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Abstract

A lot of cryptographic protocols have been proposed for semihonest model. In general, they are much
more efficient than those proposed for the malicious model. In this paper, we propose a method that
allows to detect the parties that have violated the protocol rules after the computation has ended, thus
making the protocol secure against covert attacks. This approach can be useful in the settings where
for any party it is fatal to be accused in violating protocol rules. In this way, up to the verification, all
the computation can be performed in semihonest model, which makes it very efficient in practice. The
verification is statistical zero-knowledge, and it is based on linear probabilistically checkable proofs (PCP)
for verifiable computation. Each malicious party is detected with probability 1− ε for a negligible ε that
is defined by the failure of the corresponding linear PCP. The initial protocol has to be executed only
once, and the verification requires in total 3 additional rounds (if some parties act dishonestly, in the
worst case they may force the protocol to substitute each round with 4 rounds, due to the transmission
functionality that prevents the protocol from stopping). The verification also ensures that all the parties
have sampled all the randomness from an appropriate distribution. Its efficiency does not depend on
whether the inputs of the parties have been shared, or each party uses its own private input.

The major drawback of the proposed scheme is that the number of values sent before and after the
protocol is exponential in the number of parties. Nevertheless, the settings make the verification very
efficient for a small number of parties.

1 Introduction

The semihonest and the malicious model are the two main models in which cryptographic protocols are
studied. In the semihonest model, the adversary is curious about the values it gets, and it tries to extract
information out of them, but it follows the protocol rules honestly. In the malicious model, the adversary
is allowed to do whatever it wants. In addition to these traditional models, a notion of covert security was
proposed in [AL10]. In this model, the adversary is malicious, but it will not cheat if it will be caught with
a non-negligible probability, which can be defined more precisely as a security parameter. This notion
is very realistic in many computational models, where the participants care about their reputation and
will not cheat even if this probability is not close to 1.

Some works have been dedicated to covert security [Lin13, DGN10], where [Lin13] treats the se-
curity for two-party computation based on garbled circuits, both the covert and the malicious cases,
and [DGN10] deals with honest majority protocols for an arbitrary number of parties. A more precise
definition of covert security with public verifiability has been proposed in [AO12]. This allows the cheater
to be blamed publicly.

2 Our Contribution

In this paper, we propose a scheme that is based on succinct computation verification. Our work is closely
related to [DGN10] that is dealing with honest majority protocols for an arbitrary number of parties.
The solution proposed in [DGN10] is based on running the initial protocol on two inputs, the real shares
and the dummy shares. In this case, the real shares should be indistinguishable from random, and hence
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in the beginning the protocol is being rewritten to a shared form. Differently from [DGN10], our solution
does not require rewriting the original protocol. The original protocol has to be run only once, and each
malicious party is detected with probability 1 − ε for a negligible ε. Our approach is statistical zero-
knowledge, and it it based on linear probabilistically checkable proofs (PCP) for verifiable computation.
The particular PCP that we are using is the one proposed in [BSCG+13]. The quantity ε is defined by the
failure of the corresponding linear PCP behind the protocol. Additionally, the verification ensures that
all the parties have sampled all the randomness from an appropriate distribution. If everyone is indeed
honest, the verification requires in total 3 additional rounds. If some parties are dishonest, then in the
worst case they may force the protocol to substitute each round with 4 rounds, due to the transmission
functionality.

One question is whether there are indeed no additional rounds if everyone is honest, since there should
be some time offset when the parties wait for possible complaints, and if nothing happens, only then they
proceed to the next round. Since there are no complaints if everyone is honest, there is no communication
during that time offset, and hence such additional rounds are much cheaper.

Another solution is to assume that the complaints can be presented not immediately, but on the
next round, when instead of ordinary messages some party may sent complaints it had on the previous
round. In this way, if everyone acts honestly, we will have just 3 additional rounds compared to the
initial protocol (2 rounds are needed for the verification, and one more is the final time offset in the end
of the protocol, where the parties should wait for the possible lastmost complaints).

The major drawback of our scheme is that the number of values sent per one round is exponential in
the number of parties. In [DGN10], efficiency is achieved by reducing the probability of being detected
from 1/2 to 1/4. We cannot use the same approach in our case since the probability of being detected
would immediately become negligible. Nevertheless, the settings make the verification very efficient for
a small number of parties.

Similarly to [DGN10], we prove the security of our scheme in UC model [Can01].

2.1 Notation

Throughout this work, we use the following notation:

• the upper case letters A denote matrices;

• the bold lower case letters b denote vectors;

• 〈a,b〉 denotes the scalar product of a and b;

• (a||b) is a concatenation of vectors a and b.

2.2 Assumptions

Our verification protocol is based on security of some other schemes. Here is the list of used assumptions.

• Secure point-to-point channels between each pair of parties.

• Broadcast channels between subsets of parties.

• Honest Verifier Statistical Zero-Knowledge Linear Probabilistically Checkable Proofs for verifiable
computation [Lip13,GGPR13,BSCG+13,BCI+13]. In particular, all the complexity estimations in
this chapter are based on the solution proposed in [BSCG+13].

• Functionality that allows to prove to third parties which messages one received during the protocol,
and to further transfer such revealed messages. This allows to protect the initial protocol from
stopping, when the computation cannot proceed due to some malicious party that is either just
doing nothing, or causes some other party to wait by sending wrong messages. We use the solution
proposed in [DGN10].

2.3 The Protocol Outline

We describe briefly the initial settings, and how the new verifiable protocol differs from the original one.
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• In the initial settings, we have a set of arithmetic circuits Cji over some finite field F, where Cji is
the circuit computed by the party Mi on the j-th round of computation. Some outputs of Cji may
be used as inputs for some Cj+1

k , so there is some communication between the parties. Each circuit
may use some randomness that comes from random uniform distribution in F (this is sufficient
to model any other distribution). The circuits could be boolean as well, since there also exist
linear probabilistically checkable proofs based on boolean circuits [Lip13], so our verification is not
restricted to computation over some certain field.

• The computation is performed by n parties. Let them be denoted Mi for i ∈ {1, . . . , n}. A necessary
condition is that at least t = bn/2c+ 1 are honest.

• Before the execution of original protocol starts, the inputs of the parties are committed in a special
way. Let the input of the party Mi be represented by a vector xi over F. Mi represents xi as(
n−1
t

)
distinct sums of the form xi =

∑
k∈Tj

xikTj for j ∈ {1, . . . ,
(
n−1
t

)
}, where each Tj represents

a distinct subset of t other parties, and k corresponds to one particular party in that subset.
The idea is that each party has to prove its honestness to any subset of t other parties. All the
shares are signed and distributed amongst the corresponding parties. Although the number

(
n−1
t

)
is exponential, computing all t ·

(
n−1
t

)
signatures is not less efficient than computing just one, for

example using hash Merkle tree.

• The randomness used in the protocols should also be committed in the same way. Moreover, we
want to ensure that it indeed comes from random uniform distribution, without revealing to anyone
its value.

– Let an arbitrary set of t parties be responsible for generating the randomness. Let these parties
be called “generators”. By honest majority assumption, at least one of them is honest. For
each Mi, they generate the randomness ri as follows. Each generator Mj generates rji of the
same length that ri should be. The idea is to take ri = ri1 + . . .+ rit. Since at least one party
is honest, the vector ri comes from a random uniform distribution.

– Each generator Mj represents its rij as
(
n−1
t

)
distinct sums of the form rij =

∑
k∈T`

rijkT`

for ` ∈ {1, . . . ,
(
n−1
t

)
}. All the shares are signed and sent to Mi. After Mi receives rij from

all generators Mj , it may compute the sum of all rij and use it as ri (Mi has to verify if the
shares for different sets T` indeed all represent the same value). Then Mi signs all the received
shares also by itself, and distributes the shares and the signatures (both signed by Mi and the
corresponding generator Mj) amongst appropriate subsets of t parties, similarly to xi.

• The original protocol is computed in the same way as before. Additionally, each communicated
vector c`ij sent by Mi to Mj on the round ` is presented as

(
n
t

)
distinct sums c`ij =

∑
k∈Tj′

c`ijkTj′

(here we have
(
n
t

)
instead of

(
n−1
t

)
since both communicating parties should later verify the consis-

tency of this value from each other). Along with each c`ij , Mj receives the signature of c`ij and the
signatures of all the shares c`ij`kTj′

. Mj checks if the signatures are all indeed valid, and in turn

signs them. Mj distributes the corresponding signatures (both signed by Mi and Mj) amongst each
Tj . Here Mj is unable to check whether the shares under the signatures are valid and indeed sum
up to c`ij . All the shares will be distributed after the protocol execution, and then Mi may present
the signature of c`ij to complain.

• After the protocol computation ends, all the communication shares are finally distributed. Each
party Mj is verified for honestness. A party is honest iff it can prove that it acted according to
the protocol, given the signed input, randomness, and communication that it had with the other
parties. It has to perform a 3-round interactive proof with each subset of t parties in parallel. Since
each subset of t parties holds all the shares of all the committed values, they are able to reconstruct
the committed values and check if the proof indeed corresponds to them.

In general, in a linear PCP the prover has to prove the knowledge of a vector π = (p||d) such
that certain combinations of 〈π,qi〉 for special challenges q1, . . . ,q5 should be equal to 0, and d
corresponds to the committed values. The problem is that the prover cannot see any of the qi
before committing the proof, but at the same time π should remain private.

In particular, for any subset of t verifiers, the following has to be done (ordered by rounds).

1. The verifiers agree on a random τ ∈ F that is sufficient to generate all q1, . . . ,q5 (in one round).
The prover generates shares π = π1 + . . .+πt (where the d part is shared in the same way as it
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was committed to the given set of t verifiers) and distributes them amongst the parties. Each
verifier checks if the part that corresponds to d is consistent with the signatures of shares sent
during the computation.

2. Each verifier Vi computes and publishes 〈πi,qj〉 for j ∈ {1, . . . , 5}. The τ is published. Ev-
eryone may compute 〈π1,qj〉+ . . .+ 〈πt,qj〉 = 〈π,qj〉 for j ∈ {1, . . . , 5} and locally verify the
necessary combinations. The prover checks if all the scalar products are computed correctly,
and complains if necessary.

A party is claimed honest iff it succeeds in all the
(
n−1
t

)
proofs against t other parties. This means

that even if it was in collaboration with t − 2 other malicious parties, there exists a subset of t
all-honest parties that will definitely accept only the correct proof. We also need to ensure that the
presence of malicious parties will not make the proof fail for an honest prover, and this can be done
by revealing the signatures that correspond to the shares of incorrect scalar products. An honest
party is safe to open them since they are known by the adversary anyway.

3 A Linear Probabilistically Checkable Proof for Verifiable
Computation

In this section we describe in more details the PCP that we use in our verification. This will be necessary
since we do not use it just as a black box, but commit some parts of the proof in a special way, so we need
to ensure that everything still works. Additionally, writing it down allows to estimate the complexity
more precisely.

We start from a statistical honest verifier zero knowledge (HVZK) linear PCP based on translating
each arithmetic circuit to a quadratic arithmetic program [BSCG+13].

Definition 1 (Linear PCP). [BCI+13] Let R be a binary relation, F a finite field, PLPCP a deter-
ministic prover algorithm, and VLPCP a probabilistic oracle verifier algorithm. We say that the pair
(PLPCP , VLPCP ) is an input-oblivious k-query linear PCP for R over F with knowledge error ε and query
length m if it satisfies the following requirements.

1. Syntax. On any input v and oracle π, the verifier VLPCP (v) makes k input-oblivious queries to π
and then decides whether to accept or reject. More precisely, VLPCP consists of a probabilistic query
algorithm QLPCP and a deterministic decision algorithm DLPCP working as follows. Based on its
internal randomness τ , and independently of v, QLPCP generates k query vectors q1, . . . ,qk ∈ Fm
to π and state information u. Then, given v, u, and the k oracle answers a1 = 〈π,q1〉, . . . , ak =
〈π,qk〉, DLPCP accepts or rejects.

2. Completeness. For every (v,w) ∈ R, the output of PLPCP (v,w) is a description of a linear
function π : Fm → F such that V πLPCP (v) accepts with probability 1.

3. Knowledge. There exists a knowledge extractor ELPCP such that for every linear function π∗ :
Fm → F if the probability that V π

∗
LPCP

(v) accepts is greater than ε then Eπ
∗

LPCP
(v) outputs w such

that (v,w) ∈ R.

In relation to verifiable computation, this definition is used in the following context:

1. v is the vector of committed input/randomness/communication/public variables.

2. w is an extension of w that contains non-deterministic auxiliary input and the values of intermediate
gates.

3. (v,w) ∈ R iff w is a valid vector of values that the prover party indeed would have got if it fol-
lowed the protocol honestly, according to the committed input/randomness/communication/public
variables v.

A particular solution proposed in [BSCG+13] is a statistical HVZK. Namely, it means that the answers
to the queries 〈π,qi〉 do not reveal any information about the input, unless the randomness τ ∈ F that
has been used in query generation is chosen in a bad way, which happens with negligible probability. In
this particular solution, it is sufficient to generate 5 challenges q1, . . . ,q5.

Let us describe the solution of [BSCG+13] in a bit more details. First of all, it has been shown that
any arithmetic circuit can be represented by a quadratic arithmetic program.
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Definition 2 (Quadratic Arithmetic Program). Consider some integers m,n, k such that n− 1 ≥ k. A
strong quadratic arithmetic program (QAP) over a field F, denoted P(A,B,C), consists of three m × n
matrices A,B,C over a field F. P accepts a vector v ∈ Fk iff there exists a vector w = (1, w1, . . . , wn−1)
such that (w1, . . . , wk) = v and Aw ◦Bw = Cw.

The relation RP(A,B,C) is defined as

(v,w) ∈ RP(A,B,C) ⇐⇒ P(A,B,C) accepts on input v .

The problem of program verification is now reduced to the problem of proving the existence of w such
that (v,w) ∈ RP(A,B,C), where A,B,C are defined by the arithmetic circuits that the parties compute.
The values m and n are both O(|C|). More precisely, n is the number of wires in the circuit (all the
input/randomness/communication/intermediate variables), and m is the number of multiplication gates.

Preprocessing: Denote A = (aij), B = (bij), C = (cij) for i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , n− 1}.
Let S = {ω0, . . . , ωm−1} ⊆ F for a principal root of unity ω in F.

Let Aj , Bj , Cj for j ∈ {0, . . . , n− 1} be polynomials of degree m − 1 defined in such a way that
Aj(ω

i) = aij , Bj(ω
i) = bij , Cj(ω

i) = cij . The coefficients of these polynomials can be computed
by interpolation, for example using Fast Fourier Transform, and they are of degree m − 1 since they
are defined on m points. Let A(x) := (A0(x), . . . , An−1(x)), B(x) := (B0(x), . . . , Bn−1(x)), C(x) :=
(C0(x), . . . , Cn−1(x)) denote the vectors of corresponding polynomials.

Let ZS(x) =
∏
s∈S(x− s) be an m-degree polynomial over F. In this way, ZS(x) has exactly m roots

which are the elements of S.
The set S and the coefficients of A(x), B(x), C(x), ZS(x) are published.

Linear PCP Prover P (v,w): Let v ∈ Fk, w ∈ Fn. The prover works as follows:

• Let δA, δB , δC ∈ F be random field elements.

• Let A(x), B(x), C(x) be polynomials of degree m such that:

A(x) := 〈w,A(x)〉+ δAZS(x) ;

B(x) := 〈w,B(x)〉+ δBZS(x) ;

C(x) := 〈w,C(x)〉+ δCZS(x) ;

where the degree m comes from the fact that the degree of each polynomial in A(x), B(x), C(x) is
m− 1, and the degree of ZS(x) is m.

• Let h = (h0, . . . , hm) be the coefficients of the polynomial

H(x) :=
A(x)B(x)− C(x)

ZS(x)
.

The algorithm returns the proof π = ((δA, δB , δC)||w||h). It can be done locally by the prover in time
O(|C| log |C|), and the details can be seen in [BSCG+13].

Linear PCP Verifier V = (QLPCP , DLPCP (v,u,a)): The work of the verifier is split into two
parts: the query algorithm QLPCP and the decision algorithm DLPCP .

• QLPCP : First of all, a random element τ ∈ F is generated. Then the following queries qi ∈
F3+m+(n+1)=4+m+n are computed:

1. q1 = ((ZS(τ), 0, 0)||A(τ)||(0, 0, . . . , 0));

2. q2 = ((0, ZS(τ), 0)||B(τ)||(0, 0, . . . , 0));

3. q3 = ((0, 0, ZS(τ))||C(τ)||(0, 0, . . . , 0));

4. q4 = ((0, 0, 0)||(0, 0, . . . , 0, 0, . . . , 0)||(1, τ, . . . , τm));

5. q5 = ((0, 0, 0)||(1, τ, . . . , τk, 0, . . . , 0)||(0, 0, . . . , 0)).

The state information is u := (1, τ, τ2, . . . , τk, ZS(τ)). The query results are ai = 〈π,qi〉 for
i ∈ {1, . . . , 5}. Everything can be computed in O(|C|), the details can be seen in [BSCG+13].

• DLPCP (v,u,a): Let u = (u1, . . . , uk+2), a = (a1, . . . , a5). The algorithm accepts iff:
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1. a1a2 − a3 − a4uk+2 = 0,

2. a5 − u1 − 〈v, (u2, . . . , uk+1)〉 = 0.

Now our goal is to perform this verification in the end of the computation. It is necessary to compute
5 scalar products 〈π,q1〉, . . . , 〈π,q5〉, where π cannot depend on any of the qk, and at the same time
π cannot be revealed to any other party. The values 〈π,qk〉 themselves may be revealed since it has
been proven in [BSCG+13] that they are already statistical zero-knowledge on the assumption that all
the vectors qk have been chosen according to the rules. In general, the proposed linear interactive proof
can be converted to a zero-knowledge succinct non-interactive argument of knowledge, as is shown for
example in [BCI+13]. The problem is that it requires homomorphic encryption, and the number of
encryptions has to be linear in the size of the circuit. Additionally, according to the previous description,
the only way to check if w indeed contains (x||r||c) that correspond to the committed shares is to put
(x||r||c) into v, but we would not like to make these values public. We propose a solution that uses
the honest majority assumption instead of homomorphic encryption, and that is more suitable to our
settings.

4 The Proposed Protocol

In this section we describe our protocol in details. First, we list the complexity overheads, based on the
particular PCP that has been presented in the previous section. Then we define the ideal functionality
that we would like to get (which is very similar to the one proposed in [DGN10]), and describe the
behaviour of each party in the real protocol. We prove by simulation that our real functionality is as
secure as the ideal functionality.

4.1 Properties

In our settings, we have n parties Mi. Compared to the original protocol, for each Mi the proposed
solution has the following computational overheads.

• Let p =
(
n−2
t−1

)
. This is the number of t-sets in which one party participates as a verifier. If everyone

is honest, then in order to verify Mj ’s honestness, Mi has to send the following messages:

– In the initial protocol, send two signatures and tp + p vectors of length O(|C|) to each of the
n− 1 parties (tp for the randomness, and p for the inputs).

– During the protocol execution, in addition to the original protocol communication, send r ·(1+
·(n−1)) = rn signatures to each of the n−1 receiver parties, where r is the number of rounds.
Each receiver Mj produces rn more signatures of the same values. All these signatures are
sent by each receiver Mj to the n− 1 remaining parties (including Mi).

– After the protocol execution, compute locally the auxiliary values for the proof in O(|C| log |C|)
steps, as shown in [BSCG+13]. Send to each of the other n − 1 parties in parallel 2(n − 1)
signatures and 2p(n − 1) vectors of length O(|C|): p(n − 1) for intermediate variables (for
each proof separately), and p(n− 1) for communication, each set of p vectors signed with one
signature.

As a verifier, in the verification process each Mi has to do the following:

– Locally generate, sign and multicast a random element of F.

– Locally generate p state informations u and 5p challenge vectors qk of length O(|C|) (according
to the arithmetic circuit). This can be done in O(|C|) steps, as shown in [BSCG+13].

– Locally sum up and concatenate pt vectors of length O(|C|) that correspond to the randomness:
for each of the p verifier sets, sum up all the t vectors.

– Locally concatenate 4 vectors of total result length O(|C|): the shares of the input, randomness,
communication, and the intermediate values. This is done p times, for each verification set.

– Locally compute 5p scalar products of vectors of length O(|C|) and broadcast them (5 for each
proof).

– In the end, compute a constant number of local operations based on these scalar products: 2
multiplications, 3 additions, 1 scalar product of length O(|v|) for the part of the input v whose
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value is public (which is in general just the constant 1), all operations in F. Everything is done
p times, for each proof.

• If something goes wrong with the proof of Mj ’s honestness, then in the worst case each sent message
has to be sent in such a way that it is possible to prove afterwards what has been sent to whom.
The Ftransmit functionality from [DGN10] requires each message to be broadcasted to all n − 1
parties, and then this message should be delivered by each of the n − 2 remaining parties to the
receiver. No additional signatures are needed since we have already considered all of them in the
case where everyone acts honestly.

According to the Linear PCP description from [BSCG+13], a dishonest prover may cheat with prob-
ability 2m

|F| where m is the number of multiplication gates in the circuit. This means that either the field

should be large enough, or the verification should be repeated k times, so that
(

2m
|F|

)k
is negligible. All

the k verifications can be done in parallel, by generating k sets of challenges instead of one, thus do not
increasing the number of rounds at all, and increasing the communication in total by p(n − 1)k field
elements and p(n− 1)k proof vector shares.

4.2 Notation

The circuit in general has the following variables:

• Input vectors: xi for the input of each Mi.

• Randomness vectors: ri for the randomness of each Mi.

• Public vectors: vi for the input of each Mi. This is the part of Mi’s input that may have to be
public for some reason.

• Output vectors: yi which is an output issued by Mi (not needed in verification unless involved in
some published value).

• Intermediate gates: zi computed by Mi.

• Communication values: cij for a total vector of all the values that have been sent from Mi to Mj .

Each party Mj is verified by each subset of t other parties. The idea is that each Mj has to prove
that it knows appropriate zj such that the computation is consistent with the signatures of the shares of
inputs xj , randomness rj , and the communicated values cjk and ckj for k ∈ {1, . . . , n} \ {j}.

4.3 Universal Composability

For each of the 5 queries (according to the PCP construction), we need to compute one scalar product
of the form 〈π,qk〉 where π should be provided by the prover Mj . Here the prover is not permitted to
see qk, and the verifier is not permitted to see π, although the result 〈π,qk〉 can by assumption be seen
by anyone. Additionally, the vector π cannot be arbitrary, some of its parts should correspond to the
committed randomness, input, and the communication variables. In general, this proof can be done by
using homomorphic encryption of each coordinate of qk, but that would be very slow, and additionally
we could lose some zero-knowledge assumptions from commitment verification.

We define an ideal functionality that we would like to have, and the functionality of each Mi in our
protocol (all of them are symmetric). We prove that our real functionality is as secure as this ideal
functionality by simulation.

Existing Ideal Functionalities

We will use some existing ideal functionalities as components.

• Fppp implements a point-to-point secure channel between any two parties (and the adversary).

• Fbc implements broadcast channel between subsets of parties.

• Fsign allows signature generation and verification.
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• Ftransmit allows to prove to third parties which messages one received during the protocol, and to
further transfer such revealed messages. We use the definition similar [DGN10], which works with
message identifiers mid, encoding a sender s(mid) ∈ {1, . . . , n} and a receiver r(mid) ∈ {1, . . . , n},
and assuming that no mid is used twice. Since in our case the signatures and the broadcasts are
treated separately, our definition is formally a bit different but its essence remains the same. The
functionality works as follows.

– When receiving (transmit,mid,m) from an honest Ms(mid), Ftransmit sends (mid,m) to
Mr(mid).

– On input (reveal,mid, T ) from a party Mj which at any point has either sent or received
(transmit,mid,m), if at least one of Ms(mid) and Mr(mid) is honest, output (mid,m) to the
set of parties T .

– On input (reveal,mid, T ) from a party Mj , which at any point has either sent or received
(transmit,mid,m), if all the parties Ms(mid) and Mr(mid) are dishonest, ask m′ from the
adversary and output (mid,m′) to T .

The accusations are based on the result of (reveal,mid, T ), and they are defined inside the protocol.
Differently from [DGN10], we do not send the accusations immediately in the Ftransmit definition.

The real implementation of this simplified Ftransmit is very simple. The sender signs the mid and
the contents. If the receiver has not received a message from the sender, or has received a message
of wrong form (for example, without the signature), it sends a complaint to everyone. Now the
sender has another attempt, but now its message has to be broadcast to all the other parties, so
everyone may verify its correctness and send the message further to the receiver, or immediately
accuse the sender. In this way, 3 additional rounds are introduced in case of a problem. Since all
the messages are signed by the sender, the contents of the transmitted message can be revealed
also later. Straightforwardly, this can be done only by the receiver (since only the sender signs
the messages), but it is sufficient in our settings, since the sender may still reveal the message
by publicly forcing the receiver to present the signatures, and if the receiver refuses to do it, it
is claimed guilty. This implementation of Ftransmit can be easily extended to broadcasting the
message to several parties, just using broadcast channel and defining multiple receivers in r(mid).

• Fver implements all the algorithms of Linear PCP for verifiable computation (for a certain pre-
agreed field F in which all the arithmetic circuits are implemented). This functionality is accessed
by each party individually, and it does not involve any communication. Fver reacts to the following
commands.

– (proof ,v, z,x, r, c, Cj): Given the arithmetic circuit and the set of all the public/intermediate/
input/randomness/communication variables, in constructs a proof (π||d) where d = (x||r||c)
corresponds to committed values and π to everything else.

– (challenge, τ, Cj): Given a randomness τ and a circuit Cj , it returns challenge vectors q1, . . . ,q5

such that for any valid proof (π||d) generated by (proof ,v, z,x, r, c, Cj) for d = (x||r||c), the
answer to the query (verify, Cj , τ,v, 〈(π||d),q1〉, . . . , 〈(π||d),q5〉) is true with probability 1.

– (verify, Cj , τ,v, a1, . . . , a5): Given a randomness τ and some values v that should be public,
check if a1, . . . , a5 indeed correspond to a valid proof with respect to τ . A false proof may be
accepted with probability 2m

|F| , where m is the number of multiplication gates in the circuit.

Transition Function for Fideal

The ideal functionality is secure against an ideal adversary AS . Let M = {1, . . . , n} be the set of all
parties.

• In the beginning, Fideal gets from the environment all the arithmetic circuits (init, C1
1 , . . . , C

r
n),

where Cki corresponds to the computation of Mi on the k-th round. All Cki are sent to AS .

• If Fideal receives (corrupt, i) from AS , it sets evili := true.

• AS may send (stop, i1, . . . , i`) to Fideal for any corrupted parties i1, . . . , i`. Fideal setsmalicious[i`] :=
1 for all i`. This models straightforward cheating in the initialization phase with the input and the
randomness signatures.
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• First, Fideal computes all the messages of the honest parties of the next round by itself, based on
the messages received in the previous rounds. If evilj == true, then for any message mij

k , Fideal
does the following:

– Sends mk
ij to AS .

– Waits for m∗k+1
ji1

, . . . ,m∗k+1
ji|R|

from AS for all the honest receivers R. The communication

between dishonest parties is not important at the moment. It should just be consistent in the
proofs of the sender and the receiver, and that check will be performed in the end.

– At any round, instead of m∗kij , AS may send (stop, i1, . . . , i`) to Fideal for any corrupted
parties i1, . . . , is. Fideal sets malicious[i`] := 1 for all i`. This models straightforward cheating
in the initial protocol that will be immediately detected.

• Upon receiving (run,x1, . . . ,xn) from the environment, Fideal computes C1
i (xi) for all honest

i ∈M, getting the vectors of values m1
ij that will be used in the next round. On each round, it asks

the adversary for the next values, as shown above (initially, it gets from the adversary the inputs
x∗i of malicious parties). All the mk+1

ij that are computed by the functionality itself are computed

based on the messages m∗kij that have been sent by the adversary and hence may be malicious.
This ensures that no honest party will be accused just because someone else has sent to it wrong
values.

• After the protocol has finished, Fideal queries from the adversary all the remaining communication
m∗kji1 , . . . ,m

∗k
ji|R| that corresponds to communication between dishonest parties. Then it may

compute all the missing mji
k+1 values. If some m∗k+1

ji 6= mk+1
ji , set malicious[j] := 1. Here we

assume that even if the computation requires some non-deterministic input, the communicated
values are finally deterministic, and the non-determenism is just auxiliary. If is possible to make
the security stronger by forcing AS to decide on all the m∗k+1

ji1
, . . . ,m∗k+1

ji|R|
already during the

computation, but this will require more communication, since all the shares of c`ij will have to be
distributed already during the protocol execution.

• Fideal also queries from the adversary a set of messages of the form (corrupt, i, j) for some i such
that evili == true and some j such that evilj == false (it may choose whether to send them or not).
For all i such that malicious[i] == 1, the messages should be definitely sent to all j such that
evilj == false.

• After all the (corrupt, i, j) messages have been distributed, AS sends to Fideal the outputs y∗j
of malicious parties Mj . For the honest parties Mi, Fideal outputs the real output yi iff no
malicious[j] := 1 has ever happened for any j ∈ M, and otherwise it outputs (output, j1, . . . , jk)
such that for each j` the messages (corrupt, j`, i) have been sent for at least t parties i.

Transition Function for Mi

We assume that each Mi maintains the current round in its state, so that in each round it will react just
to those calls that are related to the current round. We assume that the number of rounds in the initial
protocol is r.

• In the beginning, each Mi gets from the environment all the parts of the entire arithmetic circuit:
(init, C1

1 , . . . , C
r
n), where Ckj corresponds to the computation of party Mj on the k-th round. All

the Ckj are also sent to A.

• If any party Mi receives (rand, i) from environment, it sets rand := true. This means that given
party will participate in randomness generation. The environment defines exactly t such parties.

• If any party Mi receives (corrupt, i) from A, it sets evil := true.

• If evil == true, then upon receiving any message X, Mi does the following:

– Sends X to A.

– Waits from A which messages should be sent to the receivers further, and in which way they
should be shared and signed.

• Upon receiving (preprocess,xi) from the environment, the following happens.
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– Mi represents its input xi as
(
n−1
t

)
distinct sums of the form xi =

∑
k∈T xikT for each subset

T ofM\{i} of size t. Let T k1 , . . . , T
k
p be all the sets to which Mk belongs. For each k 6= i, Mi

generates a signature

sxik = Signski(input shares, i, k,xikTk
1
, . . . ,xikTk

p
) ,

and sends (transmit, (input shares, i, k), (xikTk
1
, . . . ,xikTk

p
, sxik)) to Ftransmit.

– If rand == true, Mi generates the randomness rij for each Mj . Mi represents its rij as
(
n−1
t

)
distinct sums of the form rij =

∑
k∈T rijkT . For each k 6= i, Mi generates a signature

srijk = Signski(rand shares, i, j, k, rijkTk
1
, . . . , rijkTk

p
) .

Then Mi sends (transmit, (rand, i, j), (rij1T1
1
, . . . , rijnTn

p
, srij1, . . . , srijn)) to Ftransmit.

– Upon receiving all the (transmit, (rand, i, j), (rij1T1
1
, . . . , rijnTn

p
, srij1, . . . , srijn)), Mj checks

if all the shares indeed correspond to the signatures, and if the shares that correspond to
different sets T indeed all sum up to the same value. If everything is correct, Mj in turn
creates the signatures Signskj (srijk). For each k, it sends

(transmit, (rand shares, i, j, k), (rijkTk
1
, . . . , rijkTk

p
, Signskj (srijk)))

to Ftransmit.
If something is wrong, (reveal, (rand, i, j),M) is sent to Ftransmit, everyone checks the signa-
tures, and the protocol immediately stops since one malicious party is detected (either Mi or
Mj). Each honest party writes malicious[i] := 1 or malicious[j] := 1 for each cheated party,
and goes to the last step of the protocol (the outputs).

– Upon receiving all (transmit, (input shares, i, k), (xikTk
1
, . . . ,xikTk

p
, sxik)) and (transmit,

(rand shares, i, j, k), (rijkTk
1
, . . . , rijkTk

p
, Signskj (srijk))) from Ftransmit, Mk checks if the sig-

natures are valid and correspond to the shares. If somthing is wrong, (reveal,mid,M) is sent
to Ftransmit for each wrong message mid, everyone checks the signatures, and the protocol im-
mediately stops since one malicious party is detected (either the sender Mi was inded wrong or
Mk accused it without reason). Each honest party writes malicious[i] := 1 or malicious[k] := 1
for each cheated party, and goes to the last step of the protocol.

• Upon receiving (run, i) from the environment, Mi computes C1
i (xi, ri), getting the vectors of values

c1
ij that should be sent to Mj (for each receiver Mj). We will now generalize the behaviour of Mi to

an arbitrary round `. Let R be the set of all the receivers of Mi for the round `. Let c`ij be vector
of values sent by Mi to Mj on the round `. These values are handled similarly to the randomness
values, with the difference that the shares are not distributed yet, just their signatures.

– Generate the shares c`ij =
∑
k∈T c`ijkT .

– Generate the signature sc`ij = Signski(c
`
ij).

– For each k 6= i, Mi generates a signature

sc`ijk = Signski(message shares, `, i, j, k, c`ijkTk
1
, . . . , c`ijkTk

p
) .

– Mi sends (transmit, (message, `, i, j), (c`ij , sc
`
ij , sc

`
ij1, . . . , sc

`
ijn)) to Ftransmit

– Upon receiving all the (transmit, (message, `, i, j), (c`ij , sc
`
ij , sc

`
ij1, . . . , sc

`
ijn)) for the current

round `, Mj checks if c`ij indeed corresponds to the signature sc`ij . If everything is correct, Mj

in turn creates the signatures Signskj (sc`ijk). For each k, it sends

(transmit, (message shares, `, i, j, k), Signskj (sc`ijk))

to Ftransmit.
– If something is wrong inside some message, the corresponding mid is revealed. At the moment

no one can check to which shares the signatures Signskj (sc`ijk)) actually correspond. This
check will be done later.
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• During the verification phase, Mi acts at once as a prover, and as a verifier in each of the p subsets for
each of the other n−1 parties. First, each subset T agrees on its own q1Tj , . . . ,q5Tj for each prover
Mj . For each subset T that is verifying honestness of some party Mj , Mi ∈ T generates random τTij
and sends all (bc, T, (i, j, T, τTij , Signski(τTij))) to Fbc. If some party sends an incorrect signature,
or refuses to participate, any verifier of T is allowed to broadcast (bc,M, (end, j, T )). Since either
the signer or the sender is guilty, every honest party may now believe that continuing this T -set
proof is senseless since it contains at least one malicious verifier, and the prover Mj is considered
to have passed it.

• Upon receiving all (bc, T, (k, j, T, τTkj , Signskk (τTkj))) from Fbc, Mi sums up all the received τTkj
with its own τTij . For each T, j, this will give a unique randomness τT,j (since at least one party is
honest, it is indeed distributed uniformly and randomly). Mi sends (challenge, τT,j , Cj) to Fver
and gets back q1Tj , . . . ,q5Tj .

• As a prover, each Mi sends (proof ,vi, zi,xi, ri, ci, Ci) to Fver and receives back a vector (πi||di)
with di = (xi||ri||ci) that contains all the necessary proof of Cj computation. For the prover’s
security, it is preferable to use new randomness in πi in different proofs, so Mi generates a distinct
πiT for each subset T of the verifiers. Mi generates the shares such that πiT =

∑
k∈T pikT . It

generates the signatures spik = Signski(proof share 1, i, k,pikTk
1
, . . . ,pikTk

p
). For each k ∈ T ,

Mi sends (transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik)) to Ftransmit.

• As a sender, Mi has to finally distribute amongst the corresponding verifiers all the shares cijkT =
(c1
ijkT || . . . ||crijkT ) for all the messages it has sent in the initial protocol. Here Mi has to broadcast

them in such a way that one copy is sent to the receiverMj , so thatMj may verify if the shares indeed
correspond to Signski(c

1
ij), . . . , Signski(c

r
ij) that it has already received during the computation. It

generates a signature scijk = Signski(sc
1
ijk, . . . , sc

r
ijk) from the same signatures sc`ijk that he has al-

ready sent on the round `. Mi sends (transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk))

to Ftransmit, which knows that the message with such a mid should be broadcast to both j and k
at once. Such a message is transmitted for each k 6= i.

• Upon receiving all (transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk)) from Ftransmit,

the corresponding receiver Mj checks if the shares correspond to the signatures that it has collected
during the initial protocol computation. If at least one of the shares is wrong, then Mj sends
(reveal,mid,M) for all the shares provided by Mi (not only the incorrect ones), and additionally
broadcasts (reveal, (message, `, i, j),M) for the corresponding round `, so that everyone may
compute the incorrect segment of cij from the shares and verify the signatures. All the parties may
now decide whether the sender or the receiver is wrong.

– If the receiver Mj is guilty:

∗ The proof of Mj ends with failure, and each honest party sets malicious[j] := 1.

∗ The proof of Mi continues as before, on the assumption that the committed communication
is the shared one.

– If the sender Mi is guilty:

∗ The proof of Mi ends with failure, and each honest party sets malicious[i] := 1.

∗ The verification for Mj continues on the assumption that Signski(cij) are the committed
values, since it is the sender who has provided wrong signatures.

• Upon receiving all the

(transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik))

and all the
(transmit, (proof share 2, i, j, k), (cijkTk

1
, . . . , cijkTk

p
, scijk))

from Ftransmit from all the provers and all the senders, Mi verifies if all the shares are consistent
with the signatures it has collected during the initial protocol computation. If something is wrong,
(reveal,mid,M) is sent for all the inconsistent shares and signatures, so all the parties can check
them. Each sender of the wrong messages Mi is malicious, and its proof ends with malicious[i] := 1.
If some receiver Mj does not complain about wrong shares, then it is also malicious, and its proof
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also ends with malicious[j] := 1 (this check can be actually performed already on the next round,
then the other parties will not have to wait until Mj complains).

Let dikT denote the concatenation of all the shares of xi, ri, and ci that are intended for the
verifier Mk and the prover Mi, when it participates in the proof set T . More precisely, since each
ri = r1i + . . .+ rti, we may more formally define dikT = (xikT ||(r1ikT + . . .+ rtikT )||cijkT ). They
are distributed in such a way that

∑
k∈T dikT = di.

If all the signatures have been correct, and no receiver has complained that the shares are wrong,
Mk sends (bc,M, (product share, i, j, T, 〈(pikT ||dikT ),q1Ti〉, . . . , 〈(pikT ||dikT ),q5Ti〉)) to Fbc.

• Upon receiving all the scalar products for all parties in T from Fbc for the prover Mj , each party Mi

in T broadcasts (bc,M, (publish challenge, k, T, τT1j , . . . , τTpj , Signsk1(τT1j), . . . , Signskp(τTpj))).

• Upon receiving all publish challenge messages, Mi selects the one in which all the signatures are
correct (at least one should be since at least one party is honest). If there are several valid signatures,
then the signer of multiple values Mk is definitely malicious and should be punished, so the protocol
ends with (bc,M, (end, i, T )), and the honest parties assume that Mi has passed the test since one
of the verifiers was dishonest, so each honest party sets malicious[k] := 1 for each multiple signer
Mk. After the correct τ is found, Mi verifies all the previously published scalar products. For any
incorrect scalar product computed by some Mk, it sends (reveal, (proof share 1, j, i),M) and
(reveal, (proof share 2, j, i, k),M) to Ftransmit, so now everyone in M may verify the signatures
and compute the corresponding scalar products by itself.

• Each party Mi inM sums up the appropriate accepted scalar products (it may compute the scalar
products for the published shares by itself), gets a1, . . . , a5, and sends (verify, Cj , τ,v, a1, . . . , a5) to
Fver. If the answer is 1, then Mi accepts the proof of Mj for the given T . Otherwise it immediately
sets malicious[j] := 1.

• After the protocol has finished for all T, j proofs, eachMi sees for which parties it has setmalicious[j] =
1. If there is at least one party that is malicious, an honest Mi outputs (output, j1, . . . , jk) for all
parties j` that are malicious.

Transition Function for the Simulator S

In this subsection we prove that the real functionality is as secure as the ideal functionality. The S is
located between Fideal and A, and it tries to convince A that it is a real functionality. At the same time
for Fideal it must be like if it communicated with an ideal adversary AS who is not completely evil.

Since S simulates the communication between A and all the Mi, it should know their communication
keys for Fppp for all the Mi.

• In the beginning, Fideal gets from the environment all the arithmetic circuits (init, C1
1 , . . . , C

r
p),

where Cki corresponds to the computation of party Mi the k-th round. All Cki are sent to S. The
S just delivers them to A.

• If S receives (corrupt, i) from A (that was intended for Mi), it sends (corrupt, i) to Fideal. Fideal
sets evili := true. The inputs of malicious parties are delivered by S to A.

• In the real protocol, the parties should commit the input shares and generate the randomness. The
A may propose its own inputs and signatures for dishonest parties. S checks by itself the signatures,
as if it was an honest party. If anything is wrong, S sends (stop, i1, . . . , i`) to Fideal, for all the
detected parties. If the receiver is malicious, then the adversary decides whether anything should
be revealed or not.

• From the name of honest parties, S should generate the shares of the randomness and the inputs by
itself. Since the adversary gets up to t− 1 shares of each value, and t− 1 look completely random
unless the last one is obtained, S may generate completely random shares, and they will not be
inconsistent with the randomness and the inputs that should have been provided for the honest
parties by Fideal. S signs all the shares by itself.

• For the dishonest parties Mi, Fideal generates ri by itself and shows it to the adversary. Here ri
should indeed be random. S needs to enforce the same ri to be used in the real model. A may
generate up to t − 1 shares for the parties that it controls, but at least one share is generated by
an honest party. From the name of the remaining honest parties Mj , S generates randomness rij
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in such a way that the sum of all the t shares equals ri provided by the ideal functionality. If A
has provided inconsistent shares for some rki, the shares of rji should nevertheless be consistent.
Hence S has to achieve ri only for at least one all-honest t-set, and the others do not matter. Let
that honest t-set be denoted H. S will now assume that H holds all the committments, just to
avoid confusion using several all-honest t-sets at once.

If we do not want to use the random oracle assumption, recovering rki from the shares is possible
only if S receives the shares, not just the signatures (and in H all the shares indeed correspond to
the signatures, so there are no contradictions). Since committing the inputs is just a preprocessing
phase, the shares of ri are distributed immediately.

• Fideal starts running the protocol, and it immediately waits for the input x∗i that should be queried
from AS . S should take H and define x∗i to be the vector committed to H as shares. This will
be considered the proper committed input. If the shares of x∗i are not distributed already in the
beginning, there is no way for S to recover x∗i from the signatures, it would only be possible in the
random oracle model. Hence if we want to avoid this assumption, the shares should be distributed
immediately in the preprocessing phase.

• At some moment Fideal reaches the place where some m∗kji should be queried.

– First, Fideal computes all the messages of the next round by itself, based on the messages
received in the previous rounds. If evilj == true, then for any message mk

ij , Fideal does the
following:

∗ Sends mk
ij to S. For the honest parties, S composes all the necessary shares of this message

by itself, and signs them from the name of Mi. It delivers the message shares to A through
Fppp, pretending to be Mi.

∗ Fideal waits for m∗k+1
ji1

, . . . ,m∗k+1
ji|R|

from S for all the receivers R. At the same time,

A knows that in the real functionality Mi should wait for the shares and the signatures.
It sends all the shares and the signatures to S, and it gives the orders to the malicious
parties, which values they should sign by themselves. For each receiver i`, the signatures
are not supposed to be valid and correspond to the message itself. From the name of
honest receivers, S sends (reveal,mid,M) for all the messages that the honest parties
would indeed reject, and since rejection is related just to checking the signatures of the
malicious parties, S is able to do it itself. S sends (stop, i1, . . . , i`) to Fideal, for all the
detected parties of that round. If both the sender and the receiver are malicious, then the
adversary decides whether the message should be accepted.
Now S has to decide what the m∗k+1

ij should be, since Fideal is waiiting for it from AS .

· Since each honest party uses ckij it has received, and this value corresponds to the

signature that each honest party presents to defend itself, S sets m∗k+1
ij = ckij for all

honest receivers Mj .

· For the dishonest receivers, S still takes m∗k+1
ij = ckij for all the honest senders since

then ckij indeed corresponds to both the shared and the non-shared committment.

· If both the sender and the receiver are dishonest, then then Fideal does not wait for
m∗k+1

ij since it does not need it in the next computation (the outputs of Mj in the next
round are anyway defined by the adversary). Fideal asks for these values later.

Hence for the communications where at least one party is honest, m∗k+1
ij = ckij is sent to

Fideal.
• After the simulation of the initial protocol has finished, Fideal queries from the adversary a set

of messages of the form (corrupt, i, j) for some i such that evili == true and some j such that
evilj == false. It also waits for the final decision on m∗1ij , . . . ,m

∗r
ij for malicious parties

– As a verifier, A chooses the share τTij for each corrupted i, for each other j who acts as
a prover, for each verifier subset T . It sends these values to S. Now S may broadcast all
(bc, T, (k, j, T, τTkj , Signski(τTij))), simulating the random shares of the remaining honest
parties by itself. If A says that some Mk refuses to participate or presents incorrect signatures
for Mj , S broadcasts (bc,M, (end, j, T )) from the names of all honest parties in T , assuming
that the prover Mj is honest. If there are no problems, S may send all (challenge, τTj , Cj) to
Fver and get back all q1Tj , . . . ,q5Tj .
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– As a prover, for each T , k ∈ T , A selects

(transmit, (proof share 1, i, k), (pikTk
1
, . . . ,pikTk

p
, spik))

for Mk from the name of malicious Mi. As a sender, it selects

(transmit, (proof share 2, i, j, k), (cijkTk
1
, . . . , cijkTk

p
, scijk)) .

S waits until all of them come, or until timeout (since A may force some Mi to refuse to
participate in verification). Then, from the name of each honest party, S checks if the shares
correspond to the signatures. If all the signatures are correct, S sends

(bc,M, (product share, i, k, T, 〈(pikT ||dikT ),q1Ti〉, . . . , 〈(pikT ||dik1),q5Ti〉))

to Fbc, where dik1 is constructed from the received values, as in description of Mi. If some
signature is wrong, S sends (reveal,mid,M) to Ftransmit for a corresponding mid. From
each honest Mi, S broadcasts (bc,M, (end, j, T )), and stores (corrupt, j, i). For a malicious
receiver, the adversary decides whether it reveals the message or not.

– From the side of the honest provers, the verifier should generate all the shares of the proof by it-
self. All the inner communication shares between honest parties, and all the input/randomness
shares that have never been seen by S, are generated randomly and signed by S from the names
of corresponding honest parties. Since in any T there are at most t− 1 dishonest parties, the
adversary sees only up to t− 1 shares which look completely random unless the last t-th share
is obtained, and hence there are no inconsistencies with any real proof that S has never seen.

– The A decides on the scalar products for dishonest parties. The S just broadcasts these values
from the names of the corresponding parties. If A decides that some party Mj refuses to
broadcast, S simulates the end of the set T proof, writing (corrupt, j, k) for all honest parties
Mk.

– From the name of each honest party Mi, S has to generate scalar products by itself. The prob-
lem is that the sum of final shared scalar products should be equal to the real 〈(πiT ||diT ),qkTi〉.
If (πiT ||diT ) belongs to an honest verifier, then it cannot be generated by S itself. However, it is
known that, for an honest verifier, 〈(πiT ||diT ),qk〉 is statistical HVZK (the details can be seen
in [BSCG+13]). Since S knows τ , it has access to a trapdoor, and it has enough information
about how to generate a1, . . . , a5 in such a way that the final proof on certain combinations of
ak would succeed, and their distribution is the same as for real proof. Hence S just generates
some random ak that satisfy this proof, and claims that ak = 〈(πiT ||diT ),qkTi〉. Let the shares
of the evil parties in the corresponding T -set be s1, . . . , s` for ` ≤ t− 1. Their sum must now
be equal to some vector s such that r1 + 〈s,q1Ti〉 = a1,. . . ,r5 + 〈s,q5Ti〉 = a5 where ri are the
sums of scalar products of the honest parties. S just has to distribute all si shares uniformly
amongst the evil parties, and compute rk according to ak. Since in the real functionality the
prover is not supposed to use the same randomness in π several times, πiT is being generated
as a completely new random value in each proof separately.

– If the protocol has not ended yet for some T, j, there is at least one party that has broadcasted
all the necessary scalar product shares, since by assumption at least one party is honest.
However, some of the published scalar product shares may nevertheless be malicious. Now the
shares of τTj and their signatures have to be broadcasted. S does that from the side of all
the honest parties, and it waits until A decides on something for dishonest parties. Then S
checks the signatures for inconsistencies from the name of each honest party, and broadcasts
(bc,M, (end, j, T )) in the case if something is wrong, setting (corrupt, `, k) for all the honest
parties Mk for all M` that provided multiple signatures.

∗ If the prover has not been corrupted, then S verifies all the scalar products published
by corrupted parties by itself. If some signature is wrong, it sends (reveal,mid,M) to
Ftransmit for the corresponding messages. Since a wrong scalar product (or a wrong
published cijkT share) comes from a corrupted party, the communication shares and the
signatures are known by S. As in the real functionality, S simulates the end of T -set proof,
storing (corrupt, j, k) for all honest parties Mk.
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∗ If the prover Mi has been corrupted, S waits until A announces which products should
be claimed wrong. Again, the values from (reveal,mid,M) should be published, but S
knows them since now they are already known by the malicious prover. S simulates the
end of T -set proof, storing (corrupt, i, k) for all honest parties Mk.

– From the name of each honest receiver Mi, S has to send a complaint if the revealed communi-
cation shares do not correspond to the committed cij. For the dishonest receivers, the adversary
decides which complaints have to be sent. Now the communication m∗kij between the honest
parties has finally been discovered. If A decided to reveal cij , then (m∗1ij || . . . ||m∗rij) = cij .
Otherwise (m∗1ij || . . . ||m∗rij) is equal to the sum of the shares of H.

– After all the scalar products have been verified, S makes each honest verifier Mi act exactly like
in the real protocol. It computes a1, . . . , a5 from the shares, and then the certain combinations
of these values, and checks if they match, storing (corrupt, j, i) for each honest party Mi if
the proof fails. The decisions of malicious parties are made by the adversary.

– For each honest verifier Mi, S stores the corresponding counters of how many tests there have
been in which each prover Mj succeeds. If there is some party Mj that has not succeeded in
all the proofs, it stores (corrupt, j, i). The adversary sends the decisions of dishonest parties.

• Fideal is still waiting from the adversary a set of messages of the form (corrupt, i, j) for some i such
that evili == true and some j such that evilj == false Now S should decide on that. Since all the
(corrupt, j, i) have already been generated, S just delivers them to Fideal. During the simulation,
S chose to claim corrupt only in the following cases:

1. A party may be claimed corrupt in the initial protocol, if its sent shares do not correspond to
its signatures. This can be done only by malicious parties.

2. During the verification process, S corrupts only malicious parties, according to the protocol
description.

3. Additionally, we need to ensure that S has not accused any honest parties in the final check.
Since a real prover Mj would never accept the scalar product shares computed by evils unless
they are computed correctly, the scalar products that have reached the end of the proof are
indeed a1, . . . , a5, and they have been chosen by S in such a way that the test passes.

4. The remaining place where honest users could be claimed malicious by Fideal itself is the
inconsistency of mk

ij and m∗kij , but S delivers malicious messages only from corrupted parties.

• For all i such that malicious[i] == 1, the messages should be definitely sent to all j such that
evilj == false. It is sufficient to show that if an inconsistency of mk

ij and m∗kij happens in Fideal,
then Mi does not pass the test of H.

Since passing the test without actually finishing the verification happens only either if some of the
verifiers acts dishonestly, or the protocol succeeds up to the final proof, the only way for Mj to pass
the test for H is to make a1, . . . , a5 accepted in the end. Hence it must have succeeded in generating
a1, . . . , a5 that correspond to a1 = 〈s11,q1〉 + . . . + 〈s1t,q1〉, . . . , a5 = 〈s51,q5〉 + . . . + 〈s5t,q5〉.
Since all the verifiers in that subset are honest, none of them could provide any information about
any qk to Mj . Since all the verifiers are honest, they use the shares distributed in the initial
protocol consistently, and hence s1k = . . . = s5k =: (pikH ||dikH) for each verifier k, so we have a1 =
〈(pi1H ||di1H),q1〉+ . . .+〈(pitH ||ditH),q1〉, . . . , a5 = 〈(pi1H ||di1H),q5〉+ . . .+〈(pitH ||ditH),q5〉 for
valid challenges qk that have not been seen by Mj before generating (p1||d1), . . . , (pt||dt). Denoting
p := pi1H + . . .+ pitH and d := di1H + . . .+ ditH , we get a1 = 〈(p||d),q1〉, . . . , a5 = 〈(p||d),q5〉.
Since the honest parties would not accept communicated value shares that do not correspond to
the signatures, the scalar products are actually of the form 〈(π||x||r||c),q1〉, . . . , 〈(π||x||r||c),q5〉,
where x, r, c indeed correspond to the values committed to the all-honest parties.

Even if the other t-sets have received different commitments, it is important that these values have
been committed to an all-honest-party set before the computation, according to the protocol. The
vector r is indeed random since all-honest-parties have checked carefully all the signatures of the
t generators of r, and at least one of them was definitely honest, and hence the vector is indeed
random. If the proof succeeds, then p is a valid proof (according to the PCP description). This
implies proving that Mi performed its communication correctly with respect to the committed
values. Here the situation with c is not so clear since it has been committed in two ways. We need
to show that satisfying any of these two committed values by Mi implies all m∗kij = mk

ij , where
mk
ij is computed by Fideal from the previous round.
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– Since S has chosen m∗k−1
ij = ck−1

ij where ck−1
ij is accepted by H (it does not matter now which

of the two committments it was), the value mij
k equals to the value computed from ck−1

ij , the
inputs xj , and the randmoness rj which have been committed to H.

– Since the proof has succeeded, the computation is correct with respect to ck−1
ij , the inputs xj ,

and the randmoness rj committed to H. Hence the output of this computation m∗kij is the
same value mk

ij that Fideal would compute.

• After all the (corrupt, i, j) messages have been distributed, S waits from A the final outputs of
the dishonest parties. It delivers them to Fideal. For the honest parties, Fideal outputs real output
iff no malicious[j] := 1 has ever happened in Fideal, and otherwise it outputs (output, j1, . . . , jk)
such that for each j` the messages (corrupt, j`, i) has been sent. This is what A awaits from the
output.

5 Using the Proposed Protocol in Secure Multiparty Com-
putation Platforms

In this section we discuss how the proposed verification could be used in Secure Multiparty Computation
Platforms. More precisely, here we should consider the case where in addition to computing parties
(that participate in the protocol) we may have input parties (that provide the inputs, sharing them in
some way amongst the computing parties) and the result parties (that receive the final output). In our
protocol, the computing parties do commit the inputs before the computation starts, but we must ensure
that these are indeed the same inputs that have been provided by the input parties.

5.1 Treating Inputs/Outputs as Communication

As a simpler solution, we may just handle the input and the output similarly to communication. Hence
the following enhancements are made.

1. Let the number of input parties be N . In the beginning, each input party Pi generates the
shares xi1, . . . ,xin (according to an arbitrary sharing scheme) from all the computing parties
M1, . . . ,Mn, as it would do without the verification. Each Mj should now use the input vector
xj = (x1j || . . . ||xNj), where each xij is provided by an input party Pi. Now, for each xij , Pi
generates by itself all the

(
n−1
t

)
shares xijkT` such that

∑
k∈Tj

xijkT` = xij , signs all these shares,

and sends them to Mj . As before, Mj should also sign all of these shares before redistributing them
amongst all the verifier t-sets. The verifiers should now check both signatures, similarly to how it
was done to communication.

2. In the end, each receiver party Ri gets the shares yi1, . . . ,yin from all the computing parties
M1, . . . ,Mn. Now each Mj has to generate

(
n−1
t

)
sums

∑
k∈Tj

yijkT` = yij , exactly in the same

way as it would do with an ordinary communication value. Mj sends the shares and their signatures
to Pi, and Pi redistributes them amongst the t-sets. In the verification process, they check both
signatures, similarly to how it was done to communication.

Since the parties Pi and Ri do not participate in the computation, they do not have to participate
in the verification. However, they will still be punished if they provide multiple signatures for the same
value.

5.2 Possible Issues

The main drawback of the previous proposition is the numerous amount of signatures that the computing
parties may have to check. While in the initial scheme each party Mj has to provide just one share xjkT`

for each party Mk in each T`, now it has to provide N shares, where N is the number of input parties,
and all their signatures have to be checked (for Mj it is still sufficient to use just one signature, but it
does not help much). Depending on the settings, N can be very large. In the worst case, each input
party provides only one bit, and hence N ∈ O(|C|). However, each computing party would have to verify
the source of all the inputs anyway. For Pi, sending t ·

(
n−1
t

)
shares instead of one is not worse since all

the values used by the same Pi may have the same signature. The problem comes when Mj wants to
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redistribute the shares and the signatures to all T -sets, since each receiver will again have to check all N
of them. Fortunately, this happens only in the beginning and in the end of the protocol.

Additionally, depending on the performed computation, the covert security may just not work with
the input parties, especially in some anonymous statistical projects. Any participant may cheat without
reason and complain afterwards. In our scheme, the verification of input share signatures is done already
in the beginning, an hence the computing parties will not spend their time on clearly malicious parties
whose shares do not correspond to their signatures. The problem still remains with the output, since the
malicious output party Ri may sign wrong values just for fun, without fear of being detected. However,
since such cheating would require just one additional broadcast (revealing the signatures to everyone),
this is not too much different from the case if Ri has not complained. In any case, even if no one
complains, it may still be some kind of attack where the input party is completely honest, but it just
performs the computation without needing. In relation to statistic projects, some input parties may also
produce unrealistic artificial inputs that harm the result in general, so some outlier detection would be
needed in the beginning.

5.3 Deviations from the Initial Settings

In real Secure Multiparty Computation Platforms, it may happen that the number of input parties is
initially unknown. For example, in the case of some statistical computation, the input parties may
come and submit their inputs during the execution, and hence the shape of the computational circuit
may be even unknown in the beginning, since the input length is undefined. Nevertheless, the proposed
techniques still work. The coming input parties may commit the inputs as they come. In the end of the
computation, the structure of the circuit will be known anyway. The formal proofs would have to be
adjusted, but now we need to define a new ideal functionality that allows the adversary to introduce new
input parties during the computation.

6 Conclusions and Future Work

In this paper we have proposed a scheme that allows to verify the computation of each party in a passively
secure protocol, thus converting passive security to covert security. Each malicious party will be detected
with probability close to 1, depending on the parameters of selected field.

While our verification is being done only after the entire computation has ended, it might be interesting
to do something more similar to the active security model. Namely, we could require each party to prove
the correctness after each round. If implemented straightforwardly, repeating our verification algorithm
on each round, it multiplies the verification complexity by the number of rounds (actually, a bit less since
in the beginning the vectors will be of smaller length). Doing it more cleverly, we could make use of the
proofs of the previous rounds, making the next proof steps reliable on the proofs of the previous steps.
The ideas can be taken for example from [CT10].
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