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Abstract. We show that a Magma implementation of Joux’s new L[1/4] algorithm
can be used to compute discrete logarithms in the 1303-bit finite field F36·137 with very
modest computational resources. Our implementation illustrates the effectiveness of
Joux’s algorithm for computing discrete logarithms in small-characteristic finite fields
which are not Kummer or twisted-Kummer extensions.

1. Introduction

Let FQ denote the finite field of order Q. The discrete logarithm problem (DLP) in
FQ is that of determining, given a generator of F∗

Q and an element h ∈ F
∗
Q, the integer

x ∈ [0, Q − 2] satisfying h = gx. In the remainder of the paper, we shall assume that the
characteristic of FQ is 2 or 3.

Until recently, the fastest general-purpose algorithm known for solving the DLP in FQ

was Coppersmith’s 1984 index-calculus algorithm [8] with a running time of LQ[
1
3 , (32/9)

1/3 ]

≈ LQ[
1
3 , 1.526], where as usual LQ[α, c] with 0 < α < 1 and c > 0 denotes the expression

exp
(
(c+ o(1))(logQ)α(log logQ)1−α

)

that is subexponential in logQ. In February 2013, Joux [18] (see also [13]) presented a
new DLP algorithm with a running time of LQ[

1
4 + o(1), c] (for some undetermined c)

when Q = q2n and q ≈ n. Shortly thereafter, Barbulescu, Gaudry, Joux and Thomé
[4] presented an algorithm with quasi-polynomial running time (logQ)O(log logQ) when
Q = q2n with q ≈ n.

These dramatic developments were accompanied by some striking computational re-
sults. For example, Göloğlu et al. [14] computed logarithms in F28·3·255 = F26120 in only
750 CPU hours, and Joux [19] computed logarithms in F28·3·257 = F26168 in only 550 CPU
hours. The small computational effort expended in these experiments depends crucially
on the special nature of the fields F26120 and F26168 — namely that F26120 is a degree-255
extension of F28·3 with 255 = 28 − 1 (a Kummer extension), and F26168 is a degree-257
extension of F28·3 with 257 = 28+1 (a twisted Kummer extension). Adj et al. [1] presented
a concrete analysis of the new algorithms and demonstrated that logarithms in F36·509 can
be computed in approximately 282 time, which is considerably less than the 2128 time
required by Coppersmith’s algorithm. Adj et al. [2] also showed how a modification of
the new algorithms by Granger and Zumbrägel [16] can be used to compute logarithms in
F36·1429 in approximately 296 time, which is considerably less than the 2192 time required
by Coppersmith’s algorithm. Unlike the aforementioned experimental results, the analy-
sis by Adj et al. does not exploit any special properties of the fields F36·509 and F36·1429 .

Date: January 24, 2014.

1



2 G. ADJ, A. MENEZES, T. OLIVEIRA, AND F. RODRÍGUEZ-HENRÍQUEZ

However, the computational resources required to compute logarithms in these fields are
still only within the reach of very well-funded adversaries.

The purpose of this paper is to demonstrate that, with modest computational resources,
the new algorithms can be used to solve instances of the discrete logarithm problem that
remain beyond the reach of classical algorithms. Our target field is the 1303-bit field
F36·137 ; this field does not enjoy any Kummer-like properties. More precisely, we are
interested in solving the discrete logarithm in the order-r subgroup G of F∗

36·137 , where r =
(3137 − 369+1)/7011427850892440647 is a 155-bit prime. The discrete logarithm problem
in this group is of cryptographic interest because the values of the bilinear pairing derived
from the supersingular elliptic curve E : y2 = x3−x+1 over F3137 lie in G.1 Consequently, if
logarithms in G can be computed efficiently then the associated bilinear pairing is rendered
cryptographically insecure. Note that since r is a 155-bit prime, Pollard’s rho algorithm
[23] for computing logarithms in G is infeasible. Moreover, recent work on computing
logarithms in the 809-bit field F2809 [3] suggests that Coppersmith’s algorithm is infeasible
for computing logarithms in G, whereas recent work on computing logarithms in the 923-
bit field F36·97 [17] (see also [24]) indicates that computing logarithms in G using the
Joux-Lercier algorithm [20] would be a formidable challenge.

In contrast, we show that Joux’s algorithm can be used to compute logarithms in G in
just a few days using a small number of CPUs. The computational effort expended in our
experiment is relatively small, despite the fact that our implementation was done using
the computer algebra system Magma V2.20-2 [21] and is far from optimal.

The remainder of the paper is organized as follows. In §2, we present Joux’s algo-
rithm for computing logarithms in Fq3n ; the algorithm uses the polynomial representation
(selection of h0 and h1) of Granger and Zumbrägel [16]. Our experimental results with
computing logarithms in F36·137 are reported in §3. We draw our conclusions in §4.

2. Joux’s L[1/4] algorithm

Let Fq3n be a finite field where n ≤ 2q + 1. The elements of Fq3n are represented

as polynomials of degree at most n − 1 over Fq3 . Let N = q3n − 1, and let r be a
prime divisor of N . In this paper, we are interested in the discrete logarithm problem
in the order-r subgroup of F∗

q3n . More precisely, we are given two elements α, β of order

r in F
∗
q3n and we wish to find logα β. Let g be an element of order N in F

∗
q3n . Then

logα β = (logg β)/(logg α) mod r. Thus, in the remainder of this section we will assume
that we need to compute logg h mod r, where h is an element of order r in F

∗
q3n .

The algorithm proceeds by first finding the logarithms (mod r) of all degree-one elements
in Fq3n (§2.2). Then, in the descent stage, logg h is expressed as a linear combination of
logarithms of degree-one elements. The descent stage proceeds in several steps, each
expressing the logarithm of a degree-D element as a linear combination of the logarithms
of elements of degree ≤ m for some m < D. Four descent methods are employed; these
are described in §2.3–§2.6.

Notation. Nq3(m,n) denotes the number of monic m-smooth degree-n polynomials in
Fq3 [X], Aq3(m,n) denotes the average number of distinct monic irreducible factors among

1We note that the elliptic curves y2 = x3
− x± 1 over F3n have embedding degree 6 and were proposed

for cryptographic use in several early papers on pairing-based cryptography [7, 5, 12, 15].
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all monicm-smooth degree-n polynomials in Fq3 [X], and Sq3(m,d) denotes the cost of test-
ing m-smoothness of a degree-d polynomial in Fq3 [X]. Formulas for Nq3(m,n), Aq3(m,n)

and Sq3(m,n) are given in [1]. For γ ∈ Fq3 , γ denotes the element γq
2

. For P ∈ Fq3 [X],

P denotes the polynomial obtained by raising each coefficient of P to the power q2. The
cost of an integer addition modulo r is denoted by Ar, and the cost of a multiplication
in Fq3 is denoted by Mq3 . The projective general linear group of order 2 over Fq is de-
noted PGL2(Fq). Pq is a set of distinct representatives of the left cosets of PGL2(Fq) in
PGL2(Fq3); note that #Pq = q6 + q4 + q2. A matrix

(
a b
c d

)
∈ Pq is identified with the

quadruple (a, b, c, d).

2.1. Setup. Select polynomials h0, h1 ∈ Fq3 [X] of small degree so that

(1) X · h1(X
q)− h0(X

q)

has an irreducible factor IX of degree n in Fq3 [X]; we will henceforth assume that
max(deg h0,deg h1) = 2, whence n ≤ 2q + 1. Note that

(2) X ≡
h0(X

q)

h1(Xq)
≡

(
h0(X)

h1(X)

)q

(mod IX).

The field Fq3n is represented as Fq3n = Fq3 [X]/(IX ) and the elements of Fq3n are repre-
sented as polynomials in Fq3 [X] of degree at most n− 1. Let g be a generator of F∗

q3n .

2.2. Finding logarithms of linear polynomials. Let B1 = {X + a | a ∈ Fq3}, and

note that #B1 = q3. To compute the logarithms of B1-elements, we first generate linear
relations of these logarithms. Let (a, b, c, d) ∈ Pq. Substituting Y 7→ (aX + b)/(cX + d)
into the systematic equation

(3) Y q − Y =
∏

α∈Fq

(Y − α)

and using (2) yields

(
(aX + b)(ch0 + dh1)− (ah0 + b h1)(cX + d)

)q

(4)

≡ h
q
1 · (cX + d) ·

∏

α∈Fq

[(a− αc)X + (b− αd)].

If the polynomial on the left side of (4) is 1-smooth, then taking logarithms (mod r)
of both sides of (4) yields a linear relation of the logarithms of B1-elements and the
logarithm of h1. The probability that the left side of (4) is 1-smooth is Nq3(1, 3)/q

9 ≈ 1
6 .

Thus, after approximately 6q3 trials one expects to obtain q3 relations. The cost of the
relation generation stage is 6q3 · Sq3(1, 3). The logarithms can then be obtained by using
Wiedemann’s algorithm for solving sparse systems of linear equations [25, 9]. The expected
cost of the linear algebra is q7 ·Ar since each equation has approximately q nonzero terms.
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2.3. Continued-fractions descent. Recall that we wish to compute logg h mod r, where
h ∈ Fq3n = Fq3 [X]/(IX ) has order r. We will henceforth assume that deg h = n− 1. The
descent stage begins by multiplying h by a random power of g. The extended Euclidean
algorithm is used to express the resulting field element h′ in the form h′ = w1/w2 where
degw1,degw2 ≈ n/2 [6]; for simplicity, we shall assume that n is odd and degw1 =
degw2 = (n − 1)/2. This process is repeated until both w1 and w2 are m-smooth for
some chosen m < (n − 1)/2. This gives logg h

′ as a linear combination of logarithms of
polynomials of degree at most m. The expected cost of this continued-fractions descent
step is approximately

(5)

(
(q3)(n−1)/2

Nq3(m, (n− 1)/2)

)2

· Sq3(m, (n − 1)/2).

The expected number of distinct irreducible factors of w1 and w2 is 2Aq3(m, (n − 1)/2).
In the analysis, we shall assume that each of these irreducible factors has degree exactly
m. The logarithm of each of these degree-m polynomials is then expressed as a linear
combination of logarithms of smaller degree polynomials using one of the descent methods
described in §2.4, §2.5 and §2.6.

2.4. Classical descent. Let p be the characteristic of Fq, and let q = pℓ. Let s ∈ [0, ℓ],
and let R ∈ Fq3 [X,Y ]. For the sake of simplicity, we will assume in this section that
h1 = 1. Then it can be seen that

(6)
[
R(X,h

pℓ−s

0 )
]ps

≡ R′(Xps ,X) (mod IX)

where R′ is obtained from R by raising all its coefficients to the power ps.
Let Q ∈ Fq3 [X] with degQ = D, and let m < D. In the Joux-Lercier descent method

[20], as modified by Göloğlu et al. [13], one selects s ∈ [0, ℓ] and searches for a polynomial
R ∈ Fq3 [X,Y ] such that (i) Q | R2 where R2 = R′(Xps ,X); (ii) degR1 and degR2/Q

are appropriately balanced where R1 = R(X,h
pℓ−s

0 ); and (iii) both R1 and R2/Q are
m-smooth. Taking logarithms of both sides of (6) then gives an expression for logg Q in
terms of the logarithms of polynomials of degree at most m.

A family of polynomials R satisfying (i) and (ii) can be constructed by finding a basis
{(u1, u2), (v1, v2)} of the lattice

LQ = {(w1, w2) ∈ Fq3 [X]× Fq3 [X] : Q | (w1(X) −w2(X)Xps)}

where deg u1, degu2, deg v1, deg v2 ≈ D/2. By writing

(w1, w2) = a(u1, u2) + b(v1, v2) = (au1 + bv1, au2 + bv2)

with a ∈ Fq3 [X] monic of degree δ and b ∈ Fq3 [X] of degree δ − 1, the points (w1, w2)
in LQ can be sampled to obtain polynomials R(X,Y ) = w′′

1(Y ) − w′′
2(Y )X satisfying (i)

and (ii) where w′′ is obtained from w by raising all its coefficients to the power p−s. The
number of lattice points to consider is therefore (q3)2δ. We have degw1,degw2 ≈ D/2+δ,
so degR1 = t1 ≈ 2(D/2+ δ)pℓ−s+1 and degR2 = t2 ≈ (D/2+ δ)+ ps. In order to ensure
that there are sufficiently many such lattice points to generate a polynomial R for which
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both R1 and R2/Q are m-smooth, the parameters s and δ must be selected so that

(7) q6δ ≫
q3t1

Nq3(m, t1)
·

q3(t2−D)

Nq3(m, t2 −D)
.

Ignoring the time to compute a balanced basis of LQ, the expected cost of finding a
polynomial R satisfying (i)–(iii) is

(8)
q3t1

Nq3(m, t1)
·

q3(t2−D)

Nq3(m, t2 −D)
·min(Sq3(m, t1), Sq3(m, t2 −D)).

The expected number of distinct irreducible factors of R1 and R2/Q is Aq3(m, t1) +
Aq3(m, t2 −D).

2.5. Gröbner bases descent. Let Q ∈ Fq3 [X] with degQ = D. Let m = ⌈(D + 1)/2⌉,
and suppose that 3m < n. In Joux’s new descent method [18, §5.3], one finds degree-m
polynomials k1, k2 ∈ Fq3 [X] such that

G = k1k̃2 − k̃1k2 = QR,

where k̃1 = h
m
1 k1(h0/h1) and k̃2 = h

m
1 k2(h0/h1), and R ∈ Fq3 [X]. Note that degR =

3m−D. If R is m-smooth, then we obtain a linear relationship between logg Q and logs
of degree-m polynomials (see [2, §3.7]):

(9) h
mq
1 · k2 ·

∏

α∈Fq

(k1 − αk2) ≡ (Q(X)R(X))q (mod IX).

To determine (k1, k2, R) that satisfy

(10) k1k̃2 − k̃1k2 = QR,

one can transform (10) into a system of multivariate bilinear equations over Fq. Specif-
ically, each coefficient of k1, k2 and R is written using three variables over Fq. The

coefficients of k̃1 and k̃2 can then be written in terms of the coefficients of k1 and k2.
Hence, equating coefficients of Xi of both sides of (10) yields 3m + 1 quadratic equa-
tions. Equating Fq-components of these equations then yields 9m + 3 bilinear equations
in 15m − 3D + 9 variables over Fq. This system of equations can be solved by finding a
Gröbner basis for the ideal it generates. Finally, solutions (k1, k2, R) are tested until one
is found for which R is m-smooth. This yields an expression for logg Q in terms of the
logarithms of approximately q + 1 +Aq3(m, 3m−D) polynomials of degree (at most) m;
in the analysis we shall assume that each of the polynomials has degree exactly m.

2.6. 2-to-1 descent. The Gröbner bases descent methodology of §2.5 can be employed in
the case (D,m) = (2, 1). However, as also reported by Joux in his F26168 computation [19],
we found the descent to be successful for only about 50% of all quadratic polynomials.

Let Q(X) = X2+aX+ b be an irreducible quadratic polynomial for which the Gröbner
bases descent method failed. Suppose, for the sake of simplicity, that h1 = 1. For such Q,
we consider

(11) Q(X) ≡ Q(h
q
0) = h

2q
0 + ah

q
0 + b = (h

2
0 + ah0 + b)q (mod IX).

Now, the degree-4 polynomial Q′(X) = h
2
0 + ah0 + b is either a product of two irreducible

quadratics or itself irreducible. In the former case, we apply the standard Gröbner bases
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descent method to the two irreducible quadratics. If both descents are successful, then we
have succeeded in descending the originalQ. Otherwise, we employ a strategy used by Joux
[19]. Namely, instead of using the systematic equation (3) derived from the polynomial

Y q −Y , we use a systematic equation derived from Y q′ −Y where q′ < q is a power of the
characteristic, and where Fq′ is a subfield of Fq3 .

2 This hopefully yields a relation between
Q and another quadratic Q′′ which has a roughly 50% chance of descending using Gröbner
bases descent. If Q′′ fails to descend or can not be found, then we apply Joux’s strategy
to the two irreducible quadratics encountered in (11), in the hope that both descend. In
the latter case where the quartic Q′ is irreducible, we apply Joux’s strategy to Q.

If none of these strategies succeed, then we declare Q to be “bad”, and repeat the
higher-level descent step that produced this bad Q. This process is repeated until all the
quadratics encountered are “good”.

3. Computing discrete logarithms in F36·137

The supersingular elliptic curve E : y2 = x3 − x+ 1 has order #E(F3137) = cr, where

c = 7 · 4111 · 5729341 · 42526171

and

r = (3137 − 369 + 1)/c = 33098280119090191028775580055082175056428495623

is a 155-bit prime. The Weil and Tate pairing attacks [22, 11] efficiently reduce the
logarithm problem in the order-r subgroup E of E(F3137) to the discrete logarithm problem
in the order-r subgroup G of F∗

36·137 .
Our approach to computing logarithms in G is to use Joux’s algorithm to compute

logarithms in the quadratic extension F312·137 of F36·137 (so q = 34 and n = 137 in the
notation of §2). More precisely, we are given two elements α, β of order r in F

∗
312·137 and we

wish to find logα β. Let g be a generator of F∗
312·137 . Then logα β = (logg β)/(logg α) mod r.

Thus, in the remainder of the paper we will assume that we need to compute logg h mod r,
where h is an element of order r in F

∗
312·127 .

The DLP instance we solved is described in §3.1. The concrete estimates from §2 for
solving the DLP instances are given in §3.2. Our experimental results are presented in
§3.3.

3.1. Problem instance. Let N denote the order of F∗
312·137 . Using the tables from the

Cunningham Project [10], we determined that the factorization of N is N = p41 ·
∏31

i=2 pi,

2For our F36·137 computation, we have q = 34 and used q′ = 33.



COMPUTING DISCRETE LOGARITHMS IN F36·137 USING MAGMA 7

where the pi are the following primes (and r = p25):

p1 = 2 p2 = 5 p3 = 7 p4 = 13 p5 = 73 p6 = 823 p7 = 4111 p8 = 4933

p9 = 236737 p10 = 344693 p11 = 2115829 p12 = 5729341 p13 = 42526171

p14 = 217629707 p15 = 634432753 p16 = 685934341 p17 = 82093596209179

p18 = 4354414202063707 p19 = 18329390240606021 p20 = 46249052722878623693

p21 = 201820452878622271249 p22 = 113938829134880224954142892526477

p23 = 51854546646328186791017417700430486396513

p24 = 273537065683369412556888964042827802376371

p25 = 33098280119090191028775580055082175056428495623

p26 = 706712258201940254667826642673008768387229115048379

p27 = 108081809773839995188256800499141543684393035450350551

p28 = 91321974595662761339222271626247966116126450162880692588587183952237

p29 = 39487531149773489532096996293368370182957526257988573877031054477249393549

p30 = 401898600223848500442548547965611825475530727307388238669863008076132920774941

8522920289

p31 = 1906432315382527207280368587080395562283428652313903740358075231082278966446

46984063736942624066227406898132113366226593158464419713.

We chose the representations

F34 = F3[U ]/(U4 + U2 + 2)

and

F312 = F34 [V ]/(V 3 + V + U2 + U),

and selected

h0(X) = V 326196X2 + V 35305X + V 204091 ∈ F312 [X]

and h1 = 1. Then IX ∈ F312 [X] is the degree-137 monic irreducible factor of X−h0(X
34);

the other irreducible factor has degree 25.
We chose the generator g = X + V 113713 of F∗

312·137 . To generate an order-r discrete
logarithm challenge h, we computed

h′ =

136∑

i=0

(
V ⌊π·(312)i+1⌋ mod 312

)
Xi
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and then set h = (h′)N/r. We thus have

h = V 307932X136 + V 131764X135 + V 130084X134 + V 435981X133 + V 491906X132

+ V 13323X131 + V 348027X130 + V 121456X129 + V 169647X128 + V 402407X127

+ V 365410X126 + V 145342X125 + V 57435X124 + V 91949X123 + V 445537X122

+ V 492488X121 + V 55090X120 + V 434764X119 + V 64637X118 + V 99996X117

+ V 12523X116 + V 389689X115 + V 134092X114 + V 246083X113 + V 10963X112

+ V 148916X111 + V 41587X110 + V 354055X109 + V 298692X108 + V 383154X107

+ V 302661X106 + V 172710X105 + V 35215X104 + V 251733X103 + V 231170X102

+ V 131707X101 + V 69185X100 + V 419261X99 + V 166656X98 + V 53401X97

+ V 199901X96 + V 444893X95 + V 166602X94 + V 59517X93 + V 14933X92

+ V 145402X91 + V 205700X90 + V 88856X89 + V 477655X88 + V 222819X87

+ V 222306X86 + V 213452X85 + V 51716X84 + V 14147X83 + V 127001X82

+ V 114079X81 + V 22600X80 + V 13570X79 + V 160394X78 + V 302345X77

+ V 235019X76 + V 211211X75 + V 503284X74 + V 305726X73 + V 187406X72

+ V 85367X71 + V 351732X70 + V 314537X69 + V 527440X68 + V 90396X67

+ V 487012X66 + V 61402X65 + V 186715X64 + V 321289X63 + V 464845X62

+ V 252533X61 + V 456128X60 + V 294004X59 + V 158412X58 + V 468047X57

+ V 435352X56 + V 292575X55 + V 14354X54 + V 386909X53 + V 256425X52

+ V 526547X51 + V 93192X50 + V 29604X49 + V 105470X48 + V 137388X47

+ V 530423X46 + V 445296X45 + V 208523X44 + V 455861X43 + V 3701X42

+ V 60941X41 + V 144064X40 + V 176555X39 + V 133473X38 + V 160941X37

+ V 191485X36 + V 114346X35 + V 398940X34 + V 421974X33 + V 526211X32

+ V 145908X31 + V 475747X30 + V 231598X29 + V 319590X28 + V 450654X27

+ V 231787X26 + V 250594X25 + V 206239X24 + V 234016X23 + V 475097X22

+ V 5013X21 + V 13760X20 + V 721X19 + V 357716X18 + V 75516X17

+ V 420685X16 + V 448717X15 + V 263253X14 + V 211412X13 + V 226951X12

+ V 516849X11 + V 318138X10 + V 58612X9 + V 260070X8 + V 9903X7

+ V 144954X6 + V 154483X5 + V 359219X4 + V 297397X3 + V 201466X2

+ V 429112X + V 348391.

The discrete logarithm logg h mod r was found to be

x = 27339619076975093920245515973214186963025656559.

This can be verified by checking that h = (gN/r)y, where y = x · (N/r)−1 mod r (cf.
Appendix A).
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Continued fraction descent
Time: 243.2 Mq3

68 (2)

Classical descent

7 (320)
Classical descent
Time: 320 · 234.8 Mq3

Time: 20 · 233.7 Mq3

13 (20)

5 (5,120)
Gröbner bases descent
Time: 5, 120 · (26.5 minutes)

3 (219)

Time: 219 · (34.7 seconds)
Gröbner bases descent

1

2 (226)
Gröbner bases descent
Time: 226 · (0.216 seconds)

Figure 1. A typical path of the descent tree for computing an individual
logarithm in F312·137 (q = 34). The numbers in parentheses next to each
node are the expected number of nodes at that level. ‘Time’ is the expected
time to generate all nodes at a level.

3.2. Estimates. The factor base B1 has size 3
12 ≈ 219. The cost of the relation generation

is approximately 229.2Mq3 , whereas the cost of the linear algebra is approximately 244.4Ar.
Figure 1 shows the estimated running times for the descent stage. Further information
about the parameter choices are provided below.
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(1) For the continued-fractions descent stage, we selected m = 13. The expected cost
of this descent is 243.2Mq3 , and the expected number of irreducible factors of degree
(at most) 13 obtained is 2A312(68, 13) ≈ 20.

(2) Two classical descent stages are employed. In the first stage, we have D = 13 and
select m = 7, s = 3, δ = 1, which yield t1 = 43 and t2 = 34. The expected cost
of the descent for each of the 20 degree-13 polynomials is approximately 233.7Mq3 .
The expected total number of distinct irreducible polynomials of degree (at most)
7 obtained is approximately 320.

In the second classical descent stage, we have D = 7 and select m = 5, s = 3,
δ = 1, which yield t1 = 25 and t2 = 31. The expected cost of the descent for
each of the 320 degree-7 polynomials is approximately 234.8Mq3 . The expected
total number of distinct irreducible polynomials of degree (at most) 5 obtained is
approximately 5, 120.

(3) Our Magma implementation of the Gröbner bases descent stage takes 26.5 minutes
on average for a 5-to-3 descent, 34.7 seconds for a 3-to-2 descent, and 0.216 seconds
for a 2-to-1 descent. The total expected running time for each of these stages is
94, 211 and 168 days, respectively.

Since all the descent stages can be effectively parallelized, our estimates suggest that
a discrete logarithm can be computed in a week or so given a few dozen processors. In
fact (and as confirmed by our experimental results), the actual running time is expected
to be less than the estimated running time since the estimates are quite conservative; for
example, our estimates for the number of branches in a descent step assumes that each
distinct irreducible polynomial has degree exactly m, whereas in practice many of these
polynomials will have degree significantly less than m.

3.3. Experimental results. Our experiments were run on an Intel i7-2600K 3.40 GHz
machine (Sandy Bridge), and on an Intel i7-4700MQ 2.40 GHz machine (Haswell).

Relation generation took 1.05 CPU hours (Sandy Bridge, 1 core). The resulting sparse
linear system of linear equation was solved using Magma’s multi-threaded parallel version
of the Lanczos algorithm; the computation took 556.8 CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-68 polynomial yielded 9 irre-
ducible factors of degrees 12, 12, 11, 10, 8, 6, 6, 2, 1, and the second degree-68 polynomial
yielded 11 irreducible factors of degrees 13, 12, 10, 10, 7, 6, 5, 2, 1, 1, 1. The computation
took 22 CPU hours (Haswell, 4 cores).

Classical descent was used on the 9 polynomials of degree ≥ 8 to obtain polynomials of
degree ≤ 7, and then on the 23 polynomials of degree 7 and 23 polynomials of degree 6
to obtain polynomials of degree ≤ 5. These computations took 80 CPU hours (Haswell, 4
cores).

Finally, we used 5-to-3, 4-to-3, 3-to-2 and 2-to-1 Gröbner bases descent procedures.
The average time for a 4-to-3 descent was 33.8 seconds; the other average times are given
in Figure 1. In total, we performed 233 5-to-3 descents, 174 4-to-3 descents, 11573 3-to-2
descents, and 493537 2-to-1 descents. These computations took 115.2 CPU hours, 1.5
CPU hours, 111.2 CPU hours, 29.6 CPU hours respectively (Haswell, 4 cores).
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4. Conclusions

We used Joux’s L[1/4] algorithm to solve an instance of the discrete logarithm problem
in the 1303-bit finite field F36·137 . We emphasize that this field is ‘general’ in that it
does not enjoy any Kummer-like properties. The computation took only 918 CPU hours
using modest computer resources despite our implementation being in Magma and far
from optimal, unlike the substantial resources that were consumed in [17] for computing
a logarithm in the 923-bit field F36·97 with the Joux-Lercier algorithm. Our computation
adds further weight to the claim that Joux’s L[1/4] algorithm and its quasi-polytime
successor [4] render bilinear pairings derived from supersingular elliptic curves E : y2 =
x3 − x± 1 over F3m unsuitable for pairing-based cryptography.
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arithm cryptography”, Pairing-Based Cryptography – Pairing 2013, LNCS 8365 (2014), 20–44. Also
available at http://eprint.iacr.org/2013/446.

[2] G. Adj, A. Menezes, T. Oliveira and F. Rodŕıguez-Henŕıquez, “Weakness of F36·1429 and F24·3041 for
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Appendix A. Magma script for verifying the discrete logarithm

//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)

q := 3^4;

F3 := FiniteField(3);

P3<u> := PolynomialRing(F3);

poly := u^4 + u^2 + 2;

Fq<U> := ext<F3|poly>;

Pq<v> := PolynomialRing(Fq);

poly := v^3 + v + U^2 + U;

Fq3<V> := ext<Fq|poly>;

Pq3<Z> := PolynomialRing(Fq3);

r := 33098280119090191028775580055082175056428495623;

Fr := GF(r);

h0 := V^326196*Z^2 + V^35305*Z + V^204091;

h0q := Evaluate(h0,Z^q);

F := Z - h0q;

Ix := Factorization(F)[2][1];

Fn<X> := ext<Fq3|Ix>;

N := #Fn - 1;

// Generator of GF(3^{12*137})^*

g := X + V^113713;

// Encoding pi

Re := RealField(2000);

pival :=Pi(Re);

hp := 0;

for i := 0 to 136 do
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hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);

end for;

// This is the logarithm challenge

cofactor := N div r;

h := hp^cofactor;

// log_g(h) mod r is:

x := 27339619076975093920245515973214186963025656559;

// Define the exponent y to be used in the verification:

y := IntegerRing()!(Fr!(x/cofactor));

// Check that h = (g^cofactor)^y

h eq (g^cofactor)^y;
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