# COMPUTING DISCRETE LOGARITHMS IN $\mathbb{F}_{36 \cdot 137}$ AND $\mathbb{F}_{36 \cdot 163}$ USING MAGMA 

GORA ADJ, ALFRED MENEZES, THOMAZ OLIVEIRA, AND FRANCISCO RODRÍGUEZ-HENRÍQUEZ


#### Abstract

We show that a Magma implementation of Joux's new $L[1 / 4]$ algorithm can be used to compute discrete logarithms in the 1303 -bit finite field $\mathbb{F}_{36.137}$ and the 1551 -bit finite field $\mathbb{F}_{3^{6.163}}$ with very modest computational resources. Our $\mathbb{F}_{36 \cdot 137}$ implementation was the first to illustrate the effectiveness of Joux's algorithm for computing discrete logarithms in small-characteristic finite fields that are not Kummer or twisted-Kummer extensions.


## 1. Introduction

Let $\mathbb{F}_{Q}$ denote the finite field of order $Q$. The discrete logarithm problem (DLP) in $\mathbb{F}_{Q}$ is that of determining, given a generator of $\mathbb{F}_{Q}^{*}$ and an element $h \in \mathbb{F}_{Q}^{*}$, the integer $x \in[0, Q-2]$ satisfying $h=g^{x}$. In the remainder of the paper, we shall assume that the characteristic of $\mathbb{F}_{Q}$ is 2 or 3 .

Until recently, the fastest general-purpose algorithm known for solving the DLP in $\mathbb{F}_{Q}$ was Coppersmith's 1984 index-calculus algorithm [8] with a running time of $L_{Q}\left[\frac{1}{3},(32 / 9)^{1 / 3}\right]$ $\approx L_{Q}\left[\frac{1}{3}, 1.526\right]$, where as usual $L_{Q}[\alpha, c]$ with $0<\alpha<1$ and $c>0$ denotes the expression

$$
\exp \left((c+o(1))(\log Q)^{\alpha}(\log \log Q)^{1-\alpha}\right)
$$

that is subexponential in $\log Q$. In February 2013, Joux [19] (see also [13]) presented a new DLP algorithm with a running time of $L_{Q}\left[\frac{1}{4}+o(1), c\right]$ (for some undetermined $c$ ) when $Q=q^{2 n}$ and $q \approx n$. Shortly thereafter, Barbulescu, Gaudry, Joux and Thomé [4] presented an algorithm with quasi-polynomial running time $(\log Q)^{O(\log \log Q)}$ when $Q=q^{2 n}$ with $q \approx n$.

These dramatic developments were accompanied by some striking computational results. For example, Göloğlu et al. [14] computed logarithms in $\mathbb{F}_{2^{8 \cdot 3 \cdot 255}}=\mathbb{F}_{2^{6120}}$ in only 750 CPU hours, and Joux [20] computed logarithms in $\mathbb{F}_{2^{8 \cdot 3 \cdot 257}}=\mathbb{F}_{2^{6168}}$ in only 550 CPU hours. The small computational effort expended in these experiments depends crucially on the special nature of the fields $\mathbb{F}_{2} 6120$ and $\mathbb{F}_{26168}$ - namely that $\mathbb{F}_{26120}$ is a degree-255 extension of $\mathbb{F}_{2^{8.3}}$ with $255=2^{8}-1$ (a Kummer extension), and $\mathbb{F}_{2^{6168}}$ is a degree-257 extension of $\mathbb{F}_{2^{8.3}}$ with $257=2^{8}+1$ (a twisted Kummer extension). Adj et al. [1] presented a concrete analysis of the new algorithms and demonstrated that logarithms in $\mathbb{F}_{3^{6.509}}$ can be computed in approximately $2^{82}$ time, which is considerably less than the $2^{128}$ time required by Coppersmith's algorithm. Adj et al. [2] also showed how a modification of the new algorithms by Granger and Zumbrägel [17] can be used to compute logarithms in $\mathbb{F}_{3^{6.1429}}$ in approximately $2^{96}$ time, which is considerably less than the $2^{192}$ time required

[^0]by Coppersmith's algorithm. Unlike the aforementioned experimental results, the analysis by Adj et al. does not exploit any special properties of the fields $\mathbb{F}_{36 \cdot 509}$ and $\mathbb{F}_{36}$ 6.1429. However, the computational resources required to compute logarithms in these fields are still only within the reach of very well-funded adversaries.

The purpose of this paper is to demonstrate that, with modest computational resources, the new algorithms can be used to solve instances of the discrete logarithm problem that remain beyond the reach of classical algorithms. The first target field is the 1303 -bit field $\mathbb{F}_{36 \cdot 137}$; this field does not enjoy any Kummer-like properties. More precisely, we are interested in solving the discrete logarithm problem in the order-r subgroup $\mathcal{G}$ of $\mathbb{F}_{3^{6 \cdot 137}}^{*}$, where $r=\left(3^{137}-3^{69}+1\right) / 7011427850892440647$ is a 155 -bit prime. The discrete logarithm problem in this group is of cryptographic interest because the values of the bilinear pairing derived from the supersingular elliptic curve $E: y^{2}=x^{3}-x+1$ over $\mathbb{F}_{3137}$ lie in $\mathcal{G} .{ }^{1}$ Consequently, if logarithms in $\mathcal{G}$ can be computed efficiently then the associated bilinear pairing is rendered cryptographically insecure. Note that since $r$ is a 155 -bit prime, Pollard's rho algorithm [24] for computing logarithms in $\mathcal{G}$ is infeasible. Moreover, recent work on computing logarithms in the 809-bit field $\mathbb{F}_{2^{809}}$ [3] suggests that Coppersmith's algorithm is infeasible for computing logarithms in $\mathcal{G}$, whereas recent work on computing logarithms in the 923 -bit field $\mathbb{F}_{36 \cdot 97}$ [18] (see also [25]) indicates that computing logarithms in $\mathcal{G}$ using the Joux-Lercier algorithm [21] would be a formidable challenge. In contrast, we show that Joux's algorithm can be used to compute logarithms in $\mathcal{G}$ in just a few days using a small number of CPUs. The computational effort expended in our experiment is relatively small, despite the fact that our implementation was done using the computer algebra system Magma V2.20-2 [22] and is far from optimal.

The second target field is the 1551 -bit field $\mathbb{F}_{36 \cdot 163}$; this field does not enjoy any Kummerlike properties. More precisely, we are interested in solving the discrete logarithm problem in the order- $r$ subgroup $\mathcal{G}$ of $\mathbb{F}_{36-163}^{*}$, where $r=3^{163}+3^{82}+1$ is a 259 -bit prime. The discrete logarithm problem in this group is of cryptographic interest because the values of the bilinear pairing derived from the supersingular elliptic curve $E: y^{2}=x^{3}-x-1$ over $\mathbb{F}_{3^{163}}$ lie in $\mathcal{G}$. This bilinear pairing was first considered by Boneh, Lynn and Shacham in their landmark paper on short signature schemes [7]. Furthermore, the bilinear pairing derived from the twist of $E$ was one of the pairings implemented by Galbraith, Harrison and Soldera [12]. Again, we show that Joux's algorithm can be used to compute logarithms in $\mathcal{G}$ in just a few days using a small number of CPUs.

After we had completed the $\mathbb{F}_{36 \cdot 137}$ discrete logarithm computation, Granger, Kleinjung and Zumbrägel [15] presented several practical enhancements of Joux's algorithm. These improvements allowed them to compute logarithms in $\mathbb{F}_{2^{12 \cdot 367}}$, and drastically reduce the estimated time to compute logarithms in $\mathbb{F}_{2^{4 \cdot 1223}}$ to $2^{59}$ modular multiplications.

The remainder of the paper is organized as follows. In $\S 2$, we present Joux's algorithm for computing logarithms in $\mathbb{F}_{q^{3 n}}$; the algorithm uses the polynomial representation (selection of $h_{0}$ and $h_{1}$ ) of Granger and Zumbrägel [17]. Our experimental results with computing logarithms in $\mathbb{F}_{3^{6.137}}$ and $\mathbb{F}_{36.163}$ are reported in $\S 3$ and $\S 4$, respectively. We draw our conclusions in $\S 5$.

[^1]
## 2. Joux's $L[1 / 4]$ ALGORITHM

Let $\mathbb{F}_{q^{3 n}}$ be a finite field where $n \leq 2 q+1$. The elements of $\mathbb{F}_{q^{3 n}}$ are represented as polynomials of degree at most $n-1$ over $\mathbb{F}_{q^{3}}$. Let $N=q^{3 n}-1$, and let $r$ be a prime divisor of $N$. In this paper, we are interested in the discrete logarithm problem in the order- $r$ subgroup of $\mathbb{T}_{q^{3 n}}^{*}$. More precisely, we are given two elements $\alpha, \beta$ of order $r$ in $\mathbb{F}_{q^{3 n}}^{*}$ and we wish to find $\log _{\alpha} \beta$. Let $g$ be an element of order $N$ in $\mathbb{F}_{q^{3 n}}^{*}$. Then $\log _{\alpha} \beta=\left(\log _{g} \beta\right) /\left(\log _{g} \alpha\right) \bmod r$. Thus, in the remainder of this section we will assume that we need to compute $\log _{g} h \bmod r$, where $h$ is an element of order $r$ in $\mathbb{F}_{q^{3 n}}^{*}$.

The algorithm proceeds by first finding the logarithms $(\bmod r)$ of all degree-one elements in $\mathbb{F}_{q^{3 n}}(\S 2.2)$. Then, in the descent stage, $\log _{g} h$ is expressed as a linear combination of logarithms of degree-one elements. The descent stage proceeds in several steps, each expressing the logarithm of a degree- $D$ element as a linear combination of the logarithms of elements of degree $\leq m$ for some $m<D$. Four descent methods are employed; these are described in $\S 2.3-\S 2.6$.
Notation. $N_{q^{3}}(m, n)$ denotes the number of monic $m$-smooth degree- $n$ polynomials in $\mathbb{F}_{q^{3}}[X], A_{q^{3}}(m, n)$ denotes the average number of distinct monic irreducible factors among all monic $m$-smooth degree- $n$ polynomials in $\mathbb{F}_{q^{3}}[X]$, and $S_{q^{3}}(m, d)$ denotes the cost of testing $m$-smoothness of a degree- $d$ polynomial in $\mathbb{F}_{q^{3}}[X]$. Formulas for $N_{q^{3}}(m, n), A_{q^{3}}(m, n)$ and $S_{q^{3}}(m, n)$ are given in [1]. For $\gamma \in \mathbb{F}_{q^{3}}, \bar{\gamma}$ denotes the element $\gamma^{q^{2}}$. For $P \in \mathbb{F}_{q^{3}}[X]$, $\bar{P}$ denotes the polynomial obtained by raising each coefficient of $P$ to the power $q^{2}$. The cost of an integer addition modulo $r$ is denoted by $A_{r}$, and the cost of a multiplication in $\mathbb{F}_{q^{3}}$ is denoted by $M_{q^{3}}$. The projective general linear group of order 2 over $\mathbb{F}_{q}$ is denoted $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right) . \mathcal{P}_{q}$ is a set of distinct representatives of the left cosets of $\mathrm{PGL}_{2}\left(\mathbb{F}_{q}\right)$ in $\mathrm{PGL}_{2}\left(\mathbb{F}_{q^{3}}\right)$; note that $\# \mathcal{P}_{q}=q^{6}+q^{4}+q^{2}$. A matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{P}_{q}$ is identified with the quadruple ( $a, b, c, d$ ).
2.1. Setup. Select polynomials $h_{0}, h_{1} \in \mathbb{F}_{q^{3}}[X]$ of small degree so that

$$
\begin{equation*}
X \cdot h_{1}\left(X^{q}\right)-h_{0}\left(X^{q}\right) \tag{1}
\end{equation*}
$$

has an irreducible factor $I_{X}$ of degree $n$ in $\mathbb{F}_{q^{3}}[X]$; we will henceforth assume that $\max \left(\operatorname{deg} h_{0}, \operatorname{deg} h_{1}\right)=2$, whence $n \leq 2 q+1$. Note that

$$
\begin{equation*}
X \equiv \frac{h_{0}\left(X^{q}\right)}{h_{1}\left(X^{q}\right)} \equiv\left(\frac{\bar{h}_{0}(X)}{\bar{h}_{1}(X)}\right)^{q} \quad\left(\bmod I_{X}\right) . \tag{2}
\end{equation*}
$$

The field $\mathbb{F}_{q^{3 n}}$ is represented as $\mathbb{F}_{q^{3 n}}=\mathbb{F}_{q^{3}}[X] /\left(I_{X}\right)$ and the elements of $\mathbb{F}_{q^{3 n}}$ are represented as polynomials in $\mathbb{F}_{q^{3}}[X]$ of degree at most $n-1$. Let $g$ be a generator of $\mathbb{F}_{q^{3 n}}^{*}$.
2.2. Finding logarithms of linear polynomials. Let $\mathcal{B}_{1}=\left\{X+a \mid a \in \mathbb{F}_{q^{3}}\right\}$, and note that $\# \mathcal{B}_{1}=q^{3}$. To compute the logarithms of $\mathcal{B}_{1}$-elements, we first generate linear relations of these logarithms. Let $(a, b, c, d) \in \mathcal{P}_{q}$. Substituting $Y \mapsto(a X+b) /(c X+d)$ into the systematic equation

$$
\begin{equation*}
Y^{q}-Y=\prod_{\alpha \in \mathbb{F}_{q}}(Y-\alpha) \tag{3}
\end{equation*}
$$

and using (2) yields

$$
\begin{align*}
\left((a X+b)\left(\bar{c} \bar{h}_{0}+\bar{d} \bar{h}_{1}\right)\right. & \left.-\left(\bar{a} \bar{h}_{0}+\bar{b} \bar{h}_{1}\right)(c X+d)\right)^{q}  \tag{4}\\
& \equiv \bar{h}_{1}^{q} \cdot(c X+d) \cdot \prod_{\alpha \in \mathbb{F}_{q}}[(a-\alpha c) X+(b-\alpha d)] .
\end{align*}
$$

If the polynomial on the left side of (4) is 1 -smooth, then taking logarithms ( $\bmod r$ ) of both sides of (4) yields a linear relation of the logarithms of $\mathcal{B}_{1}$-elements and the logarithm of $\bar{h}_{1}$. The probability that the left side of (4) is 1 -smooth is $N_{q^{3}}(1,3) / q^{9} \approx \frac{1}{6}$. Thus, after approximately $6 q^{3}$ trials one expects to obtain $q^{3}$ relations. The cost of the relation generation stage is $6 q^{3} \cdot S_{q^{3}}(1,3)$. The logarithms can then be obtained by using Wiedemann's algorithm for solving sparse systems of linear equations [26, 9]. The expected cost of the linear algebra is $q^{7} \cdot A_{r}$ since each equation has approximately $q$ nonzero terms.
2.3. Continued-fractions descent. Recall that we wish to compute $\log _{g} h \bmod r$, where $h \in \mathbb{F}_{q^{3 n}}=\mathbb{F}_{q^{3}}[X] /\left(I_{X}\right)$ has order $r$. We will henceforth assume that $\operatorname{deg} h=n-1$. The descent stage begins by multiplying $h$ by a random power of $g$. The extended Euclidean algorithm is used to express the resulting field element $h^{\prime}$ in the form $h^{\prime}=w_{1} / w_{2}$ where $\operatorname{deg} w_{1}, \operatorname{deg} w_{2} \approx n / 2[6]$; for simplicity, we shall assume that $n$ is odd and $\operatorname{deg} w_{1}=$ $\operatorname{deg} w_{2}=(n-1) / 2$. This process is repeated until both $w_{1}$ and $w_{2}$ are $m$-smooth for some chosen $m<(n-1) / 2$. This gives $\log _{g} h^{\prime}$ as a linear combination of logarithms of polynomials of degree at most $m$. The expected cost of this continued-fractions descent step is approximately

$$
\begin{equation*}
\left(\frac{\left(q^{3}\right)^{(n-1) / 2}}{N_{q^{3}}(m,(n-1) / 2)}\right)^{2} \cdot S_{q^{3}}(m,(n-1) / 2) . \tag{5}
\end{equation*}
$$

The expected number of distinct irreducible factors of $w_{1}$ and $w_{2}$ is $2 A_{q^{3}}(m,(n-1) / 2)$. In the analysis, we shall assume that each of these irreducible factors has degree exactly $m$. The logarithm of each of these degree- $m$ polynomials is then expressed as a linear combination of logarithms of smaller degree polynomials using one of the descent methods described in $\S 2.4, \S 2.5$ and $\S 2.6$.
2.4. Classical descent. Let $p$ be the characteristic of $\mathbb{F}_{q}$, and let $q=p^{\ell}$. Let $s \in[0, \ell]$, and let $R \in \mathbb{F}_{q^{3}}[X, Y]$. Then it can be seen that

$$
\begin{equation*}
\left[R\left(X,\left(\bar{h}_{0} / \bar{h}_{1}\right)^{p^{\ell-s}}\right)\right]^{p^{s}} \equiv R^{\prime}\left(X^{p^{s}}, X\right) \quad\left(\bmod I_{X}\right) \tag{6}
\end{equation*}
$$

where $R^{\prime}$ is obtained from $R$ by raising all its coefficients to the power $p^{s}$. Let $\mu=\operatorname{deg}_{Y} R$. Then multiplying both sides of (6) by $\bar{h}_{1}^{q \mu}$ gives

$$
\begin{equation*}
\left[\bar{h}_{1}^{p^{\ell-s} \cdot \mu} \cdot R\left(X,\left(\bar{h}_{0} / \bar{h}_{1}\right)^{p^{\ell-s}}\right)\right]^{p^{s}} \equiv \bar{h}_{1}^{q \mu} \cdot R^{\prime}\left(X^{p^{s}}, X\right) \quad\left(\bmod I_{X}\right) . \tag{7}
\end{equation*}
$$

Let $Q \in \mathbb{F}_{q^{3}}[X]$ with $\operatorname{deg} Q=D$, and let $m<D$. In the Joux-Lercier descent method [21], as modified by Göloğlu et al. [13], one selects $s \in[0, \ell]$ and searches for a polynomial $R \in \mathbb{F}_{q^{3}}[X, Y]$ such that (i) $Q \mid R_{2}$ where $R_{2}=R^{\prime}\left(X^{p^{s}}, X\right)$; (ii) $\operatorname{deg} R_{1}$ and $\operatorname{deg} R_{2} / Q$ are appropriately balanced where $R_{1}=\bar{h}_{1}^{p^{\ell-s} \mu} R\left(X,\left(\bar{h}_{0} / \bar{h}_{1}\right)^{p^{\ell-s}}\right)$; and (iii) both $R_{1}$ and $R_{2} / Q$
are $m$-smooth. Taking logarithms of both sides of (7) then gives an expression for $\log _{g} Q$ in terms of the logarithms of polynomials of degree at most $m$.

A family of polynomials $R$ satisfying (i) and (ii) can be constructed by finding a basis $\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\}$ of the lattice

$$
L_{Q}=\left\{\left(w_{1}, w_{2}\right) \in \mathbb{F}_{q^{3}}[X] \times \mathbb{F}_{q^{3}}[X]: Q \mid\left(w_{1}(X)-w_{2}(X) X^{p^{s}}\right)\right\}
$$

where $\operatorname{deg} u_{1}, \operatorname{deg} u_{2}, \operatorname{deg} v_{1}, \operatorname{deg} v_{2} \approx D / 2$. By writing

$$
\left(w_{1}, w_{2}\right)=a\left(u_{1}, u_{2}\right)+b\left(v_{1}, v_{2}\right)=\left(a u_{1}+b v_{1}, a u_{2}+b v_{2}\right)
$$

with $a \in \mathbb{F}_{q^{3}}[X]$ monic of degree $\delta$ and $b \in \mathbb{F}_{q^{3}}[X]$ of degree $\delta-1$, the points $\left(w_{1}, w_{2}\right)$ in $L_{Q}$ can be sampled to obtain polynomials $R(X, Y)=w_{1}^{\prime \prime}(Y)-w_{2}^{\prime \prime}(Y) X$ satisfying (i) and (ii) where $w^{\prime \prime}$ is obtained from $w$ by raising all its coefficients to the power $p^{-s}$. The number of lattice points to consider is therefore $\left(q^{3}\right)^{2 \delta}$. We have $\operatorname{deg} w_{1}, \operatorname{deg} w_{2} \approx D / 2+\delta$, so $\operatorname{deg} R_{1}=t_{1} \approx 2(D / 2+\delta) p^{\ell-s}+1$ and $\operatorname{deg} R_{2}=t_{2} \approx(D / 2+\delta)+p^{s}$. In order to ensure that there are sufficiently many such lattice points to generate a polynomial $R$ for which both $R_{1}$ and $R_{2} / Q$ are $m$-smooth, the parameters $s$ and $\delta$ must be selected so that

$$
\begin{equation*}
q^{6 \delta} \gg \frac{q^{3 t_{1}}}{N_{q^{3}}\left(m, t_{1}\right)} \cdot \frac{q^{3\left(t_{2}-D\right)}}{N_{q^{3}}\left(m, t_{2}-D\right)} . \tag{8}
\end{equation*}
$$

Ignoring the time to compute a balanced basis of $L_{Q}$, the expected cost of finding a polynomial $R$ satisfying (i)-(iii) is

$$
\begin{equation*}
\frac{q^{3 t_{1}}}{N_{q^{3}}\left(m, t_{1}\right)} \cdot \frac{q^{3\left(t_{2}-D\right)}}{N_{q^{3}}\left(m, t_{2}-D\right)} \cdot \min \left(S_{q^{3}}\left(m, t_{1}\right), S_{q^{3}}\left(m, t_{2}-D\right)\right) . \tag{9}
\end{equation*}
$$

The expected number of distinct irreducible factors of $R_{1}$ and $R_{2} / Q$ is $A_{q^{3}}\left(m, t_{1}\right)+$ $A_{q^{3}}\left(m, t_{2}-D\right)$.
2.5. Gröbner bases descent. Let $Q \in \mathbb{F}_{q^{3}}[X]$ with $\operatorname{deg} Q=D$. Let $m=\lceil(D+1) / 2\rceil$, and suppose that $3 m<n$. In Joux's new descent method [19, $\S 5.3$ ], one finds degree- $m$ polynomials $k_{1}, k_{2} \in \mathbb{F}_{q^{3}}[X]$ such that

$$
G=k_{1} \widetilde{k}_{2}-\widetilde{k}_{1} k_{2}=Q R,
$$

where $\widetilde{k}_{1}=\bar{h}_{1}^{m} \bar{k}_{1}\left(\bar{h}_{0} / \bar{h}_{1}\right)$ and $\widetilde{k}_{2}=\bar{h}_{1}^{m} \bar{k}_{2}\left(\bar{h}_{0} / \bar{h}_{1}\right)$, and $R \in \mathbb{F}_{q^{3}}[X]$. Note that $\operatorname{deg} R=$ $3 m-D$. If $R$ is $m$-smooth, then we obtain a linear relationship between $\log _{g} Q$ and $\operatorname{logs}$ of degree- $m$ polynomials (see $[2, \S 3.7]$ ):

$$
\begin{equation*}
\bar{h}_{1}^{m q} \cdot k_{2} \cdot \prod_{\alpha \in \mathbb{F}_{q}}\left(k_{1}-\alpha k_{2}\right) \equiv(Q(X) R(X))^{q} \quad\left(\bmod I_{X}\right) . \tag{10}
\end{equation*}
$$

To determine ( $k_{1}, k_{2}, R$ ) that satisfy

$$
\begin{equation*}
k_{1} \widetilde{k}_{2}-\widetilde{k}_{1} k_{2}=Q R, \tag{11}
\end{equation*}
$$

one can transform (11) into a system of multivariate bilinear equations over $\mathbb{F}_{q}$. Specifically, each coefficient of $k_{1}, k_{2}$ and $R$ is written using three variables over $\mathbb{F}_{q}$. The coefficients of $\widetilde{k}_{1}$ and $\widetilde{k}_{2}$ can then be written in terms of the coefficients of $k_{1}$ and $k_{2}$. Hence, equating coefficients of $X^{i}$ of both sides of (11) yields $3 m+1$ quadratic equations. Equating $\mathbb{F}_{q}$-components of these equations then yields $9 m+3$ bilinear equations in $15 m-3 D+9$ variables over $\mathbb{F}_{q}$. This system of equations can be solved by finding a

Gröbner basis for the ideal it generates. Finally, solutions $\left(k_{1}, k_{2}, R\right)$ are tested until one is found for which $R$ is $m$-smooth. This yields an expression for $\log _{g} Q$ in terms of the logarithms of approximately $q+1+A_{q^{3}}(m, 3 m-D)$ polynomials of degree (at most) $m$; in the analysis we shall assume that each of the polynomials has degree exactly $m$.
2.6. 2-to-1 descent. The Gröbner bases descent methodology of $\S 2.5$ can be employed in the case $(D, m)=(2,1)$. However, as also reported by Joux in his $\mathbb{F}_{2^{6168}}$ computation [20], we found the descent to be successful for only about $50 \%$ of all quadratic polynomials.

Let $Q(X)=X^{2}+a X+b$ be an irreducible quadratic polynomial for which the Gröbner bases descent method failed. For such $Q$, we consider
$\bar{h}_{1}^{2 q} Q(X) \equiv \bar{h}_{1}^{2 q} Q\left(\left(\bar{h}_{0} / \bar{h}_{1}\right)^{q}\right)=\bar{h}_{0}^{2 q}+a \bar{h}_{0}^{q} \bar{h}_{1}^{q}+b \bar{h}_{1}^{2 q}=\left(\bar{h}_{0}^{2}+\bar{a} \bar{h}_{0} \bar{h}_{1}+\bar{b} \bar{h}_{1}^{2}\right)^{q} \quad\left(\bmod I_{X}\right)$.
Now, the degree- 4 polynomial $Q^{\prime}(X)=\bar{h}_{0}^{2}+\bar{a} \bar{h}_{0} \bar{h}_{1}+\bar{b} \bar{h}_{1}^{2}$ is either a product of two irreducible quadratics or itself irreducible. In the former case, we apply the standard Gröbner bases descent method to the two irreducible quadratics. If both descents are successful, then we have succeeded in descending the original $Q$. Otherwise, we employ a strategy used by Joux [20]. Namely, instead of using the systematic equation (3) derived from the polynomial $Y^{q}-Y$, we use a systematic equation derived from $Y^{q^{\prime}}-Y$ where $q^{\prime}<q$ is a power of the characteristic, and where $\mathbb{F}_{q^{\prime}}$ is a subfield of $\mathbb{F}_{q^{3}}{ }^{2}$ This hopefully yields a relation between $Q$ and another quadratic $Q^{\prime \prime}$ which has a roughly $50 \%$ chance of descending using Gröbner bases descent. If $Q^{\prime \prime}$ fails to descend or cannot be found, then we apply Joux's strategy to the two irreducible quadratics encountered in (12), in the hope that both descend. In the latter case where the quartic $Q^{\prime}$ is irreducible, we apply Joux's strategy to $Q$.

If none of these strategies succeed, then we declare $Q$ to be "bad", and repeat the higher-level descent step that produced this bad $Q$. This process is repeated until all the quadratics encountered are "good".

## 3. Computing discrete logarithms in $\mathbb{F}_{3 \text { 6.137 }}$

The supersingular elliptic curve $E: y^{2}=x^{3}-x+1$ has order $\# E\left(\mathbb{F}_{3^{137}}\right)=c r$, where

$$
c=7 \cdot 4111 \cdot 5729341 \cdot 42526171
$$

and

$$
r=\left(3^{137}-3^{69}+1\right) / c=33098280119090191028775580055082175056428495623
$$

is a 155 -bit prime. The Weil and Tate pairing attacks [23, 11] efficiently reduce the logarithm problem in the order-r subgroup $\mathcal{E}$ of $E\left(\mathbb{F}_{3^{137}}\right)$ to the discrete logarithm problem in the order- $r$ subgroup $\mathcal{G}$ of $\mathbb{F}_{3^{6 \cdot 137}}^{*}$.

Our approach to computing logarithms in $\mathcal{G}$ is to use Joux's algorithm to compute logarithms in the quadratic extension $\mathbb{F}_{3^{12.137}}$ of $\mathbb{F}_{36 \cdot 137}$ (so $q=3^{4}$ and $n=137$ in the notation of $\S 2)$. More precisely, we are given two elements $\alpha, \beta$ of order $r$ in $\mathbb{F}_{3^{12.137}}^{*}$ and we wish to find $\log _{\alpha} \beta$. Let $g$ be a generator of $\mathbb{F}_{3^{12 \cdot 137}}^{*}$. Then $\log _{\alpha} \beta=\left(\log _{g} \beta\right) /\left(\log _{g} \alpha\right) \bmod r$. Thus, in the remainder of the paper we will assume that we need to compute $\log _{g} h \bmod r$, where $h$ is an element of order $r$ in $\mathbb{F}_{3^{12 \cdot 127}}^{*}$.

[^2]The DLP instance we solved is described in $\S 3.1$. The concrete estimates from $\S 2$ for solving the DLP instances are given in $\S 3.2$. Our experimental results are presented in §3.3.
3.1. Problem instance. Let $N$ denote the order of $\mathbb{F}_{3^{12.137}}^{*}$. Using the tables from the Cunningham Project [10], we determined that the factorization of $N$ is $N=p_{1}^{4} \cdot \prod_{i=2}^{31} p_{i}$, where the $p_{i}$ are the following primes (and $r=p_{25}$ ):

$$
\begin{aligned}
p_{1}= & 2 \quad p_{2}=5 \quad p_{3}=7 \quad p_{4}=13 \quad p_{5}=73 \quad p_{6}=823 \quad p_{7}=4111 \quad p_{8}=4933 \\
p_{9}= & 236737 \quad p_{10}=344693 \quad p_{11}=2115829 \quad p_{12}=5729341 \\
p_{14}= & 217629707 \quad p_{15}=634432753 \quad p_{13}=42526171 \\
p_{18}= & 4354414202063707 \quad p_{19}=18329390240606021 \quad p_{20}=46249052722878623693 \\
p_{21}= & 201820452878622271249 \quad p_{22}=113938829134880224954142892526477 \\
p_{23}= & 51854546646328186791017417700430486396513 \\
p_{24}= & 273537065683369412556888964042827802376371 \\
p_{25}= & 33098280119090191028775580055082175056428495623 \\
p_{26}= & 706712258201940254667826642673008768387229115048379 \\
p_{27}= & 108081809773839995188256800499141543684393035450350551 \\
p_{28}= & 91321974595662761339222271626247966116126450162880692588587183952237 \\
p_{29}= & 39487531149773489532096996293368370182957526257988573877031054477249393549 \\
p_{30}= & 401898600223848500442548547965611825475530727307388238669863008076132920774941 \\
& 8522920289 \\
p_{31}= & 1906432315382527207280368587080395562283428652313903740358075231082278966446
\end{aligned}
$$

We chose the representations

$$
\mathbb{F}_{3^{4}}=\mathbb{F}_{3}[U] /\left(U^{4}+U^{2}+2\right)
$$

and

$$
\mathbb{F}_{3^{12}}=\mathbb{F}_{3^{4}}[V] /\left(V^{3}+V+U^{2}+U\right)
$$

and selected

$$
h_{0}(X)=V^{326196} X^{2}+V^{35305} X+V^{204091} \in \mathbb{F}_{3^{12}}[X]
$$

and $h_{1}=1$. Then $I_{X} \in \mathbb{F}_{3^{12}}[X]$ is the degree- 137 monic irreducible factor of $X-h_{0}\left(X^{3^{4}}\right)$; the other irreducible factor has degree 25 .

We chose the generator $g=X+V^{113713}$ of $\mathbb{F}_{3^{12 \cdot 137}}^{*}$. To generate an order- $r$ discrete logarithm challenge $h$, we computed

$$
h^{\prime}=\sum_{i=0}^{136}\left(V^{\left\lfloor\pi \cdot\left(3^{12}\right)^{i+1}\right\rfloor \bmod 3^{12}}\right) X^{i}
$$

and then set $h=\left(h^{\prime}\right)^{N / r}$. We thus have

$$
\begin{aligned}
& h=V^{307932} X^{136}+V^{131764} X^{135}+V^{130084} X^{134}+V^{435981} X^{133}+V^{491906} X^{132} \\
& +V^{13323} X^{131}+V^{348027} X^{130}+V^{121456} X^{129}+V^{169647} X^{128}+V^{402407} X^{127} \\
& +V^{365410} X^{126}+V^{145342} X^{125}+V^{57435} X^{124}+V^{91949} X^{123}+V^{445537} X^{122} \\
& +V^{492488} X^{121}+V^{55090} X^{120}+V^{434764} X^{119}+V^{64637} X^{118}+V^{99996} X^{117} \\
& +V^{12523} X^{116}+V^{389689} X^{115}+V^{134092} X^{114}+V^{246083} X^{113}+V^{10963} X^{112} \\
& +V^{148916} X^{111}+V^{41587} X^{110}+V^{354055} X^{109}+V^{298692} X^{108}+V^{383154} X^{107} \\
& +V^{302661} X^{106}+V^{172710} X^{105}+V^{35215} X^{104}+V^{251733} X^{103}+V^{231170} X^{102} \\
& +V^{131707} X^{101}+V^{69185} X^{100}+V^{419261} X^{99}+V^{166656} X^{98}+V^{53401} X^{97} \\
& +V^{199901} X^{96}+V^{444893} X^{95}+V^{166602} X^{94}+V^{59517} X^{93}+V^{14933} X^{92} \\
& +V^{145402} X^{91}+V^{205700} X^{90}+V^{88856} X^{89}+V^{477655} X^{88}+V^{222819} X^{87} \\
& +V^{222306} X^{86}+V^{213452} X^{85}+V^{51716} X^{84}+V^{14147} X^{83}+V^{127001} X^{82} \\
& +V^{114079} X^{81}+V^{22600} X^{80}+V^{13570} X^{79}+V^{160394} X^{78}+V^{302345} X^{77} \\
& +V^{235019} X^{76}+V^{211211} X^{75}+V^{503284} X^{74}+V^{305726} X^{73}+V^{187406} X^{72} \\
& +V^{85367} X^{71}+V^{351732} X^{70}+V^{314537} X^{69}+V^{527440} X^{68}+V^{90396} X^{67} \\
& +V^{487012} X^{66}+V^{61402} X^{65}+V^{186715} X^{64}+V^{321289} X^{63}+V^{464845} X^{62} \\
& +V^{252533} X^{61}+V^{456128} X^{60}+V^{294004} X^{59}+V^{158412} X^{58}+V^{468047} X^{57} \\
& +V^{435352} X^{56}+V^{292575} X^{55}+V^{14354} X^{54}+V^{386909} X^{53}+V^{256425} X^{52} \\
& +V^{526547} X^{51}+V^{93192} X^{50}+V^{29604} X^{49}+V^{105470} X^{48}+V^{137388} X^{47} \\
& +V^{530423} X^{46}+V^{445296} X^{45}+V^{208523} X^{44}+V^{455861} X^{43}+V^{3701} X^{42} \\
& +V^{60941} X^{41}+V^{144064} X^{40}+V^{176555} X^{39}+V^{133473} X^{38}+V^{160941} X^{37} \\
& +V^{191485} X^{36}+V^{114346} X^{35}+V^{398940} X^{34}+V^{421974} X^{33}+V^{526211} X^{32} \\
& +V^{145908} X^{31}+V^{475747} X^{30}+V^{231598} X^{29}+V^{319590} X^{28}+V^{450654} X^{27} \\
& +V^{231787} X^{26}+V^{250594} X^{25}+V^{206239} X^{24}+V^{234016} X^{23}+V^{475097} X^{22} \\
& +V^{5013} X^{21}+V^{13760} X^{20}+V^{721} X^{19}+V^{357716} X^{18}+V^{75516} X^{17} \\
& +V^{420685} X^{16}+V^{448717} X^{15}+V^{263253} X^{14}+V^{211412} X^{13}+V^{226951} X^{12} \\
& +V^{516849} X^{11}+V^{318138} X^{10}+V^{58612} X^{9}+V^{260070} X^{8}+V^{9903} X^{7} \\
& +V^{144954} X^{6}+V^{154483} X^{5}+V^{359219} X^{4}+V^{297397} X^{3}+V^{201466} X^{2} \\
& +V^{429112} X+V^{348391} \text {. }
\end{aligned}
$$

The discrete logarithm $\log _{g} h \bmod r$ was found to be

$$
x=27339619076975093920245515973214186963025656559 .
$$

This can be verified by checking that $h=\left(g^{N / r}\right)^{y}$, where $y=x \cdot(N / r)^{-1} \bmod r$ (cf. Appendix A).


Figure 1. A typical path of the descent tree for computing an individual logarithm in $\mathbb{F}_{3^{12 \cdot 137}}\left(q=3^{4}\right)$. The numbers in parentheses next to each node are the expected number of nodes at that level. 'Time' is the expected time to generate all nodes at a level.
3.2. Estimates. The factor base $\mathcal{B}_{1}$ has size $3^{12} \approx 2^{19}$. The cost of the relation generation is approximately $2^{29.2} M_{q^{3}}$, whereas the cost of the linear algebra is approximately $2^{44.4} A_{r}$. Figure 1 shows the estimated running times for the descent stage. Further information about the parameter choices are provided below.
(1) For the continued-fractions descent stage, we selected $m=13$. The expected cost of this descent is $2^{43.2} M_{q^{3}}$, and the expected number of irreducible factors of degree (at most) 13 obtained is $2 A_{3^{12}}(68,13) \approx 20$.
(2) Two classical descent stages are employed. In the first stage, we have $D=13$ and select $m=7, s=3, \delta=1$, which yield $t_{1}=43$ and $t_{2}=34$. The expected cost of the descent for each of the 20 degree- 13 polynomials is approximately $2^{33.7} M_{q^{3}}$.

The expected total number of distinct irreducible polynomials of degree (at most) 7 obtained is approximately 320 .

In the second classical descent stage, we have $D=7$ and select $m=5, s=3$, $\delta=1$, which yield $t_{1}=25$ and $t_{2}=31$. The expected cost of the descent for each of the 320 degree- 7 polynomials is approximately $2^{34.8} M_{q^{3}}$. The expected total number of distinct irreducible polynomials of degree (at most) 5 obtained is approximately 5,120 .
(3) Our Magma implementation of the Gröbner bases descent stage takes 26.5 minutes on average for a 5 -to- 3 descent, 34.7 seconds for a 3 -to- 2 descent, and 0.216 seconds for a 2 -to- 1 descent. The total expected running time for each of these stages is 94, 211 and 168 days, respectively.
Since all the descent stages can be effectively parallelized, our estimates suggest that a discrete logarithm can be computed in a week or so given a few dozen processors. In fact (and as confirmed by our experimental results), the actual running time is expected to be less than the estimated running time since the estimates are quite conservative; for example, our estimates for the number of branches in a descent step assumes that each distinct irreducible polynomial has degree exactly $m$, whereas in practice many of these polynomials will have degree significantly less than $m$.
3.3. Experimental results. Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge), and on an Intel i7-4700MQ 2.40 GHz machine (Haswell).

Relation generation took 1.05 CPU hours (Sandy Bridge, 1 core). The resulting sparse linear system of linear equation was solved using Magma's multi-threaded parallel version of the Lanczos algorithm; the computation took 556.8 CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-68 polynomial yielded 9 irreducible factors of degrees $12,12,11,10,8,6,6,2,1$, and the second degree- 68 polynomial yielded 11 irreducible factors of degrees $13,12,10,10,7,6,5,2,1,1,1$. The computation took 22 CPU hours (Haswell, 4 cores).

Classical descent was used on the 9 polynomials of degree $\geq 8$ to obtain polynomials of degree $\leq 7$, and then on the 23 polynomials of degree 7 and 23 polynomials of degree 6 to obtain polynomials of degree $\leq 5$. These computations took 80 CPU hours (Haswell, 4 cores).

Finally, we used 5-to-3, 4-to-3, 3-to-2 and 2-to-1 Gröbner bases descent procedures. The average time for a 4 -to- 3 descent was 33.8 seconds; the other average times are given in Figure 1. In total, we performed 233 5-to-3 descents, 1744 -to-3 descents, and 11573 3 -to-2 descents. These computations took 115.2 CPU hours, 1.5 CPU hours, and 111.2 CPU hours, respectively (Haswell, 4 cores). We also performed 493537 2-to-1 descents; their running times are incorporated into the running times for the higher-level descents.

## 4. Computing discrete logarithms in $\mathbb{F}_{36 \text {.163 }}$

The supersingular elliptic curve $E: y^{2}=x^{3}-x-1$ has order $\# E\left(\mathbb{F}_{3^{163}}\right)=3^{163}+3^{82}+1=$ $r$, where $r$ is the following 259-bit prime:
$r=589881151426658740854227725580736348850640632297373414091790995505756623268837$

The Weil and Tate pairing attacks [23,11] efficiently reduce the logarithm problem in the order- $r$ group $\mathcal{E}$ of $E\left(\mathbb{F}_{3^{163}}\right)$ to the discrete logarithm problem in the order- $r$ subgroup $\mathcal{G}$ of $\mathbb{F}_{3^{6} \cdot 163}^{*}$.

As in $\S 3$, we will compute logarithms in $\mathcal{G}$ by using Joux's algorithm to compute logarithms in the quadratic extension $\mathbb{F}_{3^{12.163}}$ of $\mathbb{F}_{3^{6.163}}$ (so $q=3^{4}$ and $n=163$ in the notation of $\S 2$ ). We will compute $\log _{g} h \bmod r$, where $g$ is a generator of $\mathbb{F}_{3^{12 \cdot 163}}^{*}$ and $h$ is an element of order $r$ in $\mathbb{F}_{3^{12.163}}^{*}$.
4.1. Problem instance. Let $N$ denote the order of $\mathbb{F}_{3^{12 \cdot 163}}^{*}$. Using the tables from the Cunningham Project [10], we determined that the factorization of $N$ is $N=C \cdot p_{1}^{4} \cdot \prod_{i=2}^{21} p_{i}$, where the $p_{i}$ are the following primes (and $r=p_{19}$ ):

$$
\begin{aligned}
p_{1}= & p_{2}=5 \quad p_{3}=7
\end{aligned} p_{4}=13 \quad p_{5}=73 \quad p_{6}=653 \quad p_{7}=508570 \text { ( } p_{9}=489001 \quad p_{10}=105451873 \quad p_{11}=380998157 \quad p_{12}=8483499631
$$

and $C$ is the following 993 -bit composite number

$$
\begin{aligned}
C= & 6669215207784155247035450567275281441784504691831124529496679578327774649175858 \\
& 1544668210356512320342808938592363940492093949257316506182252015130356170812034 \\
& 2626293082649041518200493268849347383954588492945145757885652875197696745124570 \\
& 00881136693309835429996025672469769393797613446764066101946433 .
\end{aligned}
$$

We verified that $\operatorname{gcd}(C, N / C)=1$ and that $C$ is not divisible by any of the first $10^{7}$ primes. Consequently, if an element $g$ is selected uniformly at random from $\mathbb{F}_{3^{12 \cdot 163}}^{*}$, and $g$ satisfies $g^{(N-1) / p_{i}} \neq 1$ for $1 \leq i \leq 21$, then $g$ is a generator with very high probability. ${ }^{3}$

We chose the representations $\mathbb{F}_{3^{4}}=\mathbb{F}_{3}[U] /\left(U^{4}+U^{2}+2\right)$ and $\mathbb{F}_{3^{12}}=\mathbb{F}_{3^{4}}[V] /\left(V^{3}+V+\right.$ $\left.U^{2}+U\right)$, and selected $h_{0}(X)=1$ and

$$
h_{1}(X)=X^{2}+V^{530855} \in \mathbb{F}_{3^{12}}[X] .
$$

Then $I_{X} \in \mathbb{F}_{3^{12}}[X]$ is the degree-163 irreducible polynomial $X \cdot h_{1}\left(X^{3^{4}}\right)-1$ :

$$
I_{X}=X^{163}+V^{530855} X+2 .
$$

We chose $g=X+V^{2}$, which we hope is a generator of $\mathbb{F}_{3^{12 \cdot 163}}^{*}$.

[^3]To generate an order- $r$ discrete logarithm challenge $h$, we computed

$$
h^{\prime}=\sum_{i=0}^{162}\left(V^{\left\lfloor\pi \cdot\left(3^{12}\right)^{i+1}\right\rfloor \bmod 3^{12}}\right) X^{i}
$$

and then set $h=\left(h^{\prime}\right)^{N / r}$. The discrete $\operatorname{logarithm}_{\log }^{g} \operatorname{hod} r$ was found to be

$$
x=426395951498279193713291391953449000732592554251132525672039784356054526194343 .
$$

This can be verified by checking that $h=\left(g^{N / r}\right)^{y}$, where $y=x \cdot(N / r)^{-1} \bmod r(c f$. Appendix B).
4.2. Experimental results. Our experiments were run on an Intel i7-2600K 3.40 GHz machine (Sandy Bridge), and on an Intel Xeon E5-2650 2.00 GHz machine (Sandy BridgeEP). The descent strategy was similar to the one used for the $\mathbb{F}_{3^{6-137}}$ computation.

Relation generation took 0.84 CPU hours (Sandy Bridge, 1 core). The resulting sparse linear system of linear equation was solved using Magma's multi-threaded parallel version of the Lanczos algorithm; the computation took 852.5 CPU hours (Sandy Bridge, 4 cores).

In the continued-fractions descent stage, the first degree-81 polynomial yielded 8 irreducible factors of degrees $15,15,14,14,10,7,5,1$, and the second degree-81 polynomial yielded 12 irreducible factors of degrees $12,10,9,9,9,8,6,6,6,4,1,1$. The computation took 226.7 CPU hours (Sandy Bridge-EP, 16 cores).

Classical descent was used on the 11 polynomials of degree $\geq 8$ to obtain polynomials of degree $\leq 7$, and then a variant of classical descent (called the "alternative" method in $\S 3.5$ of [2]) was used on the 15 polynomials of degree 7 and 30 polynomials of degree 6 to obtain polynomials of degree $\leq 5$. These computations took 51.0 CPU hours (Sandy Bridge-EP, 16 cores).

Finally, we used 5-to-3, 4-to-3 and 3-to-2 Gröbner bases descent procedures. The descent was sped up by writing the coefficients of $R$ (cf. equation(11)) in terms of the coefficients of $k_{1}$ and $k_{2}$; this reduced the number of variables in the resulting bilinear equations from $15 m-3 D+9$ to $9 m+3$. In total, we performed 2135 -to- 3 descents, 1874 -to- 3 descents and 114423 -to- 2 descents. These computations took 24.0 CPU hours (Sandy Bridge-EP 16 cores), 0.8 CPU hours (Sandy Bridge, 4 cores), and 44.8 CPU hours (Sandy Bridge, 4 cores), respectively. The running times of the 2 -to- 1 descents were incorporated into the running times for the higher-level descents.

## 5. Conclusions

We used Joux's $L[1 / 4]$ algorithm to solve instances of the discrete logarithm problem in the 1303 -bit finite field $\mathbb{F}_{3} 6$-137 and the 1551 -bit finite field $\mathbb{F}_{3^{6-163}}$. We emphasize that these field are 'general' in that they do not enjoy any Kummer-like properties. The computations took only 888 CPU hours and 1201 CPU hours, respectively, using modest computer resources despite our implementation being in Magma and far from optimal, unlike the substantial resources that were consumed in [18] for computing a logarithm in the 923 -bit field $\mathbb{F}_{36.97}$ with the Joux-Lercier algorithm. Our computational results add further weight to the claim that Joux's $L[1 / 4]$ algorithm and its quasi-polytime successor [4] render bilinear pairings derived from supersingular elliptic curves $E: y^{2}=x^{3}-x \pm 1$ over $\mathbb{F}_{3^{m}}$ unsuitable for pairing-based cryptography.

## References

[1] G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, "Weakness of $\mathbb{F}_{3} 6.509$ for discrete logarithm cryptography", Pairing-Based Cryptography - Pairing 2013, LNCS 8365 (2014), 20-44. Also available at http://eprint.iacr.org/2013/446.
[2] G. Adj, A. Menezes, T. Oliveira and F. Rodríguez-Henríquez, "Weakness of $\mathbb{F}_{36 \cdot 1429}$ and $\mathbb{F}_{2^{4.3041}}$ for discrete logarithm cryptography", available at http://eprint.iacr.org/2013/737.
[3] R. Barbulescu, C. Bouvier, J. Detrey, P. Gaudry, H. Jeljeli, E. Thomé, M. Videau and P. Zimmermann, "Discrete logarithm in $G F\left(2^{809}\right)$ with FFS", Public Key Cryptography - PKC 2014, to appear; also available at http://eprint.iacr.org/2013/197.
[4] R. Barbulescu, P. Gaudry, A. Joux and E. Thomé, "A quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic: Improvements over FFS in small to medium characteristic", available at http://eprint.iacr.org/2013/400.
[5] P. Barreto, H. Kim, B. Lynn and M. Scott, "Efficient algorithms for pairing-based cryptosystems", Advances in Cryptology - CRYPTO 2002, LNCS 2442 (2002), 354-368.
[6] I. Blake, R. Fuji-Hara, R. Mullin and S. Vanstone, "Computing logarithms in finite fields of characteristic two", SIAM Journal on Algebraic and Discrete Methods, 5 (1984), 276-285.
[7] D. Boneh, B. Lynn, and H. Shacham, "Short signatures from the Weil pairing", Journal of Cryptology, 17 (2004), 297-319.
[8] D. Coppersmith, "Fast evaluation of logarithms in fields of characteristic two", IEEE Transactions on Information Theory, 30 (1984), 587-594.
[9] D. Coppersmith, "Solving homogeneous linear equations over $G F(2)$ via block Wiedemann algorithm", Mathematics of Computation, 62 (1994), 333-350.
[10] The Cunningham Project, http://homes.cerias.purdue.edu/~ssw/cun/.
[11] G. Frey and H. Rück, "A remark concerning $m$-divisibility and the discrete logarithm in the divisor class group of curves", Mathematics of Computation, 62 (1994), 865-874.
[12] S. Galbraith, K. Harrison and D. Soldera, "Implementing the Tate pairing", Algorithmic Number Theory - ANTS 2002, LNCS 2369 (2002), 324-337.
[13] F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, "On the function field sieve and the impact of higher splitting probabilities: Application to discrete logarithms in $\mathbb{F}_{2^{1971}} "$, Advances in Cryptology CRYPTO 2013, LNCS 8043 (2013), 109-128.
[14] F. Göloğlu, R. Granger, G. McGuire and J. Zumbrägel, "Solving a 6120 -bit DLP on a desktop computer", Selected Areas in Cryptography - SAC 2013, to appear; available at http://eprint.iacr.org/ 2013/306.
[15] R. Granger, T. Kleinjung and J. Zumbrägel, "Breaking '128-bit secure' supersingular binary curves (or how to solve discrete logarithms in $\mathbb{F}_{2^{4 \cdot 1223}}$ and $\mathbb{F}_{2^{12 \cdot 367}}$ )", available at http://eprint.iacr.org/2014/119.
[16] R. Granger, D. Page and M. Stam, "Hardware and software normal basis arithmetic for pairing based cryptography in characteristic three", IEEE Transactions on Computers, 54 (2005), 852-860.
[17] R. Granger and J. Zumbrägel, "On the security of supersingular binary curves", presentation at ECC 2013, September 162013.
[18] T. Hayashi, T. Shimoyama, N. Shinohara and T. Takagi, "Breaking pairing-based cryptosystems using $\eta_{T}$ pairing over $G F\left(3^{97}\right) "$, Advances in Cryptology - ASIACRYPT 2012, LNCS 7658 (2012), 43-60.
[19] A. Joux, "A new index calculus algorithm with complexity $L(1 / 4+o(1))$ in very small characteristic", Selected Areas in Cryptography - SAC 2013, to appear; available at http://eprint.iacr.org/2013/095.
[20] A. Joux, "Discrete logarithm in $G F\left(2^{6128}\right)$ ", Number Theory List, May 212013.
[21] A. Joux and R. Lercier, "The function field sieve in the medium prime case" Advances in Cryptology - EUROCRYPT 2006, LNCS 4004 (2006), 254-270.
[22] Magma v2.19-7, http://magma.maths.usyd.edu.au/magma/.
[23] A. Menezes, T. Okamoto and S. Vanstone, "Reducing elliptic curve logarithms to logarithms in a finite field", IEEE Transactions on Information Theory, 39 (1993), 1639-1646.
[24] J. Pollard, "Monte Carlo methods for index computation mod p", Mathematics of Computation, 32 (1978), 918-924.
[25] N. Shinohara, T. Shimoyama, T. Hayashi and T. Takagi, "Key length estimation of pairing-based cryptosystems using $\eta_{T}$ pairing", Information Security Practice and Experience - ISPEC 2012, LNCS 7232 (2012), 228-244.
[26] D. Wiedemann, "Solving sparse linear equations over finite fields", IEEE Transactions on Information Theory, 32 (1986), 54-62.

Appendix A. Magma script for verifying the $\mathbb{F}_{36} 6137$ Discrete logarithm

```
//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)
q := 3^4;
F3 := FiniteField(3);
P3<u> := PolynomialRing(F3);
poly := u^4 + u^2 + 2;
Fq<U> := ext<F3|poly>;
Pq<v> := PolynomialRing(Fq);
poly := v^3 + v + U^2 + U;
Fq3<V> := ext<Fq|poly>;
Pq3<Z> := PolynomialRing(Fq3);
r := 33098280119090191028775580055082175056428495623;
Fr := GF(r);
h0 := V^326196*Z^2 + V^35305*Z + V^204091;
h0q := Evaluate(h0,Z^q);
F := Z - h0q;
Ix := Factorization(F) [2] [1];
Fn<X> := ext<Fq3|Ix>;
N := #Fn - 1;
// Generator of GF(3^{12*137})^*
g := X + V^113713;
// Encoding pi
Re := RealField(2000);
pival :=Pi(Re);
hp := 0;
for i := 0 to 136 do
    hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);
end for;
// This is the logarithm challenge
cofactor := N div r;
h := hp^cofactor;
// log_g(h) mod r is:
x := 27339619076975093920245515973214186963025656559;
// Define the exponent y to be used in the verification:
y := IntegerRing()!(Fr!(x/cofactor));
// Check that h = (g^cofactor)^y
```

h eq ( $\mathrm{g}^{\wedge}$ cofactor) ${ }^{\wedge} \mathrm{y}$;

Appendix B. Magma script for verifying the $\mathbb{F}_{36.163}$ Discrete Logarithm

```
//Definition of the extension fields Fq := F3(U) and Fq3 := Fq(V)
q := 3^4;
F3 := FiniteField(3);
P3<u> := PolynomialRing(F3);
poly := u^4 + u^2 + 2;
Fq<U> := ext<F3|poly>;
Pq<v> := PolynomialRing(Fq);
poly := v^3 + v + U^2 + U;
Fq3<V> := ext<Fq|poly>;
Pq3<Z> := PolynomialRing(Fq3);
r := 589881151426658740854227725580736348850640632297373414091790
            995505756623268837;
Fr := GF(r);
h1 := Z^2 + V^530855;
h1q := Evaluate(h1,Z^q);
Ix := h1q*Z - 1;
Fn<X> := ext<Fq3|Ix>;
N := #Fn - 1;
// Generator of GF(3^{12*163})^*
g := X + V^2;
// Encoding pi
Re := RealField(2000);
pival :=Pi(Re);
hp := 0;
for i := 0 to 162 do
    hp := hp + V^(Floor(pival*(#Fq3)^(i+1)) mod #Fq3)*(X^i);
end for;
// This is the logarithm challenge
cofactor := N div r;
h := hp^cofactor;
// log_g(h) mod r is:
x := 42639595149827919371329139195344900073259255425113252567203
        9784356054526194343;
// Define the exponent y to be used in the verification:
y := IntegerRing()!(Fr!(x/cofactor));
// Check that h = (g^cofactor)^y
h eq (g^cofactor)^y;
```

Computer Science Department, CINVESTAV-IPN
E-mail address: gora.adj@gmail.com
Department of Combinatorics \& Optimization, University of Waterloo
E-mail address: ajmeneze@uwaterloo.ca
Computer Science Department, Cinvestav-IPn
E-mail address: thomaz.figueiredo@gmail.com
Computer Science Department, CINVESTAV-IPN
E-mail address: francisco@cs.cinvestav.mx


[^0]:    Date: January 24, 2014; updated on February 25, 2014.

[^1]:    ${ }^{1}$ We note that the elliptic curves $y^{2}=x^{3}-x \pm 1$ over $\mathbb{F}_{3^{n}}$ have embedding degree 6 and were proposed for cryptographic use in several early papers on pairing-based cryptography [7, 5, 12, 16].

[^2]:    ${ }^{2}$ For our $\mathbb{F}_{3} 6.137$ computation, we have $q=3^{4}$ and used $q^{\prime}=3^{3}$.

[^3]:    ${ }^{3}$ More precisely, since $C$ has at most 37 prime factors, each of which is greater than the ten-millionth prime $p=179424673$, the probability that $g$ is a generator is at least $\left(1-\frac{1}{p}\right)^{37}>0.99999979$.

