
DAA-related APIs in TPM2.0 Revisited

Li Xi

Trusted Computing and Information Assurance Laboratory
Institute of Software, Chinese Academy of Sciences

Beijing 100080, China
xili@is.iscas.ac.cn

Abstract. In TPM2.0, a single signature primitive is proposed to sup-
port various signature schemes including Direct Anonymous Attestation
(DAA), U-Prove and Schnorr signature. This signature primitive is im-
plemented by several APIs. In this paper, we show these DAA-related
APIs can be used as a static Diffie-Hellman oracle thus the security
strength of these signature schemes can be weakened by 14-bit. We pro-
pose a novel property of DAA called forward anonymity and show how
to utilize these DAA-related APIs to break forward anonymity. Then we
propose new APIs which not only remove the Static Diffie-Hellman oracle
but also support the forward anonymity, thus significantly improve the
security of DAA and the other signature schemes supported by TPM2.0.
We prove the security of our new APIs under the discrete logarithm
assumption in the random oracle model. We prove that DAA satisfy for-
ward anonymity using the new APIs under the Decision Diffie-Hellman
assumption. Our new APIs are almost as efficient as the original APIs
in TPM2.0 specification and can support LRSW-DAA and SDH-DAA
together with U-Prove as the original APIs.

Keywords: TPM2.0; Direct Anonymous Attestation; API

1 Introduction

Direct anonymous attestation(DAA) is a special group signature scheme that en-
ables remote authentication of a trusted platform which contains a valid TPM[1]
while preserving the platform’s privacy. Basically, DAA protocol allows a trusted
platform called signer to sign arbitrary message and send it to a verifier who can
be convinced the message is indeed signed by a valid TPM without leaking the
signer’s identity. A RSA-based direct anonymous attestation (DAA) is proposed
by Brickell et al. [2]. This RSA-based DAA is adopted by TCG and included in
TPM1.2 specification[3]. After that several ECC-based DAA[4–8] are proposed
to achieve better performance and shorter signature length. Some of them are
now supported by the latest TPM2.0 specification[1]. In TPM2.0, a single TPM
signature primitive [9] which can support various signature schemes including
DAA and U-Prove is implemented by several DAA-related application program-
ming interfaces (APIs).

An interesting feature of DAA is to provide differing degrees of privacy. While
DAA signatures can be totally anonymous, a pseudonymous DAA signature can
be linked to another signature by using a specific basename. A DAA signa-
ture signed by a trusted platform contains a ticket t = (J ,K = Jk) ∈ G × G,
where G is a cylic group, k is the DAA secret key of the trusted platform and
J = hash(basename) if basename 6=⊥. This ticket is used for linking and rogue
tagging: given two signatures, if the two tickets in signatures are the same, then
these two signatures are linked. In some DAA schemes, including the scheme
adopted by the TPM1.2 specification, the TPM simply gets input J and output
Jk to the host, thus can be used as a static Diffie Hellman oracle which sig-
nificantly reduces the security strength of DAA[10]. A security fix is proposed
and is adopted by the TPM2.0 specification[1]. Now in TPM2.0 specification,
TPM gets basename as input instead of J and calculates J = hash(basename)
by itself. It is believed that there is no obvious way that TPM can be used as
a static DH oracle even though the security proof of the DAA-related APIs in
TPM2.0 specification is still based on the static DH assumption[9]. Unfortu-
nately, this is not true, these DAA-related APIs can still be used as static DH
oracle as what will be shown in following sections. Moreover, the security proof
[9] is not correct either, which is rather disturbing as DAA is one of the few
complex cryptographic protocols deployed in real life. Hundreds of millions of
computers have been equipped with TPM.

Another important feature of DAA is that the signer, i.e. the trusted plat-
form, is split into two parts: the TPM part and the host part. The TPM is a
low speed hardware chip with high security; the host normally is a X86-based
PC equipped with powerful CPU but is easy to corrupt. While the security
definitions of user-controlled traceability and non-frameability of DAA give the
adversary the ability to compromise the host, all the previous definitions and
analyses of anonymity of DAA [11, 12] consider a setting that the host and TPM
are both honest. This is easy to understand, because if the host of a trusted
platform is already corrupted when signing, it can easily reveal its identity to-
gether with the signature, so anonymity of the platform can not be preserved.
However, as host is easier to compromise than TPM, the host part of a trusted
platform which is honest when signing can be controlled by the adversary later.
The adversary can then utilize the APIs provided by the TPM to find out if a
given signature was signed by this TPM previously, thus breaks the anonymity.
For example, consider a adversary who has gathered DAA signatures sent to a
service provider (this is quite reasonable as DAA signatures are not confidential,
moreover the adversary can be a malicious service provider itself), by corrupt-
ing the host part of a specific user, he may be able to trace all the previous
actions of this user, even if the DAA signatures produced by this user are totally
anonymous.

1.1 Contribution

In this paper, we provide the following main contributions:

2

1. We show that the DAA-related APIs in TPM2.0 specification can still be
used as a static Diffie-Hellman oracle. We analyze the Barreto-Naehrig (BN)
elliptic curves [13] defined in ISO/IEC 15946-5[14] which are recommended
by the TPM2.0 specification and show the security strength of DAA can be
significantly reduced by about 14-bit in practice.

2. We propose a new property called forward anonymity of DAA. This property
assures that even if the host of a trusted platform is corrupted, the anonymity
of DAA signatures signed by the platform previously will not be broken.
We propose a security definition of forward anonymity based on interactive
game and shows attacks against forward anonymity both in the original DAA
schemes and in the implementations of these DAA schemes using APIs in
TPM2.0 specification.

3. We propose new APIs which not only remove the Static Diffie-Hellman or-
acle but also support the forward anonymity thus significantly improve the
security of DAA. We present correct security proof of our new APIs under
the discrete logarithm assumption in the random oracle model. We prove
that both LRSW-DAA[7] and SDH-DAA[15] satisfy forward anonymity us-
ing the new APIs under the Decision Diffie-Hellman assumption. Our new
APIs are almost as efficient as the original APIs in TPM2.0 specification and
can still support LRSW-DAA and SDH-DAA together with U-Prove[16] as
the original APIs.

2 Background

In this section, we briefly introduce the static Diffie Hellman assumption and
the DAA-related APIs in TPM2.0.

2.1 Static DH assumption

Definition 1. Static DH oracle Let G be a cyclic group of prime order n, x is
a value in Z∗n. Given any p ∈ G as input, the static DH oracle on x outputs px.

Definition 2. Static DH problem. Let G be a cyclic group of prime order n, x
is a value Z∗n. Given g, h = gx ∈ G, the static DH problem is to compute x given
access to a static DH oracle on x.

The static DH assumption is that for large n, it is computational infeasible
to solve the static DH problem. It is direct to see that static DH assumption is
stronger then discrete logarithm assumption. While the static DH problem is still
believed as a computational hard problem, the study of Brown and Gallant[17]
shows that static DH problem is easier to solve than the discrete log problem:

Theorem 1. [17] Given a cyclic group G = 〈g〉, the order of which is n = uv+1,
a group member h = gx, there is an algorithm that (1) asks the static DH oracle
on x u times, (2) performs at most 2(

√
u+
√
v) scalar multiplications in G and

10 simple arithmetic operations on numbers no larger than n and (3) outputs x.

3

2.2 The DAA-related APIs in TPM2.0

We briefly recall the DAA protocol and DAA-related APIs in TPM2.0, for details
of these APIs, we refer the reader to [9]. The DAA protocol consists of two
subprotocols: the join protocol and the sign protocol. In the join protocol, the
host use TPM2 Create to create the DAA key tsk, the public key is tpk. The host
asks for the DAA credential corresponds to tsk by sending tpk to the issuer thus
tsk will not be revealed. Using tpk the issuer generates the credential for tsk.

In the sign protocol, given a basename bsn, the host works together with the
TPM by calling TPM2 Commit and TPM2 Sign to generate the DAA signature. In
high level, the final DAA signature can be seen as consists of two parts: a ticket
(J,K) = (HG(bsn), HG(bsn)tsk) which is used for linking, and the information
that proves (1) the trusted platform has a valid DAA credential and (2) the
ticket and the credential are bound with the same DAA secret key tsk. Notice in
complex signatures such as DAA, the computation which needs the secret key is
only a small part. This part which is generate by TPM2 Commit and TPM2 Sign

is actually a self-contained signature primitive

3 Static DH oracle in TPM2.0

In TPM2 Commit API, the input are a group member P1 ∈ G which is a cyclic
group with prime order n, and a string str ∈ {0, 1}∗ that represents the base-
name, TPM calculates P2 = HG(str), the output is R1 = P r

1 , R2 = P r
2 ,

K2 = P x
2 , x is the DAA secret key. In TPM2 Sign API, the TPM get a input

ch,m from the host, calculate c = H(ch,m), and output (c, s), s = r + cx.
Notice that there is no restriction on the first input P1, if the host is cor-

rupted, he can send whatever he wants. Now the host (adversary) can get
R1 = P r

1 from TPM2 Commit and he can then get (c, s = r+ cx) from TPM2 Sign.
Thus he can calculate Mid = P cx

1 = P s
1 /P

r
1 , then he can calculate P x

1 = Mid1/c

(1/c mod n is easy to calculate as n is a public prime number). Thus TPM can
still be used as a static DH oracle, and we believe this is the reason that the
security proof can only make through under static DH assumption[9].

3.1 Practical impact of the Static DH oracle

Theoretically, according to result of [17], for p = uv + 1, in the worst case,
when there exist u ≈ p1/3, the adversary who controls the host can query TPM
u times and uses about 2(

√
u +
√
v) ≈ O(p1/3) group operations to solve the

static DH problem. For a 256bit p, the adversary can query the TPM about 285

times then solve the discrete log problem with O(285) computations instead of
O(2128) computations. However, as TPM is a low speed device, and according
to the algorithm in [17], the static DH query should be asked sequentially, i.e.

the adversary has to obtain gk
n

then ask the static DH oracle for gk
n+1

, where
k is the DAA key, it may be impractical for the adversary to ask for too many
static DH oracles using the known technology.

4

According to preliminary performance figures in [9], on a discrete 40MHz
TPM2.0 chip, a scalar multiplication operation on a 256-bit prime curve takes
only 125ms, and according to our benchmark, a scalar multiplication on a 256-
bit prime curve takes less than 0.5 ms on a X86-based PC equipped with a Intel
i7-3770M CPU at 4x3.4GHz, so it takes less than 130ms to get the answer to a
static DH query using the method described in above subsection. The adversary
can then ask the static DH oracle about 2.43× 108 > 227 times in one year. So
the security strength can be significantly weakened by about 14bit, which means
by using 256bit BN curve, the security strength is now only 114 bit instead of
the assumed 128 bit.

Notice that in order to utilize the Brown-Gallant algorithm, the adversary
has to find a large u|n − 1, n is the order of the elliptic curve. In the TPM2.0
specification, it is recommended that DAA be implemented using the Barreto-
Naehrig (BN) elliptic curve [13] as defined in ISO/IEC 15946-5[14]. We give the
factorizations of n− 1 for the BN curves given in ISO/IEC 15946-5[14] in table
1.

BN256 2 · 2 · 3 · 7 · 7 · 189239 · 24818737 · 6192533153 · 53176290319 ·
127328277910133303695654392417046642892297

BN224 2 · 2 · 3 · 13 · 43 · 3539 · 3099193 · 118621 · 21529517 · 105380711 · 247994786597 ·
5490314800167041813327

BN192 2 · 2 · 3 · 269 · 124427 · 923526871 · 15942266405279489963 ·
1061479012505267222401

BN160 2 · 2 · 3 · 12132793 · 164442871007 · 448873741399 · 135993458106516349
Table 1. Factorizations of n− 1 for BN curves

As shown by the table 1, every BN curve in the international standard
ISO/IEC 15946-5 which is adopted by TPM2.0 specification has a large u|n− 1
which is close to 227. For example, the 160bit BN curve which is supposed to
provide 80bit security strength now only provide poorly 66bit security strength
which may be easy to break in nowadays. Moreover, as static DH assumption is
a non-standard assumption and has not been studied enough, we do not have the
confidence that more efficient algorithms will not be found. If a more efficient
algorithm is found, the firmware of TPM may need to be updated which is hard
to implement. So obviously, the safest solution is to design new DAA-related
APIs that can be proved secure under a weaker assumption, for example, the
discrete logarithm assumption.

4 Forward Anonymity

In this section we introduce the notion of forward anonymity and show how the
adversary can break forward anonymity both in the original DAA schemes and
the implementation of DAA using APIs in TPM2.0.

5

All the previous definitions and analyses of anonymity of DAA consider a
setting that the host and TPM are both honest. However, we find a DAA pro-
tocol which is proved to be secure under former definitions of anonymity may
not be able to resist the following attack: the whole platform is honest when
signing a signature, after the signature is signed, the adversary wants to find out
whether this signature is signed by the platform, so he corrupts the host and
gains information stored in the host and the ability to directly communicate with
the TPM. Of course, we assume an honest trusted platform will wipe out all the
one-time information used in signing after the signature is produced, including
the random number and the signature. With these capabilities, the adversary
may be able to find out if the signature was signed by the platform before.

As we know, the host is easier to corrupt than TPM, thus it isn’t enough
to rely on the security of host to achieve anonymity under high level security
requirement. It is promising to guarantee anonymity of signatures only under
the assumption that the TPM is honest which is reasonable because TPM is
designed to resist software attacks and some kinds of physic attacks.

So we propose forward anonymity. Informally, the notion of forward anonymity
requires that the following property is held in the DAA scheme: even after a ad-
versary compromised the host of a trusted platform, he finds it hard to find out
if a previous signed anonymous DAA signature(with basename =⊥) is signed
by this trusted platform as long as the TPM is not corrupted. Notice that gen-
erally we can not expect a pseudonymous signature to remain anonymous after
the host is compromised, because the adversary with ability to communicate
with TPM can always generate a new signature using the same basename as the
pseudonymous signature. Thus using function link, the adversary can decide if
this pseudonymous signature is generate by the platform.

The notion of forward anonymity is defined via a game played by a challenger
C and an adversary A as follows, for simplicity, we assume that for each trusted
platform there will be only one DAA secret key:

Initial: C runs Setup and gives the resulting issuer’s secret key isk to A. C publishes
the public parameters on a public channel.

Phase 1: The adversary makes the following requests to C:
Join. A submits a TPMs identity id to C, who acts as the trusted platform with

identity id and executes Join protocol with A.
Sign. A submits a TPMs identity id, a message m and a basename bsn to C, who

acts as the trusted platform with identity id and execute Sign protocol with
A using message m and basename bsn.

API. A submits a TPMs identity id along with the name of the API he wants
to use, for example, TPM2 Commit, and the data used in calling the API of
his choice to C, who acts as the TPM with identity id and responds with the
output of the API. Also the information stored inside the host part of this
trusted platform will be output to the adversary.

Corrupt. A submits a TPMs identity id to C, who response with the DAA secret
key created by this TPM.

Challenge: At the end of Phase 1, A chooses two TPMs’ identities id0 and id1, submits
the two identities and a message m of his choice to C. A must not have made any
API query or Corrupt query on either id0 or id1. For simplicity, we assume that

6

A has already made Join query on id0 and id1, C chooses a bit b uniformly at
random, produce a signature as platforms with identity idb using m and bsn = ⊥,
then output signatures to the adversary.

Phase 2: The adversary can do what he can in phase 1 except that he can not make
any Corrupt query on either id0 or id1, notice now he can make API query using
id0 and id1.

Guess: A returns a bit b′, the advantage of A is Adv(A) = |Pr(b = b′) − 1/2|.
We say that a DAA scheme satisfies forward anonymity if for any probabilistic
polynomial-time adversary A, Adv(A) is negligible.

In both LRSW-DAA [7] and SDH-DAA[15], even the totally anonymous DAA
signature contains a tuple (J,K), K = Jk, which is used for rogue tagging.
When signing a totally anonymous signature, the host will choose a random
string str, then TPM will calculate J = hash(str) and K = Jk. Notice that it
is unnecessary to include the random string str in the signature, and to achieve
forward anonymity, it actually should not be include in the signature. Otherwise
after the host is compromised, the adversary can use the string str and the
API TPM2 Commit to reconstruct the tuple (J,K), thus can decide whether the
signature is signed by this TPM.

Attacks against Forward Anonymity In the original LRSW-DAA, (c, s) =
PK{(k) : K1 = P k

1 ∧ K2 = P k
2 }(m,mh) is generated by a single procedure,

the random commitments R1, R2 are not outputted to the host. In TPM2.0,
this procedure is splitted into two parts: TPM2 Commit and TPM2 Sign in order
to support various signature, especially the SDH-DAA. However our analysis in
section 3 shows splitting the procedure causes the TPM can be used as static DH
oracle. In TPM2.0, DAA protocols can not satisfy forward anonymity because
given a challenge DAA signature which contains a ticket (J,K), the adversary
utilize the TPM as the static DH oracle and get K ′ = Jk, k is the DAA secret
key. By checking whether K ′ = K, the adversary can find out whether the
signature is signed by this TPM.

It is worth noting that in the original LRSW-DAA[7] (of course we move the
calculation J = hash(basename) inside the TPM according to [10]), even though
now there is no obvious way that TPM being used as a static DH oracle, the
forward anonymity still can not be preserved. Given a TPM and a challenge DAA
signature which contains a ticket (Ĵ , K̂), K̂ = Ĵk∗ where k∗ is the DAA secret
key this signature is signed under, the adversary generates a basename bsn and
output (Ĵ , bsn) to the TPM. The TPM will output a ticket (J = HG(bsn),K =
Jk) and a proof of knowledge (c, s) = PK{(k) : K = Jk ∧K ′ = Ĵk}, now K ′ is
not known by the adversary. Notice (c, s) = PK{(k) : K = Jk ∧K ′ = Ĵk} can
only be verified by two pair (J,K = Jk) and (Ĵ ,K ′ = Ĵk). The adversary can
now use the ticket (J,K) and the ticket (Ĵ , K̂) in the challenge DAA signature
to verify (c, s), if (c, s) is verified, then the challenge DAA signature is signed
by this TPM. This attack works because TPM does not check the first entry of
input (Ĵ , bsn). So our analyses of static DH oracle and forward anonymity both
show there should be restriction on the first parameter of input (P1 ∈ G1, bsn ∈
{0, 1}∗).

7

5 The new DAA-related API

5.1 Fix the DAA-related APIs to satisfy forward anonymity and to
remove the Static DH oracle

Our target is to revise the APIs without adding much cost and retain the ca-
pabilities of the APIs, i.e. the revised APIs should still support LRSW-DAA,
SDH-DAA and U-Prove. As pointed out above, there should be restriction on
the first input of the TPM2 Commit. Actually, we step a little further, we will
bind P1 ∈ G which is the first input of the TPM2 Commit with the DAA key
(g, y = gx): now P1 can only be g or a fixed group member P ∈ G1 which is
bound to the DAA key. Before using TPM2 Commit and TPM2 Sign to generate
DAA signatures, if the P1 needed by TPM2 Commit is different from g, then the
host should first output the P1 to the TPM, then the TPM will bind P1 with
the DAA key. After binding, the API TPM2 Commit can only use the same bound
group member P1 or g as input.

We propose a new command TPM2 DAAbind to bind P1 ∈ G1 with the DAA
secret key k. Let the public key of k is (g, y = gk), the input of this command is
a pair (P1,K1) together with prove of knowledge PK{(r) : K1 = yr ∧ P1 = gr}
which is generate by the issuer (the join protocol of LRSW-DAA in TPM2.0 is
different from the original scheme[7], it actually adopted the join protocol in [8]:
the issuer generates a DAA credential together with a proof of knowledge). The
TPM checks the signature prove of knowledge PK{(r) : K1 = hr ∧ P1 = gr}
and bind P1 with the DAA key. Only after the DAA key is bound with a group
member P1 6= g, the host can call the API TPM2 Commit using the fixed P1 as a
input.

Now we describe the new TPM signature primitive, denoted by tpm.sign∗.

Key Generation (TPM2 Create): The TPM generates a random number k and com-
putes y = gk. The secret key is k, the public key is y.

DAA Binding (TPM2 DAAbind): Given a pair (P1,K1) and a proof of knowledge
PK{(r) : P1 = gr ∧ K1 = yr}, the TPM verifies the proof of the knowledge
PK{(r) : P1 = gr ∧K1 = yr}, if it is right, then bind k with P1.

Signing:

Commit Oracle(TPM2 Commit)Given P1 ∈ G, l ∈ ZP , str ∈ {0, 1}∗ as input:

1. Verify that if P1 = g or P1 has been bound with k, if both not, abort.
2. If str = ∅, set P2 = 1, otherwise, compute P2 := HG(str)
3. Choose a random integer r ← Zp.
4. Compute R1 = P lr

1 ,R2 = P r
2 , and R2 = P k

2 where k is the private key.
5. Output R1, R2, K2 and a counter ctr. The random number r is bound

with ctr, the counter is then increased by 1.

Sign Oracle(TPM2 Sign) Given ch,m and a counter number ctr as input.

1. Generate a nonce nT , compute c := H(ch,m, nT).
2. According to the counter ctr finds the corresponding r, compute s := r+ck

mod p, delete r.
3. Output(c, s, nT).

Verification: Given a signature (m,mh, P
′
1 = P l

1, P2, R1, R2,K2, c, s, nT), K1 = P ′k1
and a collision free function F , the verification proceeds as follows:

8

1. Verify that P1 6= 1.
2. Verify that H(F (R1, R2,mh),m, nT) = c.
3. Verify that R1 = P ′s1 ·K−c

1 and R2 = P s
2 ·K−c

2 .

Our TPM2 Commit is slightly different from the original one, as now R1 = P lr
1 , l is

an input number. This difference guarantees that the implementations of DAA
protocols and U-Prove using our new APIs is as efficient as using the original
APIs which will be discussed thoroughly in section 6.

5.2 Security Proof of the New tpm.sign∗

We first point out the mistake in the security proof of the original DAA-related
APIs in TPM2.0[9] then we present correct security proof of our new APIs under
the discrete logarithm assumption in the random oracle model.

Mistake in the security proof of DAA-related APIs in TPM2.0 In the
proof[9], the simulator B does not provide the hash query H for the adversary
A. Actually, after making a TPM2 Commit query, A can first query H n times
using arbitrary pairs (ch,mi), i ∈ [0, n] and gets answers hi = H(ch,mi), then
call the TPM2 Sign using one pair (ch,mj), j ∈ [0, n], however, the simulation of
TPM2 Sign have to output the (c, s) which is already fixed in the simulation of
TPM2 Commit. So now c = H(ch,mj) 6= hj which means the simulation fails.

In our new API TPM2 Sign, the TPM generates a nonce nT . By adding a
nonce nT , we fix this problem: now c = H(ch,mj , nT) and A can not obtain nT
before calling TPM2 Sign as nT is a newly generated nonce.

Security Proof of the our new APIs We prove the security of our new
tpm.sign∗ using the standard security notion of signature schemes which is ex-
istential unforgeability under adaptive chosen message attacks (EUF-CMA). In
EUF-CMA model, the attacker is allowed to query the signing oracle adaptively.
In our case, it means the attacker is allowed to call the APIs adaptively, i.e, he
can call TPM2 DAAbind (bind oracle), TPM2 Commit (commit oracle), TPM2 Sign

(sign oracle) as he wishes.

Definition 3. The tpm.sign scheme is said to be existentially unforgeable un-
der adaptive chosen message attacks if there is no probabilistic polynomial-time
adversary A with non-negligible advantage in the following game played with a
challenger C:

Initial: C runs Setup and call TPM2 Create to create the secret key. C sends systems
public parameters params and public key to A

Queries: The adversary A adaptively makes API queries as he wishes.
Forgery: The adversary A produces a pair (m∗, σ∗), notice m∗ should not be called in

TPM2 Sign queries. The adversary A wins if σ∗ is a valid signature.

Our security proof is based on the well-known forking lemma [18] which
applies to signatures with the form (σ1, h, σ2). Here σ1 are random commitments;
h = H(σ1,m) whereH is a hash function. In tpm.sign primitives, there is a slight
difference: h = H(F (σ1,m1),m2) where F is a collision free function. It is direct

9

to see the forking lemma still holds for tpm.sign, actually, we can see H(F) as
a new hash function, as F is collision free.

Theorem 2. The new tpm.sign∗ is existentially unforgeable under adaptive
chosen message attacks in the random oracle model under the DL assumption.

Proof: If there is an adversary A that breaks the new tpm.sign∗ scheme,
i.e. A outputs a forged signature (m,mh, P1, P2, R1, R2,K2, c, s, nT) after given
arbitrary access to TPM2 DAAbind, TPM2 Commit and TPM2 Sign, then there exists
an algorithm B which utilize A to solve the DL assumption. B is given a pair
(g, h = gx), and B wants to compute x. Algorithm B works as follows:

key generation(TPM2 Create): B sets h as the public key and outputs it to A and
sets loggh as the corresponding private key x, although B does not know x.

Bind Query(TPM2 DAAbind): Given a pair (P,K) and a proof of knowledge PK{(r) :
P = gr ∧K = hr}. B verifies the proof of the knowledge PK{(r) : P = gr ∧K =
hr}, if it is right, stores (P,K). Due to the soundness of proof of knowledge, we
have K = P x.

Hash Query: There are two hash functions modelled as random oracles: HG and H.

HG: Given a input str, if the str is not queried before, B generates a random
number r, calculated HG(str) := gr, store (HG(str) = gr, r) in the hash list
of HG, if the str has been queried, return the former answer.

H: Given a input x, if x has been queried before, return the former answer. If x
has not been queried, choose a random number r and add the (x, r) to H’s
hash list.

Commit Query(TPM2 Commit): If A makes a commit query with (P1, l, str) as in-
put, B first check if P1 is equal to g or has been bound to the DAA key using
TPM2 DAAbind, if not, returns fail. B calls the HG oracle to get P2 = HG(str) = gr

and the random number r. Now B knows K1 = P x
1 and K2 = hr = P x

2 . B chooses
at random c and s and computes R1 := P ls

1 ·K−lc
1 and R2 := P s

2 ·K−c
2 . B outputs

(R1, R2,K2) and a counter number ctr. Then ctr = ctr + 1. It is direct to see this
simulation of commit query is perfect.

Sign Query(TPM2 Sign): If A makes a sign query on m, the input are (ch,m) and
a counter number ctr, if ctr is not queried before, B generates a random number
nT , and sets c := H2(ch,m, nT), store ((ch,m, nT), c) into the hash list of H,
then output the (c, s, nT), ctr is marked as used. Notice the failure only occurs
if H(ch,m, nT) has been queried before and the answer is c′ 6= c. However, it is
direct to see the chance this failure happens is negligible, because nT is a newly
generated nonce by the TPM.

Forgery: A produces a signature (m,mh, P̃1, P̃2, R̃1, R̃2, K̃2, c, s, nT). Using the fork-
ing lemma, we can useA to output two signature σ1 = (m,mh, P̃1, P̃2, R̃1, R̃2, K̃2, c,
s, nT) and σ2 = (m,mh, P̃1, P̃2, R̃1, R̃2, K̃2, c

′, s′, n′T). We have R̃1 · K̃1
c

= P̃1
s

and

R̃1 · K̃1
c′

= P̃1
s′

. So K̃1
c−c′

= P̃1
s−s′

, thus we can calculate the discrete logarithm
x = (s− s′)/(c− c′). Notice calculating x = (s− s′)/(c− c′) does not need to know
K̃1 = P̃1

x
.

Therefore, under the discrete logarithm assumption, the new tpm.sign∗ is secure.

10

6 Applications and Implementation of the new TPM.Sign
APIs

Now we show how to use our modified DAA APIs to implement LRSW-DAA[7],
SDH-DAA[15]and U-Prove[16]. Then we present how our APIs can be imple-
mented, particularly TPM2 DAAbind. Details about how to use the original APIs
to implement LRSW-DAA, SDH-DAA and U-Prove can be found in [9].

6.1 Applications of the New APIs: DAAs and U-Prove

The LRSW-DAA protocol

Join: The host calls TPM2 Create to get the tpk = gtk. Based on tpk the issuer sends
the DAA credential (A,B,C,D) which is a CL-LRSW signature on tk together
with a proof of knowledge σI = PK{(r) : B = gr ∧D = tpkr}. The host binds B
with the DAA key tk by calling TPM2 DAAbind(B,D, σI) and stores the credential
(A,B,C,D).

Sign: Given a nonce nV , a message m, the host generate a random number l ∈ Zp,
calls TPM2 Commit(B, l, bsn). The TPM first checks that B is bound with tk, then
outputs R1 = Blr, R2 = HG(bsn)r,K = HG(bsn)tk. The host then uses the ran-
dom number l to randomize the credential: (R,S, T,W) = (Al, Bl, Cl, Dl), notice
that R1 = Sr. The host calculate ch = H3(R,S, T,W, J = HG(bsn),K,R1, R2, nV)
and calls TPM2 Sign(ch,m) to get a TPM signature (c, sf , nT) = PK{(k) : W =
Stk ∧K = Jtk}. The final DAA signature is (R,S, T,W, J,K, c, sf , nv, nT).

The SDH-DAA protocol

Join: The join process is almost the same as LRSW-DAA except that there is no
need for the host to execute TPM2 DAAbind because when signing the first input of
TPM2 Commit will always be g which is part of the DAA public key.

Sign: Given a nonce nV , a message m, the host calls TPM2 Commit(g, 1, bsn). The
TPM first checks that g is part of the public key, then outputs R1 = gr, R2 =
HG(bsn)r,K = HG(bsn)tk. The host generate random numbers a, rx, ra, rb ← Zp,
calculate b = ax mod p, T = Aha

2 , then uses R2 to generate the random commit-
ments used in the final proof of knowledge: R′2 = e(R2T

−rxh
rb
2 , g2)e(h2, w)ra . The

host calculate ch = H3(J = HG(bsn),K, T,R1, R
′
2, nV) and calls TPM2 Sign(ch,m)

to get a TPM signature (c, sf , nT). The host calculate sx = rx + cx, sa = ra + ca,
sb = rb + cb, the final DAA signature is (J,K, T, c, sf , sx, sa, sb, nv, nT).

U-Prove using the New APIs U-Prove is a pseudonym system based on the
blind signatures and zero-knowledge proofs. In the U-Prove 1.1 specification, it
is proposed that a U-Prove token can be protected by a hardware device. By
using a hardware device, the leaked U-Prove token still can not be used unless
the hardware device is also controlled by the adversary. Moreover, the hardware
device can produce a ticket which is the same as in the DAA protocol to provide
user-controlled linkability: the tickets generated by the same device key and
basename are the same.

Using our new APIs to protect the U-Prove token is almost the same as using
the original APIs[9]. When the input of the original TPM2 Commit is (gd, str), the
input of our new API TPM2 Commit is now (gd, 1, str). There is no need to execute
TPM2 DAAbind as gd is part of the TPM public key.

11

6.2 Implementation and efficiency analysis

We have two targets: first the runtime performance of various protocols using
the new tpm.sign8 should still be as good as using the original tpm.sign, second
the revised API should still be easy to be implemented in the TPM, as TPM is
just a cheap chip.

Notice our newly added API actually have little influence on the run time
performance of protocols including various DAA schemes and U-Prove. The host
has only to run the new command TPM2 DAAbind once after the join protocol
and then he can call TPM2 Commit and TPM2 Sign an arbitrary number of times.
The revise API TPM2 Commit is almost as efficient as the original TPM2 Commit:
in the new API TPM2 Commit(P1, l, str), the only operation added is now the
TPM need to calculate l · r first, where l, r ∈ Z∗p . Calculating l · r takes much
less time than calculating a point multiplication in an elliptic curve. In our new
API TPM2 Sign, the only operation added is generating a nonce nT which is also
very efficient. The computational workload of the host part using our APIs is
the same as using the original APIs.

Implementing the new command TPM2 DAAbind will not add much cost to
TPM as it only uses operation in G1 which has already be implemented in
TPM for supporting TPM2 Commit. Moreover, TPM2.0 supports ECC Schnorr
signature validation while the verification of PK{(r) : P1 = gr ∧ K1 = yr} in
TPM2 DAAbind is almost the same as the verification of Schnorr signature. The
binding of P1 with the DAA key is also easy to implement. Notice TPM2.0 is
able to protect the integrity of the key object by using a key hierarchy, so what
we need to do is just adding the P1 into the key object. Now the key object
contains a new entry called daabind. When the object (DAA key) is not bound
to any P1 ∈ G1, daabind equals to zero; if the object has been bound to a P1,
daabind equals to P1. The detail of TPM2 DAAbind is as follows, we adopt the
notation in [9]:

1. Given a DAA key pair tk = (tpk = (g, h), tsk), where tpk is the public key and
tsk is the secret key, before TPM2 DAAbind is executed, the key blob of tk is tk∗ =
(tsk)SK ‖ tpk ‖ MACMK((tsk)SK ‖ tpk.name). tpk.name is a message digest
of the public portion of tk. The integrity of the key object tk is protected by a
message authentication code (MAC) using a MAC key MK and the secret key tsk

is encrypted by a secret key SK, both SK and MK are derived from the parent
key of tk: (SK,MK) = KDF (parentK). Thus the secrecy and integrity of tk is
protected by the key hierarchy.

2. Given a pair (P,K) and a proof of knowledge PK{(r) : P = gr ∧K = hr}. TPM
verifies the proof of the knowledge PK{(r) : P = gr ∧K = hr}, if it is right, gen-
erates a new key blob tk∗n which binds tk with P as follows. First TPM pads the
tpk: tpkn ← tpk ‖ P , then generate the new key name tpkn.name = hash(tpkn),
finally generate the MAC for binding: MACMK((tsk)SK ‖ tpkn.name). TPM out-
puts the new key blob tk∗n = (tsk)SK ‖ tpkn ‖MACMK((tsk)SK ‖ tpkn.name).

7 Forward Anonymity in the New TPM.Sign scheme

In this section, we prove that both LRSW DAA and SDH DAA satisfy forward
anonymity using the new APIs under the Decision Diffie-Hellman assumption.

12

Theorem 3. Under the G1−DDH assumption, the implementation of LRSW-
DAA using the new tpm.sign∗ satisfies forward anonymity. More specifically, if
there is an adversary A that succeeds with a non-negligible probability to break
the forward anonymity game, then there is a polynomial-time algorithm B that
solves the G1 −DDH problem with a non-negligible probability.

Proof: If there exists a adversary A that breaks the forward anonymity of LRSW-
DAA, then we can build a polynomial-time simulator B that breaks the G1 − DDH
problem as follows. The input to B is a tuple (u, v = ua, w = ub, z = uc) ∈ G4

1, where
(a, b) are independent uniform random elements in Zp, and either c = ab or c is also
a independent uniform random element in Zp. By interacting with A, B wants to find
out whether c equals ab or c is a random element.

We give a overview of the security proof here due to the page limit. B first select
a special trusted platform S∗, the DAA secret key f of which is a = loguv, however B
does not know a. B creates the other trusted platform by honestly executing the Join
protocol with A. B uses the pair (u, v) to simulate the answers to queries about the
trusted platform S∗. In the challenge phase, if A select S∗ as one of the two challenge
platform S0, S1, then B chooses the bit b so that S∗ = Sb, and generates the challenge
signature sigc using the pair (w, z), so if logwz = loguv then sigc is a valid DAA
signature signed by S∗ and A should have advantage in deciding b, if logwz 6= loguv
then sigc is actually a valid DAA signature signed under the DAA secret key b−1c
which is independent of S0 and S1, so A can not have any advantage guessing b or may
simply abort the game. So B can utilize A to judge whether c = ab. The key point of
this proof is that B is able to simulate all the oracle queries without knowing the secret
key, and we have shown this in the proof of theorem 2.

Theorem 4. Under the G1 − DDH assumption, the implementation of SDH-
DAA using the new tpm.sign∗ satisfies forward anonymity. More specifically, if
there is an adversary A that succeeds with a non-negligible probability to break
the forward anonymity game, then there is a polynomial-time algorithm B that
solves the G1 −DDH problem with a non-negligible probability.

Proof: The basic idea of this proof is analogous to that of theorem 3. We omit
it due to the page limit.

8 Conclusion

In TPM2.0, a single signature primitive is proposed to support various signature
schemes including Direct anonymous attestation(DAA), U-Prove and Schnorr
signature. In order to to support various signature schemes, this signature prim-
itive is splitted into two parts (TPM2 Commit and TPM2 Sign) and there is no
restriction on the input of TPM2 Commit. However, this gives too much ability to
the outside, thus these APIs can be utilized as static Diffie-Hellman oracle and
forward anonymity can not be satisfied. We propose new APIs which not only
remove the Static Diffie-Hellman oracle but also support the forward anonymity
thus significantly improve the security of DAA and the other signature schemes
supported by TPM2.0. Our new APIs are almost as efficient as the original APIs
in TPM2.0 specification and can support LRSW-DAA and SDH-DAA together

13

with U-Prove as the original APIs. We believe our research actually shows the
importance of reducing the potential attack surface, i.e limiting the ability pro-
vided to the outside, the ability should be just sufficient to be functional.

References

1. Group, T.C.: Tcg tpm specification 2.0, https://www.trustedcomputinggroup.org
(2012)

2. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceed-
ings of the 11th ACM conference on Computer and communications security, ACM
(2004) 132–145

3. Group, T.C.: Tcg tpm specification 1.2, https://www.trustedcomputinggroup.org
(2003)

4. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bi-
linear maps. In: Trusted Computing-Challenges and Applications, Springer Verlag
(2008) 166–178

5. Chen, X., Feng, D.: Direct anonymous attestation for next generation tpm. Journal
of Computers 3(12) (2008) 43–50

6. Chen, L., Morrissey, P., Smart, N.P.: Daa: Fixing the pairing based protocols.
Technical report, Cryptology ePrint Archive, Report 2009/198 (2009)

7. Chen, L., Page, D., Smart, N.: On the design and implementation of an efficient
daa scheme. In: Smart Card Research and Advanced Application, Springer-Verlag
(2010) 223–237

8. Brickell, E., Chen, L., Li, J.: A (corrected) daa scheme using batch proof and
verification. In: Trusted Systems. Springer (2012) 304–337

9. Chen, L., Li, J.: Flexible and scalable digital signatures in tpm 2.0. In: CCS
’13:Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, ACM (2013) 37–48

10. Brickell, E., Chen, L., Li, J.: A static diffie-hellman attack on several direct anony-
mous attestation schemes. In: Trusted Systems. Springer (2012) 95–111

11. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. International Journal of Information
Security 8(5) (2009) 315–330

12. Chen, L.: A daa scheme requiring less tpm resources. In: 5th International Con-
ference on Information Security and Cryptology. Volume 6151 of LNCS., Springer
(2011) 350–365

13. Barreto, P.S., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Selected areas in cryptography, Springer (2006) 319–331

14. ISO/IEC: Iso/iec 15946-5:2009 information technology – security techniques –
cryptographic techniques based on elliptic curves – part 5: Elliptic curve generation

15. Brickell, E., Li, J.: A pairing-based daa scheme further reducing tpm resources.
In: Trust and Trustworthy Computing. Springer (2010) 181–195

16. Microsoft: U-prove cryptographic specification v1.1, http://
www.microsoft.com/u-prove (2013)

17. Brown, D.R., Gallant, R.P.: The static diffie-hellman problem. IACR Cryptology
ePrint Archive 2004 (2004) 306

18. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind
signatures. Journal of cryptology 13(3) (2000) 361–396

14

