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Abstract. The paper is about methodology to detect and demonstrate
impossible differentials in a block cipher. We were inspired by the shrink-
ing technique proposed by Biham et al. [2,3] in 1999 which recovered
properties of scalable block cipher structures from numerical search on
scaled down variants. Attempt to bind all concepts and techniques of
impossible differentials together reveals a view of the search for impos-
sible differentials that can benefit from the computational power of a
computer. We demonstrate on generalized Feistel networks with internal
permutations an additional clustering layer on top of shrinking which
let us merge numerical data into relevant human-readable information
to be used in an actual proof. After that, we show how initial analysis
of scaled down TEA-like schemes leaks the relevant part of the design
and the length and ends of the impossible differentials. We use that ini-
tial profiling to numerically discover 4 15-round impossible differentials
(beating the current 13-round) and thousands of shorter ones.
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feistel networks with internal permutations, TEA.

1 Introduction

Consider a block cipher and assume its input and output space are both equipped
with well-defined notions of difference between two elements. An impossible dif-
ferential of this block cipher is a pair of input-output differences that never occur
over queries (or inverse queries) to it. Impossible differentials started as a stan-
dalone cryptanalytic technique in the work of Biham [1,3] and Knudsen [10,9].
The exhibition of impossible differentials in a block cipher usually proceeds along
the following lines. Particular input and output differences are first selected. The
choice of these extremal differences is usually not explained, however they would
be understood as being ones that are the least quickly destroyed by the operation
of the block cipher (respectively in the direct and reciprocal querying direction).
Each difference is then formally propagated through the block cipher up to some
intermediate point. One then observes that e.g. for a certain number of rounds
the extremal differences contradict at the intermediate point. This is called the
miss-in-the-middle method of demonstrating an impossible differential. Most of
the time, it was also the method of discovery of the impossible differential. When



that is the case, there is no real guarantee that the exhibited impossible differ-
ential is the longest or the only one, because the number of rounds was actually
chosen to make it work.

Sometimes one may still be happy with that: the assumptions to derive the
mathematical propagation model may seem fairly reasonable and one may be
content that this should indeed gives the best results. However, ignoring the fact
that such a model is usually not experimentally assessed at all, sometimes in an
attack one does not just want one longest impossible differentials but a handful of
them, were they slightly shorter. The current methodology favors mathematical
simplicity first and working things by hand, so it restricts from the start the
amount of discovery one might be able to derive from it.

There were attempts to overcome these limitations. Some work still defines a
formal propagation system but let a computer find a contradiction [8,12,15]. This
indeed increases the search space but the results are still limited by the assump-
tion of a propagation model. Another approach actually dates back to 1999 and
was used by Biham, Biryukov and Shamir in their attacks against Skipjack and
Khufu [2,3]. They used scale models of these block ciphers to experimentally dis-
cover the impossible extremal patterns. They called this technique Shrinking. Al-
though they discovered the impossible differential patterns experimentally, these
patterns were formally demonstrated by using the miss-in-the-middle technique.

In this paper, we essentially raise the following question: In the Shrinking
method, why just use the scale model to discover the extremal patterns and not
also derive an impossible trail? (that is, actually, derive the propagation model
of these extremal differences). While this may look like an ambituous goal, it is
a fact that if one can actually exhaust on the scale model to find the extremal
differences, one can find at the same time all the intermediate differences. But
arises the technical problem that intermediate sets of differences are just to large
to let the human eye capture their formal structures. In this paper, we propose
one technique to ease off this problem. It is a simple value clustering technique
that we call Rectangle Partitioning ; it simply arranges a set of values having
coordinates into rectangles i.e. sets that can be described as Cartesian products
of sets of coordinate values. As we shall see this makes it far easier to grasp
the structure of a set of values. The propagation of extremal differences into
the intermediate states is just a sequence of sets that can all be arranged into
sets of rectangles. Then, we can choose a splice point, where the concatenation
of the forward trail and the backward trail has the least complexity in terms
of rectangles. In cases when each intermediate set is actually one big rectangle,
it is trivial to derive a formal miss-in-the-middle trail. So we let the shrinking
technique go all the way down to finding the most obvious impossible trail for us.

We describe two applications of Shrinking and Rectangle Partitioning:

– We first return to the original target of the Shrinking technique: generalized
Feistel networks with internal permutations. It served as a test bench to
the rectangle partitioning technique and we demonstrate it on this case to
compute automatically impossible trails. (the longest impossible differentials
were known already since Biham et al.)



– After that, we apply the shrinking technique to a block cipher that is not
strictly scalable: TEA. Of course, it is easy to let the particular parameters
vary to obtain a generalized family of TEA block ciphers, members of which
are scalable. We use such variants at varying scales to learn the connection
between parameters and properties of the design such as the length of the
longest impossible differentials and non-trivial supersets of the associated ex-
tremal differences and their propagations. Computing short description trails
of small scale variants let us observe that the optimal splice point overlaps
with trails that could obtained by miss-in-the-middle, with a propagation
model that is suggested by the trails computed at small scale. This pro-
vides us with the ingredient to settle a miss-in-the-middle search successful
up to finding the longest impossible differentials. Indeed we find 4 15-round
impossible differentials of TEA (beating the current 13-round impossible
differentials of [5]). The same search also provide thousands of impossible
differentials over 14 or 13 rounds (but obviously more may exist by relaxing
the extremal supersets which were profiled for the longest impossible differ-
entials). As always, for each of them, we can use the rectangle partitioning
technique to let us see the “structure” of the intermediate sets of differences,
sometimes trivially overlapping with an immediately verifiable trail.

The paper is organized as follows. The first half of the paper is a theoretical
discussion about impossible differentials. The reader mostly interested in the
results should just skip it and jump directly to section 5. Since the results have
just been reviewed, we just pay a moment to describe the structure of the dis-
cusssion part. The goal of Section 2 is to revisit the usual concepts on a fresh
basis. The goal of Section 3 is to move the discussion about the search for im-
possible differentials to a concrete circuit-oriented model of practicality; we also
put the usual search methodology in this view. Section 4 presents an alternate
search paradigm which includes the Shrinking approach. Section 5 and Section 6
presents the results. Section 7 integrates the results to the theoretical discussion.

2 The Idea of Impossible Differentials

Differential Cryptanalysis. Let C = {Ek, k ∈ K} denote a block cipher, that
is, a family of permutations indexed by a parameter k ∈ K. The value of k will
not be of importance and one will just address a generic element of C simply by E.
Given oracle-access to a permutation E, differential cryptanalysis considers pairs
of parallel evaluations x 7→ E(x) and x′ 7→ E(x′) for random x, x′ prepared under
some prescribed binary (symmetric) relation Rin (a symmetric subset of pairs,
for instance defined by a fixed difference). A particular relationRin is chosen that
would let an instance of the cipher exhibit non random behaviour. That would
be captured by another binary relation Rout that holds on (E(x), E(x′)) with
some probability p for random (x, x′) ∈ Rin and E ∈ C. A particular behaviour
is observed on C under Rin when p deviates noticeably from the probability that
random y, y′ satisfy Rout. At this point arises a nice dichotomy.



1. Either (C,Rin,Rout) is a deterministic event, that is, p = 0 or 1.
2. Or (C,Rin,Rout) is probabilistically biased, that is, p is either high or low.

Up to changing Rout into its complement, the alternatives within each case are
just equivalent to each other. Now let us introduce the following notation. We
denote by C[Rin] the set of pairs (E(x), E(x′)) over all (x, x′) ∈ Rin and E ∈ C.

C[Rin] = {(E(x), E(x′)), (x, x′) ∈ Rin, E ∈ C}.

Then, the first case purely corresponds to a set-theoretic relationship: eitherRout

contains C[Rin] (p = 1) or it belongs to the complement (p = 0). The second
case addresses distribution biases within C[Rin]. Therefore, the two cases deal
with somehow orthogonal aspects of the block cipher. Case 1 purely deals with
the matter of coverage. Case 2 purely deals with unevenness within whatever
is covered. These two cases therefore correspond to two distinct cryptanalytic
approaches, respectively termed impossible and statistical differential cryptanal-
ysis. In this paper, we are concerned with issues of impossible differential crypt-
analysis. Our concern is on methodology to detect and demonstrate incomplete
coverage in a block cipher.

A Feeling of Impossible Differentials. So let C be a block cipher. Our goal
is to find Rin such that C[Rin] is incomplete. Consider the map

D : Rin 7−→ #{(y, y′)} −#C[Rin]

that to any relation Rin maps the cardinality of the coverage defect. We are
interested in those Rin’s such that D(Rin) > 0. We are especially interested
in those Rin’s such that D(Rin) is maximal. With insight in the cipher’s op-
eration, we may have a strong suspicion on which those Rin’s could be. These
would minimize mixing with x-dependent or E-dependent information accross
the cipher. Indeed the more transitions are dependent on x or E the more the
information of Rin is dissipated and irrelevant, and the more pairs can actually
be reached. This however does not say whether these Rin’s do indeed induce a
coverage defect after the whole operation of the cipher. That is, even with the
right guess of Rin, we still need ways to demonstrate incomplete coverage.

A Reflection. Observe that, because C is a family of permutations, we could
just as well work from the other end. We may then try Rout’s out on C−1 =
{E−1, E ∈ C}, although alone it does not seem to bring any particular avail.
Now let us assume that some Rin indeed induces a coverage defect on C. For any
Rout in the complement of this (unknown) coverage, i.e. C[Rin] ∩Rout = ∅, we
also of course have Rin ∩ C−1[Rout] = ∅. That is, existence of a coverage defect
for C implies existence of a coverage defect for C−1. This is nice consistency.
Furthermore, when we expect only the most liable Rin’s to actually expose a
coverage defect, we similarly only expect the most liable Rout’s from the other
end, which therefore, would be their actual counterparts. This heuristic gives a



hint of what the ultimate incomplete coverages can be. By the way, we may now
state the definition: (C,Rin,Rout) is said impossible when the two relations are
mutually exclusive through the cipher, that is, C[Rin]∩Rout = ∅. Of course, the
ability to compute C[Rin] gives all the impossible counterparts of Rin at once.

Half the Way. Assume the block cipher has two independent halves, that is C =
H′ ◦H. In that case, we may first more easily compute C[Rin] by first computing
H[Rin], then decomposing H[Rin] into several components R0

mid∪ . . . where the
computation of each H′[Ri

mid] is easy, and finally get C[Rin] = ∪iH′[Ri
mid]. This

would be one approach.
A second approach would, as before, assume Rout and try to demonstrate

that (C,Rin,Rout) is impossible. From C[Rin] ∩Rout = ∅,

H[Rin] ∩H′−1[Rout] = ∅.

Therefore, if we can do the computation of H[Rin] and H′−1[Rout] and it turns
out these sets are disjoint, we get our demonstration. This is the root of the
miss-in-the-middle strategy [9,3]: if we have target Rin and Rout, we need the
ability to compute the halfway coverages only for these two. On the other hand,
we then never get the full C[Rin].

An Example. Wemay illustrate the above two strategies on the simple example
of 5-round Feistel networks with (independent) permutations (and final swap).
One round makes (L,R) 7→ (R,L⊕π(R)) where π is a permutation. We split the
cipher into the 3 first (H) and the 2 last (H′) rounds. Now we choose Rin to be
the line L(a, 0) = (u, u⊕ (a, 0)) for some fixed a 6= 0, because it propagates one
round independently of x = (L,R) and π to L(0, a) and looks promising as such.
In particular, that shows that L(0, a) is a good candidate for Rout as it has the
same property in the backward direction. Below, we shall simply denote π(a)
for short of π(R ⊕ a)⊕ π(R) since it will bear no ambiguity, and (L,R) will be
considered fixed all the time. The computation of H[Rin] follows the transitions

(a, 0)→ (0, a)→ (a, b = π2(a))→ (b, c = a⊕ π3(b)).

There, b is a random non zero value when π2 is a random permutation, and c is
a random value distinct from a when π3 is random. Therefore

H[Rin] = ∪b6=0,c6=aL(b, c). (1)

If we pursue the computation of C[Rin], we may split H[Rin] into

R0
mid = ∪b 6=0L(b, 0) and R1

mid = ∪b6=0,c 6={0,a}L(b, c).

From (b, 0)→ (0, b)→ (b, d = π5(b)), we get

H′[R0
mid] = ∪b 6=0,d6=0L(b, d).



Call itA for short. On the other hand, the computation ofH′[R1
mid] gives (b, c)→

(c, e = b ⊕ π4(c)) after one round, where c /∈ {0, a} and a random e 6= b. If e is
non-zero, after one more round, we get (e, c⊕ π5(e)). That intersects A but for
(e, 0). If e is zero, we get (0, c), and that intersects A but for (0, 6= 0, a). Finally

C[Rin] = ∪b 6=0,d6=0L(b, d)
⋃
∪e 6=0L(e, 0)

⋃
∪c 6=0,aL(0, c).

The complement is indeed L(0, a) (and the 0-line), as we had suspected.
If, on the other hand, we only care to show that Rout = L(0, a) is indeed

impossible, we can compute its image by H′−1. Propagating backward (0, a)→
(a, 0)→ (b′ = π4(a), a), we find

H′−1[Rout] = ∪b′ 6=0L(b′, a).

By confronting with (1), we indeed see that the two sets are disjoint. That was
incredibly less painful. On the other hand, in the first computation, we do get
the proof that Rout = L(0, a) is the only maximal impossible relation.

Also note that the choice of the splitting is rather essential in the case of the
miss-in-the-middle strategy: 4 |1 instead of 3 |2 would not have been as easy.

How Large is the Key. The case of dependent halves would be, as usual,
troublesome. We could still of course have the condition E[Rin]∩E′−1[Rout] = ∅,
for all (E′ ◦ E) ∈ C, but this would hardly be useful in general save for very
simplistic dependency patterns. Nothing general can be said here, except of
course that if one denotes H = {E, E′ ◦ E ∈ C} and H′ = {E′, E′ ◦ E ∈ C}
then C ⊆ H′ ◦ H and therefore, C always at least has the impossible relations
of H′ ◦ H. In the sequel, we always assume independent layers whenever we
encounter composition.

3 Impossible Differentials in the Real World

The implementation model that we describe below is intended as a mental image.
It lets us have a generic view of a block cipher as well as a useful platform to
relate the different approaches, with their practical significance in mind.

Down to the Mechanics. We shall use a circuit-oriented view of a block
cipher. A block cipher firstly has memory slots for data, among which input
slots and output slots. Then, it has a network of operations connected with such
data slots. Among these operations, some are key-dependent, that is, they have
an internal configuration which is loaded prior to any execution. Once loaded
with input data, a scheduler lets the data flow through the operations until the
output slot is reached. Since the global operation is a permutation, there is an
inverse scheduler that from an output value computes back to the original input.

On the other hand, relations must also, indeed, be mechanical. At some point,
we need that checking against a relation be implementable by a practical circuit.



Therefore, we are somewhat limited in our capacity of accounting for coverages.
A different constraint bears on Rin, from which we pick up pairs. We say that
Rin is random-accessible when it admits a circuit that taking an index on its
input slot outputs a member pair. The whole picture is shown below, where
we have also let intermediate slots satisfy some relations. Intermediate slots are
indeed well-ordered by the scheduler.

......

......

E

Rin

Rout

R1

We call the sequence Rin,R1, . . . ,Rr a propagation trail of Rin through
C if any execution with any configuration E of C lets R1, . . . ,Rr output true.
When it is so, each Ri is a superset of the actual coverage after the first i layers.

Propagation trails are usually found by hand, using some understanding of
the generic behaviour of the sequential layers, proven as a mathematical property.

A TEA Sample. TEA is Feistel network over twice 32-bit words. It uses ad-
dition mod 232 denoted � as the halves-combiner. The internal function is

F (R) = ((R� 4)� Chigh)⊕ (R� Cmid)⊕ ((R� 5)� Clow)

where� (resp.�) shifts the operand’s bits to higher (resp. lower) positions, and
the C·’s are round-dependent constants including key material. TEA iterates 64
such rounds [14]. Some impossible differentials of TEA can be found in [13,5]. In
[5] the following property of the TEA round function is shown. Let D[n] denote
the 32-bit relation where the n-th bits are different and all bits below are equal.
Then it is observed that the relation R = (0, D[n]) propagates after one round
to R′ = (D[n], D[n−5]). Thanks to this property, it can be seen that TEA has a
7-round trail from (D[26], 0) to (D[1], ∗) (where ∗ means “unspecified”). However
it is easy to see that this trail does not account for the coverage very well.
The simple proof is that there is also a similar trail in the backward direction,
which after 6 rounds contradicts with the first. Therefore while our trail covers
everything after 8 rounds, the coverage is in fact incomplete at least 6 rounds
further. The miss-in-the-middle strategy demonstrates us that fact.

This situation is quite common in the exhibition of impossible differentials
as found in the literature. The exhibited trails are stuck after some early point.
However they might still be successful, if they can be combined by miss-in-the-
middle. Here miss-in-the-middle is used as a tool to mitigate our limited power



in tracking coverages. Of course the question remains as to whether the coverage
defect that is successfully exhibited is indeed the longest one.

An Extra Level of Mechanics. Sometimes there are not one but many vari-
ants of Rin that we may want to check. This is implemented by Rin having an
auxiliary configuration input slot. At the same time, R1, . . . ,Rr are also in sev-
eral variants, and we need to bind their configuration data to the configuration
data of Rin. To keep it simple, assume C iterates a single layer. In that case,
one can let Rin define R1, then R1 define R2, and so on, by uniformly using
some functional relation R that maps the configuration data of one to that of
the next. Again the soundness of R is guaranteed by a mathematical property.

This is the approach taken in [8,12,15]. It provides indeed some automation
and made it possible to recover impossible differentials found by hand and more.
However it keeps much in common with the previous manual method. It strictly
works in a mathematical model of the block cipher, from which it can only re-
trieve some “corollary” trail. In fact, since all configurations of Rin are supposed
to be tried, it is equivalent to an engine building all the #{Rin’s} circuits.

4 Working Out Through Approximation

The Core Idea. There would be yet another approach. To simplify, let us focus
on the actual coverage after the i-th layer. Call it R∗i . The intuition behind the
previous approaches is that R∗i is a structured set. Therefore, despite the fact
that it contains an overwhelming number of pairs (indexed over Rin × C), only
a few would suffice to recover it, should its structure be simple enough. It would
therefore all boil down to identifying its basis of expression correctly.

Approaching the Coverage. To work out this idea, let us start with trying
some approximation of R∗i . We split the space of symmetric pairs into some
partition (S1, . . . ,S`). Of course, membership to each element of the partition is
implemented by a circuit. They form of collection of “sensor” relations, consuming
` in area. These sensors are special in that their output bit can only change once
after setup. We call the collection of these output bits the state bits. Now if we
want to locate R∗i over this partition, we just put all state bits to zero. Then, we
make several executions of the block cipher with random x, x′ ∈ Rin and E ∈ C.
At each execution, the output pair may change some state bits. After some
estimated number of trials, we expect the hit classes to be an actual superset of
R∗i . (It will be for later to be done, to make the proof that the upper bound is
correct for any x, x′ ∈ Rin and E ∈ C.)

It is interesting to compare this method with the previous one. The ` state
bits are the same as an `-bit configuration data for Ri. If Rin also has configura-
tion data, then previously R would fill the `-bit configuration data of Ri, while
here Ri is built by some preliminary phase. However in both cases, the real cov-
erage R∗i is only approximated with ` bits of information. Therefore the previous



approach appears as a subcase of the current approach, where the configuration
data of Ri is hard-coded rather than soft-coded by preliminary sampling.

This preliminary sampling does not come for free though. If all classes in the
partition are of equal volume, then a little more than ` trials would be enough
to ensure that each class has been visited if it had to. However if one class is
very small, then we must wait until that class had a chance to be hit. Therefore
the sampling time is about 1/pmin where pmin is the smallest class’s probability.

Remains to us the choosing of an representation basis. As before, a rough
approximation could let the miss-in-the-middle expose a contradiction for a cer-
tain number of rounds. However now we wish for the most accurate. In general,
the operations of the block cipher suggest a natural family of relations from
which Rin is actually chosen. That family would be our primary candidate as
an representation basis. In general, Rout would lie in this family too.

In fact, assume that we even have a target Rout and just want to detect it
as being avoided after multiple executions. Let S be the partition’s component
containing Rout. If S is very large against Rout then the probability that one
pair falls into it is very large against the probability that this pair belongs to
Rout. Therefore, S would be hit much earlier than Rout would have a chance
to. In this case, Rout has no chance to be detected as being unhit. For this to
happen, Rout has to be an element of the partition or very close to one.

Unfortunately this is where the limit of the approach lies. If Rout is the last
expected coverage defect, it would cover a small fraction of all pairs. It being a
part of the partition would make the sampling phase take forever. There is no
working around of this problem. On the other hand, this is no surprise: while
this method can let us automatically recover an approximation of the coverage,
there is indeed a limit in its precision.

Learn from the Simple. The hope of course is in the ability to build relevant
simplified models of a block cipher. These would be in the scope of an accurate
approximation. If the models are relevant, results obtained from them may give
information about the real block cipher such as what the structure of the coverage
looks like or what is the expected length of the longest impossible differential.

Such methods have already been exploited. In 1999, Biham, Biryukov and
Shamir showed an impossible differential for 24 rounds of Skipjack [2]. This
impossible differential was used to attack 31 out of the 32 rounds of Skipjack.
It is in fact an impossible differential of the global structure of Skipjack, which
is a type of generalized Feistel Network. This global structure defines a more
general block cipher family and its impossible differentials therefore port to the
underlying block cipher. The impossible differential was demonstrated by a miss-
in-the-middle trail. However it was checked that there were no longer impossible
differential of the global structure (call it C) by using instances of C where the
non-linear permutations are replaced with 3-bit random sboxes. This could be
done because the syntactic definition of C (just as 5-round Feistel in our previous
example) is independent on the word size. Therefore any word size could be used
to analyze it. Biham, Biryukov and Shamir called this technique shrinking [2].



They also used it in [3] to find impossible differentials of Khufu (which would
have been a much harder case to be treated by hand).

In the remainder of this paper, we develop two extensions of this method-
ology. We first show how the numerical output of the shrinking technique can
be turned into macroscopical information. This is achieved by clustering and is
demonstrated on Feistel (and generalized Feistel) networks with permutations.
The second extension applies to the TEA block cipher. It first analyses scaled
down approximations and then use this information to aim at particular points
of the coverage where again complete accuracy is practical.

5 The Shrinkable Cipher

Our first case will be an easy one: we shall quickly revisit our previous example,
the classical Feistel network with permutations. Generalized Feistel networks
work just the same and the results are given at the end of the section.

As already noticed the syntactic definition of the classical Feistel with per-
mutations is independent on the word size. This means that it is not one block
cipher but a family of block ciphers indexed by the word size. This property pro-
vides scaled down models natively: one just pick the block cipher defined for the
smallest word size. When using permutative components, the smallest word size
is at least 3 bits because a w-bit permutation has degree at most w− 1 and any
2-bit permutation would just be affine. Consider, therefore, the r-round Feistel
block cipher over 3-bit words. For any value of r we shall compute coverages over
the basis of lines L(a, b) = {(u, u ⊕ (a, b))}. The lines form a partition with 26

components. Each one is random-accessible by u 7→ (u, u⊕ (a, b)) and checkable
by (u, v) 7→ u⊕ v =?(a, b). The expected sampling time is 64 executions.

5.1 Basic Shrinking

To warm up, we look for the longest impossible differentials (with respect to the
basis of lines). For that, we try each of the 63 non-zero lines on the input and see
if there are unhit (non-zero) lines on the output. To avoid changing the key each
time, we have used the same 64 random instances of the block cipher for each
input line. For such tiny parameters, it is of course an instantaneous matter to
get the impossible differentials for any number of rounds of interest.

For 6 rounds, we find no input line yielding an unhit output line. In this
case, the particular instances of the block cipher that were picked could serve
as a certificate for this property. For 5 rounds, we find the impossible differentials

001 000 <> 000 001
010 000 <> 000 010
011 000 <> 000 011
100 000 <> 000 100
101 000 <> 000 101
110 000 <> 000 110
111 000 <> 000 111

Here their common shape (a, 0)(0, a) where a 6= 0 can be recognized at a glance.



Now, for instance starting from L(111, 000), we want to compute the coverage
after the i-th round, for i = 1, . . . , 5. This gives
1: 000 111
2: 111 001, 111 010, 111 011, 111 100, 111 101, 111 110, 111 111

whose patterns are still easily recognizable. But after round 3, we get 49 elements.
So we are not out of the woods yet. We need a clustering facility.

As a matter of fact, since this very simple case has only two dimensions, it
could be further worked out at a glance. See Figure 1 below.

Fig. 1. Graphical representation of the coverages 1 to 5 starting from the difference
111 000 at 0 (the difference 000 000 is in gray since it can never be reached).

1: 2: 3: 4: 5:

5.2 Rectangle Partitioning to the Rescue

More generally, let the parameterization space of our basis have ` dimensions.
Furthermore, each coordinate can take values within a set, which for convenience
we assume to be the same for each coordinate. Call it W . The representation of
a coverage is a set of elements in W `. We call a rectangle a subset of elements
ofW ` of the shape C1× . . .×C` where Ci describes values in the i-th coordinate.
Each Ci is termed a side of the rectangle. The Rectangle Partitioning procedure
takes a set of elements ofW ` and outputs a set of rectangles over these elements.
Here is how it works.

Let S be the input set. Each element indeed makes for a rectangle by itself.
So we can trivially convert S to an initial set of rectangles.

Now let i be one of the ` coordinates. For any rectangle R, let Hi(R) be
the projection of R to all but the i-th coordinate (this is Cartesian product
of the rectangle’s sides save the i-th one). We may just group rectangles with
the same value through Hi. But since these rectangles coincide at all but one
coordinate, they can actually be joined, that is, their union as sets forms a
valid new rectangle where the i-th side is just the union of the i-th sides of all
rectangles in the group.

For some chosen order of the ` coordinates, we just repeat the above hash-join
procedure. The algorithm is clearly linear (up to maybe a logarithmic factor) in
the size of the input set.

It can be seen, even on the graphical example above, that the formed rect-
angles depend on the order we choose for the successive coordinates. Unless we
have a criterium to select one order over another, we may choose one arbitrarily.

By using this algorithm the previous outputs rewrite



1: { {000}x{111}}
2: { {111}x{001,010,011,100,101,110,111} }

where the x symbol separates sides. We can improve this output by letting
a coordinate-set be given from its complement when shorter, and by giving a
specific symbol to the all-values set. And voilà!

1: { {000}x{111} }
2: { {111}xNOT{000} }
3: { NOT{000}xNOT{111} }
4: { {000}xNOT{000} NOT{000,111}xALL }
5: { {000}xNOT{000,111} NOT{000}xALL }

From such an output we indeed get the global picture which would let us make
an actual proof. However, for that, we need to understand the global transitions,
and this trail may not be the easiest to follow. Alternatively, we have access to
the complement of the 5-th coverage, and we could work our way up. For any
intermediate point, we have a trail from outside in, and some of them may be
easier to follow. “Easy to follow” needs now to be defined. Several measures of
complexity of a trail are possible. One is the accumulated number of rectangles,
as it could be expected that one would understand the propagation rectangle by
rectangle. It could also be the accumulated size of coverages. For any measure of
complexity, we can compute a least complicated trail iteratively, by choosing the
minimal increase round by round. There could be situations of equal increase.
When that is, either one branch completes the trail and therefore all the others
would just do the same. Or one branch does not complete the trail and parts
of other branches contribute the close it, until perhaps they are all completely
consumed. This may create a combinatorial number of equivalent choices around
the completion point. In general, one would break the tie by using an enhanced
measure of complexity or arbitrarily.

We have implemented the above two measures of complexity of a trail. De-
pending on the intermediate point that we choose we find the following values
of the accumulated size of coverages and the accumulated number of rectangles.

Intermediate Point 0 1 2 3 4 5
Accumulated Size of Coverages 176 115 67 67 115 176
Accumulated Number of Rectangles 9 8 7 7 8 9

It turns out the two measures give equivalent results on this example. An easiest-
to-follow trail is therefore the miss-in-the-middle trail (there are indeed two of
them, by symmetry of the Feistel scheme)

0: { {111}x{000} }
1: { {000}x{111} }
2: { {111}xNOT{000} }
3: { NOT{000}xNOT{111} }
----
3: { NOT{000}x{111} }
4: { {111}x{000} }
5: { {000}x{111} }



Upon checking that the same trail holds for any other non-zero value that 111,
the trail is indeed valid for any non-zero a. This step of the automation has not
been implemented.

Note that the miss-in-the-middle technique is here diverted from its classical
use. Usually, it is used to search for a contradiction. Here, we know the con-
tradiction exists at every intermediate round because the coverage is tracked
with respect to the same basis all the way down to the end where impossi-
ble differences were found. Therefore, we search among these all contradictory
miss-in-the-middle trails for ones that have the minimal complexity of descrip-
tion. This indeed is what would let us the most easily check the validity of the
exhibited transitions and therefore prove the impossibility.

5.3 Generalized Feistel networks with Permutations

can be treated similarly provided the number of threads is not too large. Table
1 below gives the patterns of the longest impossible differentials as found exper-
imentally. All these longest impossible differentials were already known in [2,3]
or later in [12]. As before, we can output a best trail to account for each pair of
impossible differentials.

Table 1. Last Impossible Differentials of GFNs with Permutations before complete
coverage (obtained by sampling with 3-bit sboxes on a single PC in about 5 minutes).

GFN type Threads Rounds Impossible Differentials
Type-1 (Gen-CAST256) [6] 4 19 (a, 0, 0, 0) 9 (0, 0, 0, a)

Type-2 (Gen-CLEFIA) [6] 4 9 (0, 0, a, 0) 9 (0, 0, 0, a)
(a, 0, 0, 0) 9 (0, a, 0, 0)

Gen-RC6 [12] 4 9 (0, 0, 0, a) 9 (a, 0, 0, 0)
(0, a, 0, 0) 9 (0, 0, a, 0)

Gen-MARS [12] 4 11 (a, 0, 0, 0) 9 (0, 0, 0, a)

Gen-FourCell [12] 4 18 (0, 0, 0, a) 9 (0, 0, b, b)

5.4 Testing Design Variants

Assume we want to test the impact of shifting from independent random internal
permutations to one random internal permutation input-xored by independent
random keys. This is of course a practical setting and we want to see if something
is changed from the impossible differential point of view.

The impact of this shifting on the impossible differentials of GFNs was ad-
dressed in [4]. They showed a 1-round improvement over the impossible differ-
entials for the Gen-CAST256 and the Gen-MARS with 4 threads shown in [8,7].
But these impossible differentials were not the longest as known since Biham et
al. and even with one extra round they remain shorter than the ones of Table 1.

Let us therefore shortly re-address the xor-key variant. We find experimen-
tally that, for a randomly selected internal permutation, the xor-key variant does



not yield longer impossible differentials, neither on the classical Feistel nor the
three GFN schemes from Table 1. At the maximal length, there are, however, a
few more impossible differentials. The optimal splice of trail remains the same
and would let us figure the structure of the impossible pairs.

Note that obtaining this kind of information comes almost at no cost. The
algorithmic (and the code) remains exactly the same, only the definition of the
cipher’s round has to be changed. This is definitely superior to methods that
build a model of the differential propagation [8,12,15] since such a model does
not have to be built; the obtained results can’t be challenged or improved since
they are experimental; even a best trail can be produced to start off a proof by
using the RectanglePartitioning technique described above.

6 The Shrunken Cipher

For our second case, we return to our second favourite example: TEA. Recall
that TEA is a Feistel cipher (using the � operator) with internal function

F (R) = ((R� l)� Chigh)⊕ (R� Cmid)⊕ ((R� r)� Clow)

where � is integer addition, � and � are respectively upper/lower shifting,
and the C·’s are round-dependent constants including key material. In the ac-
tual TEA, the two halves are w = 32 bits, l = 4, r = 5, Chigh and Clow are
fixed chunks of the key and Cmid is a round counter derived from the golden
ratio. Here we shall consider TEA-like schemes with modified size w, modified
amounts of shifting l and r, and arbitrary values for the C·’s at each round. Let
gen-TEA(w,l,r) denote this family of variants. Also, whereas the actual TEA
is prescribed to 64 rounds, we shall consider any number of rounds.

6.1 Cryptanalytic Dwarf Tossing: the Learning Phase

In this phase, we collect properties of the longest impossible differentials in
function of the parameters.

Length of the longest. As a first step, we restrict our focus to the length of
the longest impossible differentials (for the basis of all ⊕-lines). To this aim, we
consider small variants in gen-TEA(w,l,r) and see how far they go. All 22w − 1
possible input lines are considered. For now, we only record the length of the
longest impossible differentials.

To warm up, we consider variants with w = 5 and all possible values of l
and r from 0 to 4. We summarize the results in Table 2 below.

As one can see, the length of the longest impossible differentials does not
depend on l. Furthermore, we reviewed the found patterns and observed that
their numbers and shape do not depend on l either. Therefore we simply set this
value to r − 1 as in TEA and do not consider it any further.



Table 2. Length of the Longest Impossible Differentials of gen-TEA(w,l,r) for w = 5.

r\l 0 1 2 3 4
0 ∞ ∞ ∞ ∞ ∞
1 10 10 10 10 10
2 6 6 6 6 6
3 5 5 5 5 5
4 4 4 4 4 4

Two side notes may be in order. First, for r = 0, we observed no coverage
defect at any round. This can be understood by observing that for r = 0, F
is linear in the most significant bit and and differences in the most significant
bits of the two halves form of the stable subspace of the Feistel round. Also, for
r = 4, we observed complete coverage as early as round 5, which shows that F
is not a permutation as otherwise it would not have happened until round 6.

Dependency on the other parameters. Our second step is to investigate
the relationship between r and w. For w = 4 to 7, we considered several values
of r. For each of these variants, we considered the length Imax of the longest
impossible differentials (detected after sampling over many random instances).
In the course of the experiments, we observed seemingly monotonic behaviour of
Imax in term of the ratio w/r. Figure 2 below makes this statement more specific.
Each color is for a value of w. As one can see, Imax is roughly proportional to

Fig. 2. Lengths of the Longest Impossible Differentials of gen-TEA(w,l=r-1,r) for
w = 4, 5, 6, 7 and r between 1 and w − 1.

1 2 3 4 5 6 7

w/r
4

8

12

Imax

w/r. Parameters with r = 1 are on the line, while the others are above it. The
proportionality coefficient is roughly 2.

Following these estimates, the length of the longest impossible differentials
of the actual TEA would be lower-bounded by dImax(32/5)e = d2 ∗ 6.4e = 13.
Considering the global behaviour we do not expect it very far from that. Note
that the impossible differential from [5] covers 13 rounds. So it might be optimal.



Supersets of the extremal differences. The impossible differentials for
(w, r) = (6, 1) and (7, 1) happen to be in the same number. They respectively
are (δin, δout) =

010000 100000 <> 000000 100000
010000 100000 <> 100000 010000
010000 100000 <> 100000 110000
100000 000000 <> 000000 100000
100000 000000 <> 100000 010000
100000 000000 <> 100000 110000
110000 100000 <> 000000 100000
110000 100000 <> 100000 010000
110000 100000 <> 100000 110000

0100000 1000000 <> 0000000 1000000
0100000 1000000 <> 1000000 0100000
0100000 1000000 <> 1000000 1100000
1000000 0000000 <> 0000000 1000000
1000000 0000000 <> 1000000 0100000
1000000 0000000 <> 1000000 1100000
1100000 1000000 <> 0000000 1000000
1100000 1000000 <> 1000000 0100000
1100000 1000000 <> 1000000 1100000

They obviously have very much in common. Similarly, the impossible differen-
tials for (5, 2) and (7, 2) are in the same number 13 and have the same shape,
which is bit different from the one above. What all these patterns have in com-
mon though is that they are only different in their most significant bits. For
some fixed u and v, the input patterns lie in the set

({0, 1}u{0}w−u, {0, 1}v{0}w−v)

and similarly for the output patterns (with, due to the Feistel symmetry, swapped
values of u and v). Furthermore one can observe that in the above listing u = r+1
and v = 1, and the same can be seen in the impossible patterns of the second
family of parameters too.

Longest-length Impossible
(δin, δout)

=⇒
{
δin ∈ ({0, 1}r+1{0}w−r−1, {0, 1}1{0}w−1)
δout ∈ ({0, 1}1{0}w−1, {0, 1}r+1{0}w−r−1) .

Tracking the coverage. For impossible pairs of extremal differences (δin, δout),
we can compute shortest description trails with respect to their rectangle com-
plexity (for some arbitrary order of the coordinates in the Rectangle Partitioning
procedure). We use (w, r) = (5, 2) as an illustrative example. For each impossible
pair (δin, δout), we find a single shortest description trail. Here is one example
(we have used a nicer display of rectangles here; also the two halves have been
merged in one vector):

0: { (0,0,1,0,0,1,0,0,0,0) }
1: { (1,0,0,0,0,*,*,0,0,0) }
2: { (0,0,0,0,0,1,0,0,0,0) (*,1,0,0,0,*,*,*,1,0) (1,0,0,0,0,*,*,1,0,0) }
----
2: { (*,*,*,*,0,*,*,1,*,1) (*,*,*,*,1,*,*,0,*,1) }
3: { (*,*,*,*,1,*,*,1,0,0) }
4: { (*,*,1,0,0,1,0,0,0,0) }
5: { (1,0,0,0,0,0,0,0,0,0) }
6: { (0,0,0,0,0,1,0,0,0,0) }

Here is a second example:



0: { (1,0,0,0,0,0,0,0,0,0) }
1: { (0,0,0,0,0,1,0,0,0,0) }
2: { (1,0,0,0,0,*,*,1,0,0) }
3: { (*,*,1,0,0,*,*,*,*,1) }
----
3: { (*,*,*,*,1,*,*,1,0,0) }
4: { (*,*,1,0,0,1,0,0,0,0) }
5: { (1,0,0,0,0,0,0,0,0,0) }
6: { (0,0,0,0,0,1,0,0,0,0) }

While the second trail is simple enough to be detected by hand, the first is
much more complicated as the contradictory coverages are composed of several
rectangles. And yet, the two impossible differentials are of equal interest since
they cover the same number of rounds.

By reviewing several examples like these, we observe the following

key property: At the optimal splice point, the contradiction shows at the right-
most values of one or the other half. Therefore, the optimal splice point, chosen
for shortness of description purposes, reveals that tracking down these rightmost
values only (although this can only be done up to a certain intermediate point)
is just enough to recover the same trail, should we rather use the miss-in-the-
middle technique. This reveals us at the same time the outline of a propagation
model and gives us the fact that the miss-in-the-middle approach, based on this
propagation model, is able to unravel the longest impossible differential.

Supersets of the intermediate differences. So let us go ahead and define
this propagation model. By symmetry of the Feistel network, we can focus on
the input difference. The right part of an intermediate difference, starting from
the rightmost bits has deterministically some zeros, followed by some non-trivial
value, followed by a great number (possibly all) values. More precisely, the right
half of a difference after round i is lies in the set

Ri = {∗}r.(i−1) × {0, 1}r × {0}w−1−r.i.

This superset is non-trivial until r(i− 1) < w of course. Obviously, since this is
Feistel, the left part is equal to the right part of the previous round. At round i,
we only record the values at the right half ignoring the r(i−1) leftmost bits; this
guarantees that (starting from the prescribed extremal differences) the number
of values to record is bounded by 2r, for any i. The propagation model in the
backward direction is just the same up to swapping the two halves. For any Ri,
we call its support the bits that are not ignored; bits that are ignored are just
assumed to take any possible value.

At some intermediate round i where we seek for a contradiction (in, say, the
right half) we have recorded a subset ∆→i of the forward superset R→i and a
subset ∆←r−i of the backward superset R←r−i, which are the respective possible
intermediate differences. When there is a contradiction it lies in the projection
of these values to the intersection of the supports of R→i and R←r−i (if these



supports do not partially overlap, no contradiction can be infered). So we just
take the projections of ∆→i and ∆←r−i and see if they are disjoint.

6.2 A Mad TEA-Party

The previous experiments on small instances in the Gen-TEA family have permit-
ted us to very well profile both the impossible differences and a coverage approx-
imation to track the propagation of these differences until a point of contradic-
tion. This is material to discover all the impossible differentials of an arbitrary
instance in Gen-TEA family by using the miss-in-the-middle strategy. In partic-
ular all the impossible differentials and trails that exist for gen-TEA(32,4,5)
apply to the actual TEA block cipher.

For gen-TEA(32,4,5), the length of the longest impossible differential that
we can derive from our propagation model is upper-bounded by 15. This is
because 15 is the length of the longest combinations of R→i and R←r−i with
overlapping support. But this would actually completely fulfill our hopes because
if we go back to Figure 2 we see that we would hardly expect a length above 14.

After implementing the miss-in-the-middle search for the impossible differ-
entials of gen-TEA(32,4,5), we indeed find 4 15-round impossible differentials.
It takes no more than 5 minutes on a single PC. By symmetry, these differentials
are equivalently obtained from the splice 7/8 or the splice 8/7. They are

(010...,0...) <> (0...,100...)
(100...,0...) <> (0...,010...)
(100...,0...) <> (0...,110...)
(110...,0...) <> (0...,100...)

Let us review the first impossible differential. The rectangle partitioning outputs
that after 7 rounds (010...,0...) has propagated into (?...,?...*1) where
the ? means a bit that is not traced by the propagation model. Similarly in
the backward direction, after the 8 rounds (0...,100...) has propagated into
(?...,?...10). R→7 and R←8 have identical supports, the last two bits of the
right halves, and here these last two bits cover *1 in the forward direction and
10 in the backward direction, and hence are disjoint. It can be easily checked by
hand that it is indeed so.

With the same extremal supersets (and the same propagation model), we
also find 625 14-round impossible differentials, which are contributed by the
splices 6/8, 7/7 and 8/6, and 8881 13-round impossible differentials, which are
contributed by the splices 5/8, 6/7, 7/6 and 8/5.

7 Closing Discussion

Many of the impossible differential trails that have been developed in the lit-
erature use so-called truncated differentials [10,11]. With our terminology, this
concept (in its usual application) is equivalent to a coordinate-oriented basis of
representation of a coverage. In this statement a coordinate can be a bit as en-
countered in TEA or a word of a few bits, and each make for a small number of



basis elements. Working on a coordinate-oriented basis is always very practical
and can often be handled by hand. As opposed to that, the shrinking technique
considers all possible values of differences. We may call this a value-oriented
basis of representation of the coverage. Here, all combinations of coordinates
also make for basis elements. Because of the large cardinality of such a basis,
this approach is only practical at small scale. On the other hand, the shrinking
technique makes no assumption on the behaviour of the cryptosystem. There-
fore, whenever a block cipher structure is at reach of the shrinking technique,
it seems like an enormous waste not the use it. This is the case of generalized
Feistel networks, as we have seen, where the only small technical problem was
to turn the output of the shrinking technique into the relevant macroscopical in-
formation. However a complete block cipher design is not, in general, shrinkable.
When facing such a case, the problem remains as to what a nice representation
basis would be. In the case of TEA, we have been lucky, because the design
is simple enough to yield approximate scaled down variants. Thanks to that,
we could work out a relevant simplification of the block cipher. Also, the small
scaled down variants revealed to us the relevant input patterns, which were not
trivial. Even if the case of TEA seems simple enough to be treated by hand, as
it was, we insisted on using a systematic search (at practical scale) and it paid
off. Manual ways, on the other hand, always tend to oversimplify and therefore
limit the results by making initial restrictions. As we have seen in Section 4, any
way of representing a coverage implies a level of approximation. And defining
a coverage basis that can be propagated without block cipher sampling means
that the precision must be very low. We conclude this paper with the feeling
that the shrinking technique is a great technique of systematic investigation. In
this paper, we have only slightly extended its application. Extending its range
to more complicated block cipher designs will be the challenge of future work.
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