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Abstract. So far, low probability differentials for the key schedule of
block ciphers have been used as a straightforward proof of security against
related-key differential attacks. To achieve the resistance, it is believed
that for cipher with k-bit key it suffices the upper bound on the proba-
bility to be 2−k. Surprisingly, we show that this reasonable assumption
is incorrect, and the probability should be (much) lower than 2−k. Our
counter example is a related-key differential analysis of the block cipher
CLEFIA-128. We show that although the key schedule of CLEFIA-128 pre-
vents differentials with a probability higher than 2−128, the linear part
of the key schedule that produces the round keys, and the Feistel struc-
ture of the cipher, allow to exploit particularly chosen differentials with a
probability as low as 2−128. CLEFIA-128 has 214 such differentials, which
translate to 214 pairs of weak keys. The probability of each differential
is too low for attacks, but the weak keys have a special structure which
allows with a divide-and-conquer approach to gain advantage of 27 over
generic attacks. We exploit the advantage and give a membership test
for the weak-key class, provide analysis in the hashing mode, and show
the importance for the secret-key mode. The proposed analysis has been
tested with computer experiments on small-scale variants of CLEFIA-128.
Our results do not threaten the practical use of CLEFIA.

Keywords: CLEFIA, cryptanalysis, weak keys, CRYPTREC, differen-
tials

1 Introduction

CLEFIA [18] is a block cipher designed by Sony. It is advertised as a fast
encryption algorithm in both software and hardware and it is claimed
to be highly secure. The efficiency comes from the generalized Feistel
structure and the byte orientation of the algorithm. The security is based
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on the novel technique called Diffusion Switching Mechanism, which in-
creases resistance against linear and differential attacks, in both single
and related-key models. These and several other attractive features of
CLEFIA-128 have been widely recognized, and the cipher has been sub-
mitted for standardization (and already standardized) by several bodies:
CLEFIA was submitted as an encryption standard to IETF (Internet En-
gineering Task Force) [1], it is on the Candidate Recommended Ciphers
List3 of CRYPTREC (Japanese government standardization body), and
it is one of the only two4 lightweight block ciphers recommended by the
ISO/IEC standard [13].

A significant body of analysis papers has been published on the round-
reduced versions of CLEFIA [23, 24, 19, 22, 20, 15, 21, 14, 7], all for the
single-key model. The analysis for the related-key model is missing. Often
this type of attack can cover a higher number of rounds but requires the
cipher to have a relatively simple and almost linear key schedule. CLE-
FIA, however, has a highly non-linear key schedule, equivalent roughly to
2/3 of the state transformation and designed with an intention to make
the cipher resistant against related-key differential attacks. Using a widely
accepted approach, the designers have proved that no such attack could
exist as the key schedule has only low probability (≤ 2−128 for CLEFIA
with 128-bit keys) differential characteristics. Note, we will not try to ex-
ploit the fact that some characteristics can be grouped into a differential
that has a much higher probability than the individual characteristics.
Our results go a step further and we show that key schedule differen-
tials with a probability as low as 2−128, can still be used in attacks. This
happens when they have a special structure, namely, the input/output
differences of the differentials are not completely random, but belong to a
set that, as in the case of CLEFIA-128, is described with a linear relation.

We exploit the special form of the key schedule: a large number of non-
linear transformations at the beginning of the key schedule is followed by
light linear transformations that are used to produce the round keys. In
the submission paper of CLEFIA-128, the proof of related-key security
is based only on the non-linear part as this part guarantees that the
probability of any output difference is 2−128. In contrast, our analysis
exploits the linear part and we show that there are 214 of the above low
probability differences which, when supplied to the linear part, produce
a special type of iterative round key differences. CLEFIA-128 is a Feistel
cipher and, as shown in [6], iterative round key differences lead to an

3 This is the final stage of evaluation, before becoming CRYPTREC standard.
4 The second one is PRESENT [8].



iterative differential characteristic in the state that holds with probability
1. Therefore we obtain related-key differentials with probability 1 in the
state and 2−128 in the key schedule. The low probability (2−128) of each
of the 214 iterative round key differences means that for each of them
there is only one pair of keys that produces such differences, or in total
214 pairs for all of them – these pairs form the weak-key class of the
cipher. When we target each pair independently, we cannot attack the
cipher. However, the whole set of 214 pairs has a special structure and
we can target independently two smaller sets of sizes 27 and thus obtain
the advantage of 27 over generic attacks. As we will see in the paper, the
special structure of the weak key class is due to the linear part of the key
schedule, therefore we exploit the weakness of this part twice (the first
time for producing iterative round key differences).

We further analyze the impact of the 214 pairs of keys and the ad-
vantage of 27 that we gain over generic attacks. First we show that
CLEFIA-128 instantiated with any pair of weak keys can easily be at-
tacked, namely we present a membership test for the weak class. That
is, the cipher can be broken in the secret-key model if the key pair is
chosen to be some of the 214 special pairs. Next, for the hashing mode of
CLEFIA-128, i.e. when the cipher is used in single-block-length hash con-
structions, we show that differential multicollisions [5] can be produced
with a complexity lower than for an ideal cipher. Finally, we focus on dis-
tinguishing attacks in the framework, where the key is secret (and chosen
uniformly at random from the set of all possible 2128 keys) but can be
changed. We show that here the advantage 27 (and a weak-key class of
214) is insufficient to attack straightforwardly the cipher. However, con-
structions that internally use the cipher may be possible to attack. As
the model of attacks under related weak keys is relatively new, neither
strict bounds on complexity of attacks nor constructions resistant against
such attacks are known. We formulate two open problems to tackle these
critical questions and we conjecture that a construction, very similar to
PRINCE [9] but with linear function in the key schedule replaced by a
random permutation, could be a framework of great importance for re-
lated weak-key cryptanalysis. In such framework, the weak-key class of
CLEFIA-128 could be used to show that the cipher is not ideal in the
secret-key model.

The paper is organized as follows. We start with a description of
CLEFIA-128 given in Section 2. We present the main results related to
the analysis of the key schedule and the production of the class of 214

pairs of weak-keys in Section 3. The distinguisher for the class, which



is a differential membership test, is given in Section 4. We present the
distinguisher for the cipher in Section 5 and apply it to the hashing mode
and to the secret-key mode in Section 6. In Section 7 we conclude the
paper.

2 Description of CLEFIA-128

CLEFIA is a 128-bit cipher that supports 128, 192, and 256-bit keys. We
analyze CLEFIA with 128-bit keys that is referred as CLEFIA-128. Before
we define the cipher, we would like to make an important note. To simplify
the presentation, we consider CLEFIA-128 without whitening keys 5. Our
attack works for the original CLEFIA-128 and the analysis is given in
Appendix C. We proceed now with a brief description of CLEFIA-128.
It is an 18-round four-branch Feistel (see Fig. 3 of Appendix A) that
updates two words per round. A definition of the state update function
is irrelevant to our analysis (see [18] for a full description) and further we
focus on the key schedule only.

A 128-bit master key K is input to a 12-round Feistel GFN4,12(with
the same round function as the one in the state, refer to Fig. 3 of Appendix
A) resulting in a 128-bit intermediate key L. All the 36 round keys6

RKi, i = 0, . . . , 35 are produced by applying a linear transformation to
the master key K and the intermediate key L as shown below (⊕ stands
for the XOR operation and || is concatenation):

RK0||RK1||RK2||RK3 ← L ⊕S1,
RK4||RK5||RK6||RK7 ← Σ(L)⊕K ⊕S2,
RK8||RK9||RK10||RK11 ← Σ2(L) ⊕S3,
RK12||RK13||RK14||RK15 ← Σ3(L)⊕K ⊕S4,
RK16||RK17||RK18||RK19 ← Σ4(L) ⊕S5,
RK20||RK21||RK22||RK23 ← Σ5(L)⊕K ⊕S6,
RK24||RK25||RK26||RK27 ← Σ6(L) ⊕S7,
RK28||RK29||RK30||RK31 ← Σ7(L)⊕K ⊕S8,
RK32||RK33||RK34||RK35 ← Σ8(L) ⊕S9,

5 There are four whitening keys: two are added to the plaintext, and two to the
ciphertext.

6 Two round keys are used in every round, thus there are 2 · 18 = 36 keys in total.



where Si are predefined 128-bit constants, and Σ is a linear function de-
fined further. In short, each four consecutive round keys RK4i, RK4i+1,
RK4i+2, RK4i+3 are obtained by XOR of multiple applications of Σ
to L, possibly the master key K, and the constant Si. The resulting
128-bit sequence is divided into four 32-bit words and each is assigned
to one of the round key words. The linear function Σ (illustrated in
Fig. 1) is a simple 128-bit permutation used for diffusion. The function
Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X128 → Y128

Y = X[120− 64]X[6− 0]X[127− 121]X[63− 7],

where X[a− b] is a bit sequence from the a-th bit to the b-th bit of X.

7 57 57 7

757 577

128-bits

Fig. 1. The function Σ. The numbers denote the size of the bit sequence.

We would like to make a note about the notations of XOR differences
used throughout the paper. To emphasize that a difference is in the word
X, we use ∆X, otherwise, if it irrelevant or clear from the context we use
simply ∆.

3 Weak Keys for CLEFIA-128

In the related-key model, the security of a cipher is analyzed by compar-
ing two encryption functions obtained by two unknown but related keys.
Given a specific relation7 between keys, if the pair of encryption functions
differs from a pair of random permutations, then the cipher has a weak-
ness and can be subject to related-key attacks. Sometimes these attacks
succeed only when the pairs of related keys belong a relatively small sub-
set of all possible pairs of keys. The subset is called the weak-key class of
the cipher and the number of pairs of keys is the size of the class.

7 Some relations are prohibited as they lead to trivial attacks, see [3] for details.



We will show that a weak-key class in CLEFIA-128 consists of pairs of
keys (K, K̃ = K ⊕L1(D)), where D can take approximately 214 different
128-bit values, such that for any plaintext P , the following relation holds:

EK(P )⊕ EK̃(P ⊕ L2(D)) = L3(D), (1)

where L1,L2,L3 are linear functions defined below. The property can be
seen as a related-key differential, with the difference L1(D) for the master
key, L2(D) for the plaintext and L3(D) for the ciphertext. From Equation
(1), it follows that once D is defined, the probability of the differential is
precisely one.

In the state of CLEFIA-128, the probability of a differential character-
istic is one if for each Feistel round, there is no incoming difference for the
non-linear round function. This happens when the differences in the state
and in the round key cancel each other. Consequently, the input difference
to the round function becomes zero8. An illustration of the technique for
four rounds of CLEFIA-128 is given in Fig. 2. Notice that the input state
difference at the beginning of the first round (∆1, ∆2, ∆3, ∆4) is the same
as the output difference after the fourth round, i.e. it is iterative with the
period of 4 rounds. Therefore, we will obtain a differential characteristic
with probability 1 (in the state) for the full-round CLEFIA-128 if we can
produce 4-round iterative round key differences.

Each round of the state uses two round keys, thus the above 4-round
iterative characteristic requires the round key differences to have a pe-
riod of 8, i.e. ∆RKi = ∆RKi+8. Moreover, an additional condition has
to hold. Note that in Fig. 2, the differences in the consecutive round keys
are (∆1, ∆3, ∆2, ∆4, ∆3, ∆1, ∆4, ∆2), that is among the 8 round key dif-
ferences, the first four are different, while the remaining four are only
permutations of the first. These two conditions can be summarized as
follows:

Condition 1 - For all i, it should hold ∆RKi = ∆RKi+8.

Condition 2 - For all i divisible by 8, it should hold ∆RKi = ∆RKi+5,
∆RKi+1 = ∆RKi+4, ∆RKi+2 = ∆RKi+7, ∆RKi+3 = ∆RKi+6. This
can be rewritten as

(∆RKi+4, ∆RKi+5, ∆RKi+6, ∆RKi+7) = π(∆RKi, ∆RKi+1, ∆RKi+2, ∆RKi+3),
where π is 4-word permutation (0, 1, 2, 3)→ (1, 0, 3, 2).

Further we show how to find the set of differences for which the two
conditions hold.

8 A similar idea is given in [6].
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Fig. 2. Iterative related-key differential characteristic for 4 rounds of the CLEFIA-128

that is true with probability 1. The symbols ∆1,∆2,∆3,∆4 denote word differences.

Condition 1. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1

RK8i+8||RK8i+9||RK8i+10||RK8i+11 ← Σ2i+2(L) ⊕ s2i+3,

it follows that Condition 1 for the first 4 (out of 8) round key differences
in an octet of round keys can be expressed as

∆L = Σ2(∆L). (2)

We will obtain the same equation if we consider the remaining 4 round
key differences. To satisfy Condition 1, we have to find possible values for
∆L such that Equation (2) holds. This can be achieved easily as (2) is a
system of 128 linear equations with 128 unknowns (refer to the definition
of Σ), and has solutions of the form (expressed as concatenation of bit
sequences):

∆L = a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2, (3)



where a1, a2 are any 7-bit values, t is the most significant bit of a1 and the
7-bit values b1, b2 are defined as tb2b1 = a1a2t. Thus there are 27 ·27 = 214

solutions.

Condition 2. From the definition of the key schedule

RK8i+0||RK8i+1||RK8i+2||RK8i+3 ← Σ2i(L) ⊕ S2i+1,

RK8i+4||RK8i+5||RK8i+6||RK8i+7 ← Σ2i+1(L)⊕K ⊕ S2i+2,

we see that Condition 2 can be expressed as

π(∆L) = Σ(∆L)⊕∆K,

where π is 4-word permutation (0, 1, 2, 3)→ (1, 0, 3, 2). Thus when ∆L is
fixed (to one of the values from (3)), the difference in the master key ∆K
can be determined as

∆K = π(∆L)⊕Σ(∆L). (4)

Summary. We have shown above that Conditions 1 and 2 can be achieved
simultaneously as there are 214 values for ∆Li (see Equation (3)) with
corresponding values of ∆Ki (see Equation (4)). It means that given the
difference in the master key ∆Ki and the difference of the intermediate
key ∆Li (i.e. the differential in the 12-round Feistel GFN4,12 of the key
schedule is ∆Ki → ∆Li), the differences in the round keys are going to
be of the requested form as shown below:

∆RK0||∆RK1||∆RK2||∆RK3 = ∆1||∆3||∆2||∆4,

∆RK4||∆RK5||∆RK6||∆RK7 = ∆3||∆1||∆4||∆2,

. . .

∆RK28||∆RK29||∆RK30||∆RK31 = ∆3||∆1||∆4||∆2,

∆RK32||∆RK33||∆RK34||∆RK35 = ∆1||∆3||∆2||∆4,

where ∆1||∆3||∆2||∆4 = ∆Li. As a result, we have obtained the neces-
sary differences in the round keys and we can use the 4-round iterative
characteristic from Fig. 2.

Now we can easily specify the description of the weak-key class given
by Equation (1). The value of D coincides with the values of ∆L from
Equation (3). Therefore the first linear function L1 is defined as L1(D) =
π(D) ⊕ Σ(D). The input difference in the plaintext is the same as the



input difference in the first four round keys (which is again ∆L), but the
order of the words is slightly different – instead of (∆1, ∆3, ∆2, ∆4) it is
(∆1, ∆2, ∆3, ∆4), see Fig. 2. Hence, we introduce the 4-word permutation
π2 : (0, 1, 2, 3) → (0, 2, 1, 3) that corrects the order. With this notation,
the second linear function L2 is defined as L2(D) = π2(D). Finally, L3
is defined similarly. CLEFIA-128 has 18 rounds, thus the last 4-round
iterative characteristic (for the rounds 17,18) will be terminated after
the second round, with an output difference (∆2, ∆3, ∆4, ∆1). It differs
from ∆L only in the order of the four words, hence we introduce π3 :
(0, 1, 2, 3)→ (3, 1, 0, 2) and conclude that L3(D) = π3(D).

In the weak-key class the pairs of keys are defined as (K,K ⊕ π(D)⊕
Σ(D)) and for any plaintext P , it holds

EK(P )⊕ EK⊕π(D)⊕Σ(D)(P ⊕ π2(D)) = π3(D). (5)

A pair of keys belongs to this class if for any of the 214 values D = ∆L
defined by Equation (3), the 12-round FeistelGFN4,12 in the key schedule,
on input difference ∆K = π(∆L) ⊕ Σ(∆L) gives the output difference
∆L, i.e. GFN4,12(K ⊕ π(∆L)⊕Σ(∆L))⊕GFN4,12(K) = ∆L. Therefore
not all of the keys K have a related key and form a pair in the weak-key
class, but only those for which the differential in the Feistel permutation
holds.

We deal with a 12-round Feistel permutation and thus the probability
of the differential π(∆L) ⊕ Σ(∆L) → ∆L is low. We assume it is 2−128

(as proven by the designers), which is the probability of getting fixed
output difference from a fixed input difference in a random permutation.
However, even when we model the Feistel permutation by a random one,
there still exist 214 key schedule differentials that have a probability of
2−128 and that result in iterative round key differences.

In CLEFIA-128, there are 2128 possible keys K, and therefore for a
specific value of D, the number of related keys (K,K ⊕ π(D) ⊕ Σ(D))
is the same. The probability of the differential in the Feistel permutation
is 2−128, thus among all of the pairs, only one will pass the differential.
However, there are 214 possible values for D, hence the size of the weak-
key class is 214.

4 Membership Test Distinguisher

An attack technique that succeeds when the related keys belong to the
weak-key class is called a membership test. For the weak-key class of
CLEFIA-128, the membership test will be a differential distinguisher that



succeeds always and whose data, time and memory complexities are equal
to 28. That is to say that we can decide with probability 1 whether the
underlying cipher is CLEFIA-128 or other (possibly ideal) cipher.

Given a pair of weak keys (K,K ⊕ π(D) ⊕ Σ(D)), it is easy to dis-
tinguish CLEFIA-128 (see Equation (5)) with only a single pair of related
plaintexts (P, P ⊕ π2(D)) but D has to be known. If it is unknown, we
will have to try all 214 possible values of D (as D coincides with one of
∆Li). Consequently, we are going to end up with a brute force attack on
the space of weak keys. To address this problem, we have to be able to
detect the correct value of ∆L efficiently.

Finding the correct ∆Li can be performed much faster if we take into
account the additional properties of the difference in the intermediate key.
All 214 values of ∆Li (see Equation (3)) can be defined as XOR of two
elements from two different sets each of cardinality 27 as shown below

∆Li = ∆Li(a1, a2) =a1a2tb2b1b2b1b2b1b2a2a1a2a1a2a1a2tb1b2 =

=G1(a1)⊕G2(a2),

a1 = 0, . . . , 27 − 1, a2 = 0, . . . , 27 − 1,

where G1(a1) is a 128-bit word that is the same as ∆L on the bits that
depend on a1 and has 0’s for the bits that depend on a2 while G2(a2)
is the opposite, i.e. coincides with ∆L on bits for a2 and has 0’s for bits
that depend on a1

9.
Using the representation helps to detect the correct ∆L by finding

collisions on two specific sets. Assume the pair (K, K̃ = K ⊕ π(∆L) ⊕
Σ(∆L)) belongs to the weak-key class. For a randomly chosen plaintext
P , let us define two pools, each with 27 chosen plaintexts:

P 1
i = π2(P ⊕G1(ai1)), a

i
1 = 0, 1, . . . , 27 − 1,

P 2
i = π2(P ⊕G2(ai2)), a

i
2 = 0, 1, . . . , 27 − 1.

Next, we obtain two pools of ciphertexts with (K, K̃) as encryption keys,
i.e. C1

i = EK(P 1
i ), C2

i = EK̃(P 2
i ). Finally, we compute two sets V 1, V 2:

V 1 = {V 1
i |V 1

i = π−12 (P 1
i )⊕ π−13 (C1

i )},
V 2 = {V 2

i |V 2
i = π−12 (P 2

i )⊕ π−13 (C2
i )}.

The crucial observation is that the sets V 1 and V 2 will always collide, i.e.
there exist V 1

i and V 2
j such that V 1

i = V 2
j . This comes from the following

9 Recall that each bit of b1, b2, t is equal to a single bit of either a1 or a2.



sequence:

V 1
i ⊕ V 2

j =

= π−12 (P 1
i )⊕ π−13 (C1

i )⊕ π−12 (P 1
j )⊕ π−13 (C2

j ) =

= π−12 (P 1
i ⊕ P 2

j )⊕ π−13 (EK(P 1
i )⊕ EK̃(P 2

j )) =

= π−12 (π2(G
1(ai1)⊕G2(ai2)))⊕ π−13 (EK(P 1

i )⊕ EK̃(P 1
i ⊕ π2(G1(ai1)⊕G2(ai2)))) =

= ∆L′ ⊕ π−13 (EK(P 1
i )⊕ EK̃(P 1

i ⊕ π2(∆L′))),

where ∆L′ = G1(ai1) ⊕ G2(ai2). Note that ∆L′ can take all possible 214

values (as ai1, a
j
2 take all 27 values), and therefore for some particular i, j,

it must coincide with ∆L. In such case, the difference in the plaintext is
π2(∆L), and thus for the ciphertext we obtain

EK(P 1
i )⊕ EK̃(P 1

i ⊕ π2(∆L)) = π3(∆L)

Then V 1
i ⊕ V 2

j = ∆L⊕ π−13 (π3(∆L)) = 0.
The possibility to create the sets independently and then to find a

collision between them is the main idea of the distinguishing membership
test on CLEFIA-128. It works according to the following steps.

1. Choose at random a plaintext P .
2. Create a pool of 27 plaintexts P 1

i = π2(P ⊕ G1(ai1)) and ask for the
corresponding ciphertext C1

i obtained with encryption under the first
key, i.e. C1

i = EK(P 1
i ). Compute the set V 1 composed of elements

V 1
i = π−12 (P 1

i )⊕ π−13 (C1
i ).

3. Create a pool of 27 plaintexts P 2
i = π2(P ⊕ G2(ai2)) and ask for the

corresponding ciphertext C2
i obtained with encryption under the sec-

ond key, i.e. C2
i = EK̃(P 2

i ). Compute the set V 2 composed of elements
V 2
i = π−12 (P 2

i )⊕ π−13 (C2
i ).

4. Check for collisions between V 1 and V 2. If such a collision exists, then
output that the examined cipher is CLEFIA-128. Otherwise, it is an
ideal cipher.

The total data complexity of the membership test is 27 + 27 = 28

plaintexts. The time complexity of each of the steps 2,3 is 27 encryptions,
while the collision at step 4 can be found with 27 operations and 27

memory that is used to store one of the sets V 1 or V 2. Therefore, given
a pair of keys from the weak-key class, we can distinguish CLEFIA-128 in
28 data, time and memory.

To confirm the correctness of the distinguisher, we implemented it for
a small-scale variant of CLEFIA-128. Each word was shrunk to 8-bit value,



thus the whole state became 32 bits. The Sbox from AES was taken as
the round function F , and random 8-bit values were chosen as constants.
The chunks in the linear function Σ were taken of size 5, 11 (compared to
the 7, 57 in the original version). The expected size of the weak-key class
in this toy version is 210 (because X = Σ2(X) has 210 solutions), while in
practice we obtained 960 = 29.9 solutions. For a random key pair chosen
from this class, we were able to distinguish the cipher after 26 encryptions
which confirms our findings to a large extend.

5 Distinguisher for CLEFIA-128

The weak-key class can be used to distinguish the cipher when the oracle
can be asked to change the pair of related keys. After repeating this step
certain number of times, if the oracle is CLEFIA-128, it will hit a pair from
the weak-key class which then will be used with the membership test to
distinguish the cipher from ideal. However, the relation between the two
keys is not fixed (the XOR difference can take 214 possible values) thus
a straightforward application of the above idea will fail due to the low
probability of randomly hitting the weak-key class. We know that any
weak key happens with probability 2−128.

Our idea is to generate the data (pairs of plaintext-ciphertext) from
independent keys and then look for a special set of differences among all
the data. To achieve this we use the linear relations given by Equation
(5). In the membership test, we use the fact that each difference ∆Li is
an XOR of two elements (defined as G1(a1) and G2(a2)) from sets of size
27, i.e. ∆L = G1(a1)⊕G2(a2). A similar fact holds for ∆K:

∆K = π(∆L)⊕Σ(∆L) = π(G1(a1)⊕G2(a2))⊕Σ(G1(a1)⊕G2(a2)) =

= [π(G1(a1))⊕Σ(G1(a1))]⊕ [π(G2(a2))⊕Σ(G2(a2))] =

= T 1(a1)⊕ T 2(a2),

where T 1(a1) = π(G1(a1))⊕Σ(G1(a1)), T
2(a2) = π(G2(a2)⊕Σ(G2(a2))

are two linear functions (as π,Σ,G1, G2 are linear), and therefore the
difference in the keys is an XOR of two sets as well.

Using this idea, we can describe the distinguisher for CLEFIA-128 as
follows:

1. Ask the secret key K to be fixed and randomly choose a plaintext P .

2. Create 27 plaintexts P 1
i = π2(P ⊕ G1(ai1)) and ask for the 27 corre-

sponding ciphertexts C1
i obtained under the secret keys K ⊕ T 1(ai1),



i.e. C1
i = EK⊕T 1(ai1)

(P 1
i ). Compute the set V 1 composed of elements

V 1
i = π−12 (P 1

i )⊕ π−13 (C1
i ).

3. Create 27 plaintexts P 2
i = π2(P ⊕ G2(ai2)) and ask for the 27 corre-

sponding ciphertexts C2
i obtained under the secret keys K ⊕ T 2(ai2),

i.e. C2
i = EK⊕T 2(ai2)

(P 2
i ). Compute the set V 2 composed of elements

V 2
i = π−12 (P 2

i )⊕ π−13 (C2
i ).

4. Check for collisions between V 1 and V 2. If such a collision exists, then
confirm the key pair is weak on an additional pair of plaintexts. If so,
then output that the examined cipher is CLEFIA-128.

5. Go to Step 1 if Steps 1-4 are repeated less than 2114 times. Otherwise,
output that the examined cipher is ideal.

The attack works in 2122 time and data, 27 memory, and it requires en-
cryption under 2122 different secret keys. The validity of the distinguishing
attack is proven in Appendix B and tested on the small-scale CLEFIA-128,
described in the previous section. As the weak-key class in this toy version
has 29.9 pairs, the size of the state and the key is 32 bits, the expected
complexity of the distinguisher is 232−4.95+1 = 228.05. Our experiments
confirmed this finding: the average complexity over 100 trials was 228.3.

6 Applications and Open Problems

Let us examine implications of our findings. In particular, we look at
cryptographic constructions based on block ciphers and their security
level when the block cipher is instantiated by CLEFIA-128.

First we focus on cryptographic hashing. More precisely, we con-
sider hashing based on single-block-length10 modes, where a compression
function is built from a block cipher. If the compression function uses
CLEFIA-128 then we can find a pair of weak keys in 2122 time using the
described distinguisher. Once such pair (K1,K2) is found, we can produce
any number of differential multicollisions [5]:

EK1(P i1) = Ci1, EK1(P i2) = Ci2, P
i
1⊕P i2 = ∆P , C

i
1⊕Ci2 = ∆C , i = 1, 2, . . . , .

Note that we do not need to encrypt plaintext pairs as it is sufficient
to take pairs with the input difference ∆P = ∆L (when the difference
in the key pair is π(∆L) ⊕ Σ(∆L)) and then the ciphertext difference
must be ∆C = π3(∆L). Consequently, we can produce an arbitrary num-
ber of differential multicollisions with the complexity 2122. Note that the

10 The state and key sizes in CLEFIA-128 coincide, thus we can construct only single-
block-length compression functions.



proven lower bound (see [5]) in the case of ideal cipher is 2128. We stress
that the compression functions of all 12 modes investigated by Preneel et
al. [17], including the popular Davies-Meyer, Matyas-Meyer-Oseas modes,
are vulnerable to differential multicollisions due to the fact that all three
differences (for plaintext, key, and ciphertext) are fixed by the distin-
guisher.

A distinguisher for the hashing based on CLEFIA-128 has already been
presented by Aoki at ISITA’12 [2]. It works in the framework of middletext
distinguishers [16] (open-key version of the integral attack), where the
attacker starts with a set of particularly chosen states in the middle of the
cipher, then from them (and the knowledge of the key) produces the set of
plaintexts and the set of ciphertexts, and finally shows that these two sets
have some property that cannot be easily reproduced if the cipher was
ideal. For CLEFIA-128, Aoki shows how to choose 2112 starting middle
states that result in 17-round middletext distinguisher, and then adds
one more round where he uses subkey guesses, to obtain the 18-round
distinguisher. We want to point out that there is a substantial difference,
between our result and that of Aoki. We do not fix the values neither of
the plaintexts nor of the ciphertexts, and our distinguisher works as long
as the pair of plaintexts has the required difference – the values can be
arbitrary and even secret.

These findings suggest that our distinguisher can be used in the secret-
key mode (in addition to the weak-key secret mode). However, even
though the complexity is below the generic (our distinguisher has com-
plexity 2122, whereas the generic complexity is 2128), the caveat is in the
number of queries under different keys: to launch the distinguisher we
need 2122 oracles queries under 2122 different keys. Most of the published
related-key attacks require smaller number of queries under different keys,
thus they seem valid without a proof in the generic case. Nevertheless,
in case when this number is large, the generic lower bound is unknown.
Thus we want to propose the following open problem:

Open problem 1 For an arbitrary block cipher EK(P ) with k-bit key
and n-bit state, what is the lower bound on the time complexity T and the
number of queries under different keys DQ, required to distinguish (with
a significant advantage) the cipher from ideal.

Biham [4] proposed a generic attack with T = DQ = 2k/2 or more
general T · DQ = 2k. The steps of the attack are as follows: randomly

choose a plaintext P , encrypt P offline under 2
k
2 different keys, and ask

online for the encryptions of P under 2
k
2 different keys. If the oracle is



the target cipher then a collision will occur between the offline and online
ciphertexts, which would result in a distinguisher11.

There is no proof that Biham’s attack is optimal, thus the lower bound
(Open Problem 1) is still unknown. However, this generic attack already
provides the bound 2k/2 and as a result, a weak-key class of a size smaller

than 2
k
2 , cannot be used to attack the cipher. It is enough to observe

that to exploit the weak-key class, any attack first requires a hit in the

class and thus at least 2k−
k
2 = 2

k
2 queries under different keys. It means

that our distinguisher with 2122 different keys, cannot be used to attack
CLEFIA-128 itself.

The secret-key security of CLEFIA-128, however, can be analyzed in
a framework, where the cipher is used as a part of a larger construction.
One such example is PRINCE [9] with a 128-bit key block cipher based
on the 64-bit key PRINCEcore cipher and defined as

PRINCEK1,K2(P ) = PRINCEcoreK1
(P ⊕K2)⊕ Λ(K2),

where Λ is a linear function. The authors gave security proofs of the
construction in the single-key model when PRINCEcore is assumed to
be ideal. However, the construction is insecure for related-key attacks as
trivial distinguishers 12 exist.

To fix this security weakness, we alter the PRINCE construction. We
replace the linear function Λ with a random permutation Q and obtain
a cipher FXRK1,K2(P ) with 2n-bit keys based on a cipher EK(P ) with
n-bit keys:

FXRK1,K2(P ) = EK1(P ⊕K2)⊕Q(K2).

In the single-key model, the proof of security of FXR is identical to the
proof of PRINCE. The related-key distinguishers applicable to PRINCE,
cannot be applied to FXR as a difference in K2 has to go through the ran-
dom permutation Q. To recover K2 one can try to launch an attack similar
to the attack of Daemen [10] on Even-Mansour [11], but this would require
first a guess of the key K1. However, guessing K1 (used in the smaller
cipher) immediately results in an attack with complexity 2n, which is al-
ready worse (or at least equal) to Biham’s attack. Thus we conjecture that
this construction significantly increases (from 2n/2 to 2n) the complexity
of the generic attack:

11 A false positive can easily be discarded by encrypting a few more plaintexts with
the same key.

12 A difference ∆ in the plaintext P and in the key K2 results in a difference Λ(∆) in
ciphertext C.



Open problem 2 (Conjecture) If the bound of Biham’s attack is opti-
mal, then the simultaneous lower bound on the time complexity and differ-
ent key queries required to distinguish the FXR construction instantiated
with n-bit state/key ideal cipher, is T = DQ = 2n.

If the conjecture is correct, then weak-key classes of any size could be
used to show weakness of cipher in the secret-key model. For instance,
when CLEFIA-128 is used in FXR, then we can distinguish FXR with
2122 time complexity and different key queries, whereas the case of ideal
cipher would require 2n = 2128, hence CLEFIA-128 would be insecure in
the secret-key model.

7 Conclusion

We have presented a cryptanalysis of the full-round CLEFIA-128. The
analysis shows existence of a weak-key class that consists of 214 pairs
of related keys. We have shown how to exploit the pairs in four different
scenarios, depending on the model (hashing mode or secret-key mode) and
on the type of pairs of keys (randomly chosen pair or weak-key pair) that
are implemented by the oracle. In the hashing mode (or open-key mode in
general) we have shown that when the pair belongs to the weak-key class,
then the encryption functions can be distinguished with only two queries
to the oracle. To find one pair we need around 2122 encryptions, and such
pair can be used to produce differential multicollisions faster than the
generic 2128. In the secret-key model with a pair from the weak-key class,
we can distinguish CLEFIA-128 from an ideal cipher with 28 time and data
complexity, compared to the generic 214. In the same model, but with keys
chosen randomly, we need 2122 time, data, and queries under different
keys to distinguish the cipher. Here the generic attack performs better,
however, we have shown that potentially there are constructions, where
our distinguisher has lower complexity. The main ideas of the analysis
in all four scenarios have been verified with computer experiments on
small-scale variants of CLEFIA-128.

The analysis is invariant of important security features that presum-
ably increase the strength of a cipher. First, the non-linear part of the
key schedule can be any random permutation (not necessarily a 12-round
Feistel). Our attacks would still work as we do not need high probabil-
ity differentials for this permutation. Next, the state update functions
(in CLEFIA-128 F0, F1 are one round substitution-permutation networks)
can be arbitrary functions or permutations, including several layers of
SP – the difference never goes into them, hence, the probability of the



characteristic in the state would stay 1. Finally, the number of rounds in
CLEFIA-128 plays absolutely no role in our analysis – even if CLEFIA-128
had 1000 rounds, the complexity of the attacks would stay the same.

To prevent future attacks as ours, we have to clearly understand what
are the main drawbacks of the design. The weak-key class and the three
attack invariances are results of these drawbacks (not their cause) and
provide clues on what the actual cause might be. The invariance of the
state update function is due to the Feistel structure of the cipher – this
construction can lead to probability 1 characteristics as it can cancel
round key and state differences. To maintain the cancellation through
arbitrary number of rounds (invariance of the number of rounds), the
round key differences have to be iterative. The key schedule prevents
high probability iterative (or any fixed value) differences as they have to
be produced from a difference in the key that goes initially through a
12-round Feistel modeled as random permutation. The Feistel, however,
produces low probability (2−128) differences (invariance of the random
permutation), and 214 of them become iterative round key differences
due to the linear function used after the Feistel. That is, because of the
linear function, with 2−128 we can have a special type of differences in
36 rounds keys (1152 bits !). Therefore, the analysis of CLEFIA-128 holds
due to the Feistel structure of the cipher and the weak linear function
that is used to produce the round keys.

To conclude, our work shows that low probability differentials (around
2−k for a cipher with k-bit key and n-bit state) for the key schedule of Feis-
tel ciphers, cannot be used as a sole proof of resistance against related-key
differential attacks. A safe upper bound on the probability of such differ-
entials, which proves and provides security against related-key attacks, is
not 2−k but 2−2k−n – this comes from the fact that there can be as many
as 22k pairs of weak keys, and their combined probability should be below
2−n.
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A Specification on CLEFIA-128
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Fig. 3. The encryption function of CLEFIA-128 at the left, and the key schedule at
the right. P0, P1, P2, P3 are 32-bit plaintext words, C0, C1, C2, C3 are the ciphertext
words, K0,K1,K2,K3 are the key words, RKi,WKj are the round and whitening
keys, respectively, and Si are 128-bit constants. Finally, F0, F1 are the two state update
functions, while Σ is a linear function (permutation).



B Proof of Correctness for the Distinguisher

Assume that the underlying cipher is CLEFIA-128. The encryptions at
steps 2 and 3, are done under 27 different keys, or in total, 214 pairs of
keys. The difference in each key pair is

[K ⊕ T 1(ai1)]⊕ [K ⊕ T 2(aj2)] = T 1(ai1)⊕ T 2(aj2) = ∆Kl,

i.e. each key pair has a difference that corresponds to one of the re-
quired key differences ∆K. After 2114 repetitions of steps 1-4, one of the
214+114 = 2128 key pairs (with some difference ∆K = T 1(ai1) ⊕ T 2(aj2))
will pass the 12-round Feistel differential (which holds with probability
2−128), and produce the required difference ∆L = G1(ai1) ⊕ G2(aj2) in
the intermediate key, which in turn will result in iterative differences in
the round keys. Let us take a closer look at the difference in the state of
CLEFIA-128. As the initial difference in the round keys is ∆L, in order
to use the probability 1 characteristic in the state, the difference in the
plaintexts should be π2(∆L). From the description of the distinguisher
(steps 2,3), it follows that the difference in the plaintexts is

P 1
i ⊕ P 2

j = π2(P ⊕G1(ai1))⊕ π2(P ⊕G2(aj2)) =

= π2(G
1(ai1)⊕G2(aj2)) = π2(∆L).

Therefore, by (5) the difference at the ciphertexts will be π3(∆L). As in
the membership test, the sets V1, V2 will collide.

C Analysis of CLEFIA-128 with Whitening Keys

The whitening keys are the four words WKi, i = 0, 1, 2, 3, defined as
WK0||WK1||WK2||WK3 = K, i.e. they are the words of the master key
K. The first two are XOR-ed to the second and the fourth plaintext words,
and the remaining two to the second and the fourth ciphertext words (see
Fig 3).

To index the whitening words, we define two linear functions on 128-
bit words (or four 32-bit words). AssumeX is 128-bit word, such thatX =
a|b|c|d, where a, b, c, d are 32-bit words. Then l(X) : {0, 1}128 → {0, 1}128
is defined as l(X) = l(a|b|c|d) = 0|a|0|b. Similarly r(X) : {0, 1}128 →
{0, 1}128 is defined as r(X) = r(a|b|c|d) = 0|c|0|d.

Now we can easily specify the weak-key class:

– the key difference remains the same,



– the plaintext difference, instead of π2(∆L), should be π2(∆L)⊕l(∆K),
– the ciphertext difference, instead of π3(∆L), should be π3(∆L) ⊕
r(∆K).

As ∆K = π(∆L) ⊕ Σ(∆L), it follows that the weak-key class for the
original CLEFIA-128 is defined as 214 pairs of keys (K,K ⊕ π(∆L) ⊕
Σ(∆L)) such that for any plaintext P holds:

EK(P )⊕EK⊕π(∆L)⊕Σ(∆L)(P⊕π2(∆L)⊕l(π(∆L)⊕Σ(∆L))) = π3(∆L)⊕r(π(∆L)⊕Σ(∆L)).

Let us focus on the membership test. We define the plaintexts pools
as:

P 1
i = P ⊕ π2(G1(ai1))⊕ l(T 1(ai1)), a

i
1 = 0, 1, . . . , 27 − 1,

P 2
i = P ⊕ π2(G2(ai2))⊕ l(T 2(ai2)), a

i
2 = 0, 1, . . . , 27 − 1.

This way, the difference between each two plaintext from two different
pools is π2(∆L

′)⊕ l(∆K), i.e. it is as required by the class.
To define the sets V 1, V 2 that lead to a collision, first we have to

understand how a collision can occur. In the previous membership test (on
CLEFIA-128 without whitening keys), we used the trick that the difference
in both the plaintext and the ciphertext is ∆L, but with permuted words
(that is why we applied π−12 , π−13 ). Here it is not the same: in the plaintext
the difference is ∆L and two more words of ∆K, while in the ciphertext
it is ∆L and the remaining two words of ∆K. Hence, XOR of these values
does not trivially produce zero as the two words from l and the two from
r are different.

Nevertheless, we can achieve collisions. Assume ∆L = a|b|c|d. Then
the difference ∆P in the plaintext is

∆P =π2(a|b|c|d)⊕ l(π(a|b|c|d)⊕Σ(a|b|c|d)) =

a|c|b|d⊕ l(b|a|d|c)⊕ l(Σ(a|b|c|d)) =

a|c+ b|b|d+ a⊕ l(Σ(a|b|c|d)).

Note, l(Σ(a|b|c|d) has zeros at the first and at the third words.
Similarly, the difference ∆C in the ciphertext is

∆C =π3(a|b|c|d)⊕ r(π(a|b|c|d)⊕Σ(a|b|c|d)) =

c|b|d|a⊕ r(b|a|d|c)⊕ r(Σ(a|b|c|d)) =

c|b+ d|d|a+ c⊕ r(Σ(a|b|c|d)).

Again, in the sum r influences only the second and the fourth word.



Let us introduce a function f , that acts on the four 32-bit words of
a 128-bit state and it XORs the first word to the fourth word, and the
third word to the second word, i.e. f(x|y|z|t) = (x|y + z|z|t+ x). Then

f(∆P ) = a|c|b|d⊕ l(Σ(a|b|c|d)),

f(∆C) = c|b|d|a⊕ r(Σ(a|b|c|d)).

The functionΣ is linear and thereforeΣ(a|b|c|d) = Σ(a|0|0|0)+Σ(0|b|0|0)+
Σ(0|0|c|0) +Σ(0|0|0|d). Let us denote these four values with Σa, Σb, Σc,
and Σd. Furthermore, with superscripts we denote the four 32-bit words
of Σx, e.g. Σ2

a is the second (most significant) word of Σa. This allows us
to remove the functions l, r from the terms, and as a result we obtain

f(∆P ) = a|c+Σ1
a +Σ1

b +Σ1
c +Σ1

d |b|d+Σ2
a +Σ2

b +Σ2
c +Σ2

d ,

f(∆C) = c|b+Σ3
a +Σ3

b +Σ3
c +Σ3

d |d|a+Σ4
a +Σ4

b +Σ4
c +Σ4

d .

Next, we define a function g(x|y|z|t) that from x, z computes Σ1
x, . . . , Σ

4
x,

Σ1
z , . . . , Σ

4
z and it adds Σ4

x, Σ
4
z to the first word, Σ1

x, Σ
1
z to the second,

Σ3
x, Σ

3
z to the third, and Σ2

x, Σ
2
z to the fourth. Similarly, for ∆C we define

h(x|y|z|t) that from x, z computes Σ1
x, . . . , Σ

4
z and it adds Σ1

x, Σ
1
z to the

first word, Σ3
x, Σ

3
z to the second, Σ2

x, Σ
2
z to the third, and Σ4

x, Σ
4
z to the

fourth. Thus we get

g(f(∆P )) = a+Σ4
a +Σ4

b |c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d ,

h(f(∆C)) = c+Σ1
c +Σ1

d |b+Σ3
a +Σ3

b |d+Σ2
c +Σ2

d |a+Σ4
a +Σ4

b .

Obviously h(f(∆C)) = π4(g(f(∆P ))), where π4(0, 1, 2, 3) → (3, 0, 1, 2).
Therefore the sets V1, V2 are defined as:

V 1 = {V 1
i |V 1

i = π4(g(f(P 1
i )))⊕ h(f(C1

i ))},
V 2 = {V 2

i |V 2
i = π4(g(f(P 2

i )))⊕ g(f(C2
i ))},

and a collision between this two sets suggests that ∆L′ coincides with
∆L. Thus the membership test for CLEFIA-128 with whitening keys has
the same complexity as before (without whitening).

For the distinguisher of CLEFIA-128 with whitening keys, we proceed
the same way as in the attack on CLEFIA-128 without whitening keys,
but look for collisions on the sets V1, V2 defined as above.

We stress out once again that the above analysis was confirmed as well
with our computer simulation on the small scale variant of CLEFIA-128.
The distinguisher required on average 228.2 time and data, and 25 memory
to detect the cipher.


