
A New Algorithm for Solving the Approximate Common
Divisor Problem and Cryptanalysis of the FHE based on GACD

Jintai Ding1,3 and Chengdong Tao2

1 Chongqing University and University of Cincinnati
2 South China University of Technology

3 Corresponding Author
jintai.ding@gmail.com, chengdongtao2010@gmail.com

Abstract. In this paper, we propose a new algorithm for solving the approximate common divisors
problems, which is based on LLL reduction algorithm of certain special lattice and linear equation
solving algorithm over integers. Through both theoretical argument and experimental data, we
show that our new algorithm is a polynomial time algorithm under reasonable assumptions on the
parameters. We use our algorithm to solve concrete problems that no other algorithm could solve
before. Further more, we show that our algorithm can break the fully homomorphic encryption
schemes, which are based on the approximate common divisors problem, in polynomial time in
terms of the system parameter λ.

Key words. Approximate common divisors problems; Fully homomorphic encryption; Lattice

1 Introduction

Approximate common divisors problems including partial approximate common divisors(PACD) problem
and general approximate common divisors(GACD) problem were first introduced by Howgrave-Graham
in [12]. In this paper, we only consider the GACD problem, since PACD problem is a special case of
GACD problem. Therefore, our algorithm can be used to solve PACD problem without any change.
General approximate common divisors(GACD) problem is defined as follows:

For a set of parameters γ ,η, and ρ, given polynomial (in γ η, and ρ) many different integers in
the form: xi = pqi + ri(i = 1, . . . , n), the problem is to recover p, where p and qi, (i = 1, . . . , n) are very
large integers, xi are of bit length γ and p is of bit length η, and ri(i = 1, . . . , n) are small integers with
the bit length no more than ρ. Here ri are called the error terms

Since in applications ρ is much smaller than η, in this paper, we will consider mainly the case, where
ρ < η/2. Therefore, we assume ρ < η/2 if it is not otherwise specified.

The hardness of solving this problem for small p (relative to the size of xi) and small error terms
(relative to the size of p) was recently proposed as the foundation for a fully homomorphic cryptosystem.
At EUROCRYPT’10, Van Dijk et al. proposed a fully homomorphic encryption (FHE) scheme based on
the hardness of GACD problem [16]. At CRYPTO’11, Coron et al. presented a more efficient variant of
the FHE scheme in [6] which was based on PACD problem.

A simple approach for solving GACD problem is exhaustive search on the error terms. If ri are
sufficiently small, namely if |ri| < B, where B is a fixed small integer, then we can find p by exhaustive
search, i.e., one can trying every r1 and r2 and check whether gcd(x1 − r1, x2 − r2) is sufficiently large
and eventually recover p. The state of the art algorithm for computing GCD’s is the Stehlè-Zimmermann
algorithm with time complexity O(γ) for integers of γ bits[17]. Therefore, the time complexity of solving
GACD problem by exhaustive search on the error terms is O(22ργ).

In EUROCRYPT’12, Chen and Nguyen gave an algorithm which provides an exponential speedup
over exhaustive search to solve approximate common divisors problem [4], which is essentially based a
clever exhaustive search on the error terms through certain polynomials. However, their approach requires
large memory. For their algorithm, they only need 2 elements in the set of xi and the complexity is given
as O(2

3
2ργ). This means, if γ is around 220 and any ρ bigger than 40, their algorithm would be considered

infeasible.
In [12], Howgrave-Graham also gives a lattice approach to solve two elements GACD problem. This

approach is related to Coppersmith’s algorithm for finding small solutions to univariate and bivariate
modular equations. When ρ

γ is smaller than (ηγ)2, this approach recovers p. However, when ρ, η, γ do not

satisfy the constraint, the approach does not degrade gracefully. Furthermore, in [5], Cohn and Heninger
analyze the multivariate generalization of Howgrave-Graham’s algorithm for the GACD problem by using
many xi. In this algorithm, the GACD problem used in cryptography is reduced to running the LLL
algorithm on a lattice basis of high dimension and large entries to directly find all the error terms ri.
However, in [4], they show that the Cohn-Heninger attack on the FHE challenges in [6] is actually slower
than exhaustive search on the challenges, and therefore much slower than the attack in [4].

1.1 The contribution of this paper

In this paper, we propose a polynomial time algorithm for solving the GACD problem in terms of γ, η, , ρ
under the assumption that ρ < η/2.

The main ideal of our method for solving GACD problem is to reduce the problem first to a special
lattice reduction problem, but unlike the case of [5], we will not be able to find ri directly, but rather
the results of the reduction allow us to find many linear equations satisfies by ri. Then we recover those
ri through solving those integer equations with the help of the bound of ri and LLL algorithm. Then we
can recover p via Euclidean algorithm.

The algorithm can be summarized as follows:

1. We first randomly select an positive integer N ∈ (2γ−1, 2γ), and an appropriate small positive number
t .

2. We construct a lattice L1 spanned by rows of the following matrix:
1 x1

1 x2
. . .

...
1 xt
−N

 .

Let v ∈ L1 ,then v has the form v = (u1, . . . , ut,
t∑
i=1

ui · xi −Nut+1), where u1, . . . , ut+1 are integers.

Thus the length of vector v in Euclid norm is

‖v‖ =

√√√√ t∑
i=1

u2i + (

t∑
i=1

uixi − ut+1N)2.

3. We apply LLL lattice reduction algorithm with δ = 3
4 to find a short vector and it turns out (if t is

big enough) that this short vector gives solution to the equation:

t∑
i=1

ui · ri =

t∑
i=1

ui · xi, (1)

which implies that N | p
t∑
i=1

ui · qi; and the short vector also satisfies the condition:

N

2
>

∣∣∣∣∣
t∑
i=1

ui · ri

∣∣∣∣∣ . (2)

The key point here is that we need to make sure that we choose t to be large enough such that the
relations (2) and (1) are true. By now, we still do not know how to chose the best t, but through
experiments, we can show that t is bounded by linear function of γ, η, ρ.
To us, even more amazing thing is that we still do not know why the LLL algorithm should gives us
solution satisfying those nice properties, though we have intuitive explanation why this happens, which
will be presented in the next section.

4. The LLL reduction in general gives us t − z such vectors, where z is a small positive integer (≤ 2),
each vector gives us a linear equation satisfied by r1, . . . , rt. We find the integer solutions of this
equations by solving the derived linear system in integers. The integer solutions can be expressed as
follow:

d = d0 + t1d1 + ...+ tzdz,

where d0 is a special solution of the linear system, t1, ..., tz are integers, d1, ...,dz is a basis of integer
solution space of the corresponding homogeneous linear equations.

5. We construct a lattice spanned by the row vectors d0,d1, ...,dz. Obviously, (r1, . . . , rt) is a short
vector of the lattice. Thus we can find r1, . . . , rt by LLL algorithm.

6. Finally, we recover the common divisor p by Euclidean algorithm, that is p = gcd(x1 − r1, x2 − r2).

With assumptions supported by experimental data, we can show that our method is polynomial time
in terms of γ, η, ρ, since the main time consumption step is the LLL lattice reduction algorithm with
δ = 3

4 .
We show that we can break the fully homomorphic encryption (FHE) scheme which were proposed

in [16][6] in polynomial time, where τ = n, is associate to the bit length of xi and ri.
When n in is very small, i.e., n = 2, our algorithm is invalid.
In this paper, we will first present the algorithm in details and its complexity analysis with support

from experimental data. Then we will show how this algorithm can be used to attack the FHE based on
GACD in polynomial time.

2 The new algorithm for GACD

We will first present some background facts we need.

2.1 Background on Lattice

We present some facts on lattice which would be used in next subsection. More details can be found in
[14] and [15].

Let Rm be the m-dimensional Euclidean space. Let Z be the set of integer.
Definition 1 [14]. A lattice in Rm is the set

L(b1, ...,bn) = {
n∑
i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent row vectors b1, ...,bn in Rm (m ≥ n). Equivalently,
if we define B as the m× n matrix whose rows are b1, ...,bn , then the lattice generated by B is

L(B) = {xB : x ∈ Zn}.

The integers n and m are called the rank and dimension of the lattice, respectively. The sequence of
vectors b1, ...,bn is called a lattice basis.

Definition 2 [14]. For any lattice basis B we define the half parallelepiped

P(B) = {xB|x ∈ Rn : ∀i, 0 ≤ xi < 1}.

Definition 3 [14]. The determinant of a lattice L, denoted det(L), is the n-dimension volume of
the fundamental parallelepiped P(B) spanned by the basic vectors. In symbols, this can be written as
det(L) =

√
|det(BBT)|. In the special case that B is a square matrix, and we have det(L) = |det(B)|.

Definition 4 [15]. Let L be a lattice of rank n. we define the ith successive minimum as

λi = inf{r|dim(span(L ∩Bm(0, r))) ≥ i}, (i = 1, ..., n),

where Bm(0, r) = {x ∈ Rm : ‖x‖ ≤ r} is the closed ball of radius r around 0.

The volume of Bm(0, r) is vol(Bm(0, r)) = rm πm/2

Γ (m/2+1) , where

Γ (x) =

∞∫
0

yx−1e−ydy

is a Gamma function. Let Bm(0, r) denote the closure of Bm(0, r).
Theorem 1[15]. Let L be a full rank lattice with rank n, then

lim
r→∞

rnvol(Bn(0, 1))∣∣∣Bn(0, r)
⋂
L
∣∣∣ = det(L),

where
∣∣∣Bn(0, r)

⋂
L
∣∣∣ is the number of lattice vectors contained in Bn(0, r). Rewrite this limit shows that,

heuristically:
rnvol(Bn(0, 1))

det(L)
≈
∣∣∣Bn(0, r)

⋂
L
∣∣∣ .

Theorem 2 [15]. Let L be a lattice of rank n with successive minimal vectors λ1(L), . . . , λn(L). Let
a1, ...,an be an LLL-reduced basis with factor δ = 3

4 of a lattice L in Rm. Then

1. ‖a1‖ ≤ 2
n−1
4 det(L)

1
n .

2. ‖ai‖ ≤ 2
n−1
2 λi(L), i = 1, ..., n.

3.
n∏
i=1

‖ai‖ ≤ 2
n(n−1)

4 det(L).

Theorem 3 [15]. The LLL basis reduction algorithm with factor δ = 3
4 computes an LLL-reduced

basis in polynomial time in the maximal bit-length of the coefficients of the input basis, the lattice rank n,
and the space dimension m. Specifically, if b1, ...,bn is an input lattice basis, C = max{‖b1‖, ..., ‖bn‖},
then LLL runs in O

(
n5m(log 4

3
C)3

)
bit operations, under school-multiplication.

2.2 The GACD algorithm

In this section, we describe our algorithm for the GACD problem. We consider the first t integers
x1, . . . , xt. We start from the first observation that is needed for explaining our algorithm.

Lemma 1. For any xi = pqi + ri and any positive integer N > 2ρ+1, (xi mod N) = ri if and only
if N |pqi.

Proof. It is evident.

Lemma 2. Let xi = pqi+ ri(i = 1, . . . , t). Let ui(i = 1, . . . , t) be t integers and N be positive integer

satisfy N > 2

∣∣∣∣ t∑
i=1

ui · ri
∣∣∣∣ . Then

t∑
i=1

ui · ri = (
t∑
i=1

uixi mod N)

if and only if N | p
t∑
i=1

ui · qi.

Proof. SinceN > 2

∣∣∣∣ t∑
i=1

ui · ri
∣∣∣∣, on the one hand, ifN | p

t∑
i=1

ui·qi, since
t∑
i=1

ui·xi = p
t∑
i=1

ui·qi+
t∑
i=1

ui·ri,

therefore
t∑
i=1

ui · ri = (
t∑
i=1

ui · xi mod N) . On the other hand, if
t∑
i=1

ui · ri = (
t∑
i=1

ui · xi mod N) , then

N | (
t∑
i=1

ui · xi −
t∑
i=1

ui · ri), therefore N | p
t∑
i=1

ui · qi.�

Theorem 4. Let xi = pqi + ri(i = 1, . . . , t) be be t integers and N be a positive number. Let

S = {(u1, . . . , ut) : 2|
t∑
i=1

ui · ri| < N,ui ∈ Z, i = 1, ..., t} and |S| be the number of elements in S. If

|S| > N , then there exists at least a element in u ∈ S such that

t∑
i=1

ui · ri = (

t∑
i=1

uixi mod N)

with highly probability.

Proof. It is easy to see that for any integer z , the probability of z divisible by N is 1
N . Thus

if we randomly choose more than N integers, there is an integer divisible by N with highly probabil-

ity(approximate 1). Since |S| > N , there exists an element in u ∈ S such that N | p
t∑
i=1

ui · qi with highly

probability. Therefore, there exists an element in u ∈ S such that

t∑
i=1

ui · ri =

t∑
i=1

uixi mod N

with highly probability.�

Theorem 4 implies that by collecting many vectors in the set S which satisfy (1) and (2), we can
obtain a linear equations satisfied by r1, . . . , rt. To find such a u, we will use LLL lattice reduction.

We first build a lattice L1 spanned by rows of the following matrix:

B1 =

1 x1

1 x2
. . .

...
1 xt
−N

 . (3)

where N is an appropriate integer. We show that, for two appropriate positive integers N and t, there
exists at least one short vector u ∈ L1 satisfy (1) with highly probability through experiments.

Theorem 5. Let L2 be a lattice spanned rows of the following matrix:

B2 =

1 r1

1 r2
. . .

...
1 rt

 . (4)

then L1

⋂
L2 6= ∅ if and only if there exist u1, ..., ut ∈ Z such that N | p

t∑
i=1

ui · qi.

Proof. The vector in lattice L1 has the form: (µ1, ..., µt,
t∑
i=1

µi · xi − µt+1N), where µ1, ..., µt+1 ∈ Z.

The vector in lattice L2 has the form: (ν1, ..., νt,
t∑
i=1

νi · ri), where ν1, ..., νt ∈ Z.

On one hand, suppose that v ∈ L1

⋂
L2, then there exist µ̄1, ..., µ̄t+1 ∈ Z and ν̄1, ..., ν̄t ∈ Z such that

(µ̄1, ..., µ̄t,

t∑
i=1

µ̄i · xi − µ̄t+1N) = (ν̄1, ..., ν̄t,

t∑
i=1

ν̄i · ri).

Therefore µ̄i = ν̄i, (i = 1, ..., t) and
t∑
i=1

µ̄i ·xi− µ̄t+1N =
t∑
i=1

ν̄i · ri. That is
t∑
i=1

µ̄i ·xi− µ̄t+1N =
t∑
i=1

µ̄i · ri.

Denote ui = µ̄i = ν̄i, (i = 1, ..., t) , from Lemma 2, we have N | p
t∑
i=1

ui · qi.

On the other hand, if there exist u1, ..., ut ∈ Z such that N | p
t∑
i=1

ui · qi, then there is a integer ut+1

such that p
t∑
i=1

ui · qi = Nut+1. Thus p
t∑
i=1

ui · qi −Nut+1 = 0. Therefore
t∑
i=1

ui · xi −Nut+1 =
t∑
i=1

ui · ri.

Then (u1, ..., ut,
t∑
i=1

ui · ri) ∈ L1

⋂
L2.�

Theorem 6. If N < |B(0, k)
⋂
L2|, where k =

√
t+ 1det(L1)

1
t+1 , then there exists at least a v =

(u1, ..., ut+1) such that v ∈ B(0, k)
⋂
L2

⋂
L1 with highly probability. Moreover, we have

t∑
i=1

ui · ri =

t∑
i=1

uixi mod N.

Proof. Since N < |B(0, k)
⋂
L2|, from Theorem 4, there exists at least a vector v = (u1, ..., ut+1) ∈

B(0, k)
⋂
L2 such that

t∑
i=1

ui · ri =

t∑
i=1

uixi mod N.

with highly probability. Thus by Lemma 2, we have N | p
t∑
i=1

ui · qi . Therefore, from Theorem 5, we have

v ∈ B(0, k)
⋂
L2

⋂
L1 �

Theorem 6 implies that v is a short vector of lattice L1 satisfies

‖v‖ ≤ k =
√
t+ 1det(L1)

1
t+1 .

Therefore, we can try to find v by using LLL lattice reduction algorithm.
Now, let us find a way to choose the right N and t for our algorithm.
First, we choose N ∈ (2γ−1, 2γ), since N is expected to close to xi . In the following, we try to find a

lower bound of t.
When we do LLL, the shortest vector will be roughly of length 2

t
4+

γ
t+1 . For the short vector, the first

t coordinate should be of size 1√
t+1

2
t
4+

γ
t+1 . First question one would ask is that if there exists a short

vector that satisfying the condition (1). The vector in lattice L1 has the form:

(µ1, ..., µt,

t∑
i=1

µi · xi − µt+1N),

and this means that

µi ≤
1√
t+ 1

2
t
4+

γ
t+1 ,

for i < t+ 1. We can imagine that we will do a search of the µi, i < t+ 1 in the range above for a short
vector, which has a total size of

(2
1√
t+ 1

2
t
4+

γ
t+1)t =

1
√
t+ 1

t 2
t+ t2

4 + tγ
t+1 .

From Theorem 6, we know that if this number is bigger than N , then we have a high probability to
have a vector such that the last coordinate satisfying the condition (1). This mean we should have that

1
√
t+ 1

t 2
t+ t2

4 + tγ
t+1 ≥ N ≈ 2γ .

This means that

t+
t2

4
+

tγ

t+ 1
− t log2(t+ 1) ≥ γ,

therefore
t2/4 ≥ γ

t+ 1
,

which essentially means that
t ≥ (4γ)1/3.

However, the interesting part is that in experiments, we need much smaller t than this bound, which we
can not explain.

What puzzles us even more is why for a short vector, when t is big enough, the equation (1) should
be true. Our only explanation is that when

µi ≤
1√
t+ 1

2
t
4+

γ
t+1 ,

for i < t+ 1, the last coordinate is given by

t∑
i=1

µi · xi − µt+1N =

t∑
i=1

µi · (pqi + ri)− µt+1N =

p
t∑
i=1

µi · qi − µt+1N +
t∑
i=1

µi · ri.

Since ρ is small, the last part of summation of µiri are of number which is of size 2ρ+
γ
t+1 << N , which

therefore are insignificant in the sense the first summation are really large number, which is of size 2γ+
γ
t+1

and they dominant the computations and the LLL tries to make this part to be zero while essentially
ignore the last summation since they are too small comparatively. Therefore we could achieve the relation
(1). Surely this is only a heuristic explanation and a theoretical proof will be a very significant result.

The GACD algorithm is showed as follow:

The GACD algorithm .
Input: A appropriate positive integers t and x1, . . . , xt .
Output: Integer p .

1. Randomly choose N ∈ (2γ−1, 2γ) .
2. Reduce lattice L1 by LLL lattice reduction algorithm with δ = 3

4 . Let the reduced basis be a1, ...,at+1,
where ai = (ai1, ..., ait, ait+1), i = 1, ..., t+ 1.

3. If ‖ai‖ < 2
γ
t+1 , i = 1, ..., t − z, where z is a very small integer (relative to t), then solve the integer

linear system with t unknowns r1, ..., rt as follows

t∑
j=1

aij · ri =

t∑
j=1

aij · xi, (i = 1, ..., t− z).

Therefore, the integer solutions can be expressed as follow:

d = d0 + t1d1 + ...+ tzdz,

where d0 is a special solution of the linear system, t1, ..., tz are integers, d1, ...,dz is a basis of integer
solution space of the corresponding homogeneous linear equations.

4. Construct a lattice spanned by the row vectors d0,d1, ...,dz. Obviously, (r1, . . . , rt) is a short vector
of the lattice. Thus we can find r1, . . . , rt by LLL algorithm.

5. Compute p = gcd(x1 − r1, x2 − r2). Return p.

Again, we note here that in our experiments z ≤ 2, which is the key reason the algorithm works.

2.3 The relationship of t, γ, ρ

We could not use any theoretical analysis to tell us how to decide the right t, therefore we need to use
computer experiments to help us to decide the right t, namely the smallest t such that we can get what
we want. The experiments in this paper were carried out on two Quad-Core Intel Processor Q9400 CPUs
(2.66 GHz) with 4 GB of main memory using MAGMA v.12-19. In one group of data, we fix η = 1000,
and the running time and the relationship of t and γ, ρ are showed in Table 1.

γ ρ t time(s) γ ρ t time(s) γ ρ t time(s) γ ρ t time(s)
5000 50 7 0.327 10000 50 23 24.382 15000 50 35 199.930 20000 50 45 846.820
5000 100 8 0.436 10000 100 23 24.180 15000 100 35 195.999 20000 100 45 859.643
5000 150 9 0.530 10000 150 23 24.975 15000 150 38 240.257 20000 150 48 912.371
5000 200 10 0.670 10000 200 28 38.142 15000 200 40 270.661 20000 200 50 1007.516
5000 250 11 0.826 10000 250 30 45.162 15000 250 42 312.610 20000 250 55 1296.196
5000 300 14 1.357 10000 300 30 45.770 15000 300 45 360.159 20000 300 62 1754.106
5000 350 16 1.794 10000 350 35 65.754 15000 350 46 378.240 20000 350 70 2419.840
5000 400 17 2.106 10000 400 36 70.855 15000 400 51 519.077 20000 400 75 2883.272
5000 450 18 2.386 10000 450 40 91.447 15000 450 59 749.179 20000 450 85 4245.879

Table 1: The relationship of t and γ, ρ

From the Table 1, we can observe that the relationship of t with γ and ρ is approximate linear. We
did many more experiments, where γ is up to 200,000. With the large amount of data we have, using the
least square method, we conclude that the data indicates that, if N ∈ (2γ−1, 2γ),

t ≈ b0.003566γ + 0.083526ρ− 30c.

A much simpler observation is that
t ≤ 0.005γ,

for all the data we collected. We will use this relation for our complexity estimate. Surely, the exactly
relationship of t with γ, ρ is an open question.

We also did experiments for cases where ρ ≥ η/2, the relationship of t with ρ and γ is much more
complicated and t grows much faster.

2.4 The complexity of GACD algorithm

In the GACD algorithm, the dominant computation is the LLL reduction of our lattice and the rest
can be neglected. Since, we need only to use one set of appropriate N and t once, the most complex
calculations required of the GACD algorithm is one time LLL lattice reduction. From Theorem 3 , we
know that the complexity of LLL lattice reduction algorithm is polynomial in γ and t for δ = 3/4.

More specifically, let L be a lattice of rank t + 1 with basis b1, ...,bt+1 , and ‖bi‖ ≤ 2γ+1, (i =
1, . . . , t + 1) . Then the number of bit operations needed by the LLL basis reduction algorithm for
δ = 3/4 is

O
(
(t+ 1)6(log4/3 2γ+1)3)

or
O
(
(t+ 1)6(2(γ + 1))3),

under school-multiplication, where t ≤ 0.005γ.
Therefore, the number of bit operations needed by the GACD algorithm is O

(
(t+ 1)6(2(γ + 1))3),

under school-multiplication, where t ≤ 0.005γ.

3 Cryptanalysis of Fully Homomorphic Encryption(FHE) Scheme Based on
GACD Problem

In [16], the author build a FHE scheme over integer which based on the hardness of computing an approxi-
mate common divisor. The main appeal of this scheme is conceptual simplicity (compared to Gentry’s[10]).
In this section, we use our algorithm to attack the FHE scheme based on GACD Problem[16].

Let λ be a security parameter of the FHE scheme, γ be the bit-length of the integer in public key,
η be the bit-length of the secret key, ρ be the bit-length of the noise, τ is the number of integers in the
public key. The parameters generation goes as follows:
The secret key is an odd η − bit integer:

p← (2Z + 1)
⋂

[2η−1, 2η).

For the public key, sample xi ← Dγ,ρ(p), for i = 1, ..., τ such that x1 is the largest, where

Dγ,ρ(p) = {choose q ← Z
⋂

[0, 2η/p), r ← Z
⋂

(−2ρ, 2ρ) : output x = pq + r}.

The public key is pk = (x1, ..., xτ).
In [16], the authors proposed a convenient parameter set as:

ρ = λ, η = O(λ2), γ = O(λ5), τ = γ + λ.

We would be able to solve the GACD problem with this parameter set in polynomial time of λ using our
algorithm.

We consider the first t integers, where t = b0.003566γ + 0.083526ρ − 30c. Choose N ∈ (2γ−1, 2γ) .
Since ρ < η

2 in the parameter set , we can use our algorithm to find the secret p. The number of bit
operations is about

O
(
(0.005λ5)6(2(γ + 1))3)

or

O
(
(0.005λ5)6(2(λ5 + 1))3)

We apply our algorithm to the parameters in [6] and we could break all the cases where their parameter
γ < 220. We note here that the algorithm of Chen and Phone [4]relies only on ρ, while we are different,
and we could break cases where ρ ≥ 60 easily while their method can not. In addition, our algorithm in
general requires small memory (roughly O(0.005γ)2 × γ bits).

4 Conclusion and Discussion

In this paper, we present a new algorithm to solve the GACD problem. Through theoretical arguments
and heuristically arguments based on experiments, we show that this algorithm can solve the GACD
problem in polynomial time if the system parameters satisfies the relation ρ < η/2. This algorithm shows
that there is a polynomial time algorithm to break the the fully homomorphic encryption schemes (FHE),
which are based on the approximate common divisors problem, in terms of the system parameter λ.

It is remain an open problem to theoretical prove that indeed our algorithm works, in particular, why
the short vectors from the LLL reduction satisfy the relation (1). One more interesting problem is to find
out the exact complexity for our algorithm when η/2 ≤ ρ ≤ η.

References

1. Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE.Foundations
of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE, 2011: 97-106.

2. Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP.Advances in
Cryptology-CRYPTO 2012. Springer Berlin Heidelberg, 2012: 868-886.

3. Bosma W, Cannon J, Playoust C. The Magma algebra system I: The user language. Journal of Symbolic
Computation, 1997, 24(3): 235-265.

4. Chen Y, Nguyen P Q. Faster algorithms for approximate common divisors: Breaking fully homomorphic
encryption challenges over the integers. Advances in Cryptology-EUROCRYPT 2012. Springer Berlin Heidel-
berg, 2012: 502-519.

5. Cohn H, Heninger N. Approximate common divisors via lattices. arXiv preprint arXiv:1108.2714, 2011.
6. Coron J S, Mandal A, Naccache D, et al. Fully homomorphic encryption over the integers with shorter public

keys. Advances in Cryptology-CRYPTO 2011. Springer Berlin Heidelberg, 2011: 487-504.
7. Coron J S, Naccache D, Tibouchi M. Public key compression and modulus switching for fully homomorphic

encryption over the integers. Advances in Cryptology-EUROCRYPT 2012. Springer Berlin Heidelberg, 2012:
446-464.

8. Cheon J H, Coron J S, Kim J, et al. Batch fully homomorphic encryption over the integers. Advances in
Cryptology-EUROCRYPT 2013. Springer Berlin Heidelberg, 2013: 315-335.

9. Coppersmith D. Finding a small root of a univariate modular equation. Advances in Cryptology-
EUROCRYPT96. Springer Berlin Heidelberg, 1996: 155-165.

10. Gentry C. A fully homomorphic encryption scheme. Stanford University, 2009.
11. Gentry C, Halevi S. Implementing gentry’s fully-homomorphic encryption scheme. Advances in Cryptology-

EUROCRYPT 2011. Springer Berlin Heidelberg, 2011: 129-148.
12. Howgrave-Graham N. Approximate integer common divisors. Cryptography and Lattices. Springer Berlin

Heidelberg, 2001: 51-66.
13. Stehlé D, Steinfeld R. Faster fully homomorphic encryption. Advances in Cryptology-ASIACRYPT 2010.

Springer Berlin Heidelberg, 2010: 377-394.
14. Micciancio D, Goldwasser S. Complexity of lattice problems: a cryptographic perspective. Springer, 2002.
15. Nguyen P Q, Valle B. The LLL algorithm: survey and applications. Springer Publishing Company, Incorpo-

rated, 2009.
16. Van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over the integers. Advances in

Cryptology-EUROCRYPT 2010. Springer Berlin Heidelberg, 2010: 24-43.
17. Stehlé D, Zimmermann P. A binary recursive gcd algorithm. Algorithmic number theory. Springer Berlin

Heidelberg, 2004: 411-425.

