
A New Algorithm for Solving the General Approximate
Common Divisors Problem and Cryptanalysis of the

FHE Based on the GACD problem

Jintai Ding1,2,3, Chengdong Tao4

1 University of Cincinnati, 2 ChongQing University, 3 Academia Sinica, 4 South China University
of Technology

Abstract. In this paper, we propose a new algorithm for solving the general ap-
proximate common divisors (GACD) problems, which is based on lattice reduction
algorithms on certain special lattices and linear equation solving algorithms over in-
tegers. Through both theoretical arguments and experimental data, we show that our
new algorithm works in polynomial time but under roughly the following condition:

– There is a positive integer t such that

γ + η

t
+

t

H
+ ρ < η;

– We have more than t GACD samples.

or equivalently

–

H(η − ρ)2 − 4(γ + η) > 0

– We have more than t = dH(η−ρ)−
√

H2(η−ρ)2−4H(γ+η)

2
e GACD samples.

Here γ, η and ρ are parameters describing a GACD problem, H = 1/ log2 F and F is
the Hermite Factor. In our experiments, H is shown to be roughly 40 when using the
LLL reduction algorithm and it should be around 80 when using Deep or BKZ algo-
rithms. We show how our algorithm can be applied to attack the fully homomorphic
encryption schemes which are based on the general approximate common divisors
problem and its limitations.

Key words. General approximate common divisors problems; Fully homomorphic encryption;

Lattice; LLL; BKZ

1 Introduction

Approximate common divisors problems including partial approximate common divisors(PACD)
problem and general approximate common divisors(GACD) problem were first introduced
by Howgrave-Graham in [14]. General approximate common divisors(GACD) problem is
defined as follows:

For a set of parameters γ ,η, and ρ, given polynomial (in γ η, and ρ) many different
integers in the form: xi = pqi + ri(i = 1, . . . , n), the problem is to recover p, where p and
qi, (i = 1, . . . , n) are very large integers, xi are of bit length γ and p is of bit length η, and
ri(i = 1, . . . , n) are small integers with the bit length no more than ρ. Here ri are called the
error terms.

When r1 = 0, namely x1 = pq1, where q1 is a very large integer without any small prime
factors, this problem is called a partial approximate common divisors(PACD) problem.

In this paper, we will concentrate on the GACD problem, since the PACD problem is
a special case of the GACD problem. Therefore, our algorithm can be used to solve PACD
problems without any change. Furthermore, we believe we can improve our algorithm to
solve the PACD problem in the case of applications to attack the FHE based on the PACD
problems.

The hardness of solving this problem for small p (relative to the size of xi) and small error
terms (relative to the size of p) was recently proposed as the foundation for a fully homo-
morphic cryptosystem. At EUROCRYPT’10, Van Dijk et al. proposed a fully homomorphic
encryption (FHE) scheme based on the hardness of GACD problem [20]. At CRYPTO’11,
Coron et al. presented a more efficient variant of the FHE scheme in [7] which was based on
PACD problem.

A simple approach for solving GACD problem is exhaustive search on the error terms.
If ri are sufficiently small, namely if |ri| < B, where B is a fixed small integer, then we
can find p by exhaustive search, i.e., one can trying every r1 and r2 and check whether
gcd(x1 − r1, x2 − r2) is sufficiently large and eventually recover p. The state of the art
algorithm for computing GCD’s is the Stehlè-Zimmermann algorithm with time complexity
O(γ) for integers of γ bits[22]. Therefore, the time complexity of solving GACD problem by
exhaustive search on the error terms is O(22ργ).

In EUROCRYPT’12, Chen and Nguyen gave an algorithm which provides an exponential
speedup over exhaustive search to solve approximate common divisors problem [4], which
is essentially based a clever exhaustive search on the error terms through certain polynomi-
als. However, their approach requires large memory. For their algorithm, they only need 2
elements in the set of xi and the complexity is given as O(2

3
2 ργ). This means, if γ is around

220 and any ρ bigger than 40, their algorithm would be considered futile.

In [14], Howgrave-Graham also gives a lattice approach to solve two elements GACD
problem. This approach is related to Coppersmith’s algorithm for finding small solutions
to univariate and bivariate modular equations. When ρ

γ is smaller than (η
γ)2, this approach

recovers p. However, when ρ, η, γ do not satisfy the constraint, the approach does not degrade
gracefully. Furthermore, in [6], Cohn and Heninger analyze the multivariate generalization of
Howgrave-Graham’s algorithm for the GACD problem by using many xi. In this algorithm,
the GACD problem used in cryptography is reduced to running the LLL algorithm on a
lattice basis of high dimension and large entries to directly find all the error terms ri.
However, in [4], they show that the Cohn-Heninger attack on the FHE challenges in [7] is
actually slower than exhaustive search on the challenges, and therefore much slower than
the attack in [4].

The contribution of this paper: The main ideal of our method for solving GACD
problem is to reduce the problem first to a special lattice reduction problem, but unlike the
case of [6], we will not be able to find ri directly, but rather the results of the reduction allow
us to find many linear equations satisfies by ri. Then we recover those ri through solving
those integer equations with the help of the bound of ri and the LLL algorithm. Then we
can recover p via Euclidean algorithm.

The algorithm can be summarized as follows:

1. We consider the first t = dH(η−ρ)−
√

H2(η−ρ)2−4H(γ+η)

2 e integers x1, ..., xt−1 and con-
struct a lattice L spanned by rows of the following matrix:

1 x1

1 x2

. . .
...

1 xt−1

N

 .

Here N is a random number of γ + η bits.
2. We apply a lattice reduction algorithm to find a short vector and we can prove that the

shortest vector (u1, ...ut−1, vt) gives solution to the equation:

t−1∑
i=1

ui · ri =
t−1∑
i=1

ui · xi. (1)

which implies that
t−1∑
i=1

ui · qi = 0. In our experiments, we use the LLL lattice reduction

algorithm with δ = 3
4 .

3. Theoretically, we need to choose t − 2 (or a few more) different N , such that we will
get t− 2 such equations above. In practice, the LLL reduction in general actually gives
us t − 2 such vectors, each vector gives us a linear equation satisfied by r1, . . . , rt−1.
We find the integer solutions of this equations by solving the derived linear system in
integers. The integer solutions can be expressed as follow:

d = d0 + t1d1,

where d0 is a special solution of the linear system, t1 is integer, d1 is a basis of integer
solution space of the corresponding homogeneous linear equations.

4. We construct a lattice spanned by the row vectors d0,d1. Obviously, (r1, . . . , rt−1) is a
short vector of the lattice. Thus we can find r1, . . . , rt−1 by the LLL algorithm.

5. Finally, we recover the common divisor p by Euclidean algorithm.

Our algorithm works under the assumption that such a t exists, namely

H2(η − ρ)2 − 4H(γ + η)2 ≥ 0,

.
It is clear that t < H(η− ρ), and that our method is polynomial time in terms of γ, η, ρ

if we use a polynomial time lattice reduction algorithm, since the main time consumption
step is the lattice reduction step, in particular, if we use the LLL lattice reduction algorithm
with δ = 3

4 .
If such a t does not exist, our algorithm will fail because we can not promise the shortest

vector from the LLL reduction would give us a vector that provides a solution to build the
linear equations satisfied by the error term ri. This is why when we apply our algorithm to
attack the GACD problem for the FHE system by Van Dijk et al. [20], where γ = λ5, η =
λ2, ρ = λ, we would fail in general, since, for a relatively large λ, we can not find such a
t, but we show if we make any real progress in terms of improving the Hermit factor, the
situation can be very different and we will discuss how our algorithm could significantly

impact the security of these FHEs. Thus a significant contribution of ours is that we show
that the Hermite factor F (or more directly the constant H = 1/ log2 F) could significantly
impact the selection of the security parameters of these FHE systems.

Organization: In Section 3, we present our main results and we conclude the paper in
Section 4.

2 Main Results

We present some facts on lattice and more details can be found in [16] and [17].

2.1 Preliminaries

Let Rm be the m-dimensional Euclidean space. Let Z be the set of integer.

Definition 2.1. [16]. A lattice in Rm is the set

L(b1, ...,bn) = {
n∑

i=1

xibi : xi ∈ Z}

of all integral combinations of n linearly independent row vectors b1, ...,bn in Rm (m ≥ n).
Equivalently, if we define B as the m×n matrix whose rows are b1, ...,bn , then the lattice
generated by B is

L(B) = {xB : x ∈ Zn}.

The integers n and m are called the rank and dimension of the lattice, respectively. The
sequence of vectors b1, ...,bn is called a lattice basis.

Definition 2.2. [16]. For any lattice basis B we define the half parallelepiped

P(B) = {xB|x ∈ Rn : ∀i, 0 ≤ xi < 1}.

Definition 2.3. [16]. The determinant of a lattice L, denoted det(L), is the n-dimension
volume of the fundamental parallelepiped P(B) spanned by the basic vectors. In symbols, this
can be written as det(L) =

√
|det(BBT)|. In the special case that B is a square matrix, and

we have det(L) = |det(B)|.

Definition 2.4. [17]. Let L be a lattice of rank n. we define the ith successive minimum as

λi = inf{r|dim(span(L ∩Bm(0, r))) ≥ i}, (i = 1, ..., n),

where Bm(0, r) = {x ∈ Rm : ‖x‖ ≤ r} is the closed ball of radius r around 0.

Theorem 2.5. [17]. Let L be a lattice of rank n with successive minimal vectors λ1(L), . . . , λn(L).
Let a1, ...,an be an LLL-reduced basis with factor δ = 3

4 of a lattice L in Rm. Then

1. ‖a1‖ ≤ 2
n−1

4 det(L)
1
n .

2. ‖ai‖ ≤ 2
n−1

2 λi(L), i = 1, ..., n.

3.
n∏

i=1

‖ai‖ ≤ 2
n(n−1)

4 det(L).

We note here that the first estimate here is not optimal in terms of practice. The real
Hermite factor is much smaller, which is very critical to our algorithm.

2.2 The new GACD algorithm

We describe our algorithm for the GACD problem. We consider the first t − 1 integers
x1, . . . , xt−1. The algorithm is defined as follow:

Algorithm 1 .
Input: Samples x1, . . . , xt−1 .
Output: Integer p .

1. We randomly select an integer of γ + η bits. We build the matrix L as:

L =


1 x1

1 x2

. . .
...

1 xt−1

N

 .

2. a1, ...,at ← LLLBasis(L), where ai = (ai1, ..., ait), (i = 1, ..., t), ‖a1‖ < ... < ‖at‖ .
3. We repeat Step 1 and Step 2 for t− 2 times each with different N , for each round (the

j-th), we keep the shortest vector a1 and call it bj.
4. Solve the integer linear system with t− 1 unknowns r1, ..., rt−1 as follows

t−1∑
j=1

bij · ri =
t−1∑
j=1

bij · xi, (i = 1, ..., t− 2).

The integer solutions can be expressed as follow:

d = d0 + t1d1,

where d0 is a special solution of the linear system, t1 is integer, d1 is a basis of integer
solution space of the corresponding homogeneous linear equations.

5. Construct a lattice spanned by the row vectors d0,d1. Obviously, (r1, . . . , rt−1) is a
short vector of the lattice. Thus we can find r1, . . . , rt−1 by LLL algorithm.

6. p = gcd(x1 − r1, ..., xt−1 − rt−1). Return p.

To prove the algorithm indeed works, we need a more precise condition on t, which is

γ + η

t
+

t

H
+ ρ + log2

√
t− 1 + 1 < η.

Since t is small compared to the rest, this condition is essentially the same as the one we
have in the abstract.

We start from the first observation that is needed for explaining our algorithm.

Lemma 2.6. Let u1, ..., ut−1 be integers, then
t−1∑
i=1

uixi =
t−1∑
i=1

uiri if and only if
t−1∑
i=1

uiqi = 0.

Proof. It is evident.

We construct a lattice L spanned by rows of the matrix:

L =


1 x1

1 x2

. . .
...

1 xt−1

N

 . (2)

Let v ∈ L, then v has the form

v = (u1, . . . , ut−1,

t−1∑
i=1

ui · xi + utN),

where u1, . . . , ut are integers. Thus the length of vector v in Euclid norm is

‖v‖ =

√√√√t−1∑
i=1

u2
i + (

t−1∑
i=1

uixi + utN)2.

Lemma 2.7. For any vector v ∈ L where t satisfies the condition above, if ‖v‖ < 2η−ρ−1−log2
√

t−1,
then

t−1∑
i=1

ui · ri =
t−1∑
i=1

ui · xi.

Proof. let u = (u1, ..., ut−1) and x = (x1, ..., xt−1). Since each xi(i = 1, ..., t − 1) is of γ
bits, this implies that

|
t−1∑
i=1

ui · xi| = |u · x| ≤ ‖u‖‖x‖| cos(θ)| ≤ 2γ+1
√

t− 1‖u‖ ≤ 2γ+1
√

t− 1‖v‖.

Here θ is the angle between u and x.
Due to ‖v‖ < 2η−ρ−log2

√
t−1−1, this implies that

|
t−1∑
i=1

ui · xi| < 2γ+η−ρ < 2γ+η−1 ≤ N/2.

Therefore this implies there is no modular N operation involved and

ut = 0.

Thus we have

v = (u1, . . . , ut−1,

t−1∑
i=1

ui · xi),

This leads to

t−1∑
i=1

ui · xi + utN =
t−1∑
i=1

ui · xi = p

t−1∑
i=1

ui · qi +
t−1∑
i=1

ui · ri.

If
t−1∑
i=1

ui · qi 6= 0,

we have

p|
t−1∑
i=1

ui · qi| > 2η.

Since ri is smaller than 2ρ, this implies that

|
t−1∑
i=1

ui · ri| ≤ 2ρ
√

t− 1‖v‖ < 2η−1.

This implies

|
t−1∑
i=1

ui · xi| = |p
t−1∑
i=1

ui · qi +
t−1∑
i=1

ui · ri| ≥ 2η−1.

This implies that it is impossible to have that

t−1∑
i=1

ui · qi 6= 0.

Therefore
t−1∑
i=1

ui · qi = 0.

This finishes the proof.
This implies that

Theorem 2.8. If γ+η
t + t

H + ρ + log2

√
t− 1 + 1 < η, for the shortest vector v we derive

from the lattice reduction on L, we also have

t−1∑
i=1

ui · ri =
t−1∑
i=1

ui · xi.

Proof. We use the lattice reduction algorithm to derive a short vector v whose length is
less than or equal to

F tdet(L)1/t = 2
γ+η

t + t
H ,

which implies that the length of the vector v = (u1, ..., ut−1,
t−1∑
i=1

uixi) is also less than

2
γ+η

t + t
H :

‖v‖ ≤ 2
γ+η

t + t
H < 2η−ρ−1−log2

√
t−1,

which is due to the condition γ+η
t + t

H + ρ + log2

√
t− 1 + 1 < η. From the lemma above,

we finish the proof.

Theorem 2.9. The Algorithm 1 succeeds with high probability.

Proof. First by counting, we can show that in the range of the same length of the shortest
vector of the reduction, there are a large of vectors satisfying the condition (1). Also we know
that when we choose different N , we would derive different short vectors which also satisfies
the condition (1). It is very reasonable to assume that each time we derive a random vector
which satisfies the condition (1), and a set of t−2 of them should have a very high probability
to be linearly independent, which promises that our algorithm would succeed.

In our experiments, we use the LLL reduction with δ = 3/4, and we find out that H
should be selected as 40. Also a very interesting situation is that after the LLL reduction,
the first t− 2 vectors are all of the around the same length, which implies that we will get
t − 2 equation satisfies by ri(i = 1, ..., t − 1), which is why our algorithm is successful in
general with only one round of operation of Step 1 and Step 2.

From the the practical point of view, the condition

γ + η

t
+

t

H
+ ρ + log2

√
t− 1 + 1 < η,

looks too complicated and since t is very small comparatively, we prefer to simplified it as:

γ + η

t
+

t

H
+ ρ < η,

which is much easier to handle as explained in the abstract.
In all the experiments we have done, we have not yet found any case, it failed.
From all the above, we conclude that we can give a polynomial time algorithm to solve

the GACD problem as long as we can find a t satisfying the condition we give. Surely not
all parameters satisfies the condition.

2.3 Complexity analysis of Algorithm 1

Since the most complex calculations required of the Algorithm 1 is the lattice reduction
algorithm. In [21], Novocin et al. proposed a LLL-reduction algorithm with quasi-linear time
complexity in term of number of input bits, which is very useful for our algorithm since it
involves matrices with large entries. This algorithm was as effective as LLL reduction with
δ = 3

4 .
Let L be a lattice of rank t with basis b1, ...,bt, and ‖bi‖ ≤ 2γ+1, (i = 1, . . . , t). It takes

as input an arbitrary lattice basis L; It computes a basis of L which is reduced for a mild
modification of the Lenstra-Lenstra-Lovász reduction; It terminates in time

O(t5+ε(γ + 1) + tω+ε+1(γ + 1)1+ε),

where ε > 0 and ω is a valid exponent for matrix multiplication. This algorithm with a time
complexity is quasi-linear in γ and polynomial in t.

Therefore, the number of bit operations needed by the Algorithm 1 is roughly

O(t5+ε(γ + 1) + tω+ε+1(γ + 1)1+ε),

under school-multiplication, where

t = d
H(η − ρ)−

√
H2(η − ρ)2 − 4H(γ + η)

2
e.

2.4 A more practical variant and experiments

Later, we modify algorithm a little bit to make things easier. The algorithm can be summa-
rized as follows:

1. We consider the first t = dH(η−ρ)−
√

H2(η−ρ)2−4H(γ+η)

2 e integers x1, ..., xt and construct
a lattice L spanned by rows of the following matrix:

L =


1 x1

1 x2

. . .
...

1 xt−1

xt

 .

2. We apply LLL lattice reduction algorithm with δ = 3
4 to find a short vector and it turns

that this short vector gives solution to the equation:

t∑
i=1

ui · ri =
t∑

i=1

ui · xi

which implies that
t∑

i=1

ui · qi = 0.

3. The LLL reduction in general gives us t − 1 such vectors, each vector gives us a linear
equation satisfied by r1, . . . , rt. We find the integer solutions of this equations by solving
the derived linear system in integers. The integer solutions can be expressed as follow:

d = d0 + t1d1,

where d0 is a special solution of the linear system, t1 is integer, d1 is a basis of integer
solution space of the corresponding homogeneous linear equations.

4. We construct a lattice spanned by the row vectors d0,d1. Obviously, (r1, . . . , rt) is a
short vector of the lattice. Thus we can find r1, . . . , rt by LLL algorithm.

5. Finally, we recover the common divisor p by Euclidean algorithm.

We call this algorithm the Algorithm 2.
This algorithm works as well as the Algorithm 1, and most of our experiments are done

using this algorithm.
Note here that unlike the case of the Algorithm 1, we can not prove that this algorithm

actually works.
We carry out many experiments using Magma 2.18-9 about various parameters which

satisfy H(η − ρ)2 − 4(γ + η) > 0. We run all the experiments on a Sun X4440, with four
Quad-Core AMD OpteronTM Processor 8356 CPUs and 128 GB of main memory. Each
CPU is running at 2.3 GHz. W can not list all the details of the experiments but some of
them and they are contained in the tables below.

λ 10 15 20 25 30 35 40 50
t 13 18 23 28 33 38 43 53

time(s) 0.03 0.16 0.8 3.22 11.930 38.27 120.59 754.89

Table 1: The running times and the dimension of lattice using algorithm 2 to succesfully
recover p on the parameters ρ = λ, η = λ2, γ = λ3.

λ 8 9 10 11 12
t 77 96 116 139 164

time(s) 23.98 103.35 270.76 1495.98 7062.94

Table 2: The running times and the dimension of lattice using algorithm 2 to succesfully
recover p on the parameters ρ = λ, η = λ2, γ = λ4.

In our experiments, the constant H is roughly 40.

2.5 Application of our algorithm to attack the FHE

The GACD problem was used for constructing the FHE schemes. For the FHE, the choice
of parameters γ, η, ρ are selected from two direction, the first one is to make the system
works, the second one is to make sure the system is as efficient as possible and the second
comes from security concerns.

First, it is very clear that if we select

γ = O(λ4); η = O(λ2); ρ = λ,

where λ is security parameter. Our algorithm solves all the cases in polynomial time in
general.

Second it is also very clear that if we use the parameter suggested by Van Dijk et al.
[20]:

γ = O(λ5); η = O(λ2); ρ = λ;

our algorithm would fail asymptotically once λ is big enough. But practically things becomes
more subtle.

If we choose
γ = λ5; η = λ2; ρ = λ;

then, if H = 40, our algorithm would succeed till

λ = 8;

while if H = 80, for example, for Deep or BKZ reduction algorithm, our algorithm would
succeed till

λ = 18,

and if we push the reduction algorithm to be more effective, for instance as suggested [13],
where

F = 1.005,H = 138,

our algorithm would work up to
λ = 33.

This is clear that our algorithm fails completely.
If one wants to more aggressive to choose

γ = λ5/10; η = λ2; ρ = λ;

then, if H = 40, our algorithm would succeed till

λ = 98;

while if H = 80, for example, for Deep or BKZ reduction algorithm, our algorithm would
succeed till

λ = 198,

and H = 138, our algorithm would work up to

λ = 343.

In this case, our algorithm works pretty well.
Furthermore, if one wants to even more aggressive to choose

γ = λ5/20; η = λ2; ρ = λ;

then, if H = 40, our algorithm would succeed till

λ = 198;

while if H = 80, for example, for Deep or BKZ reduction algorithm, our algorithm would
fail at

λ = 398,

and if H = 138 our algorithm would work up to

λ = 688.

In this case, our algorithm would practically be a polynomial time algorithm to attack the
corresponding FHEs.

One may ask about the efficiency of our algorithm.
For the case,

γ = λ5/10; η = λ2; ρ = λ;

if we choose λ = 80 and have H = 40, then we need to have t = 72833, then the complexity
of our algorithm is 2109 according to [21]. In this case, the complexity of attack in [4] would
be 2148.

For the case,
γ = λ5/20; η = λ2; ρ = λ;

if we choose λ = 80 and have H = 40, then we need to have t = 29328, then the complexity
of our algorithm is 2101 according to [21]. In this case, the complexity of attack in [4] would
be 2147.

For the case,
γ = λ5/20; η = λ2; ρ = λ;

if we choose λ = 120 and have H = 40, then we need to have t = 107274, then the complexity
of our algorithm is 2113 according to [21]. In this case, the complexity of attack in [4] would
be 2210.

For the case,
γ = λ5/20; η = λ2; ρ = λ;

if we choose λ = 160 and have H = 40, then we need to have t = 287077, then the complexity
of our algorithm is 2122 according to [21]. In this case, the complexity of attack in [4] would
be 2272.

This clearly shows the advantage of our algorithm compared to the best ones before.

3 Conclusion

We present a new lattice reduction based algorithm to solve the GACD problem. This
algorithm works in polynomial time if the parameter satisfies certain condition on the proper
dimension of lattice we need. This restrict is very much related to the Hermit factor of the
reduction algorithm. We show that we can use our algorithm to attack the FHE systems
based on the GACD where γ = O(λ5), η = O(λ2), ρ = λ. and how the Hermite factor can
impact the selection of secure parameters.

From the theoretical point of view, our work is the first one that related the selection of
parameters directly related to the Hermite parameters, which was not known before, More
importantly, we show that if we make progress on improve the Hermit factors, the security
parameters might be fundamentally affected.

For future work, we think our attack points to a very interesting new direction, which
has great potential in term of further improvement in both theory and practice, and we
believe we can further improve our algorithm to solve the PACD problem.

The authors are grateful to Johannes Buchmann, Kai-Ming Chung, Craig Gentry Robert
Fitzpatrick, John Schanck, Bo-yin Yang for useful discussions.

References

1. Brakerski Z, Vaikuntanathan V. Efficient fully homomorphic encryption from (standard) LWE.
Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on. IEEE,
2011: 97-106.

2. Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP.
Advances in Cryptology-CRYPTO 2012. Springer Berlin Heidelberg, 2012: 868-886.

3. Bosma W, Cannon J, Playoust C. The Magma algebra system I: The user language. Journal
of Symbolic Computation, 1997, 24(3): 235-265.

4. Chen Y, Nguyen P Q. Faster algorithms for approximate common divisors: Breaking fully
homomorphic encryption challenges over the integers. Advances in Cryptology-EUROCRYPT
2012. Springer Berlin Heidelberg, 2012: 502-519.

5. Chen Y, Nguyen P Q. BKZ 2.0: better lattice security estimates. Advances in CryptologyCASI-
ACRYPT 2011. Springer Berlin Heidelberg, 2011: 1-20.

6. Cohn H, Heninger N. Approximate common divisors via lattices. arXiv preprint
arXiv:1108.2714, 2011.

7. Coron J S, Mandal A, Naccache D, et al. Fully homomorphic encryption over the integers with
shorter public keys.Advances in Cryptology-CRYPTO 2011. Springer Berlin Heidelberg, 2011:
487-504.

8. Coron J S, Naccache D, Tibouchi M. Public key compression and modulus switching for fully ho-
momorphic encryption over the integers. Advances in Cryptology-EUROCRYPT 2012. Springer
Berlin Heidelberg, 2012: 446-464.

9. Cheon J H, Coron J S, Kim J, et al. Batch fully homomorphic encryption over the inte-
gers.Advances in Cryptology-EUROCRYPT 2013. Springer Berlin Heidelberg, 2013: 315-335.

10. Coppersmith D. Finding a small root of a univariate modular equation. Advances in Cryptology-
EUROCRYPT96. Springer Berlin Heidelberg, 1996: 155-165.

11. Gentry C. A fully homomorphic encryption scheme. Stanford University, 2009.
12. Gentry C, Halevi S. Implementing gentrys fully-homomorphic encryption scheme. Advances in

Cryptology-EUROCRYPT 2011. Springer Berlin Heidelberg, 2011: 129-148.
13. Gama N, Nguyen P Q. Predicting lattice reduction. Advances in CryptologyCEUROCRYPT

2008. Springer Berlin Heidelberg, 2008: 31-51.
14. Howgrave-Graham N. Approximate integer common divisors. Cryptography and Lattices.

Springer Berlin Heidelberg, 2001: 51-66.

15. Stehlé D, Steinfeld R. Faster fully homomorphic encryption.Advances in Cryptology-
ASIACRYPT 2010. Springer Berlin Heidelberg, 2010: 377-394.

16. Micciancio D, Goldwasser S. Complexity of lattice problems: a cryptographic perspective.
Springer, 2002.

17. Nguyen P Q, Valle B. The LLL algorithm: survey and applications. Springer Publishing Com-
pany, Incorporated, 2009.

18. Nguyen P Q, Stehlé D. LLL on the average.Algorithmic Number Theory. Springer Berlin Hei-
delberg, 2006: 238-256.

19. Nguyen P Q, Stehlé D. An LLL algorithm with quadratic complexity. SIAM Journal on Com-
puting, 2009, 39(3): 874-903.

20. Van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over the integers. Ad-
vances in Cryptology-EUROCRYPT 2010. Springer Berlin Heidelberg, 2010: 24-43.

21. Novocin A, Stehlé D, Villard G. An LLL-reduction algorithm with quasi-linear time complexity.
Proceedings of the 43rd annual ACM symposium on Theory of computing. ACM, 2011: 403-412.

22. Stehlé D, Zimmermann P. A binary recursive gcd algorithm. Algorithmic number theory.
Springer Berlin Heidelberg, 2004: 411-425.

