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Abstract. We present a generic method for turning passively secure
protocols into protocols secure against covert attacks. The method adds
a post-execution verification phase to the protocol that allows a misbe-
having party to escape detection only with negligible probability. The
execution phase, after which the computed protocol result is already
available for parties, has only negligible overhead added by our method.
The checks, based on linear probabilistically checkable proofs, are done in
zero-knowledge, thereby preserving the privacy guarantees of the original
protocol. Our method is inspired by recent results in verifiable computa-
tion, adapting them to multiparty setting and significantly lowering their
computational costs for the provers.
Keywords: Secure multiparty computation, Verifiable computation, Lin-
ear PCP

1 Introduction

Any multiparty computation can be performed in a manner that the participants
only learn their own outputs and nothing else [24]. While the generic construc-
tion is expensive in computation and communication, the result has sparked
research activities in secure multiparty computation (SMC), with results that
are impressive both performance-wise [9, 11, 17, 20], as well as in the variety of
concrete problems that have been tackled [10, 14, 16, 21]. From the start, two
kinds of adversaries — passive and active — have been considered in the con-
struction of SMC protocols, with highest performance and the greatest variety
achieved for protocol sets secure only against passive adversaries.

Verifiable computation (VC) [22] allows a weak client to outsource a compu-
tation to a more powerful server that accompanies the computed result with a
proof of correct computation, the verification of which by the client is cheaper
than performing the computation itself. VC could be used to strengthen proto-
cols secure against passive adversaries — after executing the protocol, the parties
could prove to each other that they have correctly followed the protocol. If the
majority of the parties are honest (an assumption which is made also by the
most efficient SMC protocol sets secure against passive adversaries), then the
resulting protocol would satisfy a strong version of covert security [2], where any



deviations from the protocol are guaranteed to be discovered and reported. Un-
fortunately, existing approaches to VC have a large computational overhead for
the server/prover. Typically, if the computation is represented as an arithmetic
circuit C, the prover has to perform Ω(|C|) public-key operations in order to
ensure its good behaviour, as well as to protect its privacy.

In this paper we show that in the multiparty context, with an honest majority,
these public-key operations are not necessary. Instead, the verifications can be
done in distributed manner, in a way that provides the same security properties.
For this, we apply the ideas of existing VC approaches based on linear proba-
bilistically checkable proofs (PCPs) [25], and combine them with linear secret
sharing, which we use also for commitments. We end up with a protocol transfor-
mation that makes the executions of any protocol (and not just SMC protocols)
verifiable afterwards. Our transformation commits the randomness (this takes
place offline), inputs, and the communication of the participants. The commit-
ments are cheap, being based on digital signatures and not adding a significant
overhead to the execution phase. The results of the protocol are available after
the execution. The verification can take place at any time after the execution;
dedicated high-bandwidth high-latency communication channels can be poten-
tially used for it. The verification itself is succinct. The proof is generated in
O(|C| log |C|) field operations, but the computation is local. The generation of
challenges costs O(1) in communication and O(|C|) in local computation.

We present our protocol transformation as a functionality in the universal
composability (UC) framework. After reviewing related work in Sec. 2, we de-
scribe the ideal functionality in Sec. 3 and its implementation in Sec. 5. Before
the latter, we give an overview of the existing building blocks we use in Sec. 4.
The computational overhead of our transformation is estimated in Sec. 6.

Besides increasing the security of SMC protocols, our transformation can be
used to add verifiability to other protocols. In Sec. 7 we demonstrate how a
verifiable secret sharing (VSS) scheme can be constructed. We compare it with
state-of-the-art VSS schemes and find that despite much higher genericity, our
construction enjoys similar complexity.

2 Related Work

The property brought by our protocol transformation is similar to security
against covert adversaries [2] that are prevented from deviating from the pre-
scribed protocol by a non-negligible chance of getting caught. A similar transfor-
mation, applicable to protocols of certain structure, was introduced by Damg̊ard
et al. [18]. Compared to their transformation, ours is more general, has lower
overhead in the execution phase, and is guaranteed to catch the deviating par-
ties. Our transformation can handle protocols, where some of the results are
made available to the computing parties already before the end of the protocol;
this may significantly lower the protocol’s complexity [10]. A good property of
their construction is its black-box nature, which our transformation does not
have. Hence different transformations may be preferable in different situations.



There have been many works dedicated to short verifications of solutions
to NP-complete problems. Probabilistically checkable proofs [1] allow to verify
a possibly long proof by querying a small number of its bits. Micali [30] has
presented computationally sound proofs, where the verification is not perfect,
and the proof can be forged, but it is computationally hard to do. Kilian [26]
proposed interactive probabilistically checkable proofs using bit commitments.
A certain class of linear probabilistically checkable proofs [25], allows to make
argument systems much simpler and more general.

In computation verification, the prover has to prove that, given valuations of
certain wires of a circuit, there exists a correct valuation of all the other wires
such that the computation is correct with respect to the given circuit. Verifiable
computation can in general be based not only on the PCP theorem. In [22], Yao’s
garbled circuits [36] are executed using fully homomorphic encryption. Quadratic
span programs for boolean circuits and quadratic arithmetic programs for arith-
metic circuits without PCP have first been proposed in [23], later extended to
PCP by [6], and further optimized and improved in [5,28,31]. Particular imple-
mentations of verifiable computations have been done for example in [5, 31,34].

The goal of our transformation is to provide security against a certain form of
active attackers. SMC protocols secure against active attackers have been known
for a long time [15, 24]. SPDZ [19, 20] is probably the SMC protocol set secure
against active adversaries with currently the best online performance, achieved
through extensive offline precomputations. Similarly to several other protocol
sets, SPDZ provides only a minimum amount of protocols to cooperatively eval-
uate an arithmetic circuit. We note that very recently, a form of post-execution
verifiability has been proposed for SPDZ [4].

3 Ideal functionality

We use the universal composability (UC) framework [13] to specify our verifiable
execution functionality. We have n parties (indexed by [n] = {1, . . . , n}), where
C ⊆ [n] are corrupted for |C| = t < n/2 (we denote H = [n]\C). The protocol has
r rounds, where the computations of the party Pi on the `-th round are given
by an arithmetic circuit C`ij over a field F, computing the `-th round messages

m`
ij to all parties j ∈ [n] from the input xi, randomness ri and the messages

Pi has received before (all values xi, ri,m
`
ij are vectors over F). We define that

the messages received during the r-th round comprise the output of the protocol.
The ideal functionality Fvmpc, running in parallel with the environment Z and
the adversary AS , is given in Fig. 1.

We see thatM is the set of parties actually deviating from the protocol. Our
verifiability property is very strong — they all will be reported to all honest
parties. Even if only some rounds of the protocol are computed, all the parties
that deviated from the protocol in completed rounds will be detected. Also, no
honest parties (in H) can be falsely blamed. We also note that if M = ∅, then
AS does not learn anything that a semi-honest adversary could not learn.



In the beginning, Fvmpc gets from Z for each party Pi the message
(circuits, i, (C`

ij)
n,n,r
i,j,`=1,1,1) and forwards them all to AS . For each i ∈ H [resp i ∈ C],

Fvmpc gets (input,xi) from Z [resp. AS ]. For each i ∈ [n], Fvmpc randomly generates
ri. For each i ∈ C, it sends (randomness, i, ri) to AS .
For each round ` ∈ [r], i ∈ H and j ∈ [n], Fvmpc uses C`

ij to compute the message
m`

ij . For all j ∈ C, it sends m`
ij to AS . For each j ∈ C and i ∈ H, it receives m`

ji from
AS .
After r rounds, Fvmpc sends (output,mr

1i, . . . ,m
r
ni) to each party Pi with i ∈ H. Let

r′ = r and B0 = ∅.
Alternatively, at any time before outputs are delivered to parties, AS may send
(stop,B0) to Fvmpc, with B0 ⊆ C. In this case the outputs are not sent. Let r′ ∈
{0, . . . , r − 1} be the last completed round.
After r′ rounds, AS sends to Fvmpc the messages m`

ij for ` ∈ [r′] and i, j ∈ C.
Fvmpc defines M = B0 ∪ {i ∈ C | ∃j ∈ [n], ` ∈ [r′] : m`

ij 6= C`
ij(xi, ri,m

1
1i, . . . ,m

`−1
ni )}.

Finally, for each i ∈ H, AS sends (blame, i,Bi) to Fvmpc, with M ⊆ Bi ⊆ C. Fvmpc

forwards this message to Pi.

Fig. 1: The ideal functionality for verifiable computations

4 Building blocks

Throughout this paper, bold letters x denote vectors, where xi denotes the i-th
coordinate of x. Concatenation of x and y is denoted by (x‖y), and their scalar

product by 〈x,y〉, which is defined (only if |x| = |y|) as 〈x,y〉 =
∑|x|
i=1 xiyi.

Our implementation uses a number of previously defined subprotocols and
algorithm sets.

Message transmission For message transmission between parties, we use
functionality Ftr [18], which allows one to prove to third parties which mes-
sages one received during the protocol, and to further transfer such revealed
messages. Our definition of Ftr differs from Damg̊ard et al.’s [18] Ftransmit by
supporting the forwarding of received messages, as well as broadcasting as a part
of the outer protocol. The definition of the ideal functionality of Ftr is shown
in Fig. 2. The real implementation of the transmission functionality is built on
top of signatures. This makes the implementation very efficient, as hash trees
allow several messages (sent in the same round) to be signed with almost the
same computation effort as a single one [29], and signatures can be verified in
batches [12]. An implementation of Ftr is given in App. A.

Shamir’s secret sharing For commitments, we use (n, t) Shamir secret
sharing [35], where any t parties are able to recover the secret, but less than
t are not. By sharing a vector x over F into vectors x1, . . . ,xn we mean that
each i-th entry xi ∈ F of x is shared into the i-th entries x1i ∈ F, . . . , xni ∈ F of
x1, . . . ,xn. In this way, for each T = {i1, . . . , it} ⊆ [n], the entries can be restored

as xi =
∑t
j=1 bTjx

ij
i for certain constants bTj , and hence x =

∑t
j=1 bTjx

ij . The

linearity extends to scalar products: if a vector π is shared to π1, . . . ,πn, then
for any vector q and T = {i1, . . . , it}, we have

∑t
j=1 bTj〈πij , q〉 = 〈π, q〉.



Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n], a
receiver r(mid) ∈ [n], and a party f(mid) ∈ [n] to whom the message should be
forwarded by the receiver (if no forwarding is foreseen then f(mid) = r(mid)).
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (other) honest parties, store (mid,m, r(mid)), mark it as undelivered, and output
(mid, |m|) to the adversary. If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is honest, then output (corrupt, s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all honest parties, store (mid,m, bc), mark it as undelivered, output (mid, |m|) to
the adversary. If the input of Ps(mid) is invalid, output (corrupt, s(mid)) to all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r)
send (mid,m) to Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc),
send (mid,m) to each party and the adversary; mark (mid,m, bc) as delivered.
Forward received message: On input (forward,mid) from Pr(mid) after (mid,m) has
been delivered to Pr(mid), and receiving (forward,mid) from all honest parties, store
(mid,m, f(mid)), mark as undelivered, output (mid, |m|) to the adversary. If the input
of Pr(mid) is invalid, and Pf(mid) is honest, output (corrupt, r(mid)) to all parties.
Publish received message: On input (publish,mid) from the party Pf(mid) which at
any point received (mid,m), output (mid,m) to each party, and also to the adversary.
Do not commit corrupt to corrupt: If for some mid both Ps(mid), Pr(mid) are
corrupt, then on input (forward,mid) the adversary can ask Ftr to output (mid,m′) to
Pf(mid) for any m′. If additionally Pf(mid) is corrupt, then the adversary can ask Ftr

to output (mid,m′) to all honest parties.

Fig. 2: Ideal functionality Ftr

We note that sharing a value x as x1 = · · · = xk = x is valid, i.e. x can
be restored from xi1 , . . . , xit by forming the same linear combination. In our
implementation of the verifiable computation functionality, we use such“sharing”
for values that end up public due to the adversary’s actions.

Linear PCP This primitive forms the basis of our verification. Before giv-
ing its definition, let us formally state when a protocol is statistically privacy-
preserving.

Definition 1 (δ-private protocol [8]). Let Π be a multiparty protocol that
takes input x from honest parties and y from adversarially controlled parties. The
protocol Π is δ-private against a class of adversaries A if there exists a simulator
Sim, such that for all adversaries A ∈ A and inputs x,y,

∣∣Pr
[
AΠ(x,y)(y) =

1
]
−Pr

[
ASim(y)(y) = 1

]∣∣ ≤ δ.
Definition 2 (Linear Probabilistically Checkable Proof (LPCP) [6]).
Let F be a finite field, υ, ω ∈ N, R ⊆ Fυ × Fω. Let P and Q be probabilistic
algorithms, and D a deterministic algorithm. The pair (P, V ), where V = (Q,D)
is a d-query δ-statistical HVZK linear PCP for R with knowledge error ε and
query length m, if the following holds.

Syntax On input v ∈ Fυ and w ∈ Fω, algorithm P computes π ∈ Fm. The
algorithm Q randomly generates d vectors q1, . . . qd ∈ Fm and some state



information u. On input v, u, as well as a1, . . . , ad ∈ F, the algorithm
D accepts or rejects. Let V π(v) denote the execution of Q followed by the
execution of V on v, the output u of Q, and a1, . . . , ad, where ai = 〈π, qi〉.

Completeness For every (v,w) ∈ R, the output of P (v,w) is a vector π ∈ Fm
such that V π(v) accepts with probability 1.

Knowledge There exists a knowledge extractor E such that for every vector
π∗ ∈ Fm, if
Pr
[
V π

∗
(v) accepts

]
≥ ε then E(π∗,v) outputs w such that (v,w) ∈ R.

Honest Verifier Zero Knowledge The protocol between an honest prover ex-
ecuting π ← P (v,w) and adversarial verifier executing V π(v) with common
input v and prover’s input w is δ-private for the class of passive adversaries.

Similarly to different approaches to verifiable computation [5,6,23,28,31], in
our work we let the relation R to correspond to the circuit C executed by the
party whose observance of the protocol is being verified. In this correspondence,
v is the tuple of all inputs, outputs, and used random values of that party.
The vector w extends v with the results of all intermediate computations by
that party. Differently from existing approaches, v itself is private. Hence it is
unclear how the decision algorithm D can be executed on it. Hence we do not
use D as a black box, but build our solution on top of a particular LPCP [5].

The LPCP algorithms used by Ben-Sasson et al. [5] are statistical HVZK.
Namely, the values 〈π, qi〉 do not reveal any private information about π, unless
the random seed τ ∈ F for Q is chosen in a bad way, which happens with
negligible probability for a sufficiently large field. In [5], Q generates 5 challenges
q1, . . . , q5 and the state information u with length |v|+2. Given the query results
ai = 〈π, qi〉 for i ∈ {1, . . . , 5} and the state information u = (u0, u1, . . . , u|v|+1),
the following two checks have to pass:

a1a2 − a3 − a4u|v|+1 = 0, (∗)
a5 − 〈(1‖v), (u0, u1, . . . , u|v|)〉 = 0. (∗∗)
Here (∗) is used to show the existence of w, and (∗∗) shows that a certain

segment of π equals (1‖v) [5]. Throughout this work, we reorder the entries of π
compared to [5] and write π = (p‖1‖v) where p represents all the other entries
of π, as defined in [5]. The challenges q1, . . . , q5 are reordered in the same way.

This linear interactive proof can be converted to a zero-knowledge succinct
non-interactive argument of knowledge [6]. Unfortunately, it requires homomor-
phic encryption, and the number of encryptions is linear in the size of the circuit.
We show that the availability of honest majority allows the proof to be completed
without public-key encryptions.

The multiparty setting introduces a further difference from [5]: the vector v
can no longer be considered public, as it contains a party’s private values. We
thus have to strengthen the HVZK requirement in Def. 2, making v private to the
prover. The LPCP constructions of [5] do not satisfy this strengthened HVZK
requirement, but their authors show that this requirement would be satisfied if
a5 were not present. In the following, we propose a construction where just the
first check (∗) is sufficient, so only a1, . . . , a4 have to be published. We prove
that the second check (∗∗) will be passed implicitly. We show the following.



Theorem 1. Given a δ-statistical HVZK instance of the LPCP of Ben-Sasson
et al. [5] with knowledge error ε, any n-party r-round protocol Π can be trans-
formed into an n-party (r + 8)-round protocol Ξ in the Ftr-hybrid model, which
computes the same functionality as Π and achieves covert security against ad-
versaries statically corrupting at most t < n/2 parties, where the cheating of any
party is detected with probability at least (1− ε). If Π is δ′-private against pas-
sive adversaries statically corrupting at most t parties, then Ξ is (δ′+ δ)-private
against cover adversaries. Under active attacks by at most t parties, the number
of rounds of the protocol may at most double.

Theorem 1 is proved by the construction of the real functionality in the next
section, as well as the simulator presented in App. B. In the construction, we
use the following algorithms implicitly defined by Ben-Sasson et al. [5]:

– witness(C,v): if v corresponds to a valid computation of C, returns a witness
w such that (v,w) ∈ RC .

– proof(C,v,w): if (v,w) ∈ RC , it constructs a corresponding proof p.
– challenge(C, τ): returns q1, . . . , q5,u that correspond to τ , such that:
• for any valid proof π = (p‖1‖v), where p is generated by proof(C,v,w)

for (v,w) ∈ RC , the checks (∗) and (∗∗) succeed with probability 1;
• for any proof π∗ generated without knowing τ , or such w that (v,w) ∈
RC , either (∗) or (∗∗) fails, except with negligible probability ε.

5 Real functionality

The protocol Πvmpc implementing Fvmpc consists of n machines M1, . . . ,Mn

doing the work of parties P1, . . . , Pn, and the functionality Ftr. The internal
state of each Mi contains a bit-vector mlci of length n where Mi marks which
other parties are acting maliciously. The protocol Πvmpc runs in five phases:
initialization, execution, message commitment, verification, and accusation.

In the initialization phase, the inputs xi and the randomness ri are commit-
ted. It is ensured that the randomness indeed comes from uniform distribution.
This phase is given in Fig.3. If at any time (corrupt, j) comes from Ftr, each
(uncorrupted) Mi writes mlci[j] := 1 (for each message (corrupt, j)) and goes to
the accusation phase.

In the execution phase, the parties run the original protocol as before, just
using Ftr to exchange the messages. This is given in Fig.4. If at any time at
some round ` the message (corrupt, j) comes from Ftr (all uncorrupted machines
receive it at the same time), the execution is cut short, no outputs are produced
and the protocol continues with the commitment phase.

In the message commitment phase, all the n parties finally commit their
sent messages c`ij for each round ` ∈ [r′] by sharing them to c`1ij , . . . , c

`n
ij ac-

cording to (n, t + 1) Shamir scheme. This phase is given in Fig. 5. Let v`ij =

(xi‖ri‖c11i‖ · · · ‖c
`−1
ni ‖c`ij) be the vector of inputs and outputs to the circuit C`ij

that Mi uses to compute the `-th message to Mj . If the check performed by Mj

fails, then Mj has received from Mi enough messages to prove its corruptness



Circuits: Mi gets from Z the message (circuits, i, (C`
ij)

n,n,r
i,j,`=1,1,1) and sends it to A.

Randomness generation and commitment: Let R = [t+1]. For all i ∈ R, j ∈ [n],
Mi generates rij for Mj . Mi shares rij to n vectors r1ij , . . . , r

n
ij according to (n, t+ 1)

Shamir scheme. For j ∈ [n], Mi sends (transmit, (r share, i, j, k), rkij) to Ftr for Mk.
Randomness approval: For each j ∈ [n] \ {k}, i ∈ R, Mk sends (forward, (r share, i,
j, k)) to Ftr for Mj . Upon receiving ((r share, i, j, k), rkij) for all k ∈ [n], i ∈ R, Mj

checks if the shares comprise a valid (n, t+ 1) Shamir sharing. Mj sets ri =
∑

i∈R rij .
Input commitments: Mi with i ∈ H [resp. i ∈ C] gets from Z [resp. A] the input xi

and shares it to n vectors x1
i , . . . ,x

n
i according to (n, t + 1) Shamir scheme. For each

k ∈ [n] \ {i}, Mi sends to Ftr (transmit, (x share, i, k),xk
i ) for Mk.

At any time: if (corrupt, j) comes from Ftr, Mi writes mlci[j] := 1 and goes to the
accusation phase.

Fig. 3: The real functionality: initialization phase

For each round ` the machine Mi computes c`ij = C`
ij(xi, ri, c

1
1i, . . . , c

`−1
ni ) for each

j ∈ [n] and sends to Ftr the message (transmit, (message, `, i, j), c`ij) for Mj .
After r rounds, uncorrupted Mi sends (output, cr1i, . . . , c

r
ni) to Z and sets r′ := r.

At any time: if (corrupt, j) comes from Ftr, each (uncorrupted) Mi writes mlci[j] := 1,
sets r′ := `− 1 and goes to the message commitment phase.

Fig. 4: The real functionality: execution phase

to others (but Fig. 5 presents an alternative, by publicly agreeing on c`ij). After

this phase, Mi has shared v`ij among all n parties. Let v`kij be the share of v`ij
given to machine Mk.

EachMi generatesw`
ij = witness(C`ij ,v

`
ij), a proof p`ij = proof(C`ij ,v

`
ij ,w

`
ij),

and π`ij = (p`ij‖1‖v`ij) in the verification phase, as explained in Sec. 4. The vector

p`ij is shared to p`1ij , . . . ,p
`n
ij according to (n, t+ 1) Shamir scheme.

All parties agree on a random τ , with Mi broadcasting τi and τ being their
sum. A party refusing to participate is ignored. The communication must be
synchronous, with no party Pi learning the values τj from others before he has
sent his own τi. Note that Ftr already provides this synchronicity. If it were not
available, then standard tools (commitments) could be used to achieve fairness.

Message sharing: As a sender, Mi shares c`ij to c`1ij , . . . , c
`n
ij according to (n, t +

1) Shamir scheme. For each k ∈ [n] \ {i}, Mi sends to Ftr the messages
(transmit, (c share, `, i, j, k), c`kij ) for Mj .
Message commitment: upon receiving ((c share, `, i, j, k), c`kij ) from Ftr for all k ∈
[n], the machine Mj checks if the shares correspond to c`ij it has already received.
If they do not, Mj sends (publish, (message, `, i, j)) to Ftr, so now everyone sees the
values that it has actually received from Mi, and each (uncorrupted) Mk should now
use c`kij := c`ij . If the check succeeds, then Mi sends to Ftr (forward, (c share, `, i, j, k))
for Mk for all k ∈ [n] \ {i},.

Fig. 5: The real functionality: message commitment phase



All (honest) parties generate q`1ij , . . . , q
`
4ij , q

`
5ij ,u

`
ij = challenge(C`ij , τ) for

` ∈ [r′], i ∈ [n], j ∈ [n]. In the rest of the protocol, only q`1ij , . . . , q
`
4ij , and

(u`ij)|v|+1 will be actually used.

As a verifier, each Mk computes π`kij = (p`kij ‖1‖v`kij ) = (p`kij ‖1‖xki ‖
∑
j∈R r

k
ji

‖c1k1i ‖ · · · ‖c
`−1,k
ni ‖c`kij ), and then computes and publishes the values 〈π`kij , q`1ij〉,

. . . , 〈π`kij , q`4ij〉. Mi checks these values and complains about Mk that has in-
correctly computed them. An uncorrupted Mk may disprove the complaint by
publishing the proof and message shares that it received. Due to the linearity
of scalar product and the fact that all the vectors have been shared according
to the same (n, t+ 1) Shamir sharing, if the n scalar product shares correspond
to a valid (n, t+ 1) Shamir sharing, the shared value is uniquely defined by any
t+ 1 shares, and hence by the shares of some t+ 1 parties that are all from H.
Hence Mi is obliged to use the values it has committed before. The verification
phase for C`ij for fixed ` ∈ [r′], i ∈ [n], j ∈ [n] is given in Fig.6. For different C`ij ,
all the verifications can be done in parallel.

As described, the probability of cheating successfully in our scheme is propor-
tional to 1/|F|. In order to exponentially decrease it, we may run s instances of
the verification phase in parallel, since by that time v`ij are already committed.

This will not break HVZK assumption if fresh randomness is used in p`ij .

During the message commitment and the verification phases, if at any time
(corrupt, j) comes from Ftr, the proof for Pj ends with failure, and all uncor-
rupted machines Mi write mlci[j] := 1.

Finally, each party outputs the set of parties that it considers malicious. This
short phase is given in Fig. 7.

6 Efficiency

In this section we estimate the overheads caused by our protocol transformation.
The numbers are based on the dominating complexities of the algorithms of linear
PCP of [5]. We omit local addition and concatenation of vectors since it is cheap.
The preprocessing phase of [5] is done offline, and can be re-used, so we do not
estimate the complexity here. It can be done with practical overhead [5].

Let n be the number of parties, t < n/2 the number of corrupt parties, r
the number of rounds, Ng the number of gates, Nw the number of wires, Nx the
number of inputs (elements of F), Nr the number of random elements of F, Nc
the number of communicated elements of F, and Ni = Nw −Nx −Nr −Nc the
number of intermediate wires in the circuit; then |v| = Nx +Nr +Nc.

Let S(n, k) denote the number of field operations used in sharing one field
element according to Shamir scheme with threshold k, which is at most nk

multiplications. We use S
−1

(n, k) to denote the complexity of verifying if the
shares comprise a valid sharing and recovering the secret, which is also at most
nk multiplications. Compared to the original protocol, for each Mi the proposed
solution has the following computation/communication overheads.



Remaining proof commitment: As the prover, Mi obtains w`
ij and π`

ij =
(p`

ij‖1‖v`
ij) using the algorithms witness and proof . Mi shares p`

ij to p`1
ij , . . . ,p

`n
ij

according to (n, t + 1) Shamir scheme. For each k ∈ [n] \ {i}, it sends to Ftr

(transmit, (p share, `, i, j, k),p`k
ij ) for Mk.

Challenge generation: Each Mk generates random τk ← F and sends to Ftr the
message (broadcast, (challenge share, `, i, j, k), τk). If some party refuses to participate,
its share will just be omitted. The challenge randomness is τ = τ1 + . . . + τn.
Machine Mk generates q`1ij , . . . , q

`
4ij , q

`
5ij ,u

`
ij = challenge(C`

ij , τ), then computes

π`k
ij = (p`k

ij ‖1‖v`k
ij ) = (p`k

ij ‖1‖xk
i ‖

∑
j∈R r

k
ji‖c1k1i ‖ · · · ‖c`−1,k

ni ‖c`kij ), and finally computes

and broadcasts 〈π`k
ij , q

`
1ij〉, . . . , 〈π`k

ij , q
`
4ij〉.

Scalar product verification: Each Mi verifies the published 〈π`k
ij , q

`
sij〉 for

s ∈ {1, . . . , 4}. If Mi finds that Mk has computed the scalar products correctly, it
sends to Ftr the message (broadcast, (complain, `, i, j, k), 0). If some Mk has provided
a wrong value, Mi sends to Ftr (broadcast, (complain, `, i, j, k), (1, sh`k

sij)), where
sh`k

sij is Mi’s own version of 〈π`k
ij , q

`
sij〉. Everyone waits for a disproof from Mk. An

uncorrupted Mk sends to Ftr the messages (publish,mid) for mid ∈ {(x share, i, k),
(r share, 1, i, k), . . . , (r share, |R|, i, k), (p share, `, i, j, k), (c share, 1, 1, i, k), . . . , (c share,
r′, n, i, k), (c share, `, i, j, k)}. Now everyone may construct π`k

ij and verify whether the
version provided by Mi or Mk is correct.
Final verification: Given 〈π`k

ij , q
`
sij〉 for all k ∈ [n], s ∈ {1, . . . , 4}, each machine Mv

checks if they indeed correspond to valid (n, t + 1) Shamir sharing, and then locally
restores a`sij = 〈π`

ij , q
`
sij〉 for s ∈ {1, . . . , 4}, and checks (∗). If the check succeeds, then

Mv accepts the proof of Mi for C`
ij . Otherwise it immediately sets mlcv[i] := 1.

Fig. 6: The real functionality: verification phase

Finally, each party Mi sends to Z the message (blame, i, {j |mlci[j] = 1}).
Fig. 7: The real functionality: accusation phase

Initialization: Do Shamir sharing of one vector of lengthNx inNx·S(n, t+1)
field operations. Transmit t+1 vectors of length Nr and one vector of length Nx
to each other party. Do t+1 recoverings in (t+1) ·Nr ·S

−1
(n, t+1). The parties

that generate randomness do n ·Nr ·S(n, t+1) more field operations to compute
n more sharings and transmit n more vectors of length Nr to each other party.

Execution: No computation/communication overheads, except those caused
by the use of the message transmission functionality.

Message commitment: Share all the communication in rn(n − 1) · Nc ·
S(n, t + 1) operations. Send to each other party rn vectors of length Nc. Do

r(n− 1) recoverings in r(n− 1) ·Nc · S
−1

(n, t+ 1) operations.

Verification: Compute the proof p of length (4 + Ng + Ni) in 18Ng + 3 ·
FFT (Ng)+logNg+1 field operations [5], where FFT (N) denotes the complexity
of the Fast Fourier Transform which is c ·N · logN for a small constant c. Share
p in (4+Ng+Ni) ·S(n, t+1) operations. Send a vector of length (4+Ng+Ni) to
every other party. Broadcast one field element (the τ). Generate the 4 challenges
and the state information in 14 ·Ng + log(Ng) field operations [5]. Compute and
broadcast 4 scalar products of vectors of length (5 + Nw + Ng) (the shares of



〈(p‖1‖v), qs〉). Compute 4 certain linear combinations of t scalar products and
do 2 multiplications in F (the products in a1a2 − a3 − a4u).

Assuming Nw ≈ 2 · Ng, for the whole verification phase, this adds up to
≈ rn(2 ·S(n, t+ 1)Ng + 3FFT (2Ng) + 26nNg) field operations, the transmission
of ≈ 4rn2Ng elements of F, and the broadcast of 4rn2 elements of F per party.

If there are complaints, then at most rn vectors of length Nc should be
published in the message commitment phase, and at most rn vectors of length
(4 + Ng + Ni) (p shares), rn2 vectors of length Nc (communication shares),
n · (t+ 1) vectors of length Nr (randomness shares) and n vectors of length Nx
(input shares) in the verification phase (per complaining party).

As long as there are no complaints, the only overheads that Ftr causes is
that each message is signed, and each signature is verified.

The knowledge error of the linear PCP of [5] is ε = 2Ng/F, and the zero
knowledge is δ-statistical for δ = Ng/F. Hence desired error and the circuit size
define the field size. If we do not want to use too large fields, then the proof can
be parallelized as proposed in the end of Sec. 5.

7 Example: Verifiable Shamir Secret Sharing

In this section we show how our solution can be applied to [35], yielding a verifi-
able secret sharing (VSS) protocol. Any secret sharing scheme has two phases —
sharing and reconstruction — to which the construction presented in this paper
adds the verification phase.

To apply our construction, we have to define the arithmetic circuits used
in [35]. For i ∈ {1, . . . , n} let Ci be a circuit taking s, r1, . . . , rt ∈ F as inputs
and returning s +

∑t
j=1 rji

j . If s is the secret to be shared, then Ci is the
circuit used by the dealer (who is one of the parties P1, . . . , Pn) to generate the
share for the i-th party using the randomness (r1, . . . , rt). It computes a linear
function, and has no multiplication gates. According to the LPCP construction
that we use, each circuit should end with a multiplication. Hence we append a
multiplication gate to it, the other argument of which is 1. Let C be the union
of all Ci, it is a circuit with 1 + t inputs and n outputs.

In the reconstruction phase, the parties just send the shares they’ve received
to each other. A circuit computing the messages of this phase is trivial — it
just copies its input to output. We note that Ftr already provides the necessary
publishing functionality for that. Hence we’re not going to blindly follow our
VMPC construction, but use this opportunity to optimize the protocol. In effect,
this amounts to only verifying the sharing phase of the VSS protocol, and relying
on Ftr to guarantee the proper behaviour of parties during the reconstruction.
The whole protocol is depicted in Fig. 8.

A couple of points are noteworthy there. First, the reconstruction and veri-
fication phases can take place in any order. In particular, verification could be
seen as a part of the sharing, making a 3-round protocol (in optimistic case).
Second, the activities of the dealer in the sharing phase have a dual role in terms



Preprocessing. Parties run the Randomness generation and commitment and Ran-
domness approval steps of Fig. 3, causing the dealer to learn r1, . . . , rt. Each ri is shared
as ri1, . . . , rin between P1, . . . , Pn.
Sharing. Dealer computes the shares s1, . . . , sn of the secret s, using the randomness
r1, . . . , rt [35], and uses Ftr to send them to parties P1, . . . , Pn.
Reconstruction. All parties use the publish-functionality of Ftr to make their shares
known to all parties. The parties reconstruct s as in [35].
Verification. The dealer shares each si, obtaining si1, . . . , sin. It transmits them all
to Pi, which verifies that they are a valid sharing of si and then forwards each sij to
Pj . [Message commitment]
The dealer computes w = witness(C, s, r1, . . . , rt) and p = proof (C, (s, r1, . . . , rt),w).
It shares p as p1, . . . ,pn and transmits pj to Pj . [Proof commitment]
Each party Pi generates a random τi ∈ F and broadcasts it. Let τ = τ1 + · · ·+ τn. Each
party constructs q1, . . . , q4, q5,u = challenge(C, τ). [Challenge generation]
Each party Pi computes aji = 〈(pi‖1‖si‖r1i‖ · · · ‖rti‖s1i‖ · · · ‖sni), qj〉 for j ∈
{1, 2, 3, 4} and broadcasts them. The dealer may complain, in which case
pi, si, r1i, . . . , rti, s1i, . . . , sni are made public and all parties repeat the computation
of aji. [Scalar product verification]
Each party reconstructs a1, . . . , a4 and verifies the LPCP equation (∗).

Fig. 8: LPCP-based VSS

of the VMPC construction. They form both the input commitment step in Fig. 3,
as well as the execution step for actual sharing.

Ignoring the randomness generation phase (which takes place offline), the
communication complexity of our VSS protocol is the following. In sharing phase,
(n−1) values (elements of F) are transmitted by the dealer and in the reconstruc-
tion phase, each party broadcasts a value. These coincide with the complexity
numbers for non-verified secret sharing. In the verification phase, in order to
commit to the messages, the dealer transmits a total of n(n − 1) values to dif-
ferent parties. The same number of values are forwarded. According to Sec. 6,
the proof p contains t + n + 4 elements of F. The proof is shared between par-
ties, causing (n − 1)(t + n + 4) elements of F to be transmitted. The rest of
the verification phase takes place over the broadcast channel. In the optimistic
case, each party broadcasts a value in the challenge generation and four values in
the challenge verification phase. Hence the total cost of the verification phase is
(n−1)(3n+ t+4) point-to-point transmissions and 5n broadcasts of F elements.

We have evaluated the communication costs in terms of Ftr invocations, and
have avoided estimating the cost of implementing Ftr. This allows us to have
more meaningful comparisons with other VSS protocols. We will compare our
solution to the 4-round statistical VSS of [27], the 3-round VSS of [32], and the
2-round VSS of [3] (see Table 1). These protocols have different security models
and different optimization goals, therefore also selecting different methods for
securing communication between parties. The number of field elements thus
communicated is likely the best indicator of complexity.

The 4-round statistical VSS of [27] This information-theoretically se-
cure protocol uses an information checking protocol (ICP ) for transmission,



Rounds Sharing Reconstruction Verification

Ours 7 (n− 1) · tr n · bc (3n+ t+ 4)(n− 1) · tr + 5n · bc
[27] 4 3n2 · tr O(n2) · tr 0

[32] 3 2n · tr + (n+ 1) · bc 2n · bc 0

[3] 2 4n2 · tr + 5n2 · bc n2 · bc 0

Table 1. Comparing the Efficiency of VSS Protocols (tr transmissions, bc broadcasts)

which is a modified version of ICP introduced in [33]. The broadcast channel is
also used.

In the protocol, the dealer constructs a symmetric bivariate polynomial F (x, y)
with F (0, 0) = s, and gives fi(x) = F (i, x) to party Pi. Conflicts are then re-
solved, leaving the honest parties with a polynomial FH(x, y) that allows the
reconstruction of s. The distribution takes 3n2 transmissions of field elements
using the ICP functionality, while the conflict resolution requires 4n2 broadcasts
(in the optimistic case). The reconstruction phase requires each honest party Pi
to send its polynomial fi to all other parties using the ICP functionality, which
again takes O(n2) transmissions.

The 3-round VSS of [32] Pedersen’s VSS is an example of a computa-
tionally secure VSS. The transmission functionality of this protocol is based on
homomorphic commitments. Although the goal of commitments is also to ensure
message delivery and make further revealing possible, they are much more pow-
erful than Ftr and ICP , so direct comparison is impossible. In the following, let
Comm(m, d) denote the commitment of the message m with the witness d. We
note that the existence of a suitable Comm is a much stronger computational
assumption than the existence of a signature scheme sufficient to implement Ftr.

To share s, the dealer broadcasts a commitment Comm(s, r) for a random r.
It shares both s and r, using Shamir’s secret sharing with polynomials f and g,
respectively. It also broadcasts commitments to the coefficients of f , using the
coefficients of g as witnesses. This takes 2n transmissions of field elements, and
(n+ 1) broadcasts (in the optimistic case). Due to the homomorphic properties
of Comm, the correctness of any share can be verified without further commu-
nication. The reconstruction requires the shares of s and r to be broadcast; i.e.
there are 2 broadcasts from each party.

The 2-round VSS of [3] This protocol also uses commitments that do not
have to be homomorphic. This is still different from Ftr and ICP : commitments
can ensure that the same message has been transmitted to distinct parties.

The protocol is again based on the use of a symmetric bivariate polynomial
F (x, y) with F (0, 0) = s by the dealer. The dealer commits to all values F (x, y),
where 1 ≤ x, y ≤ n and opens the polynomial F (i, x) for the i-th party. The re-
duction in rounds has been achieved through extra messages committed and sent
to the dealer by the receiving parties. These messages can help in conflict reso-
lution. In the optimistic case, the sharing protocol requires 4n2 transmissions of
field elements and 5n2 broadcasts. The reconstruction protocol is similar to [27],
with each value of F (x, y) having to be broadcast by one of the parties.



We see that the LPCP-based approach performs reasonably well in verifiable
Shamir sharing. The protocols from the related works have less rounds, and
the 3-round protocol of [32] has also clearly less communication. However, for a
full comparison we would also have to take into account the local computation,
since operations on homomorphic commitments are more expensive. Also, the
commitments may be based on more stringent computational assumptions than
the signature-based communication primitives we are using. We have shown that
the LPCP-based approach is at least comparable to similar VSS schemes. Its low
usage of the broadcast functionality is definitely of interest.

8 Conclusions and Further Work

We have proposed a scheme transforming passively secure protocols to covertly
secure ones, where a malicious party can skip detection only with negligible
probability. The protocol transformation proposed here is particularly attractive
to be implemented on top of some existing, highly efficient, passively secure SMC
framework. The framework would retain its efficiency, as the time from starting
a computation to obtaining the result at the end of the execution phase would
not increase. Also, the overheads of verification, proportional to the number of
parties, would be rather small due to the small number of computing parties in
all typical SMC deployments (the number of input and result parties [7] may be
large, but they can be handled separately).

The implementation would allow us to study certain trade-offs. Sec. 6 shows
that the proof generation is still slightly superlinear in the size of circuits, due
to the complexity of FFT. Shamir’s secret sharing would allow the parties to
commit to some intermediate values in their circuits, thereby replacing a single
circuit with several smaller ones, and decreasing the computation time at the
expense of communication. The usefulness of such modifications, and the best
choice of intermediate values to be committed, would probably depend to large
extent on the actual circuits.

Note that the verifications could be done after each round. This would give us
security against active adversaries in a quite cheap manner, but would incur the
overhead of the verification phase during the runtime of the actual protocol. The
implementation will allow us to evaluate the usefulness of such transformation.
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A The implementation of Ftr

Our modifications to Ftr allow forwarding the messages. Similarly to Damg̊ard
et al. [18], we let the implementation Πtransmit of the message transmission
functionality, consisting of machines M1, . . . ,Mn and a public key infrastructure,
to have a“cheap mode”(which does not prevent the protocol from stopping), and
the “expensive mode” for fall-back. In cheap mode, Πtransmit works as follows.

– On input (transmit,mid,m) the machine Ms(mid) signs (mid,m) to obtain
signature σs and sends (mid,m, σs) to r(mid).

– On input (transmit,mid) the machine Mr(mid) waits for one round and then
expects a message (mid,m, σs) from Ms(mid), where σs is a valid signature
from Ps(mid) on (mid,m). If it receives it, it outputs (mid,m) to Pr(mid).

– On input (broadcast,mid,m) the machine Ms(mid) signs (mid,m) to obtain
signature σs and sends (mid,m, σs) to each other machine.

– On input (broadcast,mid) each (uncorrupted) machine Mi waits for one
round and then expects a message (mid,m, σs) from Ms(mid), where σs is
a valid signature from Ps(mid) on (mid,m). If no message arrives or the
signature is invalid, it signs and sends (corrupt, s(mid)) to each other ma-
chine. Otherwise, it forwards the message (m,mid, σs) to each other ma-
chine. If any machine receives (mid,m, σs) and (mid,m′, σ′s) for m 6= m′, it
sends (mid,m,m′, σs, σ

′
s) to each other machine. If indeed m 6= m′ and the

signatures are valid, the uncorrupted machine Mi receiving them outputs
(corrupt, s(mid)) to Pi. But if Mi receives only messages (mid,m, σs) with
valid σs and no message (mid,m′, σ′s) with m 6= m′ and valid σ′s, then it
outputs (mid,m) to Pi.

– On input (forward,mid) the machine Mr(mid) that at some point received
(mid,m, σs) signs (mid,m, σs) to obtain signature σr and sends (mid,m, σs, σr)
to f(mid).

– On input (forward,mid) the machine Mf(mid) waits for one round and then
expects a message (mid,m, σs, σr) from Mr(mid), where σs [σr] is a valid
signature from Ps(mid) [Pr(mid)] on (mid,m). If it receives it, it outputs
(mid,m) to Pf(mid).

– On input (publish,mid), the machine Mf(mid) which at any point received
the message (mid,m, σs, σr), signs (mid,m, σs, σr) to obtain σf and sends
(published,mid,m, σs, σr, σf ) to each other machine. Each (uncorrupted)
machine in turn sends the message to each other machine. Several differ-
ent messages and signatures corresponding to the same mid are handled
by an uncorrupted machine in the same way as by broadcasting. If only a
single (mid,m, σs, σr, σf ) is received, an uncorrupted machine Mi outputs
(mid,m) to Pi.

Similarly to [18], it can be easily shown that this is a UC secure implemen-
tation under the restrictions that the inputs of honest parties are synchronized
(this is ensured by the embedding protocol), and that even the messages of
corrupted parties are delivered, and that their signatures are valid. We ensure
correct delivery in exactly the same way as Damg̊ard et al. [18]. If a machine



Mj expecting to receive a message from Mi does not receive it (or the signa-
ture does not verify), it may publish a complaint against Mi. If this happens,
then all subsequent transmissions and forwardings between Mi and Mj use the
“expensive mode” — they take place through broadcast.

B Simulator

In this section we prove that our protocol is as secure as Fvmpc. We have to show
that there exists a simulator that can translate the between the messages Fvmpc
exchanges with the ideal adversary, and the messages the protocol in Fig. 3–7
exchanges with the real adversary over the network. We present the work of the
simulator S in phases, coinciding with the phases of real functionality that it
simulates to the adversary A.

Initialization.
Circuits: In the beginning, Fvmpc gets the messages (circuits, i, (C`ij)

n,n,r
i,j,`=1,1,1)

from Z for each party Pi and forwards them all to S. S delivers them to A.
For each i ∈ [n], Fvmpc sends (randomness, i, ri) to S, and waits for (input,xj)

for j ∈ C. S needs to enforce that ri obtained from Fvmpc is used in the real
functionality.

Randomness generation and commitment: A generates the shares of vectors
rji for j ∈ C, which may be inconsistent. At this step, S sends to A at most t
shares (meant for corrupted parties) of each rki generated by an uncorrupted
Mk.

Randomness approval: Since each Mi, i ∈ H, uses ri =
∑
j∈R rji, and A

may generate up to t vectors rki for k ∈ C, at least one vector rhi is generated
by h ∈ H. For Mh, S generates rhi in such a way that the sum

∑
j∈R rji equals

ri. This is always possible since at most t shares of rhi have been revealed to A
at this moment, and S may assign any values to the remaining shares.

If A has provided inconsistent shares for some rji that do not correspond to a
valid Shamir sharing, and no (corrupt, i) comes from Ftr (this happens if i, j ∈ C),
then ri should be recoverable from the shares of some honest t+1 parties. Let S
fix some set of honest parties H ⊆ H, |H| = t+ 1. Throughout the entire simu-
lation, S will assume that the committed values are those that can be recovered
from the shares of H. More precisely, S computes r′i =

∑
j∈C

∑
k∈H bHkr

k
ji (the

coefficients bHk are defined by Shamir sharing settings) and defines the remain-
ing shares of rji for j ∈ R ∩H in such a way that

∑
j∈R∩H rji = ri − r′i. The

shared randomness of the other sets of t+ 1 honest parties may be arbitrary.
Input commitments: For i ∈ H, S should generate the shares of xi by itself.

At most t shares are sent to A, and they look random due to (n, t+ 1) sharing,
so S generates them randomly. Now S has to send (input,xi) to Fvmpc for each
malicious party Pi. In the real functionality, the vectors xi of malicious parties
are committed as shares, but the commitment can be inconsistent. S delivers to
Fvmpc the particular xi that can be recovered from the shares of H.

At any time: During all transmissions of the real functionality, S simulates
the functionality Ftr. If (corrupt, i) is output from Ftr, S sends (stop,B0) to



Fvmpc for B0 = {i |(corrupt, i) has been output}. The simulator S will follow it
up with messages (blame, i,B0) to Fvmpc for all i ∈ H. This position corresponds
to the direct jump to the accusation phase in the real functionality.

Execution.

For each round `: for each i ∈ H and j ∈ [n], Fvmpc uses C`ij to compute

the message m`
ij . For all j ∈ C, it sends m`

ij to S. For each j ∈ C and i ∈ H, it

waits for m`
ji. S models the communication of Mj and Mi through Ftr. It takes

m`
ji = c`ji.

After r rounds: S goes to the message commitment phase with r′ = r.

At any time: If (corrupt, j) is output from Ftr, S sends (stop,B0) to Fvmpc
for B0 = {i |(corrupt, i) has been output}. In the real functionality, S goes to the
message commitment phase with r′ = `− 1.

Message commitment.

Message sharing: After the simulation of the initial protocol has finished,
Fvmpc waits for the messages m`

ij for ` ∈ [r′] and i, j ∈ C. For each corrupt Mi,
A generates the shares by itself. For each uncorrupted Mi, S has to give to A
at most t shares of each communication, so the knowledge of c`ij is unnecessary.

Message commitment: If A as Mi provides inconsistent shares for an uncor-
rupted receiver Mj , then S publishes c`ij through Ftr, and from the side of honest

parties it assumes that c`ij is committed. If both i, j belong to C, then S defines

m`
ij =

∑
k∈H bHkc

`k
ij , similarly to the input and the randomness commitments,

except if A decides that Mj should complain about Mi and publishes c`ij , then

S takes m`
ij = c`ij . S sends m`

ij to Fvmpc.
Verification.

Remaining proof commitment: It remains to commit p`ij . A provides the
shares of dishonest parties (possibly inconsistent). S gives to A up to t randomly
generated shares of honest parties.

Challenge generation: As a verifier, A chooses the share τi for each i ∈ C.
S generates and broadcasts a random τi for each i ∈ H. If A says that some
corrupted Mk refuses to participate, then the share of Mk is ignored. S computes
τ by summing up the broadcast τi and computes the queries and the state
information q`1ij , . . . , q

`
4ij , q

`
5ij ,u

`
ij = challenge(C`ij , τ) for all i, j ∈ [n], ` ∈ [r′].

Here we use the assumption that this round is synchronous, and the shares of C
do not depend on the shares of H. Since at least one τi is provided by an honest
party, τ comes from uniform distribution.

Scalar product verification: For each k ∈ C, i ∈ H, S computes π`kij according
to the shares it transmitted/forwarded to Mk from the name of Mi.

A decides on the scalar products 〈π`kij , q`sij〉 for s ∈ {1, . . . , 4} for dishonest
parties. If A decides that Mk refuses to broadcast, or the broadcast value is not
equal to 〈π`kij , q`sij〉, S broadcasts the complaint and the actual 〈π`kij , q`sij〉. Now
A has the right to reveal the shares that have been sent to Mk. According to Ftr
properties, the only case when it can falsify the shares is when Mi is corrupted,
so it is not the case, and A may output only the shares that have actually been
transmitted or forwarded by Mi, which are consistent with the valid π`kij .



For each uncorrupted Mk, S has to generate scalar products 〈π`kij , q`sij〉 for
s ∈ {1, . . . , 4} by itself. The problem is that the scalar products that correspond
to Mi’s commitments should be a valid (n, t + 1) Shamir sharing of 〈π`ij , q`sij〉
for all s ∈ {1, . . . , 4}, where π`ij = (p`ij‖1‖v`ij). However, in general S does not

know the values of p`ij and v`ij for i ∈ H. We use the fact that the LPCP that

we use is statistical HVZK, and the values 〈π`ij , q`sij〉 can be simulated know-
ing the trapdoor τ . Knowing τ gives enough information about how to generate
a`1ij , . . . , a

`
4ij in such a way that (∗) succeeds with probability 1, and the distri-

bution of a`sij is the same as for the real proof π`ij . Namely, as shown in [5], a`1ij ,

a`2ij , a
`
3ij can be generated uniformly in F due to special randomness contained

in p`ij , and a`4ij = (a`1ija
`
2ij −a`3ij)/(u`ij)|v|+1. These distributions do not depend

on v`ij at all. Now S claims that a`sij = 〈π`ij , q`sij〉. Without loss of generality, let
the proof shares of the corrupt parties (distributed in the previous rounds) be

π`1ij , . . . ,π
`|C|
ij . For each s ∈ {1, . . . , 4}, S has to come up with the scalar prod-

uct shares of the honest parties r
`|C|+1
sij , . . . , r`nsij . Shamir sharing fixes |C| linear

equations of t+ 1 variables (the corresponding polynomial has t+ 1 coefficients)

where the right hand side is equal to (〈π`1ij , q`sij〉, . . . , 〈π
`|C|
ij , q`sij〉). If |C| = t

(the maximum allowed number of corrupted parties), then for any valuation of

a`sij this system has a uniquely defined solution. The values r
`|C|+1
sij , . . . , r`nsij are

computed as certain linear combinations of this solution.

If |C| < t then the shares of the honest parties are not uniquely defined.
S does not know which solution to choose, and these shares may indeed leak
additional information to the adversary. However, they leak no more than they
would leak to an adversary that corrupts all the t parties, and for |C| = t our
protocol leaks no more information than the initial protocol does. Hence the
additional information that the shares 〈π`kij , q`sij〉 leak is not sensitive.

Final verification: For each Mi whose proof has not failed yet due to misuse
of Ftr (which is true at least for each uncorrupted Mi), all the n scalar product
shares 〈π`kij , q`sij〉 for each s ∈ {1, . . . , 4} are published. S makes each uncor-
rupted verifier Mh act exactly like in the real protocol. First, it verifies if given
n shares correspond to a valid Shamir sharing. If they do, it restores a`sij from
the shares and checks (∗). If the shares do not correspond to Shamir sharing, or
the check does not pass, S writes mlc[h, i] := 1 for each honest party Ph.

Accusation. Fvmpc computes all the messages m`
ij and constructs M. It

is waiting for (blame, i,Bi) from the adversary, such that M ⊆ Bi ⊆ C. Let
B′i = {j |mlc[i, j] = 1}. S defines Bi = B0 ∪ B′i. First, we prove that Bi ⊆ C.

1. For each j ∈ B0, a message (corrupt, j) has come from Ftr at some moment.
Due to properties of Ftr, no (corrupt, j) can be sent for j ∈ H. Hence j ∈ C.

2. For each j ∈ B′i, the proof of Mj has not passed the final verification. Due
to HVZK, for each honest Mj , S has chosen a`1ji, . . . , a

`
4ji in such a way that

(∗) passes. If the scalar product shares of dishonest parties are computed ac-
cording to π`kji , then the n final shares are indeed a valid Shamir sharing of

a`1ji, . . . , a
`
4ji. All malicious shares that do not correspond to π`kji are recom-



puted by S itself. Hence for an uncorrupted Mj the proof always succeeds,
so j ∈ C.

Second, we prove that M⊆ Bi.

1. The first component of M is B0 for which the message (stop,B0) has been
sent to Fvmpc. S sends to Fvmpc the same B0 that is a subset of Bi.

2. The second component M′ of M are the machines Mi for whom inconsis-
tency of m`

ij happens in Fvmpc. We show that if Mi /∈ Bi, then Mi /∈ M′.
Suppose by contrary that there is some Mi ∈M, Mi /∈ Bi. No honest party
may get into M, hence Mi ∈ C. If Mi /∈ Bi, then the proof of Mi had suc-
ceeded for every C`ij . For all i, j ∈ [n], ` ∈ [r′], Mi should have come up

with a`1ij , . . . , a
`
4ij that pass the check (∗) and whose shares correspond to a

valid Shamir sharing, what means that a`sij =
∑t+1
k=1 bHk〈s

`h1
sij , q

`
sij〉 for some

s`h1
sij , . . . , s

`ht+1

sij that have been distributed to H.

Since each hk ∈ H is honest, it uses s`hk
1ij = · · · = s`hk

4ij = π∗`hk
ij where

π∗`hk
ij = (p`hk

ij ‖1‖x
hk
i ‖

∑
j∈R r

hk
ji ‖c

1hk
1i ‖ · · · ‖c

(`−1)hk

ni ‖c`hk
ij ), in which all the

shares have been obtained by Mhk
during the protocol run. All these shares

are known by S since all of them have passed through Mi, and Mi ∈ C.
Moreover,

∑t+1
k=1 bHk(p`hk

ij ‖1‖x
hk
i ‖

∑
j∈R r

hk
ji ‖c

1hk
1i ‖ · · · ‖c

`hk
ij ) = (p`ij‖1‖xi‖

‖ri‖m1
1i‖ · · · ‖m`

ij), where xi, ri are the input and the randomness of Fvmpc,
and m`′

ij for `′ ∈ [`] is the communication of Fvmpc, since S has distributed

ri and m`′

ki for k ∈ H amongst H, and xi, m
`′

ij , and all m`′

ki for k ∈ C
have been issued to Fvmpc by recovering the shares of H. We have a`sij =

〈(p`ij‖1‖xi‖ri‖m1
1i‖ · · · ‖m

(`−1)
ni ‖m`

ij), q
`
sij〉. This proves that a certain part

of π∗`ij equals (1‖xi‖ri‖m1
1i‖ · · · ‖m

(`−1)
ni ‖m`

ij), and hence 〈π∗`ij , q`5ij〉 =

〈(1‖xi‖ri‖m1
1i‖ · · · ‖m

(`−1)
ni ‖m`

ij), (u0, . . . , u|v|)〉, meaning that the check (∗∗)
passes implicitly for v`ij = (1‖xi‖ri‖m1

1i‖ · · · ‖m
(`−1)
ni ‖m`

ij). Since Mi com-
mitted the share to H before the τ was generated, and τ indeed comes from
random uniform distribution, if π∗`ij satisfies (∗) and (∗∗), then the proof

π∗`ij is a valid proof of existence of w`
ij such that (v`ij ,w

`
ij) ∈ RC`

ij
. Hence

m`
ij = C`ij(xi, ri,m

1
1i, . . . ,m

`−1
ni ) for all i, j ∈ [n], ` ∈ [r′] and Mi /∈M′.


