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Abstract

This work builds on the variant of the function field sieve (FFS) algorithm for the
medium prime case introduced by Joux and Lercier in 2006. We make several contributions.
The first contribution uses a divisibility and smoothness technique and goes on to develop
a sieving method based on the technique. This leads to significant practical efficiency
improvements in the descent phase and also provides improvement to Joux’s pinpointing
technique. The second contribution is a detailed analysis of the degree of freedom and the
use of a walk technique in the descent phase of the algorithm. Such analysis shows that
it is possible to compute discrete logarithms over certain fields which are excluded by the
earlier analyses performed by Joux and Lercier (2006) and Joux (2013). In concrete terms,
we present computations of discrete logs for fields with 16 and 19-bit prime characteristic.
We also provide concrete analysis of the effectiveness of the FFS algorithm for certain fields
of characteristic ranging from 16-bit to 32-bit primes. The final contribution is to perform
a complete asymptotic analysis of the FFS algorithm for fields FQ with p = LQ(1/3, c).
This closes gaps and corrects errors in the analysis earlier performed by Joux-Lercier and
Joux and also provides new insights into the asymptotic behaviour of the algorithm.
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1 Introduction

Let FQ be a finite field and α a generator of the multiplicative group. Given an element β of
FQ, the discrete log of β to base α, denoted as logα β (or simply as log β when α is implicit),
is the integer i ∈ [0, Q− 2] such that β = αi. The discrete log problem (DLP) is the following:
Given FQ, α and β, compute logα β.

The function field sieve (FFS) [4, 5, 24] is an index calculus algorithm for solving the
discrete log problem over finite fields. For small characteristic fields, there has been a great
deal of recent research [14, 13, 12, 23, 8, 21, 15, 3, 18, 28, 17, 3, 18]. Barbulescu, Gaudry, Joux
and Thome [8] have shown a quasi-polynomial time algorithm for extension fields with small
characteristic. Further, Granger, Kleinjung and Zumbrägel [16] have computed a discrete log
in the binary extension field F29234 . Concrete analysis and discrete log computations for certain
characteristic 3 fields have been done in [1, 3, 2, 27]. The ideas used for small characteristic
fields, however, do not apply when the characteristic of the field is larger.

Let LQ(a, c) with 0 < a < 1 and c > 0 denote the sub-exponential expression

LQ(a, c) = exp
(
(c+ o(1))(lnQ)a(ln lnQ)1−a) . (1)
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We will use ln to denote natural logarithms and lg to denote logarithms to base 2.
Suppose Q = pn. A variant of the FFS applicable for p = LQ(1/3, c) has been proposed

by Joux and Lercier in [26]. Progress for this variant has been reported by Joux in [22]
where the important technique of pinpointing has been introduced. Both Joux-Lercier [26]
and Joux [22] denote fields FQ with p = LQ(1/3, c) to be the medium prime case. We note
that more recently fields with p = LQ(a, c) and 1/3 < a < 2/3 have been called the medium
prime case [7]. Ignoring the o(1) factor, p = LQ(1/3, c) shows

n = n(Q) =
1

c

(
lnQ

ln lnQ

)2/3

. (2)

The general form of the Joux-Lercier algorithm suggests the use of a factor base consisting
of irreducible polynomials of maximum degree D such that

c3/2 ≥ 2
3(D+1)

√
D
. (3)

The algorithm is parameterised by D and as mentioned in [26], the optimal case for each
algorithm happens when (3) holds with equality. The size of the factor base is about 2pD/D.
It is suggested in [26] that by varying D it is possible to have algorithms to solve discrete log
problem for a large range of Q. For D = 1, the optimal value of α is 3−2/3 and the asymptotic
complexity of the Joux-Lercier algorithm is LQ(1/3, 31/3). The use of the pinpointing technique
in [22] reduces the value of c in LQ(a, c) without affecting the value of a.

Our contributions: We revisit the FFS algorithm as described in [26, 20, 22]. There
are three main phases of the algorithm, namely, relation collection, linear algebra and the
descent phase. Joux [22] introduced the technique of pinpointing which improves upon the
classical sieving algorithm used for relation collection. The linear algebra and descent steps
in [26, 20, 22] remained unchanged.

One of our contributions is to employ a divisibility and smoothness technique which is
then developed into a sieving method. Use of the divisibility-cum-sieving technique provides
efficiency improvements to the pinpointing technique [22] for the relation collection phase.
The main advantage of the technique, however, is that it provides significant practical speed-
up in the descent phase of the algorithm. We note that the divisibility technique is similar
to the special-q technique used in NFS, both for integer factorisation and discrete logarithm
computations. In the context of discrete logarithms, the special-q method has been proposed
earlier [25, 26, 10, 6, 19]. To the best of our knowledge, the manner in which we use the
divisibility technique has not been reported earlier.

Detailed consideration of the descent phase of the FFS algorithm shows that descending
from degree-2 polynomials to degree-1 polynomials is the most time consuming step. The
computations used in [26, 22] for such descent (which we call 2-1 descent) use one degree of
freedom, resulting in at most p trials. This upper bounds the value of n for which the 2-
1 descent can be carried out. To tackle this problem, the works [26, 20] briefly mention the
possibility of using 3 degrees of freedom resulting in p3 trials, but, lower smoothness probability.
This idea though, is not fully explored.

A second contribution of this work is to explore in details the effect of increasing the degree
of freedom for the 2-1 descent step of the algorithm. We provide a systematic framework for
increasing the degree of freedom. In particular, the case of 2 degrees of freedom (not considered
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in [26, 20, 22]) is important. We are able to use 2 degrees of freedom to compute discrete log
over a field with 19-bit characteristic and extension degree 40. An asymptotic analysis shows
that using higher degrees of freedom in the 2-1 descent phase has a noticeable effect on the
L-expression for the runtime of the algorithm.

There is another issue regarding a 2-1 descent which has been briefly mentioned in [22].
Suppose that the 2-1 descent fails for a certain quadratic polynomial. Then [22] suggests
that one should move to another quadratic polynomial and attempt the descent. No details,
however, are provided as to whether such a strategy will always succeed and the number of
times it would be required to move from one quadratic polynomial to another which would be
the length of the walk.

We develop the details of the walk technique by considering several options and the asso-
ciated probabilities. It turns out that the walk technique will not always work and we provide
explanations of why it may not work. We have conducted experiments with the walk technique
for 3 fields. For the 25-bit prime, extension degree 57 field considered in [22], the walk lengths
are a few steps. Apart from this, we consider two other fields. The first one has 16-bit charac-
teristic and extension degree 37 and the walk technique works for this field. The average walk
length turns out to be 17. The other field has an 19-bit characteristic and extension degree 40.
For this field, the walk technique does not work due to a branching effect which we explain
later. Accordingly, we used a higher degree of freedom for this field. We note that [15, 18] also
had to introduce several techniques to handle the descent phase for their record discrete log
computation on characteristic two fields.

In terms of actual computations, we report two discrete log computations for the above
mentioned fields, i.e., 16-bit characteristic and extension degree 37 (592-bit field); and, 19-bit
characteristic and extension degree 40 (728-bit field). Prime characteristic of these sizes were
earlier considered in [26]. The extension degrees that we have tackled are currently the highest
known for finite fields of general form.

In [22] discrete log computations have been reported over larger fields Fpn where n|p − 1.
The last condition allows reducing the size of the factor base by a factor of about n considerably
easing the computation of the linear algebra step. While this is useful, the property n|p− 1 is
restrictive. In the examples that we consider, this property does not hold. As a consequence,
for general medium-characteristic fields, the 728-bit field that we consider is currently the
largest over which discrete log computations have been carried out. On the other hand, the
techniques that we develop are general in nature and can also be used with the special fields
considered in [22].

We go beyond the actual computation of discrete log and perform a concrete analysis of
the application of the algorithm to certain specific fields. For 16, 18, 20 and 25-bit primes, we
indicate the maximum extension degrees that can be feasibly handled. For 32-bit primes, we
show that tackling extension degree 100 can be done in about 280 steps.

A complete asymptotic analysis is carried out for the algorithm described by Joux-Lercier [26]
and Joux [22]. This uncovers certains gaps in the earlier analysis in these papers. One such
issue is the implicit assumption that descent takes less time than relation collection. A conse-
quence of this has been an erroneous conclusion in Joux [22] regarding the absolute minimum
complexity that can be attained. Our work goes beyond just covering gaps and correcting
errors. It provides a deeper insight into the behaviour of the algorithm and reveals that the
nature of the asymptotic complexity is much richer than was previously known.

Section 2 provides an overview of the FFS algorithm in the medium prime case. In Section 3,
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we introduce the notion of ‘good’ bivariate polynomials which allows us to describe the relation
collection phase and the individual descent phase in a uniform manner. The divisibility and
smoothness technique is described in Section 4. The application of this technique to the relation
collection and the 2-1 descent phase is explained in Section 5. As mentioned above, the 2-1
descent phase may require a walk technique. Section 6 provides the details of this technique
and the supporting analysis. A concrete analysis for different prime sizes is carried out in
Section 7. In the following section, i.e., Section 8 we carry out an asymptotic analysis of the
algorithm. Some discrete log computations are presented in Section 9. Finally, we conclude in
Section 10.

2 A Description of the Function Field Sieve Algorithm for the
Medium Prime Case

The function field sieve algorithm [4, 5] is an index calculus technique used for computing
discrete logarithm on finite fields. Our description of the algorithm is based on the two pa-
pers [26, 22] and the book [20]. The focus of our work is the medium prime case and so we do
not discuss the improvements that can be made when the characteristic of the field is a small
prime. There are three phases of the algorithm, namely, relation collection, linear algebra and
the individual discrete log phase. There are two auxiliary phases called the preparatory phase
and the final phase. Descriptions of these phases are given below.

2.1 Preparatory Phase

In the preparatory phase, a suitable representation of the finite field is chosen. Given a prime p
and a positive integer n, up to isomorphism, there is exactly one finite field of order pn. Given
two different representations of the field of order pn, it is easy to compute the isomorphism
between them. Due to this, one is free to choose any convenient representation to solve the
discrete log problem. The solution can later be transferred to any other given representation.

Field representation: The field Fpn is realised as
Fp[x]
〈f(x)〉 where f(x) is an irreducible polyno-

mial of degree n and is determined as follows: Choose two polynomials g1(x) and g2(x) in Fp[x]
of degrees n1 and n2 respectively such that f(x) is a factor of x− g2 (g1 (x)). The polynomial
x − g2 (g1 (x)) itself may be irreducible and can be taken to be f(x), otherwise, one chooses
as f(x) the highest degree irreducible factor of this polynomial. The values of n1 and n2 are
crucial to determining the complexity of the algorithm.

The benefit of choosing such a representation is the following. Since f(x) divides x −
g2 (g1 (x)), if we set y = g1(x), then x = g2(y) mod f(x). So, the equalities

y = g1(x) and x = g2(y) (4)

provide two basic relations between two elements of Fpn . These relations are at the heart of
the algorithm and was first suggested in [26].

The n1n2+1 variant: In the above representation, n ≤ n1n2. Joux [22] has further suggested
a way to increase the extension degree while keeping n1 and n2 the same. Choosing g2(y) =
ty−n2 for some non-zero t ∈ Fp, it is possible to obtain extension degree n = n1n2 + 1 with
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minor changes in the relation collection and the individual logarithm phases. In the examples
considered in [22], g1(x) was taken to be xn1 in addition to taking g2(y) in the special form.
This requires working with a Kummer extension and implies the condition n|p− 1.

It is not necessary, however, to take both g1(x) and g2(y) to be of the special form. Setting
g2(y) = y−n2 one can allow g1(x) to be arbitrary. The relation collection and the individual
logarithm phases can be made to go through. Further, one may choose g1(x) = x−n1 and g2(y)
to be of general form and still obtain an appropriate field representation. Our example (later)
of 16-bit prime and extension degree 37 illustrates these points.

Generator of the field: The generator of the finite field (and the base of the discrete
logarithms) is fixed as follows. If f(x) is primitive polynomial, then x itself is taken as a
generator and hence log(x) = 1. More generally, we can take as the generator any primitive
element which is smooth over the factor base. In practice it turns out that for some aj ∈ F,
x+ aj generates field Fpn . In that case, we have log(x+ aj) = 1. For the actual computations
of the FFS algorithm, the choice of the generator is not an issue.

Factor base: The factor base is the following.

B = {(x+ ai), (y + bj) : ai, bj ∈ Fp}.

In other words, the factor base consists of all polynomials of degree one in x and y. So the
size of the factor base is 2p. More generally, one can define the factor base to consist of all
irreducible polynomials in x and y of degrees at most D. This leads to a factor base of size
about 2pD. We consider such factor bases in the asymptotic analysis.

It is possible to reduce the size of the factor base by suitably choosing n and p. As explained
in [26] in terms of Galois action and in [22] in terms of Kummer extensions, for certain choices
of n and p, the size of the factor base can be reduced by a factor of n. This reduction can allow
the computation of the linear algebra for a suitably larger prime p. While this is interesting,
achieving this loses the generality of the algorithm. A requirement for such reduction is that
Fp contains all the n roots of unity. This in turn requires the condition that n divides p − 1.
So, to apply the reduction technique to the factor base, one has to choose n and p such that
n|p− 1. In general, one would not be allowed to choose the values of n and p; these would be
provided and in such a case, it is quite unlikely that the condition n|p − 1 will hold. In view
of this, we have decided not to work with this option.

Modulus of discrete log: Since we are working over Fpn , discrete logs are defined modulo
pn− 1. Suppose α is a generator of Fpn so that the order of α is pn− 1. An element αi is in Fp
if and only if αip = αi, i.e., if and only if, (pn − 1)|i(p− 1). Let M = (pn − 1)/(p− 1). Then
αi is in F if and only if i is a multiple of M .

Suppose c ∈ Fp and β ∈ Fpn . Then the discrete log of cβ is log c + log β. By the above
observation, log c ≡ 0 mod M and so the discrete log of cβ modulo M is simply log β mod M .
In other words, by working modulo M , we can ignore constants (i.e., elements of Fp) arising
in the intermediate stages.

In practice, one does not even work modulo M . Instead, first the discrete log is computed
modulo the large prime factors of M and then combined using the Chinese remainder theorem.
At a later stage, the Pollard’s rho and/or the Pohlig-Hellman algorithms are applied to compute
the discrete log modulo the small factors of pn − 1 to get the actual discrete log.

5



2.2 Relation Collection Phase

In the relation collection phase, the aim is to compute multiplicative relations amongst the
elements of factor base. This is achieved as follows. Consider a field element of the following
form:

(x+ a)y + (bx+ c) = xy + ay + bx+ c where a, b, c ∈ Fp. (5)

Expression (5) can be considered to have two equivalent representations, one in terms of x and
another in terms of y, i.e.,

h1(x)
∆
= xg1(x) + ag1(x) + bx+ c and h2(y)

∆
= g2(y)y + ay + bg2(y) + c. (6)

Suppose both h1(x) and h2(y) are B-smooth, i.e., they factor into linear terms as h1(x) =
c1
∏
αi

(x+ αi) and h2(y) = c2
∏
βj

(y + βj), where c1, c2 ∈ Fp. Then a relation of the following
form is obtained.

c1

∏
αi

(x+ αi) = c2

∏
βj

(y + βj). (7)

As explained above, the constants c1 and c2 are ignored by computing discrete log modulo
M . The relation (7) provides the following relation between the discrete logs of some of the
elements of the factor base.∑

αi

log(x+ αi) =
∑
βj

log(y + βj) mod M (8)

In the relation collection phase, more than 2p such relations are collected so that there are 2p
linearly independent equations involving the discrete logs of the factor base elements.

Obtaining a relation of the form (7) is dependent on the degree n1 + 1 of h1(x) and the
degree n2 + 1 of h2(y). The usual heuristic is to assume that the two polynomials behave like
independent random polynomials. It is known that the probability that a random polynomial
of degree m factors into linear terms is about 1

m! . Under the assumption that h1(x) and h2(y)
behave like independent random polynomials, the probability of obtaining a single relation is
about 1/((n1 + 1)!(n2 + 1)!). The quantities a, b and c in (5) provide three degrees of freedom
leading to a total of p3 choices. Among these, about p3/((n1 + 1)!(n2 + 1)!) relations are to be
expected. The relation collection phase succeeds if

p3

(n1 + 1)!(n2 + 1)!
> 2p. (9)

The quantity on the left side is maximised when n1 and n2 are roughly equal.

Pinpointing: Joux [22] introduced the pinpointing technique to speed up the relation col-
lection phase. The technique works for any given p and n. The idea is to choose g1(x) = xn1 .
This choice of g1(x) is not restrictive. Experiments show that it is possible to set g1(x) = xn1

and then obtain a suitable g2(y) such that the polynomial x− g2(g1(x)) is irreducible and can
be taken to be the field defining polynomial f(x).
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It is required to factor xg1(x) + ag1(x) + bx + c into linear terms. With g1(x) = xn1 , the
polynomial h1(x) = xg1(x) + ag1(x) + bx + c becomes xn1+1 + axn1 + bx + c. Suppose that
xn1+1 + axn1 + bx+ c factors into linear terms, i.e.,

xn1+1 + axn1 + bx+ c =
∏
αi

(x+ αi). (10)

The nice idea of Joux is to observe that using the transformation x → tx, t ∈ Fp, ensures
that the right side of (10) remains smooth while the left side transforms into a polynomial of
a similar form with tn1+1 as the leading coefficient. By working modulo M , it is possible to
divide the whole of left side by tn1+1 to get a monic polynomial of the same form with different
a, b and c. The polynomial h2(y) is then still of degree n2 + 1.

As a result, once after (n1 + 1)! trials, one obtains a single set of values for a, b and c with
x-side smooth, then by varying t over all non-zero elements of Fp, it is possible to obtain p− 1
x-side smooth polynomials at very little extra cost. Using pinpointing, the amortised number
of trials for obtaining one relation which has both sides smooth, is [22]

(n1 + 1)! + (p− 1)

(p− 1)/(n2 + 1)!
=

(n1 + 1)!(n2 + 1)!

p− 1
+ (n2 + 1)!. (11)

Pinpointing can also be applied from the y-side and in that case, the amortised number of
trials for obtaining one relation which has both sides smooth is

(n2 + 1)! + (p− 1)

(p− 1)/(n1 + 1)!
=

(n1 + 1)!(n2 + 1)!

p− 1
+ (n1 + 1)!. (12)

Pinpointing versus sieving: Joux [22] mentions that the cost of pinpointing “is clearly
better than the cost of classical sieving which, in this case, amounts to (n2 + 1)!(n1 + 1)!.”
Later we show how to combine pinpointing with a sieving method based on the divisibility
technique. The question arises as to whether it is possible to simultaneously choose g1(x) = xn1

and g2(y) = tyn2 for some t ∈ Fp and whether such a choice indeed speeds up both sides of
the computation of the relation collection phase. The answer to both questions is yes and the
technique has been called advanced pinpointing [22]. However, advanced pinpointing does not
apply in general; to apply this technique, one has to carefully choose n and p. Due to this
reason, we do not discuss the technique any further in this work.

2.3 Linear Algebra

The size of the factor base is 2p and so a little more than 2p relations are collected between
the discrete logs of the elements of the factor base. The linear algebra phase computes the
discrete logs (modulo large prime factors of pn − 1) of the elements of the factor base.

Once a sufficient number of relations is obtained, the algorithm proceeds to the linear
algebra phase. The system of linear equations that is obtained is highly sparse. The works [26,
22] first reduce the number of unknowns using structured Gaussian elimination and then apply
either the Lanczos algorithm or the block Wiedemann algorithm to solve the resulting system
of linear equations.

For our computations, we have used MAGMA [9] to perform the linear algebra step.
MAGMA provides options for using either the structured Gaussian elimination or the Lanczos
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algorithm. There does not appear to be a method by which the structured Gaussian elimina-
tion is used up to some extent and then the Lanczos algorithm is applied. As a result, we used
the Lanczos option. As supported by MAGMA, the computation was done on a single core
without any parallelisation.

2.4 Individual logarithm phase

The aim of the individual discrete log phase is to express a given element φ(x) of the field as a
ratio of products of elements of the factor base thereby expressing the discrete log of φ(x) as
a sum and difference of the discrete logs of the elements of the factor base. This is achieved
recursively. First express φ(x) as a ratio of products of polynomials of degrees less than the
degree of φ(x). Next, the same algorithm is applied to each factor of φ(x) recursively until the
process descends to linear factors. This phase is also known as the descent phase as in every
step the degree keeps on descending until linear terms are reached.

A simple way to do this is the following. Randomly choose a polynomial D(x) having low
degree factors (the degrees of these factors are to be less than the degree of φ(x); D(x) can
itself be smooth) and let N (x) = φ(x)D(x). If the factors of N (x) are of degree lower than
that of φ(x), then we have a descent from φ(x) = N (x)/D(x) to the lower degree factors of
N (x) and D(x). In the initial stages this simple randomisation strategy works well. A more
systematic approach is the following.

Suppose φ(x) is a factor of degree d and it is desired to reduce the problem of finding
the log of φ(x) to that of finding logs of lower degree polynomials. Let T (x, y) be a bi-variate
polynomial where the degree of x is t1 and the degree of y is t2. Then T (x, y) has (t1 +1)(t2 +1)
monomials of the form xiyj with 0 ≤ i ≤ t1 and 0 ≤ j ≤ t2. Write T (x, y) into two equivalent

forms F (x)
∆
= T (x, g1(x)) and C(y)

∆
= T (g2(y), y) in the variables x and y respectively. Three

things are to be ensured: φ(x) divides F (x); G(x)
∆
= F (x)/φ(x) is (d − 1)-smooth; and C(y)

is also (d − 1)-smooth. One option is to try random choices of T (x, y) until a suitable one is
found.

Instead of trying random T (x, y), Joux and Lercier [26] consider φ(x) as a special-q element
and propose to sieve over all polynomials T (x, y) such that a descent is possible. More concrete
details are provided in Section 15.2.1.1 of [20]. It is possible to generate the set of all T (x, y)
such that the corresponding F (x) are divisible by φ(x). Let Fi,j(x), 0 ≤ i ≤ t1, 0 ≤ j ≤ t2,

be defined as Fi,j(x)
∆
= xi(g1(x))j mod φ(x). Since the degree of φ(x) is d, the degree of each

Fi,j(x) is at most d − 1 and hence Fi,j(x) can be expressed by a column vector of length d.
Arrange these column vectors in a d × (t1 + 1)(t2 + 1) matrix M . Assuming that the rank
of M is d (which will be true in practice), the dimension of the kernel (null space) of M is
(t1 +1)(t2 +1)−d. Then it is easy to argue that a column vector (ai,j)

T (0 ≤ i ≤ t1, 0 ≤ j ≤ t2)

is in the kernel of M if and only if T (x, y)
∆
=
∑
ai,jx

iyj is such that φ(x) divides F (x) =
T (x, g1(x)). So, obtaining a basis for the kernel of M allows the generation of all T (x, y) such
that the divisibility condition by φ(x) is satisfied. Note that since we are interested in only
monic polynomials, the degree of freedom in generating the T (x, y) is actually one less than the
dimension of the kernel, i.e., it is (t1 + 1)(t2 + 1)− d− 1. So, p(t1+1)(t2+1)−d−1 polynomials are
obtained by this method. Note that the method ensures that F (x) = T (x, g1(x)) is divisible
by φ(x) but, it does not ensure the smoothness of either F (x)/φ(x) or C(y). These have to be
ensured using repeated trials.
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This defines the descent from a degree d polynomial in x to degree d − 1 polynomials in
x and also polynomials in y. As a result, in subsequent steps, it is also required to apply the
descent method to the polynomials in y. This is a one-step descent. In fact for higher values
of d, it is possible to get several steps of descent in one round, but for the lower values of d,
the descent proceeds one step at a time. It is the lower side of descent, particularly the 2-1
descent, which takes most of the time.

The idea of the descent from a polynomial in y is the same, except that one starts with
A(y)x+B(y). The descent from y-side will also involve lower degree polynomials in y as well
as polynomials in x. The method is continued until descent to degree 1 is achieved for both
polynomials in x and polynomials in y whence the elements of B are involved. Since the logs
of these elements have been computed in Phase 2, it is possible to use these values and retrace
the descent steps to compute the log of φ(x).

2.5 Restrictions on the Extension Degree

For a given p, Equation (9) which determines the possibility of relation collection also provides
an upper bound on the values of n1 and n2 (and so on the value of n) that can be tackled
using the FFS algorithms in [22, 26].

The values of n1 and n2 are further restricted by the 2-1 descent. For this descent, [26, 22]
work with the form T (x, y) = A(x)y+B(x) where both A(x) and B(x) are linear polynomials
with A(x) monic. Let ρ be the number of undetermined coefficients of T (x, y). In this case,
ρ = 3. The degree of φ(x) for which descent is attempted is d = 2. Denote the degree of
freedom e to be ρ − d, so that in the present case e = 3 − 2 = 1. A single degree of freedom
allows for p trials. In these many trials, it is desired to obtain G(x) and C(y) to be smooth.
The degrees of G(x) and C(y) are n1− 1 and n2 + 1 respectively. Heuristically, the probability
that both are smooth is 1/((n1− 1)!(n2 + 1)!). So, for the descent to be possible, it is required
that

p

(n1 − 1)!(n2 + 1)!
≥ 1. (13)

It is clear that if p is such that (13) holds, then certainly (9) is also satisfied. So, given p, (13)
determines the maximum values of n1 and n2 and hence of n for which the method can be
successful.

2.6 Additional Techniques

What happens if the condition in (13) does not hold? Two methods are briefly indicated
in [26, 22, 20].

Walk: Suppose φ(x) is a quadratic polynomial for which the algorithm is unable to descend
to linear polynomials. To tackle such a scenario, the following has been mentioned in [22].
“When not possible, we use a relation that also includes another degree 2 polynomial and
restart from that polynomial.” This is very brief and does not address the questions about
whether the walk technique will always succceed and the number of steps in the walk that
would be required before a descent is obtained.
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Additional degrees of freedom: Both [26, 20] mention that one way to tackle the problem
is to increase the degrees of A(x) and B(x) to 2. This increases the degree of freedom to 3 and
lowers the simultaneous smoothness probability of the resulting G(x) and C(y) to 1/((n1 +
2)!(2n2 + 1)!). Note that the degree of freedom jumps from 1 to 3 and the intermediate
two degrees of freedom is not considered in [26, 20]. These works also do not report any
computations using additional degrees of freedom.

3 Good Bivariate Polynomials

Recall that Fpn is represented as Fp[x]/〈f(x)〉, where f(x) is an irreducible polynomial of
degree n such that f(x) divides x− g2(g1(x)). The polynomials g1(x) and g2(x) are of degrees
n1 and n2 respectively.

From the description of FFS in Section 2, we note that the basic computation required
in the relation collection and the descent phases have a similarity. The similarity is observed
most clearly when we consider the 2-1 descent. In both the phases, the idea is to factorise two
equivalent forms of the expression A(x)y+B(x). For relation collection, all the factors have to
be linear while for the descent phase, there is one fixed quadratic factor φ(x) (whose descent
is to be worked out) and rest are to be linear. So, if we consider φ(x) to be 1 in the relation
collection step, then the two phases are almost the same.

“Good” T (x, y): Given φ(x) of degree d ≥ 0, we say that a bivariate polynomial T (x, y) is
good for φ(x) if the following conditions hold.

1. φ(x) divides F (x) = T (x, g1(x)) (Divisibility).

2. Both G(x) = F (x)/φ(x) and C(y) = T (g2(y), y) factor into linear terms (Smoothness).

The above definition does not assume a special form for T (x, y). When φ(x) is clear from the
context, we will simply write T (x, y) is good. The notion of good T (x, y) that we consider
starts with φ(x) which is a polynomial in x. A similar definition can be provided if one wishes
to start with a polynomial in y.

Suppose φ(x) is a monic polynomial of degree d and T (x, y) is any bi-variate polynomial
having a total of ρ + 1 monomials out of which the coefficient of any one monomial (usually
the leading monomial) is 1 and the other ρ monomials are undetermined. We will assume
d < ρ. Further, suppose that the degree of F (x) = T (x, g1(x)) is ρ1 and the degree of
C(y) = T (g2(y), y) is ρ2.

We assume that F (x) is monic (which is easy to ensure since we are interested in discrete log
modulo M). There are ρ1 undetermined coefficients of F (x). The degree of G(x) = F (x)/φ(x)
is ρ1 − d. Then G(x) is also monic and there are ρ1 − d unknown coefficients of G(x). Let
e = ρ− d. We say that the degree of freedom is e. The reason for this will become clear in the
next section. Before proceeding, for ease of reference, we summarise the different quantities
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below.

n : extension degree;
n1 : degree of g1(x);
n2 : degree of g2(x);
ρ : the number of undetermined coefficients in T (x, y);
ρ1 : the degree of F (x) = T (x, g1(x));
ρ2 : the degree of C(y) = T (g2(y), y);
d : the degree of φ(x);
ρ1 − d : the degree of G(x) = F (x)/φ(x);
e : equals ρ− d which is the degree of freedom.


(14)

In anticipation of the divisibility technique we describe later, we define

h = deg(G(x))− e = ρ1 − d− e. (15)

Proposition 1 Suppose T (x, y) = a0(x) + a1(x)y + · · · + a`(x)y` and let F (x) = T (x, g1(x))
and C(y) = T (g2(y), y). Given F (x), it is possible to recover the ai(x)’s modulo g1(x). Con-
sequently, if the degrees of the ai(x)’s are less than that of g1(x), then it is possible to recover
T (x, y) and hence C(y).

Proof: It is possible to obtain ai(x) mod g1(x) in the following manner. Note that F (x) =
T (x, g1(x)) = a0(x) + a1(x)g1(x) + · · · + a`(x)g`1(x). Then a0(x) = F (x) mod g1(x); a1(x) =
(F (x)− a0(x))/g1(x) mod g1(x); and more generally for i ≥ 1;

ai(x) =
F (x)− a0(x)− a1(x)g1(x)− · · · − ai−1g

i−1
1 (x)

gi1(x)
mod g1(x).

If the degrees of the ai’s are all less than n1, then this procedure recovers the ai(x)’s and so
the polynomial T (x, y). So, given F (x) it is possible to obtain T (x, y) and hence C(y) and vice
versa.

This simple result turns out to be useful in the sieving algorithm we describe later.

3.1 Probability of Obtaining Good T (x, y)

Given φ(x) of degree d, we wish to obtain an estimate of the probability of obtaining a T (x, y)
which is good for φ(x). With the degree of freedom e = ρ−d, a maximum of pρ−d trials can be
carried out to ensure that both G(x) = T (x, g1(x))/φ(x) = F (x)/φ(x) and C(y) = T (g2(y), y)
factor into linear terms. Heuristically, the probability of getting both these polynomials to be
smooth in a single trial is 1/((ρ1 − d)!ρ2!).

Let E be the event of obtaining in pρ−d trials a T (x, y) such that φ(x)|T (x, y) and both
F (x) and C(y) are smooth. Again, heuristically,

Pr[E] = 1−
(

1− 1

(ρ1 − d)!ρ2!

)pρ−d
. (16)

Note that the above is a heuristic expression, since it may turn out that E is an impossible
event and so its probability is 0. Nevertheless, (16) turns out to be a good approximation in
practice. In pρ−d trials, the expected number of good T (x, y) is

pρ−d

(ρ1 − d)!ρ2!
=

pe

(e+ h)!ρ2!
. (17)
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The value of this expression turns out to be good indicator of the probability of E. If the value
of (17) is at least 1, then Pr[E] is high and it is likely that we will obtain a desirable T (x, y).
On the other hand, if the value of (17) is very low, then Pr[E] is close to zero and it is unlikely
that a suitable T (x, y) will be obtained. This issue is discussed later in connection with the
walk technique.

4 Divisibility and Smoothness Technique

We start by considering the special-q technique due to Davis and Holdridge [11]. The technique
was originally proposed in the context of the quadratic sieve (QS) algorithm and was later
suggested for use with the number field sieve (NFS) algorithm by Pollard [31]. Use of the
technique has been made in [29] for the factorisation of a 768-bit RSA modulus.

The special-q technique has also been suggested in the context of discrete log computation
using both NFS [10] and small characteristic FFS [6, 19]. We suggest a similar technique for
speeding up discrete log computation in the present case1.

4.1 A Special Case

First consider the special case when g1(x) = xn1 . Let A(x) be a monic polynomial of degree d1

and B(x) be a polynomial of degree d2. The number of undetermined coefficients of T (x, y) =
A(x)y +B(x) is ρ = d1 + d2 + 1 and the degree of freedom e = ρ− d = d1 + d2 + 1− d.

The key observation is that certain powers of x are missing in the expression T (x, g1(x)) =
A(x)g1(x) + B(x). Since g1(x) = xn1 , the lowest degree term in A(x)g1(x) is xn1 while the
highest degree term in B(x) is d2. If n1 > d2 + 1, then the coefficients of xd2+1, . . . , xn1−1 in
A(x)g1(x) + B(x) are zero. These missing powers of x create a gap and the number of such
missing powers is the size of the gap which is equal to n1 − d2 − 1.

Supposing φ(x) divides A(x)g1(x) + B(x), the degree of the quotient is d1 + n1 − d. Let
e be the difference between the degree of this quotient and the gap in A(x)g1(x) + B(x), i.e.,
e = (d1 + n1 − d)− (n1 − d2 − 1) = d1 + d2 − d+ 1. For undetermined elements a1, . . . , ae in
Fp, write

A(x)g1(x) +B(x) = (x− a1) · · · (x− ae)H(x)φ(x) (18)

where H(x) = b0 + · · · + bm−1x
m−1 + xm is a monic polynomial of degree m = n1 − d2 − 1.

There are m undetermined coefficients of H(x) and the size of the gap in A(x)g1(x) +B(x) is
also m. This leads to a system of m linear equations in these many undetermined coefficients
of H(x).

By symbolically solving this system of linear equations, we obtain bi = hi(a1, . . . , ae) for
some easily computed functions hi, where 0 ≤ i ≤ m − 1. Note that solutions for bi are
symbolically expressed in terms of a1, . . . , ae using the function hi. By independently choosing
values for a1, . . . , ae, we obtain solutions for H(x) and hence for A(x) and B(x). As a result,
after symbolically solving the small linear system once, by varying a1, . . . , ae, we obtain the
different choices of H(x) leading to the different choices of A(x) and B(x) such that the
following three conditions hold.

1We had obtained our technique without reference to the special-q technique. Reviewers of the previous
version of this paper had pointed out the connection.
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1. φ(x) divides A(x)g1(x) +B(x);

2. the quotient G(x) when F (x) = A(x)g1(x) +B(x) is divided by φ(x) is (x− a1) · · · (x−
ae)H(x)φ(x) and is directly obtained without any further computation;

3. G(x) has e linear factors and hence satisfies a partial smoothness condition.

The cost for this method is to symbolically solve once a system of m linear equations in m
variables and to obtain the H(x) for a particular choice of a1, . . . , ae, one needs to evaluate
the functions h0, . . . , hm−1.

Let us consider the conditions under which the method is applicable. First, we need m to
be positive to ensure that there is a non-empty system of linear equations and second, we need
e to be positive to ensure that there is at least one degree of freedom. So, a set of necessary
and sufficient conditions for the method to be applicable is the following.

e = d1 + d2 − d+ 1 > 0
m = n1 − d2 − 1 > 0

}
(19)

Thus, every choice of a1, . . . , ae ensures divisibility and at the same time yields e linear factors,
providing partial smoothness. We provide examples to illustrate the method.
Example 1: Suppose A(x) = x + b, B(x) = ax + c, n1 = 4 and so g1(x) = x4. Further,
suppose φ(x) = 1, i.e., we are only interested in ensuring partial smoothness. Then we can
write A(x)x4 +B(x) = (x− a1)(x− a2)(x− a3)(x2 + b1x+ b0). Equating the coefficients of x2

and x3 of the right side to 0, we obtain the following two equations.

−a1a2a3 − b0a1 − b0a2 − a3b0 + a1a2b1 + a1a3b1 + a2a3b1 = 0

a1a2 + a1a3 + a2a3 + b0 − a2b1 − a3b1 = 0.

Solving for b0 and b1 in terms of a1, a2 and a3 gives the following expressions.

b0 = h0(a1, a2, a3) =
−a1a2(−a1 − a2 − a3)a3 − (a1a2 + a1a3 + a2a3)2

a2
1 + a1a2 + a2

2 + a1a3 + a2a3 + a2
3

b1 = h1(a1, a2, a3) =
−a2

1a2 − a1a
2
2 − a2

1a3 − 2a1a2a3 − a2
2a3 − a1a

2
3 − a2a

2
3

a2
1 + a1a2 + a2

2 + a1a3 + a2a3 + a2
3

.

Example 2: With A(x), B(x) and g1(x) as above, suppose that φ(x) = x2 + x+ 1. Then we
can write A(x)x4 +B(x) = φ(x)(x− a1)(x2 + b1x+ b0). Again equating the coefficients of x2

and x3 of the right side to 0, we obtain the following two equations.

−a1 + b0 − a1b0 + b1 − a1b1 = 0

1− a1 + b0 + b1 − a1b1 = 0.

Solving for b0 and b1 in terms of a1 gives the following expressions.

b0 = h0(a1) = − 1

a1

b1 = h1(a1) =
1− a1 + a2

1

(a1 − 1)a1
.
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4.2 A General Description

The above discussion is for T (x, y) to be of the form T (x, y) = A(x)y + B(x) and g1(x) to
be of the form xn1 . We consider the more general case. Suppose φ(x) is a monic polynomial
of degree d and T (x, y) is any bi-variate polynomial having a total of ρ+ 1 monomials out of
which the coefficient of any one monomial (usually the leading monomial) is 1 and the other ρ
monomials are undetermined. We will assume d < ρ.

Since T (x, y) has ρ monomials whose coefficients are unknown, the coefficients of F (x) can
be written as linear functions of these ρ unknowns. The degree of G(x) = F (x)/φ(x) is ρ1− d.
Then G(x) is also monic and there are ρ1 − d unknown coefficients of G(x). Note e = ρ − d
and write G(x) as G(x) = (x− a1) · · · (x− ae)H(x).

Let the degree of H(x) be h and so h = (ρ1 − d)− (ρ− d) = ρ1 − ρ = ρ1 − d− e which is
the expression for h defined in (15). H(x) is monic and so there are a total of ρ1− ρ unknown
coefficients of H(x). We now consider the identity

F (x) = φ(x)(x− a1) · · · (x− ae)H(x). (20)

The left side of (20) is a monic polynomial of degree ρ1 and the coefficients are linear functions
of ρ unknowns. The right side is also a monic polynomial of degree ρ1. Treating a1, . . . , ae
as constants, the unknowns on the right side consist of the ρ1 − ρ coefficients of H(x). These
together with the ρ unknowns on the left side of (20) give a total of ρ1 unknowns. Equating the
coefficients of both sides give a system of ρ1 linear equations in the ρ1 unknowns. Symbolically
solving these equations gives the coefficients of H(x) and the unknown coefficients of T (x, y) as
functions of a1, . . . , ae. As a result, the coefficients of C(y) can also be determined as functions
of a1, . . . , ae.

At this point, it has been ensured that φ(x) divides F (x) and that the quotient has e linear
factors. Since the coefficients of H(x) and C(y) are expressed as functions of a1, . . . , ae, it is
possible to obtain different H(x) and C(y) by varying a1, . . . , ae over the elements of Fp. These
can then be checked for smoothness.

For a = (a1, . . . , ae), denote by Ha(x), Fa(x), Ta(x, y) and Ca(y) the polynomials corre-
sponding to a obtained using the divisibility technique.

Our description of the divisibility technique starts with φ(x) which is a polynomial in x.
A similar description can be provided if one wishes to start with a polynomial in y.

Working with a smaller system of linear equations: In the above description, we have
a system of ρ1 linear equations in ρ1 variables. Depending upon the structure of T (x, y), it
may be possible to reduce the size of the linear system. This can be useful in practice, since
the linear system is solved symbolically. We illustrate the idea in the following example where
for the sake of illustration we consider the problem from the y-side.

Let T (x, y) = A′(y)x + B′(y) and consider φ(y) to be the polynomial for which we need
to ensure that φ(y) divides T (g2(y), y). Let the degrees of A′(y) and B′(y) be d1 and d2

respectively. Further, let d1 = d2 = 2, d = 3 and g2(y) = x7 + c6y
6 + c5y

5 + c4y
4 + c3y

3 + c2y
2 +

c1y + c0 be given. Here, c0, . . . , c6 are known constants. Suppose φ(y) = l0 + l1y + l2y
2 + y3

(so that d = 3), where l0, l1 and l2 are known. Write

A′(y)g2(y) +B′(y) = (y2 + ay + b)g2(y) + (αy2 + βy + γ) (21)
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as

(y + a1)(y + a2) (b0 + b1y + b2y
2 + b3y

3 + y4)︸ ︷︷ ︸
H′(y)

(l0 + l1y + l2y
2 + y3)︸ ︷︷ ︸

φ(y)

(22)

As per the general description, we need to compare the coefficients of y0 to y8 of (21) and (22).
Symbolically solving the resulting system of equations will provide all the unknowns, i.e.,
b0, . . . , b3, a, b, α, β, γ as functions of a1 and a2. Due to the particular form of T (x, y), we can
work with a smaller system of equations. Note that α, β and γ are involved only in determining
the coefficients of y2, y and the constant term. If we leave out these 3 powers of y, then we get
the following 6 linear equations in b0, b1, b2, b3, a, b by comparing the coefficients of y3, . . . , y8

of (21) and (22). Note that in these equations a1 and a2 are to be regarded as constants.

0 = l2a1a2b1 + l1a1a2b2 + l0a1a2b3 + l2a1b0 + l2a2b0 + a1a2b0 + l1a1b1 + l1a2b1

+l0a1b2 + l0a2b2 − ac2 − bc3 + l1b0 + l0b1 − c1;

0 = l2a1a2b2 + l1a1a2b3 + l0a1a2 + l2a1b1 + l2a2b1 + a1a2b1 + l1a1b2 + l1a2b2

+l0a1b3 + l0a2b3 − ac3 − bc4 + l2b0 + a1b0 + a2b0 + l1b1 + l0b2 − c2;

0 = l2a1a2b3 + l1a1a2 + l2a1b2 + l2a2b2 + a1a2b2 + l1a1b3 + l1a2b3 − ac4 − bc5

+l0a1 + l0a2 + l2b1 + a1b1 + a2b1 + l1b2 + l0b3 − c3 + b0;

0 = l2a1a2 + l2a1b3 + l2a2b3 + a1a2b3 − ac5 − bc6 + l1a1 + l1a2 + l2b2 + a1b2

+a2b2 + l1b3 − c4 + l0 + b1;

0 = −ac6 + l2a1 + l2a2 + a1a2 + l2b3 + a1b3 + a2b3 − b− c5 + l1 + b2;

0 = −a− c6 + l2 + a1 + a2 + b3.

This system can be symbolically solved to obtain solutions for b0, b1, b2, b3, a, b in terms of
a1 and a2. Once b0, b1, b2, b3, a, b are fixed there is no more freedom left and α, β and γ are
determined. So, given g2(y) and φ(y), by varying a1 and a2, it is possible to generate A′(y)
and B′(y) such that A′(y)g2(y) +B′(y) = (y− a1)(y− a2)H ′(y)φ(y). So, we have ensured that
φ(y) divides A′(y)g2(y) + B′(y) and that the quotient has two linear factors, namely (y − a1)
and (y − a2).

Completeness: Consider once more the problem from the x-side, i.e., to find a good T (x, y)
for a polynomial φ(x). We would like to argue that if there is indeed such a good T (x, y),
then this will not be missed by the divisibility technique. Suppose that F (x) = T (x, g1(x))
is divisible by φ(x) and that G(x) = F (x)/φ(x) is smooth. Then we can write F (x) =
(x − α1) · · · (x − αρ1−d)φ(x). In (20), if we choose a1 = α1, . . . , ae = αe, then the resulting
H(x) will be (x−αe+1) · · · (x−αρ1−d). So, the divisibility technique will not miss this particular
F (x).

4.3 Duplicates

One problematic issue is that each possible G(x) may occur several times. Let

Sp = {(α1, . . . , αe) : α1 ≤ α2 ≤ · · · ≤ αe, αi ∈ Fp, i = 1, . . . , e}. (23)

The size of Sp is approximately pe/e!.
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A basic observation is that if a polynomial a(x) equals (x − α1) . . . (x − α`), then the
coefficients of a(x) are given by symmetric functions of α1, . . . , α`. The following simple gen-
eralisation of this observation will be useful.

Proposition 2 Let φ(x) be a fixed polynomial whose coefficients are known and suppose for
some integer ` ≥ 1, there is a solution for a(x) and b(x) such that

a(x) = φ(x)(x− α1) · · · (x− α`)b(x). (24)

Then the coefficients of a(x) and b(x) are given by symmetric functions of α1, . . . , α`.

Proof: Write (x−α1) · · · (x−α`) = x`+s`−1x
`−1 + · · ·+s1x+s0 where the si’s are symmetric

functions of α1, . . . , α`. Expanding the right side of (24) and comparing coefficients on both
sides gives a system of linear equations for the unknown coefficients of a(x) and b(x) where
the matrix is formed from the known coefficients of φ(x) and the si’s. Since we are assuming
that there is an a(x) and b(x) satisfying (24), the system of equations has at least one solution.
Then the coefficients of a(x) and b(x) can be expressed as functions of the known coefficients
of φ(x) and the si’s. Since the si’s are symmetric functions of α1, . . . , α`, we get the desired
result.

We now apply Proposition 2 to the divisibility technique. Suppose it is possible to write
F (x) = φ(x)(x− α1) · · · (x− αe)H(x) where H(x) = (x− β1) · · · (x− βk)b(x) for some k ≥ 1.
Then

F (x) = φ(x)(x− α1) · · · (x− αe)(x− β1) · · · (x− βk)b(x)

and the coefficients of F (x) and b(x) are symmetric functions of α1, . . . , α`, β1, . . . , βk. Let
α′1, . . . , α

′
e be a choice of e of the quantities α1, . . . , α`, β1, . . . , βk. Suppose we write

F1(x) = φ(x)(x− α′1) · · · (x− α′e)
(∏

(x− γ)
)
b(x)

where the product is over values of γ from α1, . . . , α`, β1, . . . , βk which are different from
α′1, . . . , α

′
e. Then the coefficients of F1(x) are still symmetric functions of α1, . . . , α`, β1, . . . , βk

and are determined in the same way as the coefficients of F (x) are determined from α1, . . . , α`,
β1, . . . , βk. So, F1(x) = F (x).

Considering (20), we see that the coefficients of F (x) are symmetric functions of α1, . . . , αe.
So, while applying the divisibility technique we should ensure that α1 ≤ · · · ≤ αe. This will
avoid permutations of α1, . . . , αe giving rise to the same F (x). Duplicates, however, can still
occur. Suppose that H(x) in (20) has k linear factors. Then F (x)/φ(x) has a total of e + k
linear factors. Applying the divisibility technique with φ(x) will result in the same F (x)
occurring

(
e+k
e

)
times if we allow all possible choices of α1, . . . , αe with α1 ≤ · · · ≤ αe. When

H(x) is smooth, the value of k is h = ρ1 − ρ and the number of repetitions of F (x) (and
G(x) = F (x)/φ(x)) is

(
h+e
e

)
. Our experiments confirm that such duplicates indeed occur.

4.4 Sieving

In this section, we describe how a sieving method can be developed based on the divisibility
technique.
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Special case e = 1: First consider e = 1, i.e., the degree of freedom is 1. In this case, we
can write

F (x) = φ(x)(x− α1)H(x). (25)

The coefficients of H(x) are determined by α1 and to emphasise this let us write Hα1(x). Note
that Gα1(x) = (x− α1)Hα1(x) and Fα1(x) = φ(x)(x− α1)Hα1(x). Recall from Proposition 1,
that given F (x) it is possible to recover the bi-variate polynomial T (x, y) and hence the y-side
polynomial C(y). Denote the polynomials corresponding to Fα1(x) by Tα1(x, y) and Cα1(y).

The sieving occurs as follows. For each α1 ∈ Fp, generate the corresponding Hα1(x) and
then compute Gα1(x) = (x − α1)Hα1(x) and store all of these Gα1(x) in a list. After all the
Gα1(x)’s have been generated, sort the list. If some Gα1(x) occurs a total of h + 1 times in
the list, then it is smooth. For each such Gα1(x), obtain Fα1(x) and then using Proposition 1
generate the corresponding Cα1(y) and check it for smoothness. If Cα1(y) is found to be
smooth, then factor the corresponding Gα1(x).

Heuristically, at the end of sieving about p/(h+ 1)! smooth Gα1(x)’s will be obtained and
this number of Cα1(y)’s will have to be tested for smoothness. Note that only one Gα1(x)
is actually factored. So, the total cost of sieving is the generation, storing and sorting of p
G(x)’s; smoothness testing of p/(ρ1 − d)! C(y)’s; and the factoring of one G(x) and one C(y).

General case e ≥ 1: The extension to higher degrees of freedom is simple. The idea is to
use sieving in the innermost loop. For a fixed value of α = (α1, . . . , αe−1) use sieving over
all possible values of αe ∈ {αe−1, . . . , p − 1}. For each such choice of αe, generate Hα(x) and
then Gα(x) = (x−α1) · · · (x−αe)Hα(x) and store these G(x)’s in a list. After completing the
iteration over αe, sort the list and identify the polynomials G(x)’s which occur a total of h+ 1
times. These G(x)’s are smooth. To see this note that by construction G(x) has the roots
α1, . . . , αe−1 and further the sieving over αe has encountered h+ 1 additional roots of G(x); a
total of e− 1 + h+ 1 = e+ h roots of G(x) are accounted for and the degree of G(x) is e+ h.
For each G(x) found to be smooth, generate the corresponding F (x) and use Proposition 1 to
generate the corresponding C(y) and check for smoothness. If a C(y) is found to be smooth,
then factor the corresponding G(x). Again, only one G(x) is factored.

In the sieving method, if a polynomial G(x) is found to be smooth in some iteration of
the outer loop variables (i.e., α1, . . . , αe−1), then no subsequent iteration of these variables
will declare G(x) to be smooth and so there will be no repetition. To see this suppose that
G(x) = (x− β1) · · · (x− βe−1)(x− βe) · · · (x− βh+e) and assume that β1 ≤ · · · ≤ βh+e. When
the outer loop variables α1, . . . , αe−1 take the values β1, . . . , βe−1 respectively and sieving with
αe varied over αe−1 to p− 1 is carried, the roots βe, . . . , βh+e are encountered and so G(x) is
generated a total of h + 1 times. In every subsequent sieving step the values of α1, . . . , αe−1

will miss at least one of the roots β1, . . . , βe−1 and then sieving over αe will visit less than h+1
roots. So, G(x) will be generated less than h+ 1 times and will not be reported in such sieving
steps.

For each α ∈ Sp, sieving considers the polynomial Gα(x). So, the total number of polyno-
mials considered by sieving is pe/e!. The expected number of good T (x, y)’s is given by (17).
As a consequence, the number of G(x)’s to consider for obtaining a single good T (x, y) is about(

pe

e!

)
÷
(

pe

(e+ h)!ρ2!

)
=

(e+ h)!ρ2!

e!
=

(ρ1 − d)!ρ2!

e!
. (26)
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Cost comparison: The total cost of obtaining a single good T (x, y) is constructing about
((e + h)!ρ2!)/e! G(x)’s; testing ρ2! C(y)’s for smoothness; and factoring a single G(x) and a
single C(y). In addition, list operations are required. The list of G(x)’s is at most p. During the
construction stage, G(x)’s are appended to the list and then the list is sorted. The same space
is used for each sieving step and so the space requirement is to store at most p polynomials
of degree e + h each. The total time for the list operations including sorting is negligible in
comparison to the algebraic operations. Our experiments indeed confirm this behaviour.

In comparison, if the kernel method described in Section 2.4 is employed, then (e+ h)!ρ2!
G(x)’s would have to be generated; all of these would have to be tested for smoothness; ρ2!
C(y)’s would have to be tested for smoothness; and a single G(x) and a single C(y) would
have to be factored. So, the sieving method improves upon the previous method by removing
the smoothness testing of the G(x)’s. Each G(x) is a polynomial of degree e + h = ρ1 − d
with coefficients in Fp and the cost of testing one G(x) for smoothness is O((e + h)2 log2 p.
The avoidance of the smoothness tests does not reflect on the asymptotic cost. In practice,
however, the effect of this is a substantial improvement in the actual runtime of the algorithm.
We further note that the sieving method generates a 1/e! fraction of the G(x)’s that would be
generated by the kernel method. For e > 1, this provides an additional speed-up.

Note: Suppose that in addition to checking for smooth G(x)’s we are also interested in
checking for G(x)’s which have one irreducible quadratic factor and the rest of the factors are
linear. This information can be obtained from sieving in the following manner. The main
sieving loop and the subsequent sorting of the list of G(x)’s are done as usual. To check for
smoothness we check if a G(x) have occurred h + 1 times. To check for a single quadratic
factor and the rest linear factors, we check whether a G(x) has occurred h− 1 times. If it has
occurred h− 1 times, then e− 1 +h− 1 = e+h− 2 linear roots of G(x) have been encountered
and so the other factor is quadratic. Such a G(x) will be required when we consider the walk
technique for the 2-1 descent.

5 Application to Relation Collection and 2-1 Descent

Below, we separately discuss the application of the divisibility and smoothness technique to
the relation collection phase and the 2-1 descent step.

5.1 Relation Collection

Recall from (9) that the relation collection phase succeeds if p3/((n1 + 1)!(n2 + 1)!) > 2p. For
the relation collection phase, T (x, y) = A(x)y + B(x) where both A(x) and B(x) are linear
polynomials with A(x) being monic. (The degrees d1 and d2 of A(x) and B(x) are both 1.)
So, there are 3 undetermined coefficients in T (x, y), i.e., ρ = 3. Here φ(x) = 1 and so d = 0.

The degree of F (x) is ρ1 = n1 + 1 and that of C(y) is ρ2 = n2 + 1. So, e = d1 +d2−d+ 1 =
3 = ρ = 3. So, F (x) = φ(x)(x− a1)(x− a2)(x− a3)H(x) = (x− a1)(x− a2)(x− a3)H(x) and
the degree of H(x) is ρ1 − e = n1 − 2.

Let us now consider this in combination with the pinpointing technique. Assume that
g1(x) = xn1 and pinpointing is applied from the x-side. The sieving technique of Section 4.4
is applied. Since e = 3, there are two outer loop variables and one inner loop variable. For
fixed values of the outer loop variables, sieving over the inner loop variable is carried out to
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obtain a set of smooth F (x)’s. (Note that since φ(x) = 1, F (x) = G(x).) From each one of
these smooth F (x), the pinpointing technique generates (p− 1) additional smooth F (x)’s and
the corresponding C(y)’s are generated resulting in about (p−1)/(n2 + 1)! smooth C(y)’s. So,
each smooth F (x) discovered in the sieving step provides about (p−1)/(n2 +1)! good T (x, y)’s
(i.e., both F (x) and C(y) are smooth) and hence these many relations. Sieving is carried out
until a little more than 2p relations have been obtained. This shows how to combine sieving
based on the divisibility technique with the pinpointing method.

Examples: Later we report computations of discrete log in two cases. Here we compare the
timings of relation collection for these two cases using only pinpointing and pinpointing along
with sieving based on the divisibility technique. The implementations were done in Magma
and timings are for a single core on Xeon @2.3 GHz.

Case I: p = 64373, n = 37 = 6 × 6 + 1 and n1 = n2 = 6. A total of 130000 relations were
collected. Using pinpointing the reported time was 22927 seconds and using pinpointing along
with the above mentioned sieving the reported time was 21111 seconds.

Case II: p = 297079, n = 40 = 5 × 8 and n1 = 8, n2 = 5. A total of 600000 relations were
collected. Using pinpointing the reported time was 27537 seconds and using pinpointing along
with the above mentioned sieving the reported time was 14253 seconds.

In the second case, the value of n2 is less than that in the first case. Also, the value of
p in the second case is larger. Due to the use of pinpointing, for one smooth polynomial on
the x-side the number of relations obtained is (p − 1)/(n2 + 1)!. So, in the second case, for
one smooth x-side polynomial, the number of relations obtained is more than in the first case.
This shows that compared to the first case, pinpointing is more effective in the second case.

In both cases, the timings reported by sieving are better while the improvement is more
marked in the second case. In the second case, pinpointing requires to check the smoothness of
polynomials of degree 9 as compared to the smoothness check of polynomials of degree 7 in the
first case. Since sieving eliminates these smoothness checks, the speed-up is more pronounced
in the second case than in the first case.

5.2 2-1 Descent

Suppose we wish to descend from a quadratic polynomial φ(x) so that d = 2. Let T (x, y) =
A(y)x + B(y) and the degrees of A(y) and B(y) are d1 and d2 respectively with A(y) being
monic. The polynomials A(y) and B(y) have d1 + 1 and d2 + 1 terms respectively and so the
total number of monomials in T (x, y) is d1 + d2 + 2. Since A(y) is constrained to be monic the
number of undetermined coefficients in T (x, y) is ρ = d1 + d2 + 1.

The degree of F (x) = T (x, g1(x)) is ρ1 = max(n1d1 + 1, n1d2) and the degree of C(y) =
F (g2(y), y) is ρ2 = max(n2 + d1, d2). Typically, the choice of d1 and d2 will be such that
ρ2 = n2 + d1. The degree of freedom e = ρ − d = ρ − 2 = d1 + d2 − d + 1 = d1 + d2 − 1. For
different values of d1 and d2, Table (1) provides the values of ρ, the expected number of good
T (x, y) predicted by (17) and the number of polynomials (given by (26)) to be considered to
obtain one good T (x, y).

A table similar to (1) can be derived if one wishes to descend from a quadratic polynomial
in y. If n1 and n2 are not equal or if the degree of freedom is more than 1, then the number

19



Table 1: Estimates of the expected number of good T (x, y) given by (17) and the number of
trials for a single 2-1 descent from the x-side given by (26).

d1 d2 ρ e ρ1 ρ2 # good T (x, y) # trials
from (17) from (26)

1 1 3 1 n1 + 1 n2 + 1 p/((n1 − 1)!(n2 + 1)!) (n1 − 1)!(n2 + 1)!

1 2 4 2 2n1 n2 + 1 p2/((2n1 − 2)!(n2 + 1)!) ((2n1 − 2)!(n2 + 1)!)/2!

2 2 5 3 2n1 + 1 n2 + 2 p3/((2n1 − 1)!(n2 + 2)!) ((2n1 − 1)!(n2 + 2)!)/3!

of trials required for descending from the x-side and the y-side are not equal. Hence, it is
advisable to make the 2-1 descend either from x-side or from the y-side but, not both. If the
descent from the y-side is faster, then from the quadratic x-polynomials one should move to
quadratic y-polynomials and then descend from the y-side. The converse strategy should be
applied if the descent from the x-side is faster.

As mentioned earlier, degrees of freedom one and three have been considered in [26, 20].
The degree of freedom two (corresponding to d1 = 1 and d2 = 2) does not seem to have been
considered earlier although it turns out to be important in practice.

Examples (continued): We consider the timings for the 2-1 descent for the example in
Case I above after discussing the walk technique. For the example mentioned in Case II above
(i.e., p = 297079, n = 40 = 5 × 8 and n1 = 8, n2 = 5), we have compared average timings for
a 2-1 descent required by the divisibility technique based sieving method and the technique
described in Section 2.4 (which we call the kernel method for the sake of convenience). The
kernel method requires smoothness check of polynomials. For this we used Swan’s test [33] to

perform an initial filtering and then used the check xp mod u(x)
?
= x to determine whether

the polynomial u(x) is smooth. Factoring of u(x) was attempted only after confirming that
u(x) is smooth. On an average a 2-1 descent using the kernel method took about 100 hours
while it took about 8 hours using the divisibility-cum-sieving method. This clearly shows that
practical improvements in timing can be obtained using the new method.

6 The Walk Technique for a 2-1 Descent

Suppose that we wish to descend from a quadratic polynomial φ(x) and there are e degrees
of freedom. The probability of obtaining a good T (x, y) is given by (17) and the expected
number of good T (x, y) is given by (26).

Let us assume that in none of these trials it is possible to obtain a T (x, y) which is good
for φ(x). Typically, the divisibility of F (x) = T (x, g1(x)) by φ(x) can be ensured, but, the
simultaneous smoothness for G(x) = T (x, g1(x))/φ(x) and C(y) = T (g2(y), y) will not be
achieved. At this point, the descent can get stuck. The way around is to try to move to
another quadratic polynomial and try to descend from that. There are two ways to do this.

1. Given φ(x), try to obtain T (x, y) such that G(x) has one quadratic factor φ1(x) and the
other factors are linear and C(y) has only linear factors. Then φ(x) = C(y)/G(x). If a
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descent from φ1(x) is possible, then this descent can be combined with the factorisation
of G(x)/φ1(x) and C(y) to get a descent for φ(x).

2. Alternatively, given φ(x), one can try to obtain T (x, y) such that G(x) is smooth and
C(y) has one quadratic factor ψ(y) and the others are linear factors. If a descent from
ψ(y) is possible, then so is a descent from φ(x).

In the descent phase we will get quadratic polynomials in both x and y. So there are 4
kinds of step one may consider during the 2-1 descent viz. x-x, x-y, y-y and y-x. Let ζab
represent the probability of an a-b step. We provide estimates of ζab. Consider ζxy which is the
probability of an x-y step. The x-side is a polynomial of degree ρ1 of which φ(x) is a quadratic
factor and it is required for the other factor of degree ρ1− 2 to factorise into linear terms. The
probability of this happening is 1/(ρ1 − 2)!. The y-side is a polynomial of degree ρ2. For a
complete 2-1 descent, it is required for this polynomial to factorise completely which occurs
with probability 1/ρ2!. On the other hand, for an x-y step, the requirement on the y-side is a
quadratic factor and the other factor of degree ρ2− 2 to completely factorise into linear terms.
This probability is about 1/(2(ρ2−2)!) (using the fact that a quadratic polynomial is irreducible
with probability about 1/2). Using the heuristic assumption of independence of factorisation
on the x and the y sides, the probability of an x-y step is about 1/(2(ρ1 − 2)!(ρ2 − 2)!). The
probabilities of the other a-b steps can be similarly worked out and these are given below.

ζxx = 1
2(ρ1−4)!ρ2! ; ζxy = 1

2(ρ1−2)!(ρ2−2)!

ζyy = 1
2ρ1!(ρ2−4)! ; ζyx = 1

2(ρ1−2)!(ρ2−2)! .

}
(27)

When the degree of freedom is one, ρ1 = n1 +1 and ρ2 = n2 +1. For higher degrees of freedom,
the values of ρ1 and ρ2 change and so do the probabilities. We have experimentally verified
these estimates for one degree of freedom.

Note that ζxy ≈ ζyx and this value is greater than ζxx or ζyy. So, it is advisable to have an
alternating walk, i.e., if the descent fails for φ1(x), then take an x-y step to obtain ψ1(y); if
the descent fails for ψ1(y), then take a y-x step to φ2(x); and so on. If the degree of freedom
is more than 1, then the values of ζab will change and the walk will have to be appropriately
designed.

Branching: As described above, the walk technique converts a quadratic polynomial to
another quadratic polynomial. This, however, may not always be possible. In such a situation,
one has to try and move from a quadratic polynomial to a pair of quadratic polynomials. This
creates a branching and increases the number of quadratic polynomials for which descent is
required. If the number of such branchings is too much, then one may end up considering
descent from almost all the quadratic polynomials. In such a scenario, the method will not
succeed. On the other hand, a few branchings do not affect convergence.

For the actual implementation, there can be several ways of realising branchings. Suppose,
we are trying to descend from an x-polynomial φ(x) and it turns out that for this polynomial
descent is not possible and neither are x-x or x-y steps of the walk possible. Then, from φ(x)
one needs to move to two quadratic polynomials. There are three options for this:

• from φ(x) move to φ1(x), φ2(x);

• from φ(x) move to φ1(x), ψ1(y);
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• from φ(x) move to ψ1(y), ψ2(y).

These options have different probabilities which also depend on the degree of freedom. For the
actual implementation, one should choose the option with the highest probability first.

Cycling: There is another way in which the walk may fail. Suppose the walk starts from
φ(x) and alternates between x and y-polynomials. If one of the x-polynomials turn out to
be φ(x), then the walk may cycle. Appropriately using randomisation can usually avoid this
possibility. An alternative simple method is to maintain a list of polynomials encountered so
far in the walk and check in the list whenever a new polynomial is obtained. If the length of
the walk is small, this works well enough. For larger walks more sophisticated cycle detection
algorithms may be used.

Probability of making a successful step: The probability that an a-b step is successful
in a single trial is ζab and so the probability that such a step is not possible in a single trial is
(1− ζab). Due to the single degree of freedom, it is possible to make p trials. The probability
that all the trials will fail is (1 − ζab)

p (under the heuristic assumption that the trials are
independent) and so the probability that an a-b step is successful is 1 − (1 − ζab)p. If this
probability is close to one, i.e., if (1− ζab)p ≈ 0, then the a-b step will go through.

Length of the walk: Let ηx (resp. ηy) be the probability that given a fixed quadratic
irreducible x-polynomial (resp. y-polynomial) it is possible to descend into linear factors using
one degree of freedom. So, ηx = 1/((n1 − 1)!(n2 + 1)!) (resp. ηy = 1/((n1 + 1)!(n2 − 1)!)) and
with probability 1−ηx (resp. 1−ηy) the descent fails at the x-polynomial (resp. y-polynomial).
Due to one degree of freedom, we can make about p trials and the probability that the descent
fails in all the trials is (1 − ηx)p (resp. (1 − ηy)p). This is the probability that the walk at
an x-polynomial (resp. y-polynomial) has to continue further. The walk alternates between x
and y-polynomials. Suppose there are t1 x-polynomials and t2 y-polynomials in the walk. We
make the simplifiying assumption that t1 = t2 = t.

The probability that descent is not successful at a particular x-polynomial is (1 − ηx)p.
Heuristically assuming independence, the probability that descent is not successful at all the
t x-polynomials is (1 − ηx)pt. Similarly, the probability that descent is not successful at all
the t y-polynomials is (1− ηy)pt. So, the total probability that the descent is not successful is
((1−ηx)(1−ηy))pt. From this we get that for the descent to be successful with high probability,
we must have ((1− ηx)(1− ηy))pt ≈ 0. In this expression, the quantities ηx, ηy and p are fixed.
So, the value of t must be chosen large enough so that ((1 − ηx)(1 − ηy))pt becomes close to
zero. Then the number of steps in the walk is about 2t.

Examples (continued): We now report on the walk technique for some examples that we
have considered.

Case I: For p = 64373, n1 = 6 and n2 = 6, using (27) we have (1 − ζxy)p ≈ 0.01. This is
small and suggests that the walk technique should work in this case and as we report later, it
indeed does. There were very few branchings and the average walk length turned out to be 17.
We made use of the note mentioned at the end of Section 4.4 on the divisibility based sieving

22



method. This allowed us to check for smooth polynomials and also for polynomials which have
one quadratic irreducible factor and the rest are linear factors.

For the other side where there is no sieving, we still need to check whether the polynomial
is smooth or whether it has one quadratic factor and other linear factors. Let us call this a
modified smoothness check. Swan’s test returns the parity of the number of factors and by
comparing to the parity of the polynomial degree it is possible to quickly filter out some non-
smooth polynomials. The two cases of the modified smoothness check has different parities
and so Swan’s test is not helpful in this case. For the modified smoothness test, we have done
the following. To test a polynomial u(x), compute u1(x) = xp mod u(x) and then v(x) =
gcd(u1(x) − x, u(x)). If v(x) = u(x), then u(x) is smooth; and if deg(v) = deg(u) − 2, then
u(x) has one quadratic irreducible factor.

We have implemented the kernel method described in Section 2.4 for 2-1 descent using
the walk technique for this case. This also requires the modified smoothness check. Timing
comparison between the divisibility-cum-sieving and the kernel method is the following. The
complete 2-1 descent using the first method is about 14 minutes while it is about 25 minutes
using the second one. (Further details are mentioned in Section 9.1.) While both the timings
are well within the range of practicality, the improvement is noticeable and for bigger examples
will become significant.

Case II: For p = 297079, n1 = 8 and n2 = 5, using (27), we have (1 − ζxy)p ≈ 0.09. This
value is not sufficiently close to 0 for the walk technique to work. We observed this in our
experiments. For this case, we are not always able to move from one quadratic polynomial to
another. The number of times when we have to move from one quadratic polynomial to two
quadratic polynomials turns out to be significantly high. As a result of such branching, the
walk technique does not converge. We provide some results for the experiment that we have
run. For the element given by (43) in Section 9.2, we have carried out the descent up to degree
2 polynomials. This resulted in 59 quadratic polynomials. Out of these for 28 polynomials,
the walk terminated and it was possible to make the descent. In these cases, the average walk
length was 12. Some very few branchings also take place, but, these terminate very quickly.

The walks for the other 31 polynomials did not terminate. For each polynomial, we ran
the walk for about 600 steps and observed that on an average there were about 80 branchings.
These branchings create a tree like structure resulting in more and more quadratic polynomials
from which descents are to be made. As a result, the walks for these polynomials do not
terminate. Due to this reason, we decided to switch to a different representation of the field
where we can make use of 2 degrees of freedom to perform the 2-1 descent.

Case-III: Consider the 25-bit prime and extension degree 57 example used in [22]. In this
case, p = 33341353, n1 = 8 and n2 = 7. Using (27) we have (1− ζxy)p ≈ 0.0001 which is close
to 0. This suggests that the walk technique works well in this case. The work [22] does not
mention the walk length. To get an idea, we have run some experiments with the 2-1 descent
for this example and have observed the average walk length is about 5. This indicates that the
application of the walk technique for this example is not very difficult. Note that this walk
length is less than the walk length for Case I which corresponds to the difference in the values
of ζxy in the two cases.

23



7 Concrete Analysis

We perform the following analysis. Fix the size of the underlying prime p to be δ bits. Then we
consider different possible extension degrees and the associated costs for the different phases
of the FFS algorithm.

The extension degree n is taken to be n1n2 or n1n2 + 1. Any relation obtained in the
relation collection phase involves n1 +n2 elements of the factor base. The number of relations
required is slightly more than 2p. Consider the matrix which is provided as input to the linear
algebra phase. The number of rows R in the matrix is about 2p and each row has n1 + n2

non-zero entries. So, the total weight W of the matrix is around 2p(n1 + n2). As mentioned
earlier, the cost of the Lanczos or the block Wiedemann algorithm is proportional to R ×W
which in the present case is about 4(n1 + n2)p2. This determines the time taken by the linear
algebra step.

For the relation collection phase, we need to consider two things. The first is whether
the relation collection step is indeed feasible which is determined by the inequality in (9).
The second consideration is the number of trials required to obtain a single relation which is
determined by either (11) or (12) depending on whether pinpointing is applied from the x or
the y-side. The total number of trials for relation collection is obtained by multiplying the
expression in (11) or (12) by 2p.

In the descent phase, the most time consuming step is the 2-1 descent. Again, there are
two considerations for this – feasiblity and the number of trials. This depends on the values
of d1 and d2 and the degree of freedom e as indicated in Table 1. The number of trials is
for a single 2-1 descent. Typically, the descent to degree 2 polynomials will result in several
polynomials. In the cases for which we have done the complete discrete log computations,
the number of such polynomials is less than 100. For larger fields, there may be few hundred
quadratic polynomials. To get the total number of trials for the complete 2-1 descent it is
required to multiply the number of trials for a single descent with the number of polynomials
for which descent is required.

Concrete estimates of the above quantities for different values of δ are provided in Tables 2
to 6. In these tables, the value of Q = pn and n(Q) are given by (2) with α = (1/3)2/3 for
D = 1 (i.e., the factor base consists only of linear polynomials). In later sections, we report
on the actual computation of discrete log for 16-bit and 19-bit primes with extension degrees
37 and 40 respectively. Here we note the following points.

1. In all cases (with the exception of δ = 25 and n = 57), we find n > n(Q), where n(Q)
is as defined in (2). This shows that (contrary to the analysis in [26]) it is feasible to
compute discrete log on FQ for n > n(Q).

2. As n increases, the expected number of good T (x, y) for the 2-1 descent step decreases.
If this number goes below 1, then the walk technique is required. Further, if this number
becomes very low, then the walk technique leads to a lot of branchings and does not
converge. At this point, it is required to move to a higher degree of freedom.

3. As the degree of freedom increases, the number of trials required for a 2-1 descent also
increases. So, the shift to a higher degree of freedom is to be made only after ascertaining
that descent is not possible for a lower degree of freedom even with the walk technique.
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4. As n increases beyond n(Q), the time for 2-1 descent becomes more than the time for
the relation collection phase and also grows at a faster rate. To a certain extent this is
to be expected, since the bound n(Q) in [26] was obtained assuming that the individual
logarithm phase takes at most as much time as the relation collection phase.

5. The number of trials for obtaining one relation is based on the pinpointing technique.
We have not considered the faster two-sided (or advanced) pinpointing since it is not
generally applicable.

6. For certain cases ((δ, n) = (16, 40), (18, 45), (20, 64)), the expected number of good T (x, y)
required for descent is less than 1 even though the degree of freedom is greater than
1. This suggests that for the corresponding computations, the walk technique will be
required. Our probability estimates and the alternating x-y walk is for a single degree
of freedom. For higher degrees of freedom, appropriate estimates can be developed and
a suitable walk designed.

Based on the tables, we can conclude that access to sufficiently powerful computational
resources will enable the computation of discrete log for the following parameter choices:

(δ, n) = (16, 49), (18, 56), (20, 64), (25, 64).

The concrete analysis for 32-bit primes shows that it is unlikely that these computations
will be carried out anytime soon. For this size primes, the most striking point is perhaps the
fact that for n = 100 (corresponding to logQ = 3200), the discrete log computation should be
possible in about 280 time.

8 Asymptotic Complexity

Let p = LQ
(

1
3 , c
)

and so

n =
1

c

(
lnQ

ln lnQ

)2/3

. (28)

For the asymptotic complexity analysis we consider the more general case where the factor
basis consists of univariate irreducible polynomials in x or y of degree at most D for some
fixed D ≥ 1. So, the factor basis is roughly of size 2pD.

As before, let y = g1(x) and x = g2(y) where g1 and g2 are of degrees n1 and n2 respectively.
The choice of n1 and n2 affects the asymptotic complexity and we will later see how to choose
these values.

The definition of good bivariate polynomials extend to the case of general D as follows. A
bivariate polynomial T (x, y) is good for a polynomial φ(x) of degree d if both F (x)/φ(x) (where
F (x) = T (x, g1(x)) is of degree ρ1) and C(y) = T (g2(y), y) (of degree ρ2) are D-smooth. As
before, let the number of undetermined coefficients of T (x, y) be ρ and the degree of freedom
be e = ρ− d. For relation collection, φ(x) = 1 and so d = 0; while for (D + 1)-D descent φ(x)
is an irreducible polynomial of degree D + 1 and so d = D + 1.

For the asymptotic analysis, we take the form of T (x, y) to be T (x, y) = A(x)y + B(x),
where A(x) and B(x) are of degrees d1 and d2 respectively. Then as before ρ = d1 + d2 + 1,
ρ1 = max(d1 + n1, d2) and ρ2 = max(d1n2 + 1, d2n2). Asymptotically, the value of ρ2 is
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Table 2: A concrete analysis for a 16-bit prime p.

parameters 2-1 descent relation collection
(from Tab 1)

(n, lgQ, n(Q)) (n1, n2) (d1, d2, e) good no of lhs of pinpt no of trials
T (x, y) trials (9) side (11) or (12)

(35, 560, 34) (7, 5) (1, 1, 1) 0.13 218.98 223.21 x 210.18

(37, 592, 35) (6, 6) (1, 1, 1) 0.11 219.21 223.40 x or y 212.41

(40, 640, 37)
(5, 8) (1, 2, 2) 0.29 232.77 220.04 y 212.20

(5, 8) (2, 2, 3) 213.75 234.35 220.04 y 212.20

(42, 672, 38) (6, 7) (2, 2, 3) 19.43 237.96 220.40 y 212.99

(45, 720, 39) (5, 9) (2, 2, 3) 19.43 237.67 216.72 y 215.30

(48, 768, 41) (6, 8) (2, 2, 3) 1.94 241.13 217.23 y 215.00

(49, 784, 41) (7, 7) (2, 2, 3) 0.12 245.25 217.40 x or y 215.99

Table 3: A concrete analysis for an 18-bit prime p.

parameters 2-1 descent relation collection
(from Tab 1)

(n, lgQ, n(Q)) (n1, n2) (d1, d2, e) good no of lhs of pinpt no of trials
T (x, y) trials (9) side (11) or (12)

(40, 720, 39)
(8, 5) (1, 1, 1) 0.07 221.79 226.04 x 210.74

(5, 8) (1, 2, 2) 4.70 232.77 226.04 y 210.74

(42, 756, 40)
(6, 7) (1, 2, 2) 0.50 236.09 226.40 y 212.51

(6, 7) (2, 2, 3) 1243.66 237.96 226.40 y 212.51

(45, 810, 42)
(5, 9) (1, 2, 2) 0.50 236.09 222.72 y 213.38

(5, 9) (2, 2, 3) 1243.66 237.67 222.72 y 213.38

(48, 864, 43) (6, 8) (2, 2, 3) 124.37 241.13 223.23 y 213.55

(49, 882, 44) (7, 7) (2, 2, 3) 7.97 245.25 223.40 x or y 215.51

(56, 1008, 47) (7, 8) (2, 2, 3) 0.80 248.42 220.23 y 216.55

Table 4: A concrete analysis for a 20-bit prime p.

parameters 2-1 descent relation collection
(from Tab 1)

(n, lgQ, n(Q)) (n1, n2) (d1, d2, e) good no of lhs of pinpt no of trials
T (x, y) trials (9) side (11) or (12)

(45, 900, 44) (5, 9) (1, 2, 2) 7.51 236.09 228.72 y 211.65

(48, 960, 46) (6, 8) (1, 2, 2) 0.83 239.26 229.23 y 212.72

(49, 980, 47) (7, 7) (2, 2, 3) 510.21 245.25 229.40 x or y 215.35

(56, 1120, 50) (7, 8) (2, 2, 3) 51.02 248.42 226.23 y 215.72

(64, 1280, 54) (8, 8) (2, 2, 3) 0.24 256.13 223.06 x or y 218.90
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Table 5: A concrete analysis for a 25-bit prime p.

parameters 2-1 descent relation collection
(from Tab 1)

(n, lgQ, n(Q)) (n1, n2) (d1, d2, e) good no of lhs of pinpt no of trials
T (x, y) trials (9) side (11) or (12)

(57, 1425, 57) (8, 7) (1, 1, 1) 0.17 227.60 241.23 x 215.31

(64, 1600, 61)
(8, 8) (1, 1, 1) 0.02 230.77 238.06 x or y 218.48

(8, 8) (1, 2, 2) 0.04 253.82 238.06 x or y 218.48

(8, 8) (2, 2, 3) 7961.36 256.13 238.06 x or y 218.48

Table 6: A concrete analysis for a 32-bit prime p.

parameters 2-1 descent relation collection
(from Tab 1)

(n, lgQ, n(Q)) (n1, n2) (d1, d2, e) good no of lhs of pinpt no of trials
T (x, y) trials (9) side (11) or (12)

(81, 2592, 81) (9, 9) (1, 2, 2) 0.24 265.04 252.72 x or y 221.79

(90, 2880, 86) (9, 10) (2, 2, 3) 465023 271.00 248.96 y 221.80

(100, 3200, 91) (10, 10) (2, 2, 3) 1359.72 279.42 245.5 x or y 225.26

minimised by choosing d1 = d2 which gives d1 = d2 = (ρ − 1)/2 = (e + d − 1)/2. In the
asymptotic analysis, d1 and d2 will be fixed while n (and hence n1 and n2) will grow. So
asymptotically, ρ1 = d1 + n1 and ρ2 = d1n2

Let Π1 and Π2 respectively be the probabilities that F (x)/φ(x) and C(y) are D-smooth.
Using standard heuristics we have:

− ln Π1 ≈ ρ1 − d
D

ln

(
ρ1 − d
D

)
;

− ln Π2 ≈ ρ2

D
ln
(ρ2

D

)
.

Further, the heuristic probability that both F (x)/φ(x) and C(y) are D-smooth is Π1Π2. For
the relation collection phase, each good T (x, y) gives one relation and a total of 2pD relations
are required. On the other hand, for the descent phase, one good T (x, y) is sufficient.

Let erel = ρ = d1 + d2 + 1 and edes = ρ− (D+ 1) = d1 + d2 −D. Then erel is the degree of
freedom available for relation collection and edes is the degree of freedom available for descent.
Also, define ∆rel = (erel − 1)/2 and ∆des = (edes + D)/2. Then ∆rel (resp. ∆des) gives the
degrees of A(x) and B(x) for relation collection (resp. descent). Similarly, we will use rel and
des in the subscripts of the probabilities Π1 and Π2 to distinguish between relation collection
and descent.

The feasibility conditions for the completion of relation collection and descent steps are as
follows.

perelΠ1,relΠ2,rel ≥ 2pD, feasibility of relation collection;
pedesΠ1,desΠ2,des ≥ 1, feasibility of descent.

}
(29)
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Joux [22] has worked out the cost of relation collection using the pinpointing method for D ≥ 1.
The following summarises the costs of relation collection and descent steps.

(p+ Π−1
1,rel)Π

−1
2,rel2p

D−1, cost of relation collection;

Π−1
1,desΠ

−1
2,des, cost of descent.

}
(30)

For the descent step, we consider only the feasibility and cost of a single (D + 1)-D descent.
The smoothness probabilities Π1,relΠ2,rel and Π1,desΠ2,des for relation collection and descent

depend upon the values of n1 and n2. It is possible to choose n1 and n2 such that either
Π1,relΠ2,rel or Π1,desΠ2,des is maximised, but, both cannot be simultaneously maximised. This
gives rise to two cases which we tackle separately.
Notation: The values of erel and edes (and hence ∆rel,∆des) as well as Π1,rel and Π2,des will vary
depending on the choice of n1 and n2 maximising either Π1,relΠ2,rel or Π1,desΠ2,des. We need
separate notation to denote these quantities. For the quantities arising when the smoothness
probability of relation collection is maximised, we will use (0, rel) and (0, des) in the subscript
while for quantities arising when the smoothness probability of descent is maximised, we will
use (1, rel) and (1,des) in the subscript.

8.1 Case-I: Maximising Smoothness Probability for Relation Collection

For a degree of freedom e(0,rel) for relation collection, we have ∆(0,rel) = (e(0,rel) − 1)/2. Later,
we show how to determine e(0,rel) so as to ensure feasibility of relation collection and to minimise
the cost. Choose

n1 ≈
√
n∆(0,rel); n2 ≈

√
n

∆(0,rel)
. (31)

The smoothness probabilities are obtained as follows:

Π−1
1,(0,rel) ≈ exp

(√
n∆(0,rel)

D
ln

√
n∆(0,rel)

D

)
≈ LQ

(
1

3
,

√
∆(0,rel)

3D
√
c

)
≈ Π−1

2,(0,rel);

Π−1
1,(0,des) ≈ exp

(
n1 − (D + 1)

D
ln
n1 − (D + 1)

D

)
≈ exp

(√
n∆(0,rel) − (D + 1)

D
ln

√
n∆(0,rel) − (D + 1)

D

)

≈ exp

(√
n∆(0,rel)

D
ln
√
n

)
≈ LQ

(
1

3
,

√
∆(0,rel)

3D
√
c

)
Π−1

2,(0,des) ≈ exp
(ρ2

D
ln
ρ2

D

)
≈ exp


e(0,des)+D

2

√
n

∆(0,rel)

D
ln

e(0,des)+D

2

√
n

∆(0,rel)

D


≈ exp

(
e(0,des) +D

2D

√
n

∆(0,rel)
ln
√
n

)

≈ LQ

(
1

3
,
e(0,des) +D

6D
√

∆(0,rel)c

)
.
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Using (28), it is possible to show (by ignoring ln c and ln ln lnQ) that
√
n lnn = LQ (1/3, 2/(3

√
c)) .

Using this expression for
√
n lnn in the expressions for the smoothness probabilities, the feasi-

bilities and costs of relation collection and descent are obtained respectively from (29) and (30).
These are given below.

Feasibility of relation collection: c ≥
(

2
√

∆(0,rel)

3D(2∆(0,rel)+1−D)

)2/3

;

Feasibility of descent: c ≥
(
e(0,des)+D+2∆(0,rel)

6De(0,des)
√

∆(0,rel)

)2/3

.

So, the overall feasibility is

c ≥ max

( 2
√

∆(0,rel)

3D
(
2∆(0,rel) + 1−D

))2/3

,

(
e(0,des) +D + 2∆(0,rel)

6De(0,des)

√
∆(0,rel)

)2/3
 . (32)

Proposition 3 Fix a value of D ≥ 1. Then for every c > 0, it is possible to choose e(0,rel)

and e(0,des) such that (32) holds.

Proof: Denote by B1 (resp. B2) the first (resp. second) term in (32). For a fixed c, consider the
bound c3/2 ≥ B1. Note that B1 does not depend on e(0,des). So, for a fixed c, the requirement

is to choose the minimum possible value of e(0,rel) such that c3/2 ≥ B1 holds. Expanding the
inequality gives a quadratic in

√
∆(0,rel). Solving this quadratic provides the value for

√
∆(0,rel)

to be √
∆(0,rel) =

1 +
√

1 + 18D2c3(D − 1)

6Dc3/2
.

Let e∗(0,rel) = d2∆(0,rel) + 1e and ∆∗(0,rel) = (e∗(0,rel) − 1)/2. This provides the value of e∗(0,rel) for

which c3/2 ≥ B1 holds. With this value of e∗(0,rel) and the given value of c, one can now find

the minimum value e∗(0,des) of e(0,des) such that the inequality c3/2 ≥ B2 holds. The values of
e∗(0,rel) and e∗(0,des) given by proposition 3 are the following.

e∗(0,rel) =

2

(
1 +

√
1 + 18D2c3(D − 1)

6Dc3/2

)2

+ 1

 ;

e∗(0,des) =


D + 2∆∗(0,rel)

6c3/2D
√

∆∗(0,rel) − 1

 .
With these expressions, it is possible to run the relation collection and the descent phases of
the FFS algorithm. Further, the costs for the different phases are as follows:

Cost of relation collection:

2pD−1Π−1
2,(0,rel)(p+ Π−1

1,(0,rel)) ≈ LQ

(
1
3 , (D − 1)c+

√
∆∗

(0,rel)

3D
√
c

+ max

(
c,

√
∆∗

(0,rel)

3D
√
c

))
.

Cost of descent:

Π−1
1,(0,des) Π−1

2,(0,des) ≈ LQ

(
1
3 ,

e∗
(0,des)

+D+2∆∗
(0,rel)

6D
√

∆∗
(0,rel)

c

)
.

Cost of linear algebra:
4p2D ≈ LQ

(
1
3 , 2Dc

)
.
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Here ∆∗(0,rel) and e∗(0,des) are as determined in Proposition 3. So, the overall cost is LQ(1/3, δ0)

Figure 1:

where

δ0 = min
D≥1

(
max

(
(D − 1)c+

√
∆∗

(0,rel)

3D
√
c

+ max

(
c,

√
∆∗

(0,rel)

3D
√
c

)
, 2Dc,

e∗
(0,des)

+D+2∆∗
(0,rel)

6D
√

∆∗
(0,rel)

c

))
. (33)

Note that ∆∗(0,rel) and e∗(0,des) implicitly depend upon D and so the minimum over D also
applies to these quantities.

8.2 Case-II: Maximising Smoothness Probability for Descent

For a degree of freedom e(1,des) for descent, we have ∆(1,des) = (e(1,des) +D)/2. Choose

n1 ≈
√
n∆(1,des); n2 ≈

√
n

∆(1,des)
. (34)

With these choices we have

Π−1
1,(1,des) ≈ LQ

(
1

3
,

√
∆(1,des)

3D
√
c

)
≈ Π−1

2,(1,des);

Π−1
1,(1,rel) ≈ LQ

(
1

3
,

√
∆(1,des)

3D
√
c

)
;

Π−1
2,(1,rel) ≈ LQ

(
1

3
,

∆(1,rel)

3D
√

∆(1,des) c

)
.
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Using these expressions for the probabilities, it is possible to work out the feasibility condition
as in the previous case which turns to be the following.

c ≥ max

( ∆(1,rel) + ∆(1,des)

3(e(1,rel) −D)D
√

∆(1,des)

)2/3

,

(
2
√

∆(1,des)

3D (2∆(1,des) −D)

)2/3
 . (35)

Figure 2:

As in Proposition 3, it is possible to argue that for any fixed D ≥ 1 and for all c > 0, it
is possible to choose ∆(1,rel) and ∆(1,des) such that (35) holds. Denote these values by ∆∗(1,rel)
and ∆∗(1,des). We get

∆∗(1,des) =
e∗(1,des) +D

2
where e∗(1,des) =

2

(
1 +
√

1 + 18D3c3

6Dc3/2

)2

−D

 (36)

and

∆∗(1,rel) =
e∗(1,rel) − 1

2
where e∗(1,rel) =


2∆∗(1,des) − 1 + 6c3/2D2

√
∆∗(1,des)

6c3/2D
√

∆∗(1,des) − 1

 . (37)

Using these values, the overall cost comes out to be LQ(1/3, δ1) where

δ1 = min
D≥1

(
max

(
(D − 1)c+

∆∗
(1,rel)

3D
√

∆∗
(1,des)

c
+ max

(
c,

√
∆∗

(1,des)

3D
√
c

)
, 2Dc,

2
√

∆∗
(1,des)

3D
√
c

))
. (38)
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8.3 Cost and Parameters of the Algorithm

The cost of the algorithm depends on whether the smoothness probability of relation collection
is maximised or the smoothness probability of descent is maximised. So, the overall cost is the
minimum of these two costs, i.e., the cost is

LQ

(
1

3
,min(δ0, δ1)

)
(39)

where δ0 and δ1 are given by (33) and (38) respectively. The plots of δ0 and δ1 with c are given
in Figures (1) and (2). The combined plots of δ0 and δ1 are shown in Figure (3).

The design parameters n1 and n2 are determined from the cost as follows. For the given
values of p and n, the value of c is determined. For this value of c, from the complexity plot (or
the cost expression) determine the value of D for which the minimum complexity is attained.
Denote this value by D∗. Next determine whether δ0 or δ1 is minimum and suppose that δi
is the minimum. Given c, D∗ and knowing i, it is possible to obtain e∗(i,rel) and e∗(i,des). These

determine ∆∗(i,rel) and ∆∗(i,des) which in turn determine n1 and n2 as given by (31) or (34).

Example: Let p = 262147, n = 100 and Q = pn. Then p = LQ (1/3, 0.3026), and so c =
0.3026. In this case, from the complexity plot we have that the minimum is attained for D∗ = 2.
For this value of D∗ it turns out that δ0 is lesser than δ1. Proposition 3 shows that e∗(0,rel) = 5

and e∗(0,des) = 4 and so ∆∗(0,rel) = 2. Using (31), we get n1 =
⌈√

∆(0,rel)n
⌉

= d
√

200e = 15 and

n2 =
⌈√

n/∆(0,rel)

⌉
= 7.

8.4 Observations and Comparison to Previous Analysis

We make the following observations about the complexity as given by (39). The values of c
mentioned in the points below are marked in Figure 3.

1. The range of values for c > 0 can be partitioned into disjoint intervals I1 ∪ I2 ∪ · · ·
such that for c ∈ Ii, the minimum cost is attained for D = i. For D = 1, 2 and 3, the
corresponding intervals I1, I2 and I3 are shown on the plot in 3.

2. There are ranges of c where δ0 < δ1 and one such range is c ∈ ((8/81)2/3, (1/6)1/3). There
are other ranges of c where δ1 < δ0 and one such range is c ∈ ((5/288)1/3, (2/81)1/3). So
the minimisation given by (39) is non-trivial.

3. There are ranges of c, where the cost of descent is more than the cost of the other two
phases. This happens for example for c ∈ ((8/81)2/3, (1/6)1/3); there are ranges of c,
where the cost of relation collection is more than the cost of the other two phases, eg.,
for c ∈ ((5/288)1/3, (2/81)1/3); and there are ranges of c, where the cost of linear algebra
is more than the cost of other two phases, eg. for c ≥ (1/6)1/3.

4. There are regions of c, where the maximum of the costs of relation collection, linear
algebra and descent using polynomials of degree D + 1 is less than the maximum of
these costs achievable using polynomials of degree D. This happens for example for
c ∈ ((2/81)1/3, (5/72)1/3). So, asymptotically speaking, increasing the value of D does
not necessarily lead to a higher overall cost.
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5. For D > 1, we have found that the cost of descent is always lower than the cost of relation
collection. It is only for D = 1 that the cost of descent can be more than the cost of
relation collection. In practice, the case of D = 1 is important.

We mention the following gaps and errors in the analysis done in [26, 22].

1. The feasibility condition on c for the descent phase was not considered.

2. It was assumed that the cost of the descent phase is always lower than the cost of relation
collection. As pointed out above, this is not correct.

3. In [26], it was mentioned that with a fixed value of D, it is not possible to cover the entire
range of c. Proposition 3 shows that this is not correct in Case-I and similarly, neither
this is correct for Case-II. Irrespective of Case-I or Case-II, with any fixed D ≥ 1, it is
possible to cover the entire range of values of c. It is reported in [22] that for c < (1/3)2/3,
it is required to increase the value of D to 2. This is also not true. It is possible to obtain
a lower value of complexity for D = 1 itself for (5/72)1/3c < (1/3)2/3. There is, however,
a motivation for moving to a higher value of D. As indicated above, this reason is to
lower the cost rather to increase the feasibility range of the algorithm.

4. It was reported in [22] that absolute minimum complexity is achieved at c = (1/3)2/3 is
given by the cost of linear algebra (2c) i.e. 2× (1/3)2/3 ≈ 0.96. At the point c = (1/3)2/3

the cost of descent will dominate and this cost is more than 2c. Since cost of descent was
ignored, the reported absolute minimum complexity turns out to be incorrect. From the
new analysis, the absolute minimum complexity is achieved at c = (1/6)1/3 and this cost
is LQ(1/3, 2× (1/6)1/3) ≈ LQ(1/3, 1.10).

The analysis that we have performed does not only cover the gaps and correct previous
errors. It provides a more general analysis in the following two ways.

1. The cases of balancing smoothness probabilities of either relation collection or descent are
identified. The works [26, 22] had only considered balancing the smoothness probability
of relation collection.

2. Even for the actual task of balancing smoothness probability of relation collection, we
provide a generalisation. Previously [26, 22], erel was taken to be equal to 2D + 1 and
hence for balancing probabilities, n1 and n2 were respectively chosen to be

√
nD and√

n/D. We identified erel as parameter which is independent of D and suggested the
appropriate choice of n1 and n2 to balance probabilities. It is due to this that we are
able to tackle the whole range of c for any fixed D.

9 Actual Discrete Log Computations

We report the actual computations of discrete logs over some fields. For these computations,
we have used Magma [9] and SAGE [32] computer algebra systems.
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D = 1

D = 2

D = 3

Figure 3:

9.1 DLP Computation on a Field of Size p37, p = 64373

We have carried out the discrete log computation over a field Q = pn for a 16-bit prime
p = 64373 and extension degree n = 37 = 6 × 6 + 1 with n1 = 6 and n2 = 6. This uses the
n1n1 + 1 variant of the FFS algorithm as mentioned in Section 2.

The defining polynomial f(x) of this field is generated by g1(x) = x−6 and g2(x) = x6 +
14833x5 + 50952x4 + 62125x3 + 6269x2 + 35223x+ 53172 and f(x) is

f(x) = x37 + 11201x36 + 29150x30 + 58104x24 + 2248x18 + 13421x12 + 49540x6 + 64372.

The polynomial f(x) generates the field Fpn (which is a 592-bit field). This polynomial is not
primitive. So x will not generate the multiplicative group of the field. We found that x+ 4 is
primitive, and so, we took this to be the generator of the multiplicative group and hence the
base of the discrete log problem.

We have used Magma Computer Algebra Software for entire computation. The hardware
platform consists of Intel Xeon(R) CPU X5675 @ 3.07GHz and Intel(R) Xeon(R) CPU E5-
2630 @ 2.30GHz. We have used the divisibility technique along with pinpointing in the relation
collection phase. In around 6 CPU (@ 2.30GHz) hours we have generated the matrix M for
the linear algebra step. This phase provides us a sparse matrix with 138837 rows and 128746
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columns. We have

pn − 1

p− 1
= 149× 71× 295683503× 1389373163× 423185284367

× 68025462649322545375322695825650761︸ ︷︷ ︸
p2

×p1; (40)

p1 = 73672835836736636280708878607700032914273477843557981

284948280092019110924138717360099475451194738739184563

where p1 is a 356-bit prime number. So clearly Pollard’s Rho and Pohlig-Hellman algorithms
will not work here. We have done the linear algebra using Lanczos Algorithm on the Magma
Computer Algebra Software with respect to the two largest primes p1 and p2 in the prod-
uct (40). It took 17 and 7 CPU (@ 3.07GHz) hours to complete the linear algebra with respect
to primes p1 and p2 respectively. After completion of linear algebra we have got the discrete
log of factor base elements modulo primes p1 and p2.

As target for computing the discrete log, we have chosen the following field element.

Π(x) := Normalize

(
n−1∑
i=0

⌊
πpi+1 mod p

⌋
xi

)
, i.e.,

Π(x) = x36 + 841x35 + 8875x34 + 2723x33 + 58297x32 + 37489x31

+14681x30 + 33725x29 + 27283x28 + 23704x27 + 54974x26 + 45806x25

+8606x24 + 30661x23 + 16779x22 + 46411x21 + 9333x20 + 32131x19 +

14681x18 + 47095x17 + 51019x16 + 2810x15 + 12343x14 + 12447x13

+16645x12 + 12487x11 + 12856x10 + 51853x9 + 59500x8 + 3681x7 +

4146x6 + 56159x5 + 9055x4 + 57991x3 + 1660x2 + 48553x+ 9983. (41)

The initial descent was quite fast and in few minutes we got Π(x) = N (x)
D(x) as follows.

N (x) = (x+ 49376)× (x2 + 6357x+ 10310)×
(x2 + 54990x+ 10403)× (x2 + 58305x+ 29395)×
(x3 + 53070x2 + 32425x+ 31087)×
(x3 + 60334x2 + 48969x+ 34559)×
(x4 + 46865x3 + 13867x2 + 5909x+ 49679)×
(x4 + 53913x3 + 48795x2 + 9304x+ 28222)×
(x5 + 13129x4 + 45787x3 + 11181x2 + 14710x+ 3003)×
(x5 + 33678x4 + 41480x3 + 31467x2 + 42544x+ 31415)×
(x5 + 53759x4 + 34226x3 + 44358x2 + 772x+ 14985);

D(x) = (x2 + 16528x+ 61907). (42)

We have descended all the factors into degree two polynomials in x and in y within 6 min-
utes. This resulted in 92 quadratic polynomials. The 2-1 descent for these polynomials were
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completed using the walk technique with 1 degree of freedom. It took about 14 minutes on a
single core of the CPU (@ 3.07GHz) to get the complete 2-1 descent. The average walk length
of the 2-1 descent is 17.

Using this descent and discrete logs of factor base elements we got the discrete log of Π(x)
modulo p1 and p2 respectively. Discrete logs modulo other small prime factors were computed
using Pollard’s Rho method and the results were combined using the CRT. We finally got the
discrete log of Π(x) as follows.

log(Π(x)) = 770654269744664411364422170900833384393002927833357493

8984754775688961799957251854609385550743078345932947255

0522443778202174612305226212221975198350555579163944401

19840511924082.

9.2 DLP Computation on a Field of Size p40, p = 297079 (728-bits)

In the second case we have worked with p = 297079 and extension degree n = 40 with n1 = 8
and n2 = 5. The defining polynomial f(x) of this field is generated by g1(x) = x8 and
g2(x) = x5 + 44024x4 + 224924x3 + 77320x2 + 291141x+ 80867 with f(x) = x40 + 44024x32 +
224924x24 + 77320x16 + 291141x8 + 297078x + 80867. This f(x) generates a field of size p40

and (x+ 3) is a primitive element of the field.
Since the value of n2 is 5, pinpointing fits very well here and we are able to complete the

relation collection phase in 4 CPU (@ 2.30Ghz) hours. This provided a sparse matrix A with
624159 rows and 594158 columns. We solved this matrix modulo the largest prime factor p1

of pn − 1, which is a 286-bit prime number. It took 504 CPU (@3.07 GHz) hours using the
in-built Lanczos algorithm of Magma. The discrete logs modulo other small prime factors of
pn − 1 were obtained using Pollard’s rho and Pohlig Hellman algorithm.

We have chosen our target element Π(x) as follows.

Π(x) = Normalize

(
n−1∑
i=0

⌊
πpi+1 mod p

⌋
xi

)
i.e.,

Π(x) = x39 + 154424x38 + 219291x37 + 2288x36 + 290227x35 + 295582x34

+27398x33 + 200403x32 + 6836x31 + 123295x30 + 94923x29 + 89389x28

+239023x27 + 115439x26 + 249309x25 + 196503x24 + 87998x23 + 240098x22

+136326x21 + 191206x20 + 9602x19 + 53215x18 + 25787x17 + 17954x16

+880x15 + 158602x14 + 241303x13 + 246920x12 + 52944x11 + 212605x10

+234395x9 + 196868x8 + 106113x7 + 207883x6 + 198491x5 + 106250x4

+165294x3 + 28548x2 + 76555x+ 241986. (43)

It is the descent phase which took most of the time. The initial descent was quite fast and in
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few seconds we got Π(x) = N (x)
D(x) as follows.

N (x) = (x2 + 129346x+ 178289)

×(x2 + 129508x+ 284926)

×(x3 + 280690x2 + 73103x+ 113966)

×(x4 + 45948x3 + 55848x2 + 84717x+ 225935)

×(x4 + 192446x3 + 209512x2 + 71975x+ 24689)

×(x4 + 214578x3 + 134299x2 + 75777x+ 185981)

×(x5 + 99215x4 + 101352x3 + 277735x2 + 249592x+ 166624)

×(x5 + 149426x4 + 93110x3 + 223082x2 + 29091x+ 16179)

×(x5 + 171408x4 + 31726x3 + 58503x2 + 190122x+ 213530)

×(x5 + 209418x4 + 233661x3 + 279042x2 + 64930x+ 238441)

D(x) = (x2 + 164221x+ 32560).

In around one hour we further converted them to degree 1 polynomials in x and degree at
most 2 polynomials in y. This resulted in a total of 59 quadratic polynomials. In around
500 CPU (@ 3.07 GHz) hours, we were able to get the complete descent of Π(x) into degree
1 polynomials in x as well as y. Finally we used the CRT to get the discrete log of Π(x) as
follows.

log(Π(x)) = 730193702775304384046745947228313596346480

8034002409507631411740291871905173134097925

3421537025226540393726081845585073691379337

8326167687412521429935390446322603760877659

740520962963146604000921389665780564632839

420364.

10 Conclusion

In this paper, we have described a technique which ensures divisibility and partial smoothness
which leads to concrete speed-ups in the relation collection and individual descent phases
of the FFS algorithm. A second contribution has been to systematically develop the walk
technique and the technique of using additional degrees of freedom for the 2-1 descent step. As
a consequence, we report computations of discrete logs over fields of 16 and 19-bit characteristic.
A concrete analysis of the algorithm shows that tackling fields of greater sizes may be feasible
for organisations having access to sufficiently powerful computational resources. The last
contribution of the paper has been to provide a complete and detailed asymptotic analysis of
the FFS algorithm for primes p = LQ(1/3, c). In the process, we have pointed out certain gaps
and errors in previous analysis.
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