.

Thus,

K̃ = ab1y1ỹ
−1
1 a1ỹ1y

−1
1 b2y2a2y

−1
2 b.
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Since Y2 commutes with A2 elementwise, we have that

y2a2y
−1
2 = a2.

Since ỹ1y
−1
1 commutes with the elements of A1, we have that

y1ỹ
−1
1 · a1 · ỹ1y−1

1 = a1.

It follows that
K̃ = ab1a1b2a2b,

as required.
The complexity of this cryptanalysis is dominated by the calculation of the algebraic spans,

which is O(kd2n2), where k the maximum number of generators of the given subgroups, and
d is the maximum dimension of the Algebra generated by them. In particular, it is not
greater than O(kn6).
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[6] M. González–Vasco, R. Steinwandt, Group Theoretic Cryptography, Cryptography and Network

Security Series, Chapman and Hall/CRC Press, 2015.
[7] D. Holt, answer to MathOverflow question http://mathoverflow.net/questions/154761

[8] K. Ko, S. Lee, J. Cheon, J. Han, J. Kang, C. Park, New public-key cryptosystem using braid groups,
CRYPTO 2000, Lecture Notes in Computer Science 1880 (2000), 166–183.

[9] Y. Kurt, A new key exchange primitive based on the triple decomposition problem, IACR eprint 2006/378.
[10] Y. Kurt Peker, A new key agreement scheme based on the triple decomposition problem, International

Journal of Network Security 16 (2014), 340–350.
[11] A. Myasnikov, V. Shpilrain, A. Ushakov, Group-based cryptography, Birkhäuser, 2008.
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