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Abstract. Identity-based encryption (IBE) is a special case of public-key encryption where
user identities replace public keys. Every user is given a corresponding secret key for decryp-
tion, and encryptions for his or her identity must remain confidential even to attackers who
learn the secret keys associated with other identities. Several IBE constructions are known
to date, but their security relies on specific assumptions, such as quadratic residuosity, as
well as different pairing-based and lattice-based assumptions.
To circumvent the lack of generic constructions, Dodis et al. (EUROCRYPT ’02) introduced
the notion of bounded-collusion IBE (BC-IBE), where attackers only learn secret keys of an
a-priori bounded number t of identities. They provided a generic BC-IBE construction from
any semantically-secure encryption scheme which, however, suffers from a ω(t) blow-up in
ciphertext size. Goldwasser et al. (TCC 2012) recently presented a generic construction
with no ciphertext-length blow-up. Their construction requires an underlying public-key
scheme with a key homomorphism, as well as a hash-proof-style security definition that is
strictly stronger than semantic security. This latter requirement in particular reduces the
applicability of their construction to existing schemes.
In this paper, we present the first generic constructions of BC-IBE from semantically-secure
encryption schemes with no ciphertext-length blow-up. Our constructions require different
degrees of key-homomorphism and malleability properties that are usually easy to verify. We
provide concrete instantiations based on the DDH, QR, NTRU, and LWE assumptions. For
all of these assumptions, our schemes present the smallest BC-IBE ciphertext size known to
date. Our NTRU-based construction is particularly interesting, due to the lack of NTRU-
based IBE constructions as well as the fact that it supports fully-homomorphic evaluation.
Our results also yield new constructions of bounded CCA-secure cryptosystems.
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1 Introduction

Public-key encryption. One of the classic and best-studied models of secure communication is
that of public-key encryption (PKE) [DH76], in which each individual independently generates a
public-key / secret-key pair. Anyone possessing the public key can encrypt a message such that only
the individual with the associated secret key can decrypt. To date, there are innumerable PKE
constructions proven secure based on a wide variety of hardness assumptions.

However, the basic public-key model lacks a well-developed structure for public key verifica-
tion. One can encrypt messages using a public key, but the model implies a trust that the public
key belongs to a specific individual, unless an expensive public-key infrastructure is in place. In
order to make explicit these assumptions and avoid potential difficulties with key distribution,
cryptographers have explored other models of encryption.

Identity-based Encryption.The identity-based encryption (IBE) model, introduced by Shamir
in 1984 [Sha85], attempts to alleviate the above concerns. In this model, a trusted center generates a
master secret key and public parameters for the entire system. Anyone can encrypt a message to any
user of the system using only these global public parameters and the user’s identity. To decrypt,
a user must obtain the secret key for their identity from the trusted center (who presumably
authenticates the user before distributing the key).

The security model for IBE assumes that the adversary can adaptively obtain an arbitrary
number of secret keys for users in the system, and requires that messages encrypted to any other
user still be indistinguishable to the adversary. This models the idea that an individual’s messages
are still secure even if an arbitrary number of other users of the system collude against that user.

The first constructions of IBE came in 2001, by Boneh and Franklin [BF01] and Cocks [Coc01].
Both of these constructions assumed the existence of random oracles; however, subsequent work by
Boneh and Boyen [BB04] and Waters [Wat05] achieved IBE in the standard model. There now exist
a number of IBE constructions in both the random oracle and standard models, under hardness
assumptions of problems in bilinear groups (e.g. [BF01,CHK03,BB04,Wat05]), various forms of the
Quadric Residuosity (QR) problem (e.g. [Coc01,BGH07]), and the Learning With Errors problem
(e.g. [GPV08,CHKP10,ABB10]). Some of these, moreover, and in particular all those based on the
standard QR problem, additionally require random oracles. However, no constructions of IBE are
known from generic primitives.

Bounded-collusion IBEs.As an attempt to come up with constructions under a wider range of
assumptions, cryptographers began looking at a variant of IBE known as Bounded-Collusion IBE
(BC-IBE). In this model, one only guarantees security against an adversary who obtains secret keys
associated with at most t identities, where the size of the parameters of the system are allowed to
depend on t. Falling short of achieving full security, the bounded-collusion model can be a realistic
assumption in many settings, and is in fact a necessary restriction to achieve the more general notion
of functional encryption [GVW12]. Additionally, it has been studied in other settings, notably
broadcast encryption and revocation (e.g. [FN94,GSY99,GSW00,KRS99,NNL01,HS02,DF03]).

The first construction of BC-IBE came in the context of key-insulated systems in [DKXY02].
This paper gave a general reduction from any semantically secure public-key cryptosystem to a
BC-IBE scheme. However, their construction suffers from a large ciphertext-size blowup – the
resulting ciphertext length is a factor ω(t) larger than that of the underlying encryption scheme.
To mitigate this, this work was recently followed by that of Goldwasser et al. [GLW12]: They provide
a new construction that relies on a public-key encryption scheme which exhibits key-homomorphic
properties, i.e., secret keys and public keys are elements of respective groups (with possibly different
operations, which we denote by + and ·), and there exists a homomorphism µ such that µ(sk +
sk′) = µ(sk) · µ(sk′), where µ(sk) and µ(sk′) are valid public keys for which sk and sk′ yield correct
decryption, respectively. More concretely, the GLW construction generates multiple public-key /
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secret-key pairs (pk1, sk1), . . . , (pkn, skn), letting the public-parameters and the master secret key
of the scheme be pp = (pk1, . . . pkn) and msk = (sk1, . . . , skn), respectively. Then, an efficient map
φ associates every identity ID with a vector [id1, . . . , idn], and a message m is encrypted for an
identity ID as the ciphertext c = Enc(pkID,m), where pkID =

∏n
i=1 pk

idi
i . By the existence of µ, this

ciphertext can be decrypted using skID =
∑n

i=1 idi · ski, since the homomorphism guarantees that
pkID = µ(skID). The map φ is subjected to a combinatorial requirement that disallows computing
skID given skID′ for t different ID′ 6= ID. The GLW construction preserves the ciphertext size
of the underlying encryption, but its security requires the latter to satisfy a property which is
strictly stronger than semantic security. This property is inspired by the security of hash-proof
systems [CS02], and in particular does not allow the homomorphism µ to be one-to-one. This
somewhat hinders the applicability of their framework to existing encryptions schemes not designed
with this security goal in mind.

Our contributions. In this paper, we seek for generic constructions of BC-IBE which rely on
encryption schemes that solely satisfy the standard security notion of semantic security in addition
to some syntactical, non-security-related, properties which can be easily verified. Our constructions
have the added benefit of conceptual simplicity, and the resulting instantiations from concrete
assumptions either outperform or abstract existing BC-IBE constructions along different axes.

In summary, this paper makes three main contributions:

1. As our first contribution, we revisit the GLW approach in the context of selective security. The
latter security notion only demands security for attackers attempting to break the confiden-
tiality of messages encrypted for an a-priori specified identity (in particular, independently of
the parameters of the scheme). We prove that the GLW approach is selectively secure for every
semantically secure encryption scheme with key-homomorphic properties whenever φ satisfies
a slightly stronger property that the one used in [GLW12], namely that of cover-freeness intro-
duced in [EFF85] and used in several other works (e.g. [KRS99,CHH+07,DHT12], and others).
While being strictly weaker than the notion of full security, selective security is sufficient for
some applications, as discussed below.

2. Whenever the underlying semantically-secure scheme satisfies an additional new property –
which we call weak multi-key malleability – we prove that the GLW construction achieves full
BC-IBE security, i.e., confidentiality holds even with respect an identity chosen adaptively after
learning the parameters of the schemes as well as secret keys for at most t other identities.
Roughly, our malleability property states that given the encryption of c = Enc(pk,m) of an
unknown message m under a known public-key pk, and given an additional public-key / secret-
key pair (pk′, sk′), we can efficiently produce a ciphertext which is indistinguishable from an
encryption of m under pk · pk′. An example scheme with this property is ElGamal encryption –
hence we directly obtain a DDH-based BC-IBE scheme from ElGamal encryption.

3. As our third contribution, we provide a new, alternative construction that relies on a different
form of malleability (which we simply call multi-key malleability), and does not require any
explicit key-homomorphic structure. Intuitively, our notion requires that given c = Enc(pk,m)
for an unknown message m, and another public key pk′, we can obtain a new ciphertext c which
decrypts to m under a combination of the secret keys sk and sk′ associated with pk and pk′. We
provide an efficient instantiation based on NTRU [HPS98], exploiting it multi-key homomorphic
properties recently observed by Lopez-Alt et al. [LATV12]. This is of particular interest due
to the fact that no fully-secure NTRU-based IBE scheme is known to date. Moreover, our
constructions support homomorphic evaluation of ciphertexts, and this is the only construction
of identity-based fully homomorphic encryption beyond the recent result by Gentry, Sahai, and
Waters [GSW13].
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Construction Assumptions Ciphertext size PK size

[DKXY02] Semantic-secure PKE Θ(t log |ID|) PKE ciphertexts Θ(t2 log |ID|) PKE PKs

[GLW12] PKE w/linear hash proof and key
homomorphism

Same as underlying PKE Θ(t log |ID|) PKE PKs

This work Semantic-secure PKE; key homo-
morphism, weak multi-key mal-
leability

Same as underlying PKE Θ(t2 log |ID|) PKE PKs

This work Semantic-secure PKE; multi-key
malleability

Same as underlying PKE Θ(t2 log |ID|) PKE PKs

[DKXY02] DDH 3 group elements Θ(t) group elements

[GLW12] DDH 3 group elements Θ(t log |ID|) group elements

This work DDH 2 group elements Θ(t2 log |ID|) group elements

[GLW12] QR 2 RSA group elements Θ(t log |ID|) group elements

This work LWE Same as GPV [GPV08] Θ(t2 log |ID|) GPV PKs

This work NTRU Same as NTRUEncrypt [HPS98] Θ(t2 log |ID|) NTRU PKs

Table 1. Comparison with previous works on BC-IBE. Here t is the collusion parameter
and |ID| is the total number of identities in the system. PK and ciphertext size implicitly include
the security parameter. The above portion of the table considers generic constructions, whereas
the lower section describes existing constructions from concrete assumptions. Note that linear hash
proof property implies semantic security, while being strictly stronger than it.

To conclude, we stress that our instantiation of the GLW approach is somewhat orthogonal to
the one by Goldwasser et al.: Our instantiation requires indeed somewhat larger public-parameters
at the cost of a weaker assumption on the underlying encryption scheme, hence leading to wider
applicability and often smaller ciphertexts. Nonetheless, we believe that large ciphertexts are gen-
erally a more limiting factor than large parameters, especially in settings where many messages are
encrypted with the same parameters.

A summary of our instantiations and their parameters is given in Table 1 comparing them to
previously known best constructions. For LWE and NTRU, the best previously known construction
was obtained by using the construction of [DKXY02]. We also provide a construction based on QR
which does not outperform the one of [GLW12], even though we find it conceptually simpler.

From IBE to CCA-security. A somewhat related problem is that of building bounded-CCA
secure public-key encryption [CHH+07]: Concretely, for t-bounded CCA security, semantic secu-
rity must hold also for attackers which can decrypt up to t ciphertexts other than the challenge
ciphertext for which we attempt to break confidentiality. We note that by re-interpreting a re-
sult of Boneh et al. [BCHK07], every construction of a BC-IBE scheme selectively secure against
t-collusions directly yields a t-bounded CCA secure PKE. Hence, our BC-IBE constructions also
directly yield better bounded-CCA-secure constructions, in terms of ciphertext size and/or concep-
tual simplicity. When applying our framework to ElGamal, for example, we obtain a construction
which is equivalent to the one proposed in [CHH+07], for which a direct security proof was given.
Moreover, our instantiation from NTRU is indeed more efficient than the best fully CCA-secure
construction from NTRU given by Steinfeld et al. [SLP+12].

Outline of this paper. In Section 2, we revisit some standard notation, as well as traditional
security definitions for public-key and identity-based encryption. In Section 3, we revisit the con-
struction of Goldwasser et al., assuming a cover-free identity mapping and only semantic security.
We give multiple new constructions of BC-IBE under this framework. In Section 4, we define the
property of multi-key malleability, prove that this property can also yield constructions of BC-IBE,
and give a specific example based on the NTRU assumption. Finally, in Section 5, we discuss the
role of BC-IBE systems in constructing bounded-CCA-secure schemes.
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Game CPA for PKE = (Gen,Enc,Dec):

(pk, sk)
$← Gen

b
$← {0, 1}

(m0,m1, st)
$← A(pk)

c∗
$← Enc(pk,mb)

b′
$← A(c∗, st)

Win iff b′ = b

Game CCA for PKE = (Gen,Enc,Dec):

(pk, sk)
$← Gen

b
$← {0, 1}

(m0,m1, st)
$← ADec(sk,·)(pk)

c∗
$← Enc(pk,mb)

b′
$← ADec(sk,·)(c∗, st)

Win iff b′ = b.

Fig. 1. Semantic Security for Public-Key Encryption. Security games defining semantic se-
curity of public-key encryption against chosen-plaintext attacks (left) and against chosen-ciphertext
attacks (right). On the right, we tacitly assume that in the second phase of the game, the decryption
oracle Dec(sk, ·) answers to queries c∗ with ⊥. Also, in both games, the challenge ciphertext c∗ is
set to ⊥ if |m0| 6= |m1|.

2 Preliminaries

This section reviews basic notion about pubic-key encryption and identity-based encryption used
throughout the paper.

2.1 Public-key Encryption

PKE Syntax. As usual, a public-key encryption (PKE) scheme is a triple of efficient algorithms
PKE = (Gen,Enc,Dec) satisfying the following synactic properties:

- Gen is the (randomized) key generation algorithm: it takes no input (other than the security
parameter 1k , which is implicit and generally omitted), and outputs a public-key / secret-key
pair (pk, sk).

- Enc and Dec are the (randomized) encryption and the (deterministic) decryption algorithms,
such that for all valid public-key / secret-key pairs (pk, sk) output by Gen, and all messages m,
the probability P[Dec(sk,Enc(pk,m)) 6= m] is negligible, where the probability is taken over the
random coins of the encryption algorithm Enc.

Often, we allow public-key encryption schemes to additionally depend on explicit public parameters
pp (randomly generated in an initial phase and shared across multiple instances of the PKE scheme)
on which all of Gen, Enc, and Dec are allowed to depend. Examples include the description of a
group G with its generator g. We will often omit them in the descriptions of generic constructions
from PKE schemes.

Security of PKE.We define security against chosen-plaintext attacks (for short, IND-CPA secu-
rity) [GM84,BDPR98] for a PKE scheme PKE = (Gen,Enc,Dec) via the security game depicted on
the left of Figure 1. It involves an adversary A which is initially given the public key pk, and subse-
quently outputs a pair of equal-length messages m0, m1. The adversaries continues after receiving

a challenge ciphertext c∗
$← Enc(pk,mb) for a random secret bit b, and then finally outputs a guess

b′ for b. We say that PKE is (τ, ε)-ind-cpa-secure if all attackers A with time complexity at most τ
guess the right bit (i.e., b′ = b) with probability at most 1+ε

2 . Moreover, it is simply ind-cpa secure
if for all polynomials p, there exists a negligible function ν such that the scheme is (p(k), ν(k))-
ind-cpa-secure for all values of the security parameter k. We also consider security against chosen
ciphertext attacks (for short, IND-CCA security), where the adversary is additionally able to de-
crypt ciphertexts under the constraint that a decryption query for the challenge ciphertext is never
asked. (The associated game is on the right of Figure 1.) We say that PKE is (τ, t, ε)-ind-cca-secure
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Game selective-CPA for IBE:

(pp,msk)
$← IBEGen

b
$← {0, 1}

(ID∗, st)
$← A

(m0,m1, st
′)

$← AIBEExtract(msk,·)(pp, st)

c∗
$← IBEEnc(pp, ID∗,mb)

b′
$← AIBEExtract(msk,·)(c∗, st′)

Game CPA for IBE:

(pp,msk)
$← IBEGen

b
$← {0, 1}

(m0,m1, ID
∗, st)

$← AIBEExtract(msk,·)(pp)

c∗
$← IBEEnc(pp, ID∗,mb)

b′
$← AIBEExtract(msk,·)(c∗, st)

Fig. 2. Semantic Security for IBE. Security games defining semantic security of identity-based
encryption, for selective attacks (left) and for full security (right). In both games, we assume that
extraction queries for ID∗ are answered by ⊥, and that c∗ = ⊥ if |m0| 6= |m1|, or (for full security)
if ID∗ was previously queried to Extract(msk, ·).

if any attacker with time complexity τ and making at most t decryption queries guesses b with
probability at most 1+ε

2 . The asymptotic notion of t-ind-cca-secure is defined accordingly.

2.2 Identity-based Encryption

Recall that an identity-based encryption (IBE) scheme for identity set ID is a 4-tuple of algorithms
IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) satisfying the following syntactical properties:

- IBEGen is the randomized parameter generator algorithm which returns a pair (msk, pp), where
msk is the so-called master secret key, and pp are the public parameters.

- The extraction algorithm IBEExtract, on input the master secret-key msk and a valid identity

ID ∈ ID returns a secret key skID
$← IBEExtract(msk, ID) associated with this identity.

- The encryption algorithm IBEEnc takes as inputs the public parameters pp, an identity ID ∈ ID,

and a message m, and returns a ciphertext c
$← IBEEnc(pp, ID,m) such that for the associated

deterministic algorithm IBEDec, IBEDec(skID, IBEEnc(pp, ID,m)) = m with overwhelming prob-
ability for each (pp,msk) output by Gen and skID output by IBEExtract(msk, ID).

The notion of IND-CPA security is extended to the setting of IBE. The adversary, given the public
parameters pp, can obtain keys skID for identities ID of its choice (via so-called extraction queries),
and outputs at some point a pair of equal-length challenge messages m0, m1, together with a
challenge identity ID∗ for which no extraction query has been issued. It then obtains an encryption
of mb for the challenge identity ID∗ and for a random bit b. The adversary is asked to guess b,
constrained on not asking a key extraction query for ID∗. The game is given in Figure 2, on the
right. We also consider a weaker security notion, called selective IND-CPA security, for which the
corresponding security game is given on the left of Figure 2. Here, the adversary is required to
choose its challenge identity beforehand, and only subsequently learns the public parameters and is
given access to the IBEExtract oracle.

In analogy to the case of conventional PKE, we say that IBE is (τ, t, ε)-cpa-secure if all τ -time
adversaries Amaking t extraction queries output b with probability at most 1+ε

2 in the CPA-security
game above. Similarly, we define (τ, t, ε)-selective-cpa-secure likewise for the selective-CPA game
above, as well as the asymptotic notions of t-cpa and t-selective-cpa security.

3 Revisiting the GLW Construction

In the first part of this paper, we revisit the IBE construction for bounded-collusion security pro-
posed by Goldwasser, Lewko, and Wilson [GLW12] – henceforth, we refer to this construction as
the GLW construction. We show two generic results, the first one for selective security and the
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second one for full ibe security. Then, we discuss two new instantiations of this paradigm based on
DDH and LWE. A third instantiation based on the QR assumption is deferred to Appendix A.

3.1 The GLW Construction

Secret-key to Public-key Homomorphisms. Throughout this section, we (tacitly) consider
only public-key cryptosystems PKE = (Gen,Enc,Dec) with the property that secret and public
keys are elements of groups G and H, respectively. For convenience and ease of distinction, we will
denote the group operations on G and H as + and ·, respectively.

Definition 1 (Secret-key to public-key homomorphism). We say that PKE admits a secret-
key to public-key homomorphism if there exists a map µ : G→ H such that:

(i) µ is a homomorphism, i.e., for all sk, sk′ ∈ G, we have µ(sk + sk′) = µ(sk) · µ(sk′);

(ii) Every output (sk, pk) of Gen satisfies pk = µ(sk).

We stress that we are not requiring that every element sk ∈ G is a valid secret key output by Gen.
This will be important in our LWE instantiation below. In this case, we still want to make sure that
decryption is correct: In particular, we say below that µ satisfies n-correctness if for any n′ ≤ n valid
secret keys sk1, . . . , skn′ output by Gen, the probability P[Dec(sk,Enc(µ(sk),m)) 6= m] is negligible
for all messages m, where the probability is over the coins of Enc and where sk = sk1 + · · ·+ skn′ .
(This property is implicitly satisfied for all n if all elements of G are valid secret keys.)

Also note that the map µ does not need to be efficiently computable for our applications, even
though the map is often very efficient. Additionally, we observe that in case the scheme depends
on some explicit public parameter (like a generator or a matrix, as will be the case in our examples
below), µ is indeed allowed to be parameter-dependent.

The GLW Construction.Goldwasser, Lewko, and Wilson [GLW12] presented a generic approach
to build a bounded-collusion secure IBE from a public-key encryption scheme admitting a secret-
key to public-key homomorphism. Specifically, let PKE = (Gen,Enc,Dec) be such a public-key
encryption scheme with homomorphism µ : G → H satisfying n-correctness, and let φ : ID →
{0, 1}n be a polynomial-time computable function, called the identity map. (With a slight abuse of
notation, it will be convenient to consider the output φ as a subset of {1, . . . , n}, encoded in the
canonical way as an n-bit string.) Then, the GLW construction for PKE and φ gives rise to the
following IBE scheme IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) with identities from the set ID
defined as follows:

IBEGen:

(pk, sk)
$← Genn

msk← sk
pp← pk
Return (msk, pp)

IBEExtract(msk = sk, ID):

skID =
∑

i∈φ(ID) sk[i]
Return skID

IBEEnc(pp = pk, ID,m):

pkID =
∏
i∈φ(ID) pk[i]

c
$← Enc(pkID,m)

Return c

IBEDec(skID, c):

m′ ← Dec(skID, c)
Return m′

The notation (pk, sk)
$← Genn denotes running Gen n times, with independent random coins, and

pk, sk are vectors such that (pk[i], sk[i]) is the output of the i-th execution of Gen. First note that
correctness of IBE follows trivially from the correctness of PKE and the existence of a secret-key to
public-key homomorphism µ with n-correctness, since pkID = µ(skID) holds for all IDs and skID is
the sum of at most n valid secret keys. We stress that a central advantage of the above construction
is that IBE ciphertexts are ciphertexts of the underlying encryption scheme PKE. Also, note that
if PKE relies on some public parameters, these are generated once and used across all uses of Gen,
Enc, and Dec.
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Instantiating the identity map. We still need to discuss how the map φ is instantiated. In
all constructions of this paper, we rely on constructions based on cover-free sets, following previ-
ous work on bounded-collusion IBE [DKXY02], bounded-CCA security [CHH+07], and bounded
security for FDH signatures [DHT12]. Concretely, let 2[n] be the set of subsets of [n] := {1, . . . , n}.

Definition 2 (Cover-free sets). We say that φ : ID → 2[n] is (t, s)-cover free if |φ(x)| = s for
all x ∈ ID, and moreover φ(xt) \

⋃t−1
i=1 φ(xi) 6= ∅ for all x1, . . . , xt ∈ ID, i.e., the set φ(xt) is not

covered by the union of φ(x1), . . . , φ(xt−1).

In general, we will equivalently think of φ as a map ID → {0, 1}n, where we output the characteristic
vector of the associated set, instead of the set itself. The following gives the currently best-known
construction of cover-free sets.

Theorem 1 ([CHH+07]). For all integers t ≥ 1, there exists a polynomial-time computable (t, s)-
cover-free map φ : ID → {0, 1}n, where n = 16t2 log |ID| and s = 4t log |ID|.

We note that Goldwasser, Lewko, and Wilson used a weaker requirement of φ that only requires
linear independence of the vectors φ(x1), . . . , φ(xt). In this case, the output length n can be reduced
to O(t log |ID|), or even O(t) if we allow both identities as well as components of φ(x) to be elements
of Zp for some large prime p. However, the price they pay compared to our results below is that the
underlying encryption scheme is required to satisfy a harder to show notion than in our results given
below assuming cover-freeness, and this is often reflected in instantiations with larger ciphertexts.

3.2 Selective Security of the GLW Construction

We start with selective security, which will be important to obtain bounded CCA-secure cryp-
tosystems with short ciphertexts, as we explain below in Section 5. In the following, let PKE =
(Gen,Enc,Dec) be an arbitrary public-key encryption scheme which admits secret-key to public-key
homomorphism, and let IBE be the IBE scheme resulting from the above construction, using an
underlying identity map φ.

Theorem 2 (Selective ID Security of GLW). Assume that PKE is ind-cpa-secure, and that φ
is (t+ 1, s)-cover free. Then, the GLW construction is t-selective-cpa-secure.

Proof. Let A be a selective-cpa adversary for IBE which outputs b′ = b with probability at least
(1 + nε)/2, and which makes at most t extraction queries. We construct an ind-cpa adversary
B for PKE from A, guessing the bit b with probability 1+ε

2 . Concretely, the adversary B first
runs A, obtaining the challenge identity ID∗, and chooses an index i∗ uniformly at random from
the set S∗ = {i : id∗i = 1}, where φ(ID∗) = [id∗1, ..., id

∗
n]. It then gets a public key pk∗ from the

underlying CPA game, and computes (pk[j], sk[j])
$← Gen for all j ∈ [n] \ {i∗}. Finally, it sets

pk[i∗] = pk∗ ·
(∏

j 6=i∗ pk[j]−id
∗
j

)
.

The adversary B then gives pp = pk to A and runs it until it outputs a pair (m0,m1). In
particular, A’s extraction queries for ID 6= ID∗ ∈ ID are replied by computing [id1, . . . , idn] = φ(ID)
and, if idi∗ = 0, returning skID :=

∑
i idi · sk[i]. Note that if idi∗ = 1, then B cannot answer the

extraction query, as it does not know any corresponding sk[i∗]. In this case, it returns ⊥, and sets
a flag bad to true. When the adversary A outputs a pair (m0,m1) of messages of equal length, B
forwards them to the CPA, obtaining a challenge ciphertext c∗ , which it then gives back to A, and
its simulated execution is continued until it outputs a bit b′. To conclude, B outputs the bit b′ if
bad is not set to true, and returns a random bit otherwise. Note that we have pkID∗ = pk∗ by our
definition.

Since φ is (t + 1, s)-cover-free, we know that there exists at least one i∗ such that id∗i∗ = 1,
but idi∗ = 0 for all vectors φ(ID) corresponding to the (at most t) extraction queries ID 6= ID∗.
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Intuitively, such an index i∗ is chosen hence with probability at least 1/ |S∗| = 1/s ≥ 1/n, and
conditioned on this, the simulation is easily seen to be perfect. Formally, we let WinPKE and WinIBE
be the events that B and A guess the bit in the respective security games. Then,

P [WinPKE] = P [WinPKE ∧ bad = false] + P [WinPKE ∧ bad = true]

≥ P [bad = false] · P
[
WinPKE

∣∣ bad = false
]

+ P [bad = true] · P
[
WinPKE

∣∣ bad = true
]
.

Now, clearly, P [bad = true] = 1 − P [bad = false], and P
[
WinPKE

∣∣ bad = true
]
≥ 1

2 , since B
outputs a random bit if bad is true. Moreover, one can verify that P [bad = false] ≥ 1

n , and,
as the simulation is perfect, P

[
WinPKE

∣∣ bad = false
]

= P [WinIBE]. Formalizing these last two
argument actually requires some (standard) extra work, using the fact that all random coins are
independent of the choice of i∗, but we dispense with the details here. Plugging in terms into the
above concludes the proof. ut

3.3 Full Security of GLW

We note that the above proof strategy used in Theorem 2 fails when we do not know the challenge
identity ID∗ at the point in time when the reduction B sets the public parameters pp. However,
an additional syntactic requirement on the underlying cryptosystem PKE yields full security, as we
show below. This requirement is captured by the following definition.

Definition 3 (Weak Multi-Key Malleability). We say that PKE is weakly n-key malleable
if there exists an efficient algorithm Simulate such that for all messages m, all I ⊆ [n], and all
i ∈ I, the probability distributions D0 and D1 are computationally indistinguishable, where with

(pk, sk)
$← Genn, Db consists of (pk, sk[[n] \ {i}], cb) such that

(1) c0
$← Enc(

∏
i∈I pk[i],m);

(2) c
$← Enc(pk[i],m), c1

$← Simulate(i, I, c,pk, sk[[n] \ {i}]).

In other words, given a ciphertext c encrypting with public key pk[i] (where i is part of some
set I) an arbitrary unknown message m, we can efficiently generate a ciphertext c′ encrypting the
same message m under the product of the keys pk[j] for j ∈ I without knowing the secret key sk[i],
but still possibly using sk[j] for j 6= i. The resulting ciphertext has the right distribution in the
eyes of a computationally bounded distinguisher.

The proof of the following theorem follows a similar approach to the one of Theorem 2, and is
deferred to Appendix B.1.

Theorem 3 (Full Security of GLW). Assume that PKE is ind-cpa-secure and weakly n-key
malleable, and that φ is (t+ 1, s)-cover free. Then, the GLW construction is t-cpa-secure.

3.4 Instantiation from DDH

We present a simple instantiation of the above paradigm based on the DDH assumptions and
the ElGamal cryptosystem. The resulting scheme has smaller ciphertexts than earlier BC-IBE
schemes [GLW12,DKXY02], both requiring three group elements.

Concretely, let G be a group with prime order |G| = q. Recall that the Decisional Diffie-

Hellman (DDH) assumption demands that the distributions (g, ga, gb, gab) (for g
$← G, a, b

$← Zq)
and (g, ga, gb, gc) (where c

$← Zq) are computationally indistinguishable. For the same group G,

the ElGamal cryptosystem has as a public parameter an element g
$← G, secret key sk

$← Zq , and
public key pk = gsk. For a message m ∈ G, the encryption algorithm is Enc(pk,m) = (gr,m · pkr),
where r

$← Zq , whereas Dec(sk, (c1, c2)) = c2 · c−sk1 . ElGamal is easily shown to be ind-cpa-secure
under the DDH assumption. Moreover, we observe the following two properties of the ElGamal
cryptosystem:
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1. ElGamal admits a secret-key to public-key homomorphism µ : Zq → G where µ(x) = gx, and
n-correctness is satisfied for any n.

2. Moreover, it satisfies (perfect) weak n-key malleability: Namely, just consider the algorithm
that for all I ⊆ [n], i ∈ I, and secret- and public-key vectors sk and pk, outputs

c∗ = Simulate(i, I,pk, sk[[n] \ {i}], (c1, c2)) = (c1, c2 · c
∑
j 6=i sk[j]

1 ) . (1)

In particular, the resulting IBE scheme with identities ID obtained by plugging ElGamal into the
GLW construction, for any (t+ 1, s)-cover-free map φ : ID → {0, 1}n, is as follows, and Theorem 3
implies its t-ibe-cpa security under the DDH assumption. (The decryption algorithm remains the
same as in the original ElGamal scheme.)

IBEGen:

g
$← G

sk
$← Znq , pk[i]← gsk[i]

pp← (g,pk), msk← sk
Return (pp,msk)

IBEExtract(msk = sk, ID):

[id1, . . . , idn]← φ(ID)
skID ←

∑n
i=1 idi · sk[i]

Return skID

IBEEnc(pp = (g,pk), ID,m):

[id1, . . . , idn]← φ(ID)

r
$← Zq

c← (gr,m ·
∏n
i=1 pk[i]r·idi)

Return c

3.5 Instantiation from LWE

We now turn to a somewhat more involved example based on the GPV cryptosystem [GPV08]. For
ease of exposition, we omit a too-detailed discussion of parameters in the following.

The LWE assumption.Let us first recall the learning with errors (LWE) problem, introduced by
Regev [Reg05]. Let n, q be parameters. For any noise distribution χ on Zq, and vector s ∈ Znq , the

oracle LWEq,n,χ(s) samples a fresh random n-dimensional vector a
$← Znq , as well as noise e

$← χ,

and returns (a,aT s+e). The LWE assumption with noise χ states that for every PPT distinguisher
D,

P
[
s

$← Znq : DLWEq,n,χ(s) = 1
]
− P

[
s

$← Znq : DLWEq,n,U (s) = 1
]

= negl(n) , (2)

where U is the uniform distribution on Zq. (In other words, in addition to a, the oracle LWEq,n,U (s)
simply returns uniform random samples, independent of s.) In general, the error distribution χ is
chosen to be a discrete Gaussian on Zq.
The GPV Cryptosystem. The following is a variant of the cryptosystem suggested by Gentry,
Peikert, and Vaikuntanathan [GPV08] (and is in fact the dual of Regev’s PKE [Reg05]): For a

public random parameter A
$← Zm×nq , where m ≥ n · log q+ω(log n), the secret key sk = s consists

of a vector s
$← {0, 1}n (i.e., the secret key is selected among binary vectors), whereas the public

key is pk = As. Then, encryption of a message b ∈ {0, 1} is by first computing r
$← Zmq , e

$← χn,

e′
$← χ′ (for some distribution χ′ related to χ and to be specified below), and then outputting the

ciphertext

c = (rTA + eT , rTpk + e′ + b · (q − 1)/2) .

For decryption of a ciphertext c = (c1, c2) one takes the secret key s, compute c2− c1s, and checks
whether the outcome is closer to 0 or (q− 1)/2 (modulo q). The noise distribution must guarantee
that this is indeed true with overwhelming probability. We omit the details of this discussion, but
this essentially accounts to showing that e′ − eT s is not too large.

One can show the above cryptosystem to be secure if the LWE assumption with distributions
χ and χ′ is true. (Note that the original GPV cryposystem has χ = χ′, but this distinction will be
necessary for our analysis below.)
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Secret-key to public-key homomorphism. In order to build an IBE scheme via the GLW-
construction, we first observe that the cryptosystem admits a secret-key to public-key homomor-
phism µ : Znq → Zmq such that µ(s) = As. Note that for any two valid secret keys sk, sk′ ∈ {0, 1}n
it is not necessarily true that sk + sk′ is still a valid secret key. However, for any `, it is still true
that µ satisfies `-correctness as long as χ and χ′ are appropriately bounded.

Weak multi-key-malleability. For weak `-key malleability, we specify the algorithm Simulate
such that, for all I ⊆ [`], i ∈ I, c = (c1, c2), sk = (s1, , ..., s`) and pk = [As1, ...,As`], we have

c = Simulate(i, I,pk, sk[[`] \ {i}], (c1, c2)) =

c1, c2 + c1 ·
∑

j∈I\{i}

sj

 .

Note that in contrast to the above DDH-based example, simulation is not perfect. Indeed, the
output of Simulate can indeed be rewritten as

c1 =

rT A + eT , rTA
∑
j∈I

sj + eT
∑

j∈I\{i}

sj + e′ + b(q − 1)/2)

 .

whereas the term eT
∑

j∈I\{i} sj is missing in the real ciphertext c0.
However, statistical indistinguishability of (pk, sk[[`]\{i}], cb) for b = 0, 1 is achieved by choos-

ing χ′ to be a distribution with a much larger variance than χ. If elements sampled by χ are bounded
by B with overwhelming probability, then eT

∑
j∈I\{i} sj is at most |I| · n · B. We know that if χ′

is a discrete Gaussian distribution with standard deviation βq, then the statistical distance of χ′

and χ′ + eT
∑

j∈I\{i} sj is at most |I| · n · B/(βq) [DGK+10, Lemma 3]. Thus, we wish to choose
q large enough such that this factor is negligible, yet the LWE problem with distributions χ and
χ′ is still hard. If we choose q = 2n

ε
, β = 2n

−ε/2
, and B = 2n

ε/4
for some constant ε > 0, and

|I| = poly(n), we can make the statistical distance smaller than any inverse polynomial in n while
retaining subexponential hardness in the LWE assumption. We can thus reduce the security of this
PKE scheme to the hardness of subexponential approximations of certain lattice problems [Pei09].

The final LWE-based IBE Scheme. Consequently, every (s, t + 1)-cover-free map φ : ID →
{0, 1}`, every n ≥ m log q + ω(n), and noise distributions χ, χ′ as above yield the following scheme
with identity set ID, which, by Theorem 3, is t-ibe-cpa secure under the LWE assumption for
distribution χ:

IBEGen:

A
$← Zm×nq

sk[1], . . . , sk[`]
$← Znq

pk[i]← A sk[i] (i = 1, . . . , `)
pp← (A,pk), msk← sk
Return (pp,msk)

IBEExtract(msk = sk, ID):

[id1, . . . , id`]← φ(ID)
skID ←

∑`
i=1 idi · sk[i]

Return skID

IBEEnc(pp = (A,pk), ID, b):

[id1, . . . , idn]← φ(ID)
pk =

∑`
i=1 idi · pk[i]

r
$← Zmq , e

$← χn, e′
$← χ′

c1 ← rT ·A + e
c2 ← rTpk + e′ + b · (q − 1)/2
Return c

Also, we note that if we are only interested in proving selective security using Theorem 2, then weak
`-key malleability is unnecessary, and we can fix χ = χ′. This allows to choose a polynomial modulus,
avoiding the subexponential LWE assumption. We omit more detailed discussion of parameters,
which follows from standard techniques.

4 Construction from Multi-Key Malleability

4.1 Bounded-IBE Construction

We present a further construction of BC-IBE from PKE schemes which satisfy a different notion
of key malleability than the one given above, which we first introduce. Our notion requires that
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given an encryption of a message under one public key, we are asking for the ability to produce
a new ciphertext of the same message which decrypts under a combination of secret keys (e.g.,
the product) for which we only know the corresponding public keys. Note that we are only asking
for decryptability under the combination of the secret keys. In particular, in contrast to the above
notion of weak key-malleability, the distribution of the resulting ciphertext may not be a valid
encryption under some well-defined combination of the corresponding public keys, and moreover,
we require the ability to compute this ciphertext without knowledge of any secret keys.

Definition 4 (Multi-Key Malleability). Let PKE be a public-key encryption scheme. We say
that PKE is n-key malleable if there exist algorithms Modify and Combine such that the following
properties hold:

(i) For all valid messages m, all I ⊆ [n], and all i ∈ I, the following probability is negligible
(taken over the coins of Enc):

P
[
(pk, sk)

$← Genn, c
$← Enc(pk[i],m), c′

$← Modify(i, I,pk, c) : Dec(Combine(I, sk), c′) 6= m
]
.

(ii) For all I ⊆ [n], Combine(I, sk) does not depend on sk[i] for i /∈ I.

(iii) For all I ⊆ [n] and all valid public-key / secret-key vectors (pk, sk), for all i, j ∈ I, the values
Modify(i, I,pk,Enc(pk[i],m)) and Modify(j, I,pk,Enc(pk[j],m)) are equally distributed.

We note that Property (iii) above is not really necessary (a computational relaxation would suffice),
but will make the presentation somewhat simpler and is true in the only instantiation we give below.

The IBE construction and its security. For an identity map φ : ID → {0, 1}n, we now pro-
pose a construction of an identity-based encryption scheme IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec)
from an n-key malleable encryption scheme PKE = (Gen,Enc,Dec). The decryption algorithm is
unaltered, i.e., IBEDec = Dec, and moreover the construction consists of the following algorithms.
(Note that the choice of i as min{φ(ID)} below within IBEEnc is purely arbitrary.)

IBEGen:

(pk, sk)
$← Genn

msk← sk
pp← pk
Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ← Combine(φ(ID), sk)
Return skID

IBEEnc(pp = pk, ID,m):

i← min{φ(ID)}
c′

$← Enc(pk[i],m)
c← Modify(i, φ(ID),pk, c′)
Return c

Correctness of the scheme follows by Property (i) above. The following theorem establishes security
of our new construction. The proof is deferred to Appendix B.2.

Theorem 4. Assume that PKE is ind-cpa-secure and n-key malleable, and that φ is (t+1, s)-cover
free. Then, IBE is t-ibe-cpa-secure.

4.2 NTRU Based Instantiation and Fully-Homomorphic IBE

We provide an instantiation of the above constructing using the multi-key homomorphic properties
of NTRU-based public-key encryption [LATV12], which we first review. For some parameters r,
n and q (where q is a prime), consider the ring of polynomials R = Z[x]/(xr + 1), and let χ be
a B-bounded distribution on R, i.e., with overwhelming probability, χ samples a polynomial from
R whose coefficients are all at most B in absolute value. All operations on polynomials are to be
understood as over the ring Rq = R/qR. The NTRU cryptosystem is such that key generation Gen

samples f, g
$← χ subject to the constraint that f ≡ 1 (mod 2), and sets pk = 2g/f and sk = f .
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(Possibly, f needs to be resampled until it admits an inverse in Rq, and χ is such that this happens
with good probability.) The message b ∈ {0, 1} is encrypted as

Enc(pk,m) = h · pk + 2e+ b ,

where h, e
$← χ. Finally, decryption, given c, outputs Dec(sk, c) = sk · c (mod 2). To see why

decryption is correct, note that

sk · c ≡ f · (2h · g/f + 2e+ b) ≡ 2h · g + 2e · f + f · b (mod q) .

If B ≤
√
q/2/r, then all coefficients from h·g and e·f are of size at most r2B2 < q/2. Consequently,

2hg and 2ef only have even coefficients, and are 0 modulo 2. And finally, f · b clearly always equals
b modulo 2.

The scheme was proven ind-cpa-secure under a fairly ad-hoc assumption in [LATV12], where
it was also shown to have strong homomorphic properties we address below, and which we exploit
for our construction.

The IBE Scheme. We turn now to building an IBE scheme from the above NTRU-based PKE
scheme PKE using the above generic approach. In the following, we assume that r is our security
parameter, q = 2n

ε
for some constant ε < 1, B = poly(r), and n = Θ(rδ) for some constant δ < 1.

We first show `-key malleability exploiting the multi-key homomorphic properties of NTRU
shown in [LATV12]. To this end, we define the algorithm Combine which given I ⊆ [`] and sk ∈ R`q
outputs

Combine(I, sk) =
∏
i∈I

sk[i] .

Moreover, we also define the (randomized) function Modify, which given I ⊆ [`], i ∈ I, c ∈ Rq , and
pk ∈ R`q, outputs

Modify(i, I, c,pk) = c+
∑

j∈I\{i}

hj · pk[j] ,

where hj for j ∈ I \ {i} are sampled independently from the B-bounded distribution χ as above.
Now, Properties (ii) and (iii) in Definition 4 are immediate to verify. Moreover, for Property (i), fix
I ⊆ [`] and i ∈ I, and pk, sk ∈ R`q , each consisting of ` B-bounded polynomials as components,
then define c as

c = Modify(i, I,Enc(pk[i], b),pk) =
∑
j∈I

hj · pk[j] + 2e+ b ,

and observe that

Dec(Combine(I, sk), c) =

(∏
i∈I

sk[i]

)
·

∑
j∈I

hj · pk[j] + 2e+ b

 (mod 2) .

In particular,(∏
i∈I

sk[i]

)
·

∑
j∈I

hj · pk[j] + 2e+ b

 ≡∑
j∈I

2hj · gj ·
∏

i∈I\{j}

f` +

(
2e ·

∏
i∈I

f`

)
+ b ·

(∏
i∈I

f`

)
.

Note that in the above sum, only products of at most |I|+ 1 B-bounded polynomials occurs. The
coefficients of the resulting products have size at most r|I| ·B|I|+1, which (given previous parameter
choices) is smaller than q/2 as long as |I| = o(nε/ log n). This yields correct decryption as no
wraparound (modulo q) occurs.
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The final scheme.Overall, this yields to the following scheme, for any identity mapping φ : ID →
{0, 1}` which is (s, t+ 1)-cover-free for some s = o(nε), which is t-ind-cpa secure by Theorem 4.

IBEGen:

f1, . . . , fn
$← χ, fi ≡ 1

(mod 2), fi ∈ R∗q
g1, . . . , gn

$← χ
msk← (f1, . . . , fn)

pp
$← (2g1/f1, . . . , 2gn/fn)

Return (msk, pp)

IBEExtract(msk = sk, ID):

skID ←
∏
i∈φ(ID) sk[i]

Return skID

IBEEnc(pp = pk, ID,m):

h1, . . . , hn, e
$← χ

c←
∑

i∈φ(ID) pk[i] · hi + 2e+m
Return c

Fully-Homomorphic IBE. The above instantiation has additionally the property of being fully-
homomorphic in the following sense: Given encryptions IBEEnc(ID,m1), . . . , IBEEnc(ID,mt), and a
function f : {0, 1}t → {0, 1}, we can compute a ciphertext which decrypts to f(m1, . . . ,mt) under
skID using the homomorphic-evaluation procedures given in [LATV12].

We note that in general one can provide a construction, along the lines given above, from multi-
key fully-homomorphic encryption to fully-homomorphic identity-based encryption for bounded
collusions. We defer a full discussion, noting in passing that the above is the only instantiation of
this paradigm we are aware of.

5 Applications: Bounded CCA Security with Short Ciphertexts

In this section, we revisit the generic transform by Boneh, Canetti, Halevi, and Katz [BCHK07]
in the context of BC-IBE, and use it to obtain constructions of bounded-CCA2 secure encryption
schemes with short ciphertexts from any semantically secure scheme with a secret-key to public-key
homomorphism.

One-time signatures. Recall that a one-time signature scheme SS = (Gen, Sign,Verify) consists
of a parameter generator algorithm Gen, outputting a pair consisting of the signing key sk and
the verification key vk, and a signing algorithm Sign and verification algorithm Verify such that
for any message m, Sign returns a signature σ = Sign(sk,m) such that Verify(vk, σ) = true with
overwhelming probability for the associated verification key vk. We say that SS is strongly one-time
secure if for all PPT adversaries A, there exists a negligible function ν such that

P

[
(sk, vk)

$← Gen, (m, st)
$← A(vk),

σ = Sign(sk,m), (m′, σ′)
$← A(st, σ)

: (m,σ) 6= (m′, σ′) ∧ Verify(vk,m′, σ′) = true

]
≤ ν(k) ,

where k is the corresponding (implicit) security parameter.

The BCHK transform . In the following, let IBE = (IBEGen, IBEExtract, IBEEnc, IBEDec) be an
IBE scheme and let SS = (GenSS,Sign,Verify) be a strong signature scheme. Boneh et al [BCHK07]
presented the following construction of an encryption scheme PKE = (Gen,Enc,Dec) from IBE:

Gen:

(pp,msk)
$← IBEGen

pk← pp
sk← msk
Return (pk, sk).

Enc(pk,m):

(sk′, vk′)
$← GenSS

c
$← IBEEnc(pp, vk′,m)

σ
$← Sign(sk′, c)

Return (vk′, c, σ).

Dec(sk, (vk, c, σ)):

If Verify(vk, c, σ) = false then
m← ⊥

Else
skvk ← IBEExtract(sk, vk)
m← IBEDec(skvk, c)

Return m
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Chosen-ciphertext security of this construction was proven in [BCHK07, Theorem 1]. Their proof
considers two cases: in order to defeat the CCA security of the above construction, an adversary
must either forge a signature for SS or defeat the selective security of IBE. They thus provide
reductions in two different security games: one with a signature oracle (for the former case), and
one with an IBE challenger (for the latter).

Of note is that in their reduction for the IBE case, the reduction makes at most one IBEExtract
query for each decryption query it receives from the adversary, and no other parameters change.
Thus, their proof carries through exactly in the bounded-collusion case, yielding:

Theorem 5. If IBE is t-selective-ibe-cpa-secure, and if SS is strongly one-time secure, then PKE
is t-CCA secure.

Applications. Using previous results, we directly obtain bounded CCA PKE constructions from
DDH, QR, NTRU, and (standard) LWE using the constructions of the previous sections. In par-
ticular, note that only standard LWE is required as we only need selective security to instantiate
the above paradigm. Moreover, the resulting DDH construction is essentially equivalent to the
one presented in [CHH+07], and our construction thus provides an abstraction to obtain the same
construction.

As an example, we give the t-CCA PKE based on the NTRU assumption that comes from
applying Theorem 5 to the BC-IBE of Section 4.2. (Here the parameters q, χ,R∗q are defined as in
that section.)

Gen:

f1, . . . , fn
$← χ, fi ≡ 1

(mod 2), fi ∈ R∗q
g1, . . . , gn

$← χ
sk← (f1, . . . , fn)
pk← (2g1/f1, . . . , 2gn/fn)
Return (pk, sk).

Enc(pk,m):

(skSS, vkSS)
$← GenSS

h1, . . . , hn, e
$← χ

c←
∑

i∈φ(vkSS) pk[i]·hi+2e+m

σ
$← Sign(skSS, c)

Return (vkSS, c, σ).

Dec(sk, (vk, c, σ)):

If Verify(vk, c, σ) = false then
m← ⊥

Else
skvk ←

∏
i∈φ(vk) sk[i]

m← skvk · c (mod 2)
Return m

The ciphertext size of the CCA scheme generated by the BCHK transform is the same as the ci-
phertext size of the IBE scheme (and hence of the NTRU encryption scheme), plus a verification key
and signature. Steinfeld et al. [SLP+12] show a (fully) CCA-secure construction based on NTRU;
their ciphertext contains k ciphertexts of the underlying NTRUEncrypt algorithm (where k = Θ(1)
is a parameter that depends on the hardness assumption used, but is at least 4), and additionally
a verification key, a signature, and a blinded message. (Since the NTRUEncrypt ciphertexts are
polynomials in Rq, they will typically be much larger than the other values.) Thus, we obtain a
constant-factor improvement in ciphertext size by moving to the bounded-query model, in addition
to the conceptual simplicity of the proof.
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A Instantiation from Quadratic Residuosity

We now discuss an instantiation from the QR assumption. This application does not achieve any
improvement with respect to parameter size of the construction of [GLW12]. This is mostly due to
the fact that the best semantically secure QR-based scheme with key-homomorphism is a variation
of the scheme given in [GLW12]. However, as we only need semantic security, the corresponding
security proof is simpler and allows the underlying PKE scheme to have shorter secret keys.

The Quadratic Residuosity assumption . The Quadratic Residuosity assumption (QR) modulo
N states that it is compuationally infeasible, given composite number N and a uniform element y
of Jacobi symbol 1 modulo N , to determine whether there exists an x such that x2 ≡ y (mod N)
with probability nonnegligibly better than 1/2. We will let QRN denote the group of quadratic
residues modulo N . Note that if N is a Blum integer (that is, if N = pq where primes p, q ≡ 3
(mod 4)), then −1 has Jacobi symbol 1 modulo N , but −1 6∈ QRN .

A QR-based scheme. We consider the QR-based PKE of Goldwasser et al. [GLW12], which is
defined as follows:

Gen:

p, q
$← N s.t. p, q are prime,

p ≡ q ≡ 3 (mod 4), and QRpq
is cyclic

N ← pq, g
$← QRN

sk
$← [ρ(N)], pk ← gsk

(mod N), pp← (N, g)
Return (pp, pk, sk)

Enc(pp = (N, g), pk,m ∈ {1,−1}):

r
$← [N2] s.t. r odd

Return (gr (mod N),m ·pkr (mod N))

Dec(c = (c1, c2), sk):

Return c2 · (csk1 )−1 (mod N)
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Goldwasser et al. prove security under the QR assumption moduloN where ρ(N) = NΘ(1) [GLW12].
However, they require a stronger linear-hash-proof property, whereas we only require semantic se-
curity. Thus, we are able to use ρ(N) = ϕ(N)/2 (where ϕ here is Euler’s totient function), and
furthermore can provide a shorter, simpler security proof.

Theorem 6. Assuming the quadratic residuosity problem modulo N is hard, the above PKE scheme,
with ρ(N) = ϕ(N)/2, is semantically secure.

Proof. Assume an adversary A that is able to distinguish encryptions of 1 and −1 under the above
scheme with probability 1/2+ε, where ε is nonnegligible. We show a reduction to the QRN problem.

We receive a pair (N, x) where N is a Blum integer and x has Jacobi symbol 1 modulo N . We
choose a random quadratic residue g modulo n. Note that |QRN | = ϕ(N)/4; thus, if we choose

sk
$← [N2], the distribution of pk = gsk is statistically close to uniform over QRN (note that in the

real experiment, since sk is chosen from [ϕ(N)/2], the resulting distribution is exactly uniform).

We then choose b
$← {0, 1} and send pk and the challenge ciphertext (x, (−1)b ·xsk (mod N)) to A.

If x is a quadratic residue, the ciphertext is a valid ciphertext for message (−1)b. If x is a
nonresidue, it is in the group with Jacobi symbol 1, which has size ϕ(N)/2. However, information-
theoretically, the secret key is only determined from the public key modulo ϕ(N)/4. Therefore, no
adversary is able to distinguish between this experiment run with sk and this experiment run with
sk± ϕ(N)/4 (whichever lies in the correct interval).

However, in the case where x is a nonresidue, it can be expressed as −1 · gy for some y. The
resulting decrypted plaintext using secret key sk± ϕ(N)/4 is thus multiplied by (−1)ϕ(N)/4 = −1.
Therefore, information-theoretically the adversary cannot distinguish between encryptions of 1 and
−1. We can thus use A in the standard way, guessing that x is a quadratic residue iff A guesses
correctly, and we will be correct with nonnegligible advantage (specifically, half the advantage of
A). ut

Note that this PKE scheme, though based on the QR assumption, strongly resembles the El-
Gamal construction.3 It thus exhibits properties very similar to the previous case: it admits a
natural key homomorphism with mapping x 7→ gx (mod N), and it is weakly n-key-malleable: for
all I ⊆ [n], i ∈ I, and secret- and public-key vectors sk and pk, we have the Simulate algorithm

c∗ = Simulate(i, I,pk, sk[[n] \ {i}], (c1, c2)) = (c1, c2 · c
∑
j 6=i sk[j]

1 (mod N)) . (3)

This yields the following BC-IBE construction, which is t-ind-cpa secure by Theorem 3.

IBEGen:

p, q
$← N s.t. p, q are prime,

p ≡ q ≡ 3 (mod 4), and QRpq
is cyclic

N ← pq, g
$← QRN

sk
$← [ρ(N)]n, pk[i] ← gsk[i]

(mod N)
pp← (N, g,pk),msk← sk
Return (pp,msk)

IBEExtract(msk = sk, ID):

[id1, . . . , idn]← φ(ID)
skID ←

∑n
i=1 idi · sk[i]

Return skID

IBEEnc(pp = pk, ID,m):

[id1, . . . , idn]← φ(ID)

r
$← [N2] s.t. r odd

c ← (gr (mod N),m ·∏n
i=1 idi · pk[i]r) (mod N)

Return c

3 ElGamal relies on the DDH assumption to hide values in the exponent, ensuring that the secret key and encryption
randomness are hidden. This scheme does not require that the DDH or discrete logarithm problem be hard, but
relies on the fact that both the secret key and the randomness are chosen from a range of size larger than N ;
thus, expressing these values in the exponent modulo N information-theoretically loses information, thus hiding
the message bit.
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B Missing Proofs

B.1 Full Security of GLW (Theorem 3)

Proof (Sketch). We only sketch the reduction – the analysis is similar to the one in the proof
of Theorem 2. Let A be an ibe-cpa adversary for IBE which guesses the underlying bit b with
probability at least (1+n ·ε)/2, and which makes at most t extraction queries. We construct an ind-
cpa adversary B for PKE from A, winning with probability at least 1+ε

2 . Concretely, the adversary
B starts by choosing an index i∗ uniformly at random from the set [n]. It then gets a public key pk∗

from the underlying IND-CPA game, and computes (pk[j], sk[j])
$← Gen for all j ∈ [n]\{i∗}. Finally,

it sets pk[i∗] = pk∗. It then gives pp = pk to A and starts its execution, until it outputs a target
identity ID∗ as well as a message pair (m0,m1). In particular, A’s extraction queries for ID ∈ {0, 1}
are replied by computing [id1, . . . , idn] = φ(ID) and, if idi∗ = 0, returning skID =

∑
i idisk[i]. Note

that if idi∗ = 1, then B cannot answer the extraction query. In this case, it returns ⊥, and sets the
flag bad to true. Given ID∗ and (m0,m1), let φ(ID∗) = [id∗1, . . . , id

∗
n]. If id∗i∗ = 0, then bad is set to

true, and ⊥ is returned to A. Otherwise, B forwards (m0,m1) to the ind-cpa game, obtaining a

challenge ciphertext c. Given this, it outputs c∗
$← Simulate(i∗, φ(ID∗), c,pk, sk[[n] \ {i∗}]), which

it then gives back to A, continuing it execution, until A outputs a bit b′. To conclude, B outputs
the bit b′ if bad is false, and returns a random bit otherwise. Unlike in Theorem 2, this simulation
is not (necessarily) perfect, since we only require computational indistinguishability from Simulate.
However, this will only affect A’s output with negligible probability (or else (B,A) would serve as
an efficient distinguisher for the output of Simulate), and thus B’s overall success probability is still
nonnegligibly greater than 1

2 . ut

B.2 Proof of Theorem 4

Proof. Let A be an ibe-cpa-adversary for IBE making t extraction queries and which succeeds with
probability 1+nε

2 in guessing the right bit b. We build an ind-cpa adversary B for PKE as follows:

The adversary B initially chooses an index i∗
$← [n], and is then given pk∗. It sets pk[i∗] = pk,

and then samples (pk[i], sk[i])
$← Gen for all i 6= i∗ , and then runs A with public parameters

pp = pk. Then, A’s extraction queries for ID are simulated as follows: If i∗ /∈ φ(ID), then it returns
Combine(φ(ID), sk). (Note that this can be done by Property (ii), since the output of Combine does
not depend on sk[i∗].) Else it returns ⊥ if i∗ ∈ φ(ID), and sets a flag bad to true. Moreover, on

input a triple (m0,m1, ID
∗), B forwards m0, m1 to the ind-cpa game, obtaining c

$← Enc(pk∗,mb),
and then, if i∗ ∈ φ(ID∗) and c 6= ⊥, it gives c∗ = Modify(i∗, φ(ID∗),pk, c) back to A. If c = ⊥,
then it sets c∗ = ⊥. Otherwise, it gives simply ⊥ back and sets bad to true. Finally, B outputs A’s
final output b′ if bad was never set, and a random bit is returned otherwise.

We now turn to the analysis of the success probability of B in winning the ind-cpa game for
PKE. Let bad be the event that the bad flag is set, and let good be its complement. First note that
P
[
b′ = b

∣∣ good] ≥ 1+n·ε
2 , because as long as the bad flag is never set, all extraction queries have

been replied as in the original ibe-cpa game. Also note that P
[
b′ = b

∣∣ bad] ≥ 1/2, since in this case
B outputs a uniform bit b′.

It remains to prove a lower bound on the probability of good happening. Note that since φ is
(t+ 1, s)-cover-free, then there must exist an index i ∈ φ(ID∗) such that i 6∈ φ(ID) for all (at most
t) extraction queries ID 6= ID∗. If i∗ takes such a value, then the bad flag is never set, i.e., good
holds. It is not hard to show that the probability that such an index is hit is at least 1

n , even though
this requires some (standard) work (which we omit) due to the fact that i∗ is chosen before A’s
execution starts. To conclude, we obtain

P
[
b′ = b

]
>

1

n
· 1 + nε

2
+

(
1− 1

n

)
· 1

2
=

1 + ε

2
,
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which contradicts ind-cpa security of PKE. ut
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