
An Equivalence-Preserving Transformation of
Shift Registers

Elena Dubrova

Royal Institute of Technology (KTH), Forum 120, 164 40 Kista, Sweden
{dubrova}@kth.se

Abstract. The Fibonacci-to-Galois transformation is useful for reducing the prop-
agation delay of feedback shift register-based stream ciphers and hash functions.
In this paper, we extend it to handle Galois-to-Galois case as well as feedfor-
ward connections. This makes possible transforming Trivium stream cipher and
increasing its keystream data rate by 27% without any penalty in area. The pre-
sented transformation might open new possibilities for cryptanalysis of Triv-
ium, since it induces a class of stream ciphers which generate the same set of
keystreams as Trivium, but have a different structure.

Keywords: Feedback shift register, NLFSR, Fibonacci configuration, Galois con-
figuration, stream cipher

1 Introduction

Shift register-based cryptographic systems are the fastest and the most power-efficient
cryptographic systems for hardware implementations [1]. The speed and the power are
two crucial factors for future cryptographic systems, since they are expected to sup-
port very high data rates in 5G ultra-low power products and applications. The 5G is
envisioned to have 1000 higher times traffic volume compared to current LTE deploy-
ments while providing a better quality of service [2]. Consumer data rates of hundreds
of Mbps are expected to be available in a general scenario. In special scenarios, such
as office spaces or dense urban outdoor environments, reliably achievable data rates of
multi-Gbps are foreseen.

An n-bit shift register implements an n-variate mapping {0,1}n →{0,1}n of type x0
. . .

xn−1

 →

 f0(x0, . . . ,xn−1)
. . .

fn−1(x0, . . . ,xn−1)

 (1)

where each Boolean function fi, i ∈ {0,1, . . . ,n−1}, is of type:

fi = xi+1 ⊕gi(x0, . . . ,xi,xi+2, . . . ,xn−1) (2)

where ”⊕” is the addition modulo 2 and ”+” is the addition modulo n.
Note that the function gi in (2) does not depend on xi+1. This is a necessary condition

for invertibility of mappings implemented by a shift register. A mapping x → f (x) on a

2

finite set is called invertible if f (x) = f (y) if and only if x = y. Stream ciphers usually
use invertible mappings to prevent incremental reduction of the entropy of the state [3].

Another desirable property is long period. The period of a mapping is the length of
the longest cycle in its state transition graph. Obviously, if we iterate a mapping a large
number of times, we do not want the sequence of generated states to be trapped in a
short cycle. Furthermore, as demonstrated by the cryptanalysis of A5, short cycles can
be exploited to greatly reduce the complexity of the attack [4].

In this paper, we present a transformation which preserves both, invertibility and pe-
riod, of a mapping. It makes possible constructing classes of shift registers which have
structurally isomorphic state transition graphs and generate equivalent sets of output
sequences. This is useful for optimizing the hardware performance of shift register-
based stream ciphers [5–9] and hash functions [10]. We apply the presented transfor-
mation to Trivium [6] and show that it increases its keystream data rate by 27% without
any penalty in area. The transformation can also be potentially useful for cryptanalysis
since, within the class of shift registers generating equivalent sets of output sequences,
some might be easier to cryptanalysize than others.

The presented transformation extends Fibonacci-to-Galois transformation of Non-
Linear Feedback Shift Registers (NLFSR) [11] to the more general case of shift regis-
ters. Two main differences are:

1. The presented transformation can be applied to shift registers with both, feedback
and feedforward connections (e.g. Trivium).

2. The presented transformation can be applied to any Galois NLFSR. The transfor-
mation [11] is applicable to uniform NLFSRs only1.

The paper is organized as follows. Section 2 summarises basic notations used in
the sequel. Section 3 gives an informal description of the presented transformation.
Section 4 formalizes the main result. Section 5 shows how the presented transformation
can be applied to Trivium. Section 6 concludes the paper and discusses open problems.

2 Preliminaries

Throughout the paper, we use ”⊕” and ”·” to denote the GF(2) addition and multiplica-
tion, respectively.

The Algebraic Normal Form (ANF) [12] of a Boolean function f : {0,1}n →{0,1}
is a polynomial in GF(2) of type

f (x0,x1, . . . ,xn−1) =
2n−1

∑
i=0

ci · xi0
0 · xi1

1 · . . . · xin−1
n−1,

where ci ∈ {0,1} and (i0i1 . . . in−1) is the binary expansion of i.
The dependence set [13] of a Boolean function is defined by

dep(f) = { j | f (x j = 0) 6= f (x j = 1)},
1 An n-bit NLFSR is uniform if, for all i ∈ {τ,τ+1, . . . ,n−1}, the largest index of variables of

function gi in (2) is smaller than or equal to τ, where τ is the maximal index such that, for all
j ∈ {0,1, . . . ,τ−1}, g j = 0.

3

1100

1001

0100

1111

1000

0011

1101

1010

0101

0110

1011

0010

1110

0001

0000

0111

Fig. 1. The state transition graph of the mapping (3). Each binary 4-tuple represents a state
(x0,x1,x2,x3).

where f (x j = k) = f (x0, . . . ,x j−1,k,x j+1, . . . ,xn−1) for k ∈ {0,1}.
Throughout the paper we also use the expression ”dependence set of a monomial

of the ANF”. It should not create any ambiguity since each monomial of the ANF
represents a Boolean function. For example, for the monomial m = x1x3, dep(m) =
{1,3}.

The state of an n-variate mapping {0,1}n → {0,1}n is any specific assignment of
{x0,x1, . . . ,xn−1}. The State Transition Graph (STG) is a directed graph in which the
nodes represent the states and the edges show possible transitions between the states.

For example, the STG of the 4-variate mapping {0,1}4 →{0,1}4:
x0
x1
x2
x3

 →

x1
x2

x3 ⊕ x1x2
x0 ⊕ x3

 . (3)

is shown in Figure 1. This mapping is invertible. It has period 15.
Any n-variate mapping {0,1}n →{0,1}n can be implemented by an n-bit shift reg-

ister shown in Figure 2. It consists of n binary storage elements, called stages, and n
updating functions fi : {0,1}n → {0,1} which determine how the values of stages are
updated [14]. At every clock cycle, the next state is computed from the current state
by updating the values of all stages simultaneously to the values of the corresponding
updating functions.

The degree of parallelization of a shift register is the number of bits of output which
are produced at each clock cycle.

A shift register can be implemented either in the Fibonacci or in the Galois configu-
ration [11]. In the former, all updating functions except fn−1 are of type fi(x) = xi+1, for

4

...

...... ...

n−1 n−2 0fn−1 fn−2 f0
output

clock

Fig. 2. The general structure of an n-bit shift register with updating functions.

i ∈ {0,1, . . . ,n− 2}. In other words, feedback/feedforward connections are applied to
the input stage of the shift register only. In the latter, feedback/feedforward connections
can potentially be applied to every stage.

3 Intuitive Description

We start with an intuitive description of the presented transformation and then formalize
it in the next section.

Consider an n-variate mapping of type (1). It can be represented by an n-bit ring
with connections corresponding to the monomials of ANFs of functions fi induced
by the mapping2. Each connection has a single sink and one or more sources. The
sources originate in the stages corresponding to the state variables of the monomial.
The sink points to the stage i with the index of the updating function fi represented by
the ANF, i ∈ {0,1, . . . ,n−1}. The output is represented by an outgoing edge from the
corresponding stage.

For example, if we assume that the output is taken from the stage 0, then the 4-
variate mapping (3) is represented by the 4-bit ring shown in Figure 3. The connection
with sources 1,2 and sink 2 corresponds to the monomial x1x2 of f2.

The transformation presented in the paper moves a connection either left or right in
the ring, without changing its length or shape, i.e. the sink and all sources are moved by
the same number of stages. For example, if the monomial x1x2 of f2 in the mapping (3)
is moved one stage right, we get the mapping

x0
x1
x2
x3

 →

x1

x2 ⊕ x0x1
x3

x0 ⊕ x3

 . (4)

Its STG is shown in Figure 4.

2 We use an n-bit ring as a simplification of an n-bit shift register which shows the structure
of its feedback/feedforward connections. The gates implementing GF(2) addition (XORs) are
omitted and the gates implementing GF(2) multiplication (ANDs) are represented by a dot.
Everything unnecessary for structural analysis is removed.

5

3 2 1 0

Fig. 3. The 4-bit ring with connections corresponding to the monomials of ANFs of Boolean
functions induced by the mapping (3).

1110

1001

0100

1101

1000

0011

1111

1010

0101

0110

1011

0010

1100

0001

0000

0111

Fig. 4. The state transition graph of the mapping (4).

Indexes crossing the 0 to n− 1 border of the ring are updated modulo n. So, if we
move the monomial x3 of f3 in the mapping (3) one stage left, we get

x0
x1
x2
x3

 →

x1 ⊕ x0

x2
x3 ⊕ x1x2

x0

 . (5)

Its STG is shown in Figure 5.
Three conditions should hold for the transformation to preserve the cycle structure

of the STG.
First, only the connections corresponding to the monomials of functions gi in the

equation(2), i ∈ {0,1, . . . ,n− 1}, can be moved. The monomial xi+1 of functions fi
cannot be moved, where ”+” is addition modulo n.

Second, sources of a connection can be moved k stages left/right if the functions fi
of the k stages on the left/right of each source do shifts only (i.e. no source crosses any
of the sinks of connections related to gis during its move). This condition makes sure
that time dependencies in the computation are preserved.

6

0011

0110

0111

1101

1100

0010

1000

1001

1011

0101

1111

1110

1010

0001

0000

0100

Fig. 5. The state transition graph of the mapping (5).

For example, the monomial x3 of f3 in the mapping (3) can be moved one stage left
to f0, or two stages left to f1, but not one stage right to f2 since f2 = x3 ⊕ x1x2. Due to
the circular structure of the ring, we can always reach any stage either from the left or
from the right. It is sufficient that the condition is satisfied only in one of the directions.
For example, although x3 cannot be moved to f1 from the right, it can be moved to f1
from the left. So, we can move x3 to f1.

Third, the sink of a connection can be moved k stages left/right if k stages on the
left/right of the sink do not serve as sources of any other connection of any gi, i ∈
{0,1, . . . ,n− 1} (i.e. the sink does not cross any of the sources of connections related
to gis during its move). This condition makes sure that values of variables participating
in the computation are correct.

For example, the monomial x1x2 of f2 in the mapping (3) cannot be moved to f3
because x3 is a variable of a monomial of g3.

Suppose that, in addition to preserving the cycle structure of the STG of a mapping,
we want to preserve the binary sequence generated by one of its functions, say fi, for
any i ∈ {0,1, . . . ,n− 1}. This might be desirable because, for example, this sequence
is used as a keystream and we do not want to change its properties. Then, in addition
to the three conditions above, we need to add a condition that neither the sink nor the
sources of a shifted connection cross the border between ith and i−1st modulo n stage
of the ring.

For example, if the value computed by the function f0 of the mapping (3) is used
as an output, then, in order to preserve the output sequence after the transformation,
neither the sink nor the sources of a shifted connection should cross the border between
0th and 3rd stage. This holds for the transformation from (3) to (4). Indeed, we can see
from Figures 1 and 4 that, for the initial state (x0,x1,x2,x3) = (0001), the functions f0

7

of both mappings generate the periodic sequence 3

000110101111001

However, this is not the case for the mapping (5). From its STG in Figure 5, we can see
that the sequence generated by its function f0, namely

000111101100101

is different from the sequence above for any initial state. This is because the shifted
connection crosses the border between 0th and 3rd stage.

4 Formal Description

In this section, we give a formal description of the presented transformation.

Definition 1. The shifting, denoted by fi
m→ f j, i, j ∈ {0,1, . . . ,n−1}, i 6= j, transforms

an n-variate mapping of type (1) to another n-variate mapping in which the ANF mono-
mial m of fi is moved to f j and each index a ∈ dep(m) is changed to b defined by

b = (a− i+ j)mod n (6)

For example, by applying shifting f2
x1x2→ f1 to the 4-variate mapping (3), we get the

mapping (4).
Given a shifting gi

m→ g j, we denote by g∗i the function g∗i = gi ⊕m.

Definition 2. Given an n-variate mapping of type (1) in which the values computed
by fo, o ∈ {0,1, . . . ,n− 1} are used as an output sequence, a shifting gi

m→ g j, i, j ∈
{0,1, . . . ,n− 1}, i 6= j, is valid if for each a ∈ dep(m) and for b defined by (6) the
following three conditions hold:

1. For each c ∈ [a,b]\{i}, gc = 0; if i ∈ [a,b], g∗i = 0.
2. For all k ∈ [i, j]:

(a) k 6∈ dep(g∗i);
(b) for all p ∈ {0,1, ..., i−1, i+1, ...n−1}, k 6∈ dep(gp).

3. None of the intervals [a,b] and [i, j] contains both, o and o−1 modulo n

where [a,b] and [i, j] stand for either {a,a−1, . . . ,b} and {i, i−1, . . . , j}, respectively,
or for {a,a+1, . . . ,b} and {i, i+1, . . . , j}, respectively, where ”+” and ”−” are addi-
tion and subtraction modulo n, respectively.

If the values of more than one stage o are used to compute the output sequence (e.g.
as in Grain [5], Trivium [6], or other filter generators), then the condition 3 should hold
for each pair o and o−1 modulo n.

For example, for the mapping (3) with f0 as an output, shifting g2
x1x2→ g1 is valid.

However, shiftings g3
x3→ g2 and g2

x1x2→ g3 are not valid since the former violates the
condition 1 and the latter violates the condition 2 of Definition 2.

3 Note that in this case the initial states are the same but generally they can be different [16].

8

In the theorem below, we use f (s) to denote the value of the function f evaluated
for the vector s. We also use f | j to denote the function obtained from f by adding j to
indexes of all variables of f . For example, if f = x1x2 ⊕ x3, then f |2 = x3x4 ⊕ x5 and
f |−1 = x0x1 ⊕ x2.

Theorem 1. Let F be a mapping of type (1) and F ′ be a mapping obtained from F by
applying a valid shifting gi

m→ g j, i, j ∈ {0,1, . . . ,n−1}, i 6= j. If F is initialized to the
state s = (s0,s1, . . . ,sn−1) and F ′ is initialized to the state r = (r0,r1, . . . ,rn−1) such that

if i > j, then rk = sk ⊕m|k−i−1 for k ∈ {i, i−1, ..., j +1}
if i < j, then rk = sk ⊕m|k− j−1 for k ∈ {i+1, i+2, ..., j} (7)

and rk = sk for all remaining k ∈ {0,1, . . . ,n− 1}, then sequences of states generated
by F and F ′ may differ only in bit positions i, i− 1, . . . , j + 1 if i > j and only in bit
positions i+1, i+2, ..., j if i < j.

Proof: First we show that Theorem 1 holds for the case of i = j + 1. In this case, the
equation (7) is reduced to rk = sk ⊕m|−1 for k = j +1.

Suppose that m = xa1xa2 . . .xat , where al ∈ {0,1, . . . ,n−1}, for all l ∈ {1,2, . . . , t},
and a1 > a2 > .. . > at . For simplicity, let us assume that the values computed by
f0 are used as an output sequence of F . If the shifting gi

m→ g j is valid, then, from
the condition 3 of Definition 2, we can conclude that at > 0. Thus, after shifting,
m changes to xa1−1xa2−1 . . .xat−1. Furthermore, from the condition 2 of Definition 2
we can conclude that { j + 1, j} 6∈ dep(g∗j+1) and { j + 1, j} 6∈ dep(gp) for all p ∈
{0,1, ..., j, j +2, ...n−1}. Therefore, F is of type

x0
. . .
x j

x j+1
. . .

xn−1

 →

x1 ⊕g0(x0, . . . ,x j−1,x j+2, . . . ,xn−1)

. . .
x j+1 ⊕g j(x0, . . . ,x j−1,x j+2, . . . ,xn−1)

x j+2 ⊕g∗j+1(x0, . . . ,x j−1,x j+2, . . . ,xn−1)⊕ xa1xa2 . . .xat

. . .
xn−1 ⊕gn−1(x0, . . . ,x j−1,x j+2, . . . ,xn−1)

and F ′ is of type

x0
. . .
x j

x j+1
. . .

xn−1

 →

x1 ⊕g0(x0, . . . ,x j−1,x j+2, . . . ,xn−1)

. . .
x j+1 ⊕g j(x0, . . . ,x j−1,x j+2, . . . ,xn−1)⊕ xa1−1xa2−1 . . .xat−1

x j+2 ⊕g∗j+1(x0, . . . ,x j−1,x j+2, . . . ,xn−1)
. . .

xn−1 ⊕gn−1(x0, . . . ,x j−1,x j+2, . . . ,xn−1)

Note that, due to the restriction imposed on the function gi in equation (2), j +2 6∈

{a1,a2, . . . ,at} and therefore j + 1 6∈ {a1 − 1,a2 − 1, . . . ,at − 1}. In addition, from the
condition 1 of Definition 2 we can conclude that, for all l ∈ {1,2, . . . , t}, gcl = 0 for
cl ∈ {al ,al −1}.

9

Suppose that F is initialized to a state s = (s0,s1, . . . ,sn−1) and F ′ is initialized to
a state r = (s0,s1, . . . ,s j,s j+1⊕ sa1−1sa2−1 . . .sat−1,s j+2, . . . ,sn−1). On one hand, for F ,
the next state s+ = (s+

0 ,s+
1 , . . . ,s+

n−1) is given by:

s+
0 = s1 ⊕g0(s0, . . . ,s j−1,s j+2, . . . ,sn−1)

. . .
s+

j = s j+1 ⊕g j(s0, . . . ,s j−1,s j+2, . . . ,sn−1)
s+

j+1 = s j+2 ⊕g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)⊕ sa1 sa2 . . .sat

. . .
s+

n−1 = s0 ⊕gn−1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)

On the other hand, for F ′, the next state r+ = (r+
0 ,r+

1 , . . . ,r+
n−1) is given by:

r+
0 = s1 ⊕g0(s0, . . . ,s j−1,s j+2, . . . ,sn−1)

. . .
r+

j = s j+1 ⊕ sa1−1sa2−1 . . .sat−1 ⊕g j(s0, . . . ,s j−1,s j+2, . . . ,sn−1)⊕ sa1−1sa2−1 . . .sat−1

= s j+1 ⊕g j(s0, . . . ,s j−1,s j+2, . . . ,sn−1)
r+

j+1 = s j+2 ⊕g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)
. . .
r+

n−1 = s0 ⊕gn−1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)

We can see that the next states of F and F ′ can potentially differ in the bit position
j +1 only. They are the same for all other bits.

In order to extend this conclusion to a sequence of states, it remains to show that
r+

j+1 can be expressed as r+
j+1 = s+

j+1 ⊕ s+
a1−1s+

a2−1 . . .s+
at−1. From

s+
j+1 = s j+2 ⊕g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)⊕ sa1 sa2 . . .sat

we can derive

s j+2 = s+
j+1 ⊕g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)⊕ sa1 sa2 . . .sat .

Substituting this expression into

r+
j+1 = s j+2 ⊕g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1)

and eliminating the double occurrence of g∗j+1(s0, . . . ,s j−1,s j+2, . . . ,sn−1), we get

r+
j+1 = s+

j+1 ⊕ sa1sa2 . . .sat .

Since sa1 sa2 . . .sat = s+
a1−1s+

a2−1 . . .s+
at−1, we obtain

r+
j+1 = s+

j+1 ⊕ s+
a1−1s+

a2−1 . . .s+
at−1.

By exchanging the roles of r and s and of i and j in the proof above, we can show
that the result also applies for the case of i = j−1. Since any shifting can be performed
by repeatedly applying either g j+1

m→ g j or g j−1
m→ g j as many steps as required, The-

orem 1 holds for the general case.

10

2

The following result follows directly from Theorem 1.

Lemma 1. Let F be a mapping of type (1). Any mapping F ′ obtained from F by apply-
ing a sequence of valid shiftings generates a set of output sequences equivalent to the
one of F.

As an example, consider the following 10-variate mapping F :

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9

→

x1 ⊕ x3x9
x2
x3
x4
x5
x6
x7

x8 ⊕ x0x9
x9 ⊕ x0 ⊕ x5x6

x0 ⊕ x2x9

. (8)

in which the values computed by f0 are used as an output sequence.
Suppose that the shifting g8

x5x6→ g4 is applied to F . Then, we get the mapping F ′ in
which the functions f4 and f8 are of type:

f4 = x5 ⊕ x1x2
f8 = x9 ⊕ x0

and the rest of functions are the same as in F . The reader can easily verify that this
shifting is valid.

Suppose that we initialize F to the state (x0,x1, . . . ,x9) = (1011001011) and F ′

to the state (x0,x1, . . . ,x9) = (1011000011). These two initial states satisfy the condi-
tion (7) of Theorem 1. Table below shows sequences of states generated by F and F ′

for 10 time steps. According to Theorem 1, they may differ in bit positions 5,6,7 and 8
only. We can see from the table that this is indeed the case.

State of F State of F ′

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1
1 1 1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0
1 1 0 0 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 1
1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1
1 0 1 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 1
0 1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0
1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1
0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0
0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0

11

112 111 110 45 ... 24 ... 1 02117...... 126194197 196 195219...222...287 ...113......

Fig. 6. The structure of Trivium.

5 Transforming Trivium

In this section, we show how the presented transformation can be applied to Trivium
stream cipher.

Trivium [6] is defined by a 287-variate mapping in which all but 3 out of 287 of
functions are of type fi = xi+1. The remaining 3 functions are given by:

f287 = x0 ⊕ x1x2 ⊕ x45 ⊕ x219

f194 = x195 ⊕ x196x197 ⊕ x117 ⊕ x222

f110 = x111 ⊕ x112x113 ⊕ x24 ⊕ x126

The structure of 287-bit ring representing Trivium is shown in Figure 6. The outputs
from stages 110, 94 and 287 are added to get the keystream:

fout put = f287 ⊕ f194 ⊕ f110.

There are many different possibilities for transforming Trivium. If the target is to
minimize the propagation delay, then one possible transformation is:

f287 = x0 ⊕ x219

f218 = x219 ⊕ x120x121

f210 = x211 ⊕ x133

f194 = x195 ⊕ x222

f131 = x132 ⊕ x133x134

f118 = x119 ⊕ x134

f110 = x111 ⊕ x24

f21 = x22 ⊕ x23x24

f17 = x18 ⊕ x63

and the remaining functions of type fi = xi+1. The keystream is computed as previously:

fout put = f287 ⊕ f194 ⊕ f110.

By Theorem 1, it is equivalent to the keystream generated by the original Trivium. The
reader can easily see that, in the original Trivium, the propagation delay is given by:

doriginal = 2dXOR +dAND +dFF

12

Gate Delay, ps
2-input AND 87
2-input XOR 115

flip-flop 221

Table 1. Propagation delays for a typical 90nm CMOS technology.

where dXOR, dAND and dFF are the delays of the 2-input XOR, the 2-input AND, and the
flip-flop, respectively. On the other hand, the propagation delay of the modified Trivium
is:

dmodi f ied = dXOR +dAND +dFF

By substituting dXOR, dAND and dFF by values shown in Table 1, we get doriginal = 538
ps and dmodi f ied = 423 ps.

A shift register with the propagation delay of 538 ps can support data rates up to
1.86 Gbits/s. A shift register with the propagation delay of 423 ps can support data rates
up to 2.36 Gbits/s. Note that 0.5 Gbits/s improvement (27%) comes without any penalty
in area, since the number of gates before and after the transformation remains the same.

It should be noted that the transformation reduces the maximum possible degree of
parallelization of Trivium from the original 64 to 8. The modified Trivium can generate
up to 8 bits per clock cycle because no variables are taken from 7 consecutive stages
after each sink and after outputs 110, 94 and 287. The modified Trivium with the degree
of parallelization 8 can support data rates up to 18.88 Gbits/s. The original Trivium with
the degree of parallelization 8 can support data rates up to 14.88 Gbits/s.

6 Conclusion

We presented a transformation which can be applied to an n-bit shift register to construct
other shift registers with the same state transition graphs and the same output sequences.
Using the example of Trivium stream cipher, we demonstrated that this transformation
is useful for optimizing its hardware performance.

Being able to construct different shift registers generating equivalent sets of output
sequences might be potentially useful for cryptanalysis. Exploring this opportunity to
cryptanalyze Trivium is a focus of our future works.

7 Acknowledgements

The author is indebted to the anonymous reviewer of FSE’2014 who helped me to
considerably improve the notation and to simplify the proof of the main theorem.

This work was supported in part the research grant No 621-2010-4388 from the
Swedish Research Council and in part by the research grant No SM12-0005 from the
Swedish Foundation for Strategic Research.

13

References

1. T. Good and M. Benaissa, “ASIC hardware performance,” New Stream Cipher Designs: The
eSTREAM Finalists, LNCS 4986, pp. 267–293, 2008.

2. Ericsson, “5G radio access - reseach and vision.” White paper, 2013.
http://www.ericsson.com/news/130625-5g-radio-access-research-and-vision 244129228 c.

3. A. Klimov and A. Shamir, “A new class of invertible mappings,” in Revised Papers from the
4th International Workshop on Cryptographic Hardware and Embedded Systems, CHES’02,
(London, UK), pp. 470–483, Springer-Verlag, 2002.

4. A. B. Xu, D. K. He, and X. M. Wang, “An implementation of the GSM general data encryp-
tion algorithm A5,” in Proceedings of CHINACRYPT’94, 1994.

5. M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain family of stream ciphers,”
New Stream Cipher Designs: The eSTREAM Finalists, LNCS 4986, pp. 179–190, 2008.

6. C. Cannière and B. Preneel, “Trivium,” New Stream Cipher Designs: The eSTREAM Final-
ists, LNCS 4986, pp. 244–266, 2008.

7. B. Gammel, R. Göttfert, and O. Kniffler, “Achterbahn-128/80: Design and analysis,” in
SASC’2007: Workshop Record of The State of the Art of Stream Ciphers, pp. 152–165, 2007.

8. B. Gittins, H. A. Landman, S. O’Neil, and R. Kelson, “A presentation on VEST hardware
performance, chip area measurements, power consumption estimates and benchmarking in
relation to the aes, sha-256 and sha-512.” Cryptology ePrint Archive, Report 2005/415, 2005.
http://eprint.iacr.org/2005/415.

9. B. M. Gammel, R. Göttfert, and O. Kniffler, “An NLFSR-based stream cipher,” in ISCAS,
2006.

10. J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-Plasencia, “Quark: A lightweight hash,”
Journal of Cryptology, vol. 26, no. 2, pp. 313–339, 2013.

11. E. Dubrova, “A transformation from the Fibonacci to the Galois NLFSRs,” IEEE Transac-
tions on Information Theory, vol. 55, pp. 5263–5271, November 2009.

12. T. W. Cusick and P. Stǎnicǎ, Cryptographic Boolean functions and applications. San Diego,
CA, USA: Academic Press, 2009.

13. R. K. Brayton, C. McMullen, G. Hatchel, and A. Sangiovanni-Vincentelli, Logic Minimiza-
tion Algorithms For VLSI Synthesis. Kluwer Academic Publishers, 1984.

14. S. Golomb, Shift Register Sequences. Aegean Park Press, 1982.
15. M. Robshaw, “Stream ciphers,” Tech. Rep. TR - 701, July 1994.
16. E. Dubrova, “Finding matching initial states for equivalent NLFSRs in the Fibonacci to the

Galois configurations,” IEEE Transactions on Information Theory, vol. 56, pp. 2961–2967,
June 2010.

