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Abstract

We introduce the first graph-theoretic proof-of-work system, based on finding cycles or other
structures in large random graphs. Such problems are arbitrarily scalable and trivially verifiable.
Our cycle finding algorithm uses one bit per edge, and up to one bit per node. Runtime is linear
in graph size and dominated by random access latency. We exhibit two alternative algorithms that
allow for a memory-time trade-off (TMTO)—decreased memory usage, by a factor k, coupled with
increased runtime, by a factor Ω(k). The constant implied in Ω() gives a notion of memory-hardness,
which is shown to be dependent on cycle length, guiding the latter’s choice.

1 Introduction

A “proof of work” (PoW) system allows a verifier to check with negligible effort that a prover has
expended a large amount of computational effort. Originally introduced as a spam fighting measure,
where the effort is the price paid by an email sender for demanding the recipient’s attention, they now
form one of the cornerstones of crypto-currencies.

As proof-of-work for new blocks of transactions, Bitcoin [1] adopted Adam Back’s hashcash [2]
proof-of-work. This entails finding a nonce value such that application of a cryptographic hash function
to this nonce and the rest of the block header, results in a number below a target threshold1. The
threshold is dynamically adjusted by the protocol so as to maintain an average block interval of 10
minutes.

Since Bitcoin, many other crypto-currencies have adopted hashcash, with various choices of un-
derlying hash function. the most well-known being scrypt as used in Litecoin.

Primecoin [3] introduced the notion of a number-theoretic proof-of-work, thereby offering the first
alternative to hashcash among crypto-currencies. Primecoin identifies long chains of nearly doubled
prime numbers, constrained by a certain relation to the block header. Verification of these chains,
while very slow compared to bitcoin’s, is much faster than attempting to find one. This asymmetry
between proof (attempt) and verification is typical in non-hashcash proofs of work. Recently, another
prime-number based crypto-currency, Riecoin, was introduced, based on finding clusters rather than
chains of prime numbers.

Momentum [9] proposes finding birthday collisions of hash outputs, in what could well be the
simplest possible assymetric proof-of-work, combining scalable memory usage with trivial verifiability.
As we will see in section 11, Momentum is in essence a special case of Cuckoo Cycle.

1or, less accurately, results in many leading 0s
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2 Graph-theoretic proofs-of-work

We propose to base proofs-of-work on finding certain subgraphs in large pseudo-random graphs. In
the Erdős-Rényi model, denoted G(N,M), a graph is chosen uniformly at random from the collection
of all graphs with N nodes and M edges. Instead, we choose edges deterministically from the output
of a keyed hash function, whose key could be chosen uniformly at random. For a well-behaved hash
function, these two classes of random graphs should have nearly identical properties.

Formally, fix a keyed hash function h : {0, 1}K × {0, 1}Wi → {0, 1}Wo , and a small graph H as a
target subgraph2. Now pick a large number N ≤ 2Wo as the number of nodes, and M ≤ 2Wi−1 as the
number of edges. Each key k ∈ {0, 1}K generates a graph Gk = (V,E) where V = {v0, . . . , vN−1}, and

E = {(vh(k,2i) mod N , vh(k,2i+1) mod N )|i ∈ [0, . . . ,M − 1]} (1)

The inputs i ∈ [0, . . . ,M − 1] are also called nonces3 The graph has a solution if H occurs as a
subgraph. Denote the number of edges in H as L. A proof of solution is an ordered list of L nonces
that generate the edges of H’s occurrence in Gk. Such a proof is verifiable in time depending only on
H (often linear in L), independent of N and M .

A simple variation generates random bipartite graphs: Gk = (V0 ∪ V1, E) where (assuming N is
even) V0 = {v0, v2, . . . , vN−2}, V1 = {v1, v3, . . . , vN−1}, and

E = {(v2(h(k,2i) mod N
2
), v2(h(k,2i+1) mod N

2
)+1)|i ∈ [0, . . . ,M − 1]} (2)

The expected number of occurrences of H as a subgraph of G is a function of both N and M , and
in many cases is roughly a function of M

N (half the average node degree). For fixed N , the function
is monotonically increasing in M . To make the proof-of-work challenging, one chooses a value of M
that yields less than one expected solution.

3 Cuckoo Cycle

The simplest possible choice of subgraph is a fully connected one, or a clique. While an interesting
choice, akin to the number-theoretic notion of a prime-cluster, as used in Riecoin, we leave its consid-
eration to a future paper. In this paper we focus on what is perhaps the next-simplest possible choice,
the cycle. Specifically, we propose the hash function siphash with a K = 128 bit key, Wi = Wo = 64
input and output bits, N ≤ 264 a 2-power, M = N/2, and H an L-cycle. The reason for calling the
resulting proof-of-work Cuckoo Cycle is that inserting items in a Cuckoo hashtable naturally leads to
cycle formation in random bipartite graphs.

4 Cuckoo hashing

Introduced by Rasmus Pagh and Flemming Friche Rodler [4], a Cuckoo hashtable consists of two
same-sized tables each with its own hash function mapping a key to a table location, providing two
possible locations for each key. Upon insertion of a new key, if both locations are already occupied by
keys, then one is kicked out and inserted in its alternate location, possibly displacing yet another key,
repeating the process until either a vacant location is found, or some maximum number of iterations
is reached. The latter is bound to happen once cycles have formed in the Cuckoo graph. This is a
bipartite graph with a node for each location and an edge for every inserted key, connecting the two
locations it can reside at. It matches the bipartite graph defined above if the cuckoo hashtable were
based on function h. In fact, the insertion procedure suggests a simple algorithm for detecting cycles.

2hash functions generally have arbitrary length inputs, but here we fix the input width at Wi bits.
3These micro nonces should be distinguished from the macro nonce used to generate key k.
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5 Cycle detection in Cuckoo Cycle

We enumerate the M nonces, but instead of storing the nonce itself as a key in the Cuckoo hashtable,
we store the alternate key location, and forget about the nonce. We thus maintain the directed cuckoo
graph, in which the edge for a key is directed from the location where it resides to its alternate location.
Moving a key to its alternate location thus corresponds to reversing its edge. The outdegree of every
node in this graph is either 0 or 1. When there are no cycles yet, the graph is a forest, a disjoint union
of trees. In each tree, all edges are directed, directly, or indirectly, to its root, the only node in the
tree with outdegree 0. Initially there are just N singleton trees consisting of individual nodes which
are all roots. Addition of a new key causes a cycle if and only if its two endpoints are nodes in the
same tree, which we can test by following the path from each endpoint to its root. In case of different
roots, we reverse all edges on the shorter of the two paths, and finally create the edge for the new key
itself, thereby joining the two trees into one. Let us illustrate this process with an actual example.

The left diagram below shows the directed cuckoo graph for header “39” on N = 8 + 8 nodes after
adding edges (2, 15), (4, 9), (8, 5), (4, 15), (12, 11), (10, 5) and (4, 13) (nodes with no incident edges are
omitted for clarity). In order to add the 8th edge (10, 11), we follow the paths 10 → 5 → 8 and
11→ 12 to find different roots 8 and 12. Since the latter path is shorter, we reverse it to 12→ 11 so
we can add the new edge as (11→ 10), resulting in the middle diagram. In order to add to 9th edge
(10, 13) we now find the path from 10 to be the shorter one, so we reverse that and add the new edge
as (10→ 13), resulting in the right diagram.

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

When adding the 10th edge (8, 9), we find the paths 8 → 5 → 10 → 13 → 4 → 15 → 2 and
9 → 4 → 15 → 2 with equal roots. In this case, we can compute the length of the resulting cycle as
1 plus the sum of the path-lengths to the node where the two paths join. In the diagram, the paths
join at node 4, and the cycle length is computed as 1 + 4 + 1 = 6.

6 Union-find

The above representation of the directed cuckoo graph is an example of a disjoint-set data structure [5],
and our algorithm is closely related to the well-known union-find algorithm, where the find operation
determines which subset an element is in, and the union operation joins two subsets into a single one.
For each edge addition to the cuckoo graph we perform the equivalent of two find operations and one
union operation. The difference is that the union-find algorithm is free to add directed edges between
arbitrary elements. Thus it can join two subsets by adding an edge from one root to another, with
no need to reverse any edges. Our algorithm on the other hand solves the union-find problem by
maintaining a direction on all union operations while keeping the maximum outdegree at 1.
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7 Cuckoo Cycle basic algorithm

The above algorithm for inserting edges and detecting cycles forms the basis for our basic proof-of-
work algorithm. If a cycle of length L is found, then we solved the problem, and recover the proof by
storing the cycle edges in a set and enumerating nonces once more to see which ones generate edges in
the set. If a cycle of a different length is found, then we keep the graph acyclic by ignoring the edge.
There is some risk of overlooking other L-cycles through that edge, but when the expected number of
cycles is low (which is what we design for), this ignoring of cycle forming edges hardly affects the rate
of solution finding.

This algorithm is available online at https://github.com/tromp/cuckoo as either the C-program
simple miner.cpp or the Java program SimpleMiner.java. A proof verifier is available as cuckoo.c or
Cuckoo.java, while the repository also has a Makefile, as well as the latest version of this paper. ‘make
example’ reproduces the example shown above. The simple program uses 32 bits per node to represent
the directed cuckoo graph, plus about 64KB per thread for two path-following arrays. The left plot
below shows both the total runtime in seconds and the runtime of just the hash computation, as a
function of (log)size. The latter is purely linear, while the former is superlinear due to increasing
memory latency as the nodes no longer fit in cache. The right plot show this more clearly as the
percentage of hashing to total runtime, ending up around 5%.
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The left plot below shows the probability of finding a 42-cycle as a function of the percentage
edges/nodes, while the right plot shows the average number of memory reads and writes per edge as
a function of the percentage of processed nonces (progress through main loop). Both were determined
from 10000 runs at size 220; results at size 225 look almost identical. In total the basic algorithm
averages 3.3 reads and 1.1 writes per edge.
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8 Difficulty control

The ratio M
N determines a base level of difficulty, which may suffice for applications where difficulty

is to remain fixed. Ratios M
N ≥ 0.7 are suitable when a practically guaranteed solution is desired.

For crypto currencies, where difficulty must scale in precisely controlled manner across a huge range,
adjusting the number of edges is not suitable. The implementation default M

N = 1
2 gives a solution

probability of roughly 2.2%, while the average number of cycles found increases slowly with size; from
2 at 220 to 3 at 230. For further control, a difficulty target 0 < T < 2256 is introduced, and we impose
the additional constraint that the sha256 digest of the cycle nonces in ascending order be less than T ,
thus reducing the success probability by a factor 2256

T .

9 Edge Trimming

David Andersen [6] suggested drastically reducing the number of edges our basic algorithm has to
process, by repeatedly identifying nodes of degree one and eliminating their incident edge. Such leaf
edges can never be part of a cycle. This works well when M

N ≤
1
2 since the expected degree of a node

is then at most 1, and a significant fraction of edges are expected to be leaf edges.
Trimming is implemented in our main algorithm in cuckoo miner and hcuckoo miner.cpp. It main-

tains a set of alive edges as a bit vector. Initially all edges are alive. In each of a given number of
trimming rounds, it shrinks this set as follows. A vector of 2-bit degree counters, one per even node,
is initialized to all zeroes. Next, for all alive edges, compute its even endpoint and increase the corre-
sponding counter, capping the value at 2. Next, for all alive edges, compute its even endpoint and if
the corresponding counter is less than 2, set the edge to be not-alive. These steps are repeated for all
odd endpoints.

Preprocessor symbol PART BITS, whose value we’ll denote as B, allows for counter partitioning,
which trades off node counter storage for runtime, by processing nodes in multiple passes depending
on the value of their B least significant bits4. The memory usage is M bits for the alive set and N/2B

for the counters.
The diagrams below show two rounds of edge trimming on the earlier example. In round one

even nodes 2 and 12 lose their single incident edge and in round two, odd nodes 11 and 15 lose their

4excluding the very least significant bit distinguishing even from odd nodes.
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remaining single incident edge. At this point only the 6-cycle is left, so further trimming would be
pointless.

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

2 4 8 10 12

5 9 11 13 15

After all edge trimming rounds, the counter memory is freed, and allocated to a custom cuckoo hashtable
(based on [7]) that presents the same interface as the simple array in the basic algorithm, but gets by
with much fewer locations, as long as its load, the ratio of remaining edges to number of locations, is
bounded away from 1; e.g. under 90 percent.

The number of trimming rounds, which can be set with option -n, defaults to 1+(B+3)∗(B+4)/2,
which was determined empirically to achieve a load close to 50%.

10 Time-Memory Trade-Offs (TMTOs)

David Andersen also suggested an alternative method of trimming that avoids storing a bit per edge.
Expanding on that idea led to the algorithm implemented in tomato miner.h, which, unlike the main
algorithm, can trade-off memory directly for runtime. On the downside, to even achieve memory
parity with the main algorithm, it already incurs a big slowdown. To the extent that this slowdown
is unavoidable, it can be called the memory hardness of the proof-of-work.

The TMTO algorithm selects a suitably small subset Z of even vertices as a base layer, and on
top of that builds a breadth-first-search (BFS) forest of depth L/2, i.e. half the cycle length. For each
new BFS layer, it enumerates all edges to see which ones are incident to the previous layer, adding
the other endpoint. It maintains a directed forest on all BFS nodes, like the base algorithm does on
all nodes. For increased efficiency, the base layer Z is filtered for nodes with multiple incident edges.
If the graph has an L-cycle one of whose nodes is in Z, then the above procedure will find it. If one
choice of Z doesn’t yield a solution, then the data structures are cleared and the next subset is tried.

A variation on the above algorithm omits the filtering of Z, and expands the BFS to a whole L
levels. This way, an L-cycle will be found as long as the distance from (any node in) Z to the cycle
is at most L/2. It thus has a much higher chance of finding a cycle, but requires more space to store
the significantly bigger BFS forest.

For each each value of L ∈ {2, 4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64} we ran these 2 algo-
rithms on 200 graphs of size 225 that include an L-cycle, choosing subset size as a 2-power that results
in a memory usage of 4MB, and analysed the distribution of number of subsets tried before finding a
solution. Since there is possible overlap between the BFS forests of different initial subsets, especially
with the second algorithm, the distributions are skewed toward lower numbers. To maximize solution
finding rate then, it pays to give up on a graph when the first few subsets tried fail to provide a
solution. For each algorithm and cycle length, we determined the minimum number of tries needed
to guarantee solutions in at least 50 of the 200 graphs. Below we plot the slowdown relative to the
reference algorithm also using 4MB (2MB for edges and 2MB for nodes).
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The zigzagging is caused by the current implementation being limited to 2-power sizes of both
subsets and cuckoo tables while the load of the latter is kept between 45% and 90%5 The BFS(L)
algorithm exhibits at least one order of magnitude slowdown, that grows very slowly with cycle length,
while the BFS(L/2) algorithm exhibits roughly linear slowdown. Assuming that these algorithms
cannot be significantly improved upon, we obtain an order of magnitude memory hardness for Cuckoo
Cycle with larger cycle lengths.

11 Choice of cycle length

A cycle of length 2 means that two nonces produce identical edge endpoints—a collision in edge space.
The Momentum proof-of-work looks for collisions on 50 bits of hash output among 226 nonces. This
is in essence Cuckoo Cycle with N = 225 + 225 nodes and cycle length L = 2, with two differences.

First, edges are generated not by equation (2), but by splitting a SHA512 hash of (k, nonce/8) into
8 64-bit words, taking the most significant 50 bits of the (nonce mod 8)th one, and viewing that as a
pair of two 25-bit edge endpoints, appending a bit to make them even and odd.

Second, the choice of M = 226 gives a ratio M
N of 1 rather than 1

2 and as such prohibits the use of
edge trimming.

Since the extreme case of L = 2 is so special, there is likely to be a greater variety of algorithms
that are more efficient than for the general case. While we haven’t found (and don’t know of) a
improved main algorithm, we did find an improved BFS(L/2) TMTO algorithm (implemented in
momentomatum.cpp) that cuts the memory usage in half, resulting in a slowdown of only 1.75—a lack
of memory-hardness.

The preceding analysis suggests that cycle length should be at least 20 to guard against the more
efficient BFS(L/2) algorithm, with an additional safety factor of 2.

In order to keep proof size manageable, the cycle length should not be too large either. We thus
consider 20-64 to be a healthy range, and suggest the use of the average of 42.

The plot below shows the distribution of cycle lengths found for sizes 210, 215, 220, 225, as determined
from 100000,100000,10000, and 10000 runs respectively. The tails of the distributions beyond L = 100
are not shown. For reference, the longest cycle found was of length 2120.

5We plan to lift this restriction in the near future and produce smoother plots with constant load cuckoo tables.
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12 Parallelization

All our implementations allow the number of threads to be set with option -t. For 0 ≤ t < T ,
thread t processes all nonces t mod T . Parallelization in the basic algorithm presents some minor
algorithmic challenges. Paths from an edge’s two endpoints are not well-defined when other edge
additions and path reversals are still in progress. One example of such a path conflict is the check
for duplicate edges yielding a false negative, if in between checking the two endpoints, another thread
reverses a path through those nodes. Another is the inadvertent creation of cycles when a reversal
in progress hampers another thread’s path following causing it to overlook root equality. Thus, in
a parallel implementation, path following can no longer be assumed to terminate. Instead of using
a cycle detection algorithm such as [8], our implementation notices when the path length exceeds
MAXPATHLEN (8192 by default), and reports whether this is due to a path conflict.

In the main algorithm, cycle detection only takes a small fraction of total runtime and the conflicts
above could be avoided altogether by running the cycle detection single threaded.

In edge trimming, parallelization is achieved by partitioning the set of edges. To maintain efficient
access to the bitmap of live edges, each thread handles words (of 32 edge-bits each) spaced T apart.

Atomic access is used by default for accessing the 2-bit counters. Disabling this results in a small
chance of removing multiple edges incident to a node that access the counter at the same time.

The implementation further benefits from bucketing the addresses of counters to be updated or
tested, based on their most significant bits. Thus, when a bucket becomes full and is emptied by
actually performing those updates/tests, the accesses are limited to a certain address range, which
turns out to reduce memory access latencies.

The plots below show the speedup over single thread performance achieved by multithreading at
various graph sizes and counter-partition levels.
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13 Choice of graph size

The chosen Cuckoo graph size affects what type of hardware can mine effectively at a given block
interval time. To illustrate, suppose an average desktop machine needs 1 minute for a single proof
attempt, and the block interval time is only 2 minutes. Then it will waste a large fraction (almost half)
of its attempts, as about half the time, someone else finds a proof in under 2 minutes. To reduce such
waste to a small percentage, the time for a single proof attempt should be a similarly small fraction
of the block interval time. This desirable property is known as progress-freeness, and in our case is
achieved more easily with a small graph (and hence memory) size.

Larger memory sizes have two advantages though. First, they make it harder for botnets to mine
without causing excessive swapping. Sending a computer into swap-hell will likely alert its owner and
trigger a cleanup, so botnet operators can be expected to eschew memory-intensive proofs-of-work in
favor of low-memory ones.

Second, they make it harder for custom FPGA or ASIC implementations to remain self-contained.
Rather, to remain cost effective, they will likely need to make use of commodity DRAM chips, and
incur a roughly 50ns row activation delay for random access to each memory bank. If a future CPU
with hardware siphash24 support can saturate DRAM, then there may no need to develop ASICs (and
keep them on the leading edge of process technology) for the computational part of Cuckoo Cycle.

We expect these opposing goals to lead to graph sizes from 228 to 232, with the larger ones geared
more toward longer block interval times and faster mining hardware.

An interesting option will be to take a Myriad-coin style approach: allow a range of k different
sizes, but maintain a separate difficulty control for each one, adjusted so that each proof size accounts
for roughly 1/k of all blocks.

14 Computation versus memory

Starting out at 32 leading zeroes in 2009, Bitcoin difficulty has steadily climbed and is currently at
67, representing an incredible 267/10 double-hashes per minute. This growth was enabled by the
migration of hash computation from desktop processors (CPUs) to graphics-card processors (GPUs),
to field-programmable gate arrays (FPGAs), and finally to custom designed chips (ASICs).

Downsides of this development include rapid obsolescence, large power consumption, and central-
ization of mining power. Although ASICs are the most energy-efficient way of computing hashes, the
tiny amount of die-space needed for a single SHA256 circuit allows a huge number of them (e.g. 1440
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on KnC’s Neptune) to be crammed onto a single chip, consuming 100s of Watts and requiring ample
cooling.

This has led people to look for alternative proof-of-work systems that, by requiring a non-trivial
amounts of memory, resist such massive parallelizability, and narrow the performance gap with com-
modity hardware.

Litecoin replaces the SHA256 hash function in hashcash by a single round version of the scrypt key
derivation function. Its memory requirement of 128KB is a compromise between computation-hardness
for the prover and verification efficiency for the verifier. Although designed to be GPU-resistant, GPUs
are now at least an order of magnitude faster than CPUs for Litecoin mining. ASICs first appeared
on the market in early 2014 and have started to dominate Litecoin mining by the third quarter.

Adam Back [10] has a good overview of proof-of-work papers past and present.

15 Conclusion

Cuckoo Cycle is a novel graph-theoretic proof-of-work design that combines scalable memory require-
ments with instant verifiability, and the first where memory latency dominates the runtime. This
narrows the mining performance gap between custom and commodity hardware and could lead to
mining costs being dominated by investments in DRAM. Resulting changes in the economics of min-
ing are potentially beneficial but will certainly require additional study. More research is also needed
to determine the effectiveness of GPUs and FPGAs at running Cuckoo Cycle.
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16 Appendix A: cuckoo.h

// Cuckoo Cycle , a memory−hard proof−of−work
// Copyright ( c ) 2013−2014 John Tromp

#include <s t d i n t . h>
#include <s t r i n g . h>
#include <opens s l / sha . h> // i f opens s l absent , use #inc l ude ”sha256 . c”

// proof−of−work parameters
#ifndef SIZESHIFT
#define SIZESHIFT 25
#endif
#ifndef PROOFSIZE
#define PROOFSIZE 42
#endif

#define SIZE (1UL<<SIZESHIFT)
#define HALFSIZE ( SIZE /2)
#define NODEMASK (HALFSIZE−1)

typedef u i n t 3 2 t u32 ;
typedef u i n t 6 4 t u64 ;
#i f SIZESHIFT <= 32
typedef u32 nonce t ;
typedef u32 node t ;
#else
typedef u64 nonce t ;
typedef u64 node t ;
#endif

typedef struct {
u64 v [ 4 ] ;

} s i pha sh c tx ;

#define U8TO64 LE(p) \
( ( ( u64 ) ( ( p ) [ 0 ] ) ) | ( ( u64 ) ( ( p ) [ 1 ] ) << 8) | \

( ( u64 ) ( ( p ) [ 2 ] ) << 16) | ( ( u64 ) ( ( p ) [ 3 ] ) << 24) | \
( ( u64 ) ( ( p ) [ 4 ] ) << 32) | ( ( u64 ) ( ( p ) [ 5 ] ) << 40) | \
( ( u64 ) ( ( p ) [ 6 ] ) << 48) | ( ( u64 ) ( ( p ) [ 7 ] ) << 56))

#ifndef SHA256
#define SHA256(d , n , md) do { \

SHA256 CTX c ; \
SHA256 Init(&c ) ; \
SHA256 Update(&c , d , n ) ; \
SHA256 Final (md, &c ) ; \

} while (0 )
#endif

// de r i v e s iphash key from header
void s e theader ( s i pha sh c tx ∗ ctx , const char ∗header ) {

unsigned char hdrkey [ 3 2 ] ;
SHA256 ( (unsigned char ∗) header , s t r l e n ( header ) , hdrkey ) ;
u64 k0 = U8TO64 LE( hdrkey ) ;
u64 k1 = U8TO64 LE( hdrkey +8);
ctx−>v [ 0 ] = k0 ˆ 0x736f6d6570736575ULL ;
ctx−>v [ 1 ] = k1 ˆ 0 x646f72616e646f6dULL ;
ctx−>v [ 2 ] = k0 ˆ 0x6c7967656e657261ULL ;
ctx−>v [ 3 ] = k1 ˆ 0x7465646279746573ULL ;
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}

#define ROTL(x , b) ( u64 ) ( ( ( x ) << (b ) ) | ( ( x ) >> (64 − (b ) ) ) )
#define SIPROUND \

do { \
v0 += v1 ; v2 += v3 ; v1 = ROTL( v1 , 1 3 ) ; \
v3 = ROTL( v3 , 1 6 ) ; v1 ˆ= v0 ; v3 ˆ= v2 ; \
v0 = ROTL( v0 , 3 2 ) ; v2 += v1 ; v0 += v3 ; \
v1 = ROTL( v1 , 1 7 ) ; v3 = ROTL( v3 , 2 1 ) ; \
v1 ˆ= v2 ; v3 ˆ= v0 ; v2 = ROTL( v2 , 3 2 ) ; \

} while (0 )

// SipHash−2−4 s p e c i a l i z e d to precomputed key and 8 by t e nonces
u64 s iphash24 ( s i pha sh c tx ∗ ctx , u64 nonce ) {

u64 v0 = ctx−>v [ 0 ] , v1 = ctx−>v [ 1 ] , v2 = ctx−>v [ 2 ] , v3 = ctx−>v [ 3 ] ˆ nonce ;
SIPROUND; SIPROUND;
v0 ˆ= nonce ;
v2 ˆ= 0 x f f ;
SIPROUND; SIPROUND; SIPROUND; SIPROUND;
return v0 ˆ v1 ˆ v2 ˆ v3 ;

}

// genera te edge endpoint in cuckoo graph
node t s ipnode ( s i pha sh c tx ∗ ctx , nonce t nonce , u32 uorv ) {

return ( s iphash24 ( ctx , 2∗nonce + uorv ) & NODEMASK) << 1 | uorv ;
}

void s ipedge ( s i pha sh c tx ∗ ctx , nonce t nonce , node t ∗pu , node t ∗pv ) {
∗pu = sipnode ( ctx , nonce , 0 ) ;
∗pv = sipnode ( ctx , nonce , 1 ) ;

}

// v e r i f y t h a t ( ascending ) nonces , a l l l e s s than eas ines s , form a cy c l e in header−genera ted graph
int v e r i f y ( nonce t nonces [PROOFSIZE] , const char ∗header , u64 e a s i n e s s ) {

s i pha sh c tx ctx ;
s e theader (&ctx , header ) ;
node t uvs [ 2∗PROOFSIZE ] ;
for ( u32 n = 0 ; n < PROOFSIZE; n++) {

i f ( nonces [ n ] >= e a s i n e s s | | (n && nonces [ n ] <= nonces [ n−1]))
return 0 ;

s ipedge (&ctx , nonces [ n ] , &uvs [2∗n ] , &uvs [ 2∗n +1 ] ) ;
}
u32 i = 0 ;
for ( u32 n = PROOFSIZE; n ; ) { // f o l l ow cy c l e f o r n more s t e p s

u32 j = i ;
for ( u32 k = i &1; k < 2∗PROOFSIZE; k += 2) // f i nd unique o ther j wi th same pa r i t y and uvs [ j ]

i f ( k != i && uvs [ k ] == uvs [ i ] ) {
i f ( j != i )

return 0 ; // more than 2 occurences
j = k ;

}
i f ( j == i )

return 0 ; // no o ther occurence
i = j ˆ1 ;
i f (−−n && i == 0) // don ’ t re turn to 0 too soon

return 0 ;
}
return i == 0 ;

}
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