
A preliminary version of this paper appears in the Proceedings of FC’14. This is the full
version.

Efficient and Strongly Secure Dynamic Domain-Specific
Pseudonymous Signatures for ID Documents
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Abstract

The notion of domain-specific pseudonymous signatures (DSPS) has recently been
introduced for private authentication of ID documents, like passports, that embed a
chip with computational abilities. Thanks to this privacy-friendly primitive, the docu-
ment authenticates to a service provider through a reader and the resulting signatures
are anonymous, linkable inside the service and unlinkable across services. A subsequent
work proposes to enhance security and privacy of DSPS through group signatures tech-
niques. In this paper, we improve on these proposals in three ways. First, we spot several
imprecisions in previous formalizations. We consequently provide a clean security model
for dynamic domain-specific pseudonymous signatures, where we correctly address the
dynamic and adaptive case. Second, we note that using group signatures is somehow an
overkill for constructing DSPS, and we provide an optimized construction that achieves
the same strong level of security while being more efficient. Finally, we study the imple-
mentation of our protocol in a chip and show that our solution is well-suited for these
limited environments. In particular, we propose a secure protocol for delegating the most
demanding operations from the chip to the reader.
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1 Introduction

Authentication with ID documents. Recently, the German BSI agency introduced
several security mechanisms regarding the use of ID documents for authentication purposes
[9]. In such situations, a Machine Readable Travel Document (MRTD) connects to a Service
Provider (SP) through a reader (for concreteness, one might see the MRTD as a passport). The
security mechanisms of [9] can be summarized as follows. First of all, during the PACE protocol
(Password Authenticated Connection Establishment), the MRTD and the reader establish a
secure channel. Then, during the EAC protocol (Extended Access Control), the MRTD and
the SP authenticate each other through another secure channel. The reader transfers the
exchanged messages. At last, during the (optional) RI protocol (Restricted Identification),
the MRTD gives its pseudonym for the service to the SP. This pseudonym enables the SP to
link users inside its service. However, across the services, users are still unlinkable. The latter
property is called cross-domain anonymity. This property is interesting for many applications,
since it offers at the same time privacy for the users and usability for the service provider,
who might not want to have fully anonymous users, but might want them to use an account
to give them more personal services (e.g. bank accounts, TV subscriptions, etc.).

For authentication purposes, giving pseudonyms is insufficient since the authenticity of the
pseudonym is not guaranteed. For this reason, subsequent works [5, 4] adopt a “signature
mode” for the RI protocol. This signature mode can be described as follows.

1. The SP sends the MRTD the public key dpk of the service and a message m.

2. The MRTD computes a pseudonym nym as a deterministic function of its secret key usk
and the public key dpk.

3. The MRTD signs m with its secret key usk and the pseudonym nym.

4. The MRTD sends the signature σ and the pseudonym nym to the SP.

5. The SP checks the signature σ.

The contribution of [5] is to propose this signature mode and to present an efficient construction
based on groups of prime order (without pairings). Their construction relies on a very strong
hypothesis regarding the tamperproofness of the MRTD. In fact, recovering two users’ secrets
enables to compute the key of the certification authority. To deal with this concern, the
authors of [4] propose to introduce group signatures into this signature mode. In addition
to providing strong privacy properties, group signatures provide collusion resistance even if
several users’ secrets do leak.

Our contributions. The authors of [4] claim that the security model of group signatures
directly gives a security model for DSPS, and, in fact, leave imprecise the definition of the
DSPS security properties. Moreover, the model of [5] only concerns the static case, and their
anonymity definition is flawed. So a security model for dynamic DSPS as such has to be
supplied. Our first contribution is then a clean security model for dynamic domain-specific
pseudonymous signatures.

This first contribution highlights the fact that, in some sense, using group signatures is
“too strong” for constructing DSPS signatures. Following this intuition, we provide a new
construction that is more efficient than the one of [4], while achieving the same strong security
and privacy properties. Our second contribution is then an efficient, proven secure, dynamic
DSPS with short signatures.
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Finally, we concentrate on the use of our DSPS scheme in the RI protocol for MRTD private
authentication. Our construction is based on bilinear pairings, but, as a first advantage, no
pairing computation is necessary during the signature. However, we can go a step further,
by taking advantage of the computational power of the reader. If some computations are
delegated to the reader, then the chip only performs computation in a group of prime order.
This is a valuable practical advantage since existing chips might be used. Otherwise, one
needs to deploy ad hoc chips, which has an industrial cost.

Related notions. As a privacy-preserving cryptographic primitive, a DSPS scheme shares
some properties with other primitives. We now discuss common points and differences. DSPS
schemes share some similarities with group signatures with verifier local revocation (VLR) [8]
in the sense that, in both primitives, the revocation is done on the verifier’s side. However,
the anonymity properties are not the same: group signatures are always unlinkable, whereas
DSPS achieve some partial linkability. Moreover, one can establish a parallel with the notion
of cross-unlinkable VLR group signatures [3], where users employ several group signatures for
several domains such that the signatures are unlinkable across domains. Within a domain,
the group signatures are however unlinkable, which is too strong for the context of DSPS.

The difference between DSPS and pseudonym systems [13] or anonymous credential systems
[10] is that DSPS pseudonyms are deterministic whereas anonymous credentials pseudonyms
must be unlinkable. In a DSPS scheme, the unlinkability is required across domains only,
which is a weaker notion compared to anonymity in anonymous credentials. In fact, the
anonymity of DSPS is a weaker notion compared to the anonymity of group signatures, as
noticed above, and (multi-show) anonymous credentials are often constructed through group
signatures techniques [10].

A point of interest is to clarify the relation between pseudonymous signatures and direct
anonymous attestations (DAA) [2]. A DAA scheme might be seen (cf. [6]) as a group signature
where (i) the user is split between a TPM and a host, (ii) signatures are unlinkable but in
specific cases and (iii) there is no opening procedure. More precisely, the partial linkability
is achieved by the notion of basename, a particular token present in all signature processes.
Two signatures are linkable if, and only if, they are issued with the same basename.

At a first sight, a DSPS scheme is a DAA scheme where basenames are replaced by
pseudonyms, and where the underlying group signature is replaced by a VLR group signature.
The VLR group signatures introduce revocation concerns that are away from DAA. Moreover,
in the ID document use-case, the MRTD/reader pair might be seen as the TPM/host pair of
DAA scheme. However, both primitives remain distinct. The choice of pseudonyms in DSPS
is more restrictive than the choice of the basename in DAA. Moreover, the host always embeds
the same chip, but a MRTD is not linked to a specific reader, and might authenticate in front
of several readers. Both differences impact the DSPS notion of anonymity.

Organization of the paper. In Section 2, we supply a security model for dynamic domain-
specific pseudonymous signatures, and discuss in details some tricky points to formalize. Then
in Section 3, we present our efficient construction of dynamic DSPS, and prove it secure in
the random oracle model. Finally in Section 4, we discuss some implementation consider-
ations and, among other things, analyse the possibility to delegate some parts of signature
computation from the MRTD to the reader.

4



2 Definition and Security Properties of Dynamic DSPS

2.1 Algorithms and Protocols

A dynamic domain-specific pseudonymous signature scheme is given by an issuing authority
IA, a set of users U , a set of domains D, and the functionalities {Setup, DomainKeyGen, Join,
Issue, NymGen, Sign, Verify, DomainRevoke, Revoke} as described below. By convention,
users are enumerated here with indices i ∈ N and domains with indices j ∈ N.

Setup. On input a security parameter λ, this algorithm computes global parameters gpk and
an issuing secret key isk. A message spaceM is specified. The sets U and D are initially
empty. The global parameters gpk are implicitly given to all algorithms, if not explicitly
specified.

(gpk, isk)← Setup(1λ)

DomainKeyGen. On input the global parameters gpk and a domain j ∈ D, this algorithm
outputs a public key dpkj for j. Together with the creation of a public key, an empty
revocation list RLj associated to this domain j is created.

(dpkj, RLj)← DomainKeyGen(gpk, j)

Join↔ Issue. This protocol involves a user i ∈ U and the issuing authority IA. Join takes
as input the global parameters gpk. Issue takes as input the global parameters gpk and
the issuing secret key isk. At the end of the protocol, the user i gets a secret key uski
and the issuing authority IA gets a revocation token rti.

uski ← Join(gpk)↔ Issue(gpk, isk)→ rti

NymGen. On input the global parameters gpk, a public key dpkj for a domain j ∈ D and a
secret key uski of a user i ∈ U , this deterministic algorithm outputs a pseudonym nymij

for the user i usable in the domain j.

nymij ← NymGen(gpk, dpkj, uski)

Sign. On input the global parameters gpk, a public key dpkj of a domain j ∈ D, a user
secret key uski of a user i ∈ U , a pseudonym nymij for the user i and the domain j and
a message m ∈M, this algorithm outputs a signature σ.

σ ← Sign(gpk, dpkj, uski, nymij,m)

Verify. On input the global parameters gpk, a public key dpkj of a domain j ∈ D, a
pseudonym nymij, a message m ∈ M, a signature σ and the revocation list RLj of the
domain j, this algorithm outputs a decision d ∈ {accept, reject}.

d← Verify(gpk, dpkj, nymij,m, σ,RLj)

DomainRevoke. On input the global parameters gpk, a public key dpkj of a domain j ∈ D, an
auxiliary information auxj and the revocation list RLj of the domain j, this algorithm
outputs an updated revocation list RL′j.

RL′j ← DomainRevoke(gpk, dpkj, auxj, RLj)
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Revoke. On input the global parameters gpk, a revocation token rti of a user i ∈ U and
a list of domain public keys {dpkj}j∈D′⊆D, this algorithm outputs a list of auxiliary
information {auxj}j∈D′⊆D intended to the subset D′ ⊆ D of domains.

{auxj}j∈D′⊆D ← Revoke(gpk, rti, {dpkj}j∈D′⊆D)

We consider the dynamic case where both users and domains may be added to the system.
Users might also be revoked. Moreover, the global revocation may concern all the domains at
a given point, or a subset of them.

A global revocation protocol enabling to revoke the user i from every domain is implicit
here: it suffices to publish rti. Using rti and public parameters, anyone can revoke user i, even
for domains that will be added later.

Pseudonyms are deterministic. This implies the existence of an implicit Link algorithm to
link signatures inside a specific domain. On input a domain public key dpk and two triples
(nym,m, σ) and (nym′,m′, σ′), this algorithm outputs 1 if nym = nym′ and outputs 0 otherwise.

The fact that pseudonyms are deterministic also gives implicit procedures for the service
providers to put the users on a white list or a black list, without invoking the Revoke or
DomainRevoke algorithms: it suffices to publish the pseudonym of the concerned user.

2.2 Security Definitions

To be secure, a DSPS scheme should satisfy the correctness, cross-domain anonymity, seclu-
siveness and unforgeability properties. Informally, a DSPS scheme is

(i) correct if honest and non-revoked users are accepted (signature correctness) and if the
revocation of users effectively blacklists them (revocation correctness),

(ii) cross-domain anonymous if signatures are unlinkable but within a specific domain,

(iii) seclusive if it is impossible to exhibit a valid signature without involving a single existing
user, and

(iv) unforgeable if corrupted authority and domains owners cannot sign on behalf of an honest
user.

Let us now formalize each of these intuitions.

2.2.1 Correctness

A DSPS scheme is correct if for all large enough λ ∈ N, all (gpk, isk) := DSPS.Setup(1λ), all
usk := DSPS.Join(gpk)↔ DSPS.Issue(gpk, isk)→ rt, all finite polynomial D ⊂ N, all (dpkn,
RLn) := DSPS.DomainKeyGen(gpk, n) for all n ∈ D, all nymn := DSPS.NymGen(gpk, dpkn,
usk) for all n ∈ D, all {mn}n∈D such that mn ∈ M for all n ∈ D, all σn := DSPS.Sign(gpk,
dpkn, usk, nymn, mn) for all n ∈ D, we have:

(i) [Signature correctness] DSPS.Verify(gpk, dpkn, nymn,mn, σn, {}) = accept for all n ∈ D,

(ii) [Revocation correctness] for all D′ ⊆ D, all {auxj}j∈D′ := DSPS.Revoke(gpk, rt, {dpkj}
j∈D′), all RL′j := DSPS.DomainRevoke(gpk, dpkj, auxj, RLj) for all j ∈ D′, we have
DSPS.Verify(gpk, dpkj, nymj, mj, σj, RL

′
j)= reject for all j ∈ D′.
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2.2.2 Oracles and Variables

We model algorithms as probabilistic polynomial Turing machines (with internal states state
and decisions dec). We formalize the security properties as games between an adversary and a
challenger. The adversary may have access to some oracles that are given Figure 1. Moreover,
games involve the following global variables: D is a set of domains, HU of honest users, CU
of corrupted users and CH of inputs to the challenge. UU is the list of “uncertainty” (see the
anonymity definition below) that is: the list, for each pseudonym, of the users that might be
linked to this pseudonym (in the adversary’s view). usk records the users’ secret keys, rt the
revocation tokens, nym the pseudonyms, dpk the domain public keys, RL the revocation
lists and Σ the signed messages.

2.2.3 Seclusiveness

Informally, a DSPS scheme achieves seclusiveness if, by similarity with the traceability prop-
erty of the group signatures, an adversary A is unable to forge a valid signature that cannot
“trace” to a valid user. In the group signature case, there is an opening algorithm, which en-
ables to check if a valid user produced a given signature. However, there is no opening here, so
one might ask how to define “tracing” users. Nevertheless, the management of the revocation
tokens allows to correctly phrase the gain condition, as in VLR group signatures [8], providing
that we take into account the presence of the pseudonyms. At the end of the game, we revoke
all users on the domain supplied by the adversary. If the signature is still valid, then the
adversary has won the game. Indeed, in this case, the signature does not involve any existing
user. (This is an analogue of “the opener cannot conclude” in the group signature case).

SeclusivenessDSPS
A (λ)

1. (gpk, isk)← DSPS.Setup(1λ)

2. D,HU , CU ← {}
3. O ← {AddDomain(·), AddUser(·), CorruptUser(·), UserSecretKey(·), Sign(·, ·, ·),

ReadRegistrationTable(·), SendToIssuer(·, ·)}
4. (dpk∗, nym∗,m∗, σ∗)← AO(gpk)

5. Find j ∈ D such that dpk∗ := dpk[j]. If no match is found, then return 0.

6. Return 1 if, for all i ∈ U , one of the following statements holds:

(a) rt[i] = ⊥
(b) DSPS.Verify(gpk, dpk∗, nym∗,m∗, σ∗, RL) = accept

where RL := DSPS.DomainRevoke
(
gpk, dpk∗, aux,RL[j]

)
and

aux := DSPS.Revoke(gpk, rt[i], {dpk∗}).
Otherwise, return 0.

The advantage of an adversary A against the Seclusiveness game is defined by

AdvseclusivenessA,DSPS (λ) := Pr[SeclusivenessDSPS
A (λ) = 1].

A DSPS scheme achieves seclusiveness if, for all polynomial adversaries A, the function
AdvseclusivenessA,DSPS (·) is negligible.
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AddDomain(j)
– if j ∈ D, then abort
– RL[j] := {} ; All[j] := copy(HU)
– dpk[j]← DomainKeyGen(gpk, j)
– ∀i ∈ HU ,

– Σ[(i, j)] := {} ; UU[(i, j)] := &(All[j])
– nym[i][j]← NymGen(gpk,dpk[j],usk[i])

– return dpk[j]

CorruptUser(i)
– if i ∈ HU ∪ CU , then abort
– CU := CU ∪ {i}
– usk[i] := ⊥ ; nym[i] := ⊥ ; rt[i] := ⊥
– dec[IA][i] := cont ; state[IA][i] := (gpk, isk)

Nym(i, j)
– if i 6∈ HU or j 6∈ D or (i, j) ∈ CH, abort
– UU[(i, j)] := {i} ; All[j] := All[j] \ {i}
– ∀i′ ∈ HU \ {i}, if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
– return nym[i][j]

NymDomain(j)
– if j 6∈ D, then abort
– result := random perm(copy(All[j]))
– ∀i ∈ HU ,

– if UU[(i, j)] == &(All[j]),
– UU[(i, j)] := copy(All[j])

– All[j] := {} ; return
{
nym[i][j]

}
i∈result

Sign(i, j,m)
– if i 6∈ HU or j 6∈ D, then abort
– Σ[(i, j)] := Σ[(i, j)] ∪ {m}
– return Sign(gpk,dpk[j],usk[i],nym[i][j],m)

ReadRegistrationTable(i)
– return rt[i]

WriteRegistrationTable(i,M)
– rt[i] := M

AddUser(i)
– if i ∈ HU ∪ CU , then abort
– HU := HU ∪ {i}
– run usk← Join(gpk)↔ Issue(gpk, isk)→ rt
– usk[i] := usk ; rt[i] := rt
– ∀j ∈ D,

– Σ[(i, j)] := {} ; All[j] := All[j] ∪ {i}
– nym[i][j]← NymGen(gpk,dpk[j],usk[i])
– UU[(i, j)] := &(All[j])

UserSecretKey(i)
– if i 6∈ HU or ∃j ∈ D, s.t. (i, j) ∈ CH, abort
– HU := HU \ {i} ; CU := CU ∪ {i}
– ∀j ∈ D,

– UU[(i, j)] := {i} ; All[j] := All[j] \ {i}
– ∀i′ ∈ HU , if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
– return (usk[i],nym[i])

Revoke(i,D′)
– ∀j ∈ D′, call DomainRevoke(i, j)
– return {RL[j]}j∈D′

DomainRevoke(i, j)
– if i 6∈ HU or j 6∈ D or (i, j) ∈ CH, then abort
– aux← Revoke(gpk, rt[i], {dpk[j]})
– RL[j]← DomainRevoke(dpk[j], aux,RL[j])
– UU[(i, j)] := {i} ; All[j] := All[j] \ {i}
– ∀i′ ∈ HU \ {i}, if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
– return RL[j]

NymSign(nym, j,m)
– if j 6∈ D, then abort
– find i ∈ HU such that nym[i][j] == nym

if no match is found, then abort
– Σ[(i, j)] := Σ[(i, j)] ∪ {m}
– return Sign(gpk,dpk[j],usk[i],nym[i][j],m)

SendToUser(i,Min)
– if i ∈ CU , then abort ; if i 6∈ HU , then

HU := HU ∪ {i} ; Min := ε ; usk[i] := ⊥ ; state[i][IA] := gpk ; dec[i][IA] := cont
– (state[i][IA],Mout, dec[i][IA])← Join(state[i][IA],Min, dec[i][IA])
– if dec[i][IA] == accept, then usk[i] := state[i][IA]
– return (Mout, dec[i][IA])

SendToIssuer(i,Min)
– if i 6∈ CU , then abort
– (state[IA][i],Mout, dec[IA][i])← DSPS.Issue(state[IA][i],Min, dec[IA][i])
– if dec[IA][i] == accept, then set rt[i] := state[IA][i]
– return (Mout, dec[IA][i])

Challenge(bA, bB , jA, jB , i0, i1)
– if i0 6∈ HU or i1 6∈ HU or i0 == i1 or jA 6∈ D or jB 6∈ D or jA == jB , then abort
– if ∀j ∈ {jA, jB}, ∃i ∈ {i0, i1} such that {i0, i1} 6⊆ UU[(i, j)], then abort
– CH := {(i0, jA), (i0, jB), (i1, jA), (i1, jB)} ; return (nym[ibA ][jA],nym[ibB ][jB ])

Figure 1: Oracles provided to adversaries

8



2.2.4 Unforgeability

Informally, we want that a corrupted authority and corrupted owners of the domains cannot
sign on behalf of an honest user.

UnforgeabilityDSPS
A (λ)

1. (gpk, isk)← DSPS.Setup(1λ)

2. D,HU , CU ← {}
3. O ← {AddDomain(·), WriteRegistrationTable(·, ·), Sign(·, ·, ·), SendToUser(·, ·)}
4. (dpk∗, nym∗,m∗, σ∗)← AO(gpk, isk)

5. Return 1 if all the following statements hold.

(a) There exists j ∈ D such that dpk∗ = dpk[j]

(b) There exists i ∈ HU such that nym∗ = nym[i][j], usk[i] 6= ⊥ and rt[i] 6= ⊥
(c) m∗ 6∈ Σ[(i, j)]

(d) DSPS.Verify(gpk, dpk∗, nym∗,m∗, σ∗, {}) = accept

(e) DSPS.Verify(gpk, dpk∗, nym∗,m∗, σ∗, L) = reject
where L := DomainRevoke(gpk, dpk∗,DSPS.Revoke(gpk, rt[i], {dpk∗}), {})

Otherwise, return 0.

The advantage of an adversary A against the Unforgeability game is defined by

AdvunforgeabilityA,DSPS (λ) := Pr[UnforgeabilityDSPS
A (λ) = 1].

A DSPS scheme achieves unforgeability if, for all polynomial adversaries A, the function
AdvunforgeabilityA,DSPS (·) is negligible.

2.2.5 Cross-Domain Anonymity

Informally, a DSPS scheme achieves cross-domain anonymity if an adversary is not able to
link users across domains. We formalize this intuition thanks to a left-or-right challenge
oracle. Given two users i0 and i1 and two domains jA and jB, the challenger picks two bits
bA, bB ∈ {0, 1} and returns (nym0, nym1) where nym0 is the pseudonym of ibA for the first
domain and nym1 the pseudonym of ibB for the second domain. The adversary wins if he
correctly guesses the bit (bA == bB), in other words if he correctly guesses that underlying
users are the same user or not. The Challenge oracle is called once.

AnonymityDSPS
A (λ)

1. (gpk, isk)← DSPS.Setup(1λ)

2. D,HU , CU , CH ← {}

3. bA, bB
$← {0, 1}

4. O ← {AddDomain(·), AddUser(·), CorruptUser(·), UserSecretKey(·), Revoke(·, ·),
DomainRevoke(·, ·), Nym(·, ·), NymDomain(·), NymSign(·, ·, ·), SendToIssuer(·, ·),
Challenge(bA, bB, ·, ·, ·, ·)}

5. b′ ← AO(gpk)
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6. Return 1 if b′ == (bA == bB), and return 0 otherwise.

The advantage of an adversary A against the Anonymity game is defined by

Advc-d-anonA,DSPS (λ) := Pr[AnonymityDSPS
A (λ) = 1].

A DSPS scheme achieves cross-domain-anonymity if, for all polynomial adversaries A, the
function Advc-d-anonA,DSPS (·) is negligible.

The SendToIssuer oracle might be surprising here. But, contrary to group signatures, the
issuing authority IA is not corrupted. This assumption is minimal since the IA may trace all
honest users. Hence we must give the adversary the ability to interact as a corrupted user
with the honest issuer.

Our model takes into account the case where pseudonyms leak from the network. To this
aim, the NymDomain oracle gives the adversary a collection of pseudonyms.

Discussion about anonymity. We want to catch the intuition of being anonymous across
domains, so we propose that the adversary supplies two domains of its choice, and aims at
breaking anonymity across these domains. Moreover, the Challenge oracle, in our model,
does not output two signatures, but two pseudonyms belonging to the different domains. The
adversary’s goal is to guess if those pseudonyms belong to the same user or not. To obtain
signatures, the adversary may call a NymSign oracle. The adversary does not directly supply
a user, but a pseudonym and obtains a signature on behalf of the underlying user. If the
adversary A wants a signature from a particular user, A asks for this user’s pseudonym and
then asks the NymSign oracle for a signature.

Since the functionality is dynamic, there might be no anonymity at all if we do not take
care of the formalization. For instance, an adversary might ask for adding two domains, two
users, i0, i1, ask for their pseudonyms through two calls to NymDomain, add a user i2 and win
a challenge involving i0, i2 with non-negligible probability. This attack does not work here,
since the All list is emptied after each NymDomain call.

To correctly address the cross-domain anonymity definition, we introduce a notion of “un-
certainty” in the oracles. The challenger maintains, for each pseudonym, a list of the possible
users the pseudonym might be linked to from the adversary’s point of view. These lists evolve
in function of the adversary’s queries. Thus, the challenger ensures that the pseudonyms re-
turned by the Challenge oracle contain enough uncertainty for at least one domain. Note
that the uncertainty is required for only one domain. A user queried to the Challenge might
be known or revoked in a domain: the adversary has to guess whether the other pseudonym
belongs to the same user.

Comparison to previous security models. First, the model of [5] is static: all users and
domains are created at the beginning of the games, while our security games are all dynamic.
Second, let us focus on the cross-domain anonymity and show that their definition is flawed.
The adversary is given all pseudonyms and all domain parameters. The left-or-right challenge
takes as input two pseudonyms for the same domain and a message and outputs a signature
on this message by one of the corresponding users. A simple strategy to win the game,
independently of the construction, is to verify this signature using both pseudonyms: it will
be valid for only one of them. This observation motivates our choice for our challenge output
to be a pair of pseudonyms and not a pair of signatures, since it is easy to verify correctness
using pseudonyms. Moreover, in their game, both pseudonyms queried to the challenge oracle
are in the same domain, which does not fit the cross-domain anonymity, while our challenge
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involving two different domains does. Third, the model of [5] does not allow for collusions:
the adversary can be given at most one user secret key (indeed, with their construction, using
two users’ secret keys, one can recover the issuing keys)1.

The model of [4] is largely inspired by the security model of VLR group signatures. That
is why it does not enough take into account the specificities of DSPS. The challenge of the
cross-domain anonymity game also considers a single domain and outputs a signature (but
it does not take as input the pseudonyms of the users, only identifiers, so it does not inherit
the security flaw of [5]). The model also lacks from a precise description of the oracles, thus
leaving looseness on what are the exact inputs and outputs. Our model is more precise and
separated from the model of group signatures, which leads, as we will see in the following, to
a more efficient construction.

3 An Efficient Construction of Dynamic DSPS

In this section, we present an efficient construction of dynamic DSPS we call the D scheme
and prove it secure in the sense of the previous Section in the random oracle model.

3.1 Bilinear Pairings and Hard Problems

Bilinear parings. Our construction makes use of bilinear pairings. A bilinear environment
is given by a tuple (p,G1,G2,GT , e) where p is a prime number, G1, G2 and GT are three
groups of order p (in multiplicative notation) and e is a bilinear and non-degenerate application
e : G1 × G2 → GT . The property of bilinearity states that for all g ∈ G1, h ∈ G2, a, b ∈ Zp,
we have e(ga, hb) = e(g, h)ab = e(gb, ha). The property of non-degeneracy states that for all
g ∈ G1 \ {1G1}, h ∈ G2 \ {1G2}, e(g, h) 6= 1GT . Bilinear environments may be symmetric if
G1 = G2 or asymmetric if G1 6= G2.

Hard problems. We now state the problems under which we will prove our scheme secure.

Discrete Logarithm DL. Let G be a cyclic group of prime order p. Given (g, h)
$← G2, find

x ∈ N such that gx = h.

Decisional Diffie-Hellman DDH. Let p be a prime number, G be a cyclic group of order p

and a, b, c
$← Zp. Given ~g := (g,A,B,C) ∈ G4, decide whether ~g = (g, ga, gb, ga+b) or ~g =

(g, ga, gb, gc).

q-Strong Diffie-Hellman q-SDH. Let (p,G1,G2,GT , e) be a bilinear environment, h1
$← G1, h2

$←
G2 and θ

$← Zp. Given (h1, h1
θ, h1

θ2 , . . . , h1
θq , h2, h2

θ) ∈ Gq+1
1 ×G2

2, find a pair (c, g1
1/(θ+c)) ∈

Zp \ {−θ} ×G1.

3.2 Description of our Solution

Let D be the following scheme.

Setup(1λ)

1. Generate an asymmetric bilinear environment (p,G1,G2,GT , e)

2. Pick generators g1, h
$← G1 \ {1G1} and g2

$← G2 \ {1G2}
1For sake of clarity, note that (nymi, dsnymij) in [5] maps to (i, nymij) in our model.
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3. Pick γ ∈ Zp ; Set w := g2
γ

4. Choose a hash function H : {0, 1}∗ → {0, 1}λ

5. Return gpk := (p,G1,G2,GT , e, g1, h, g2, w,H) ; isk := γ

DomainKeyGen(gpk, j)2

1. Pick r
$← Z∗p ; Set RLj ← {} ; Return dpkj := g1

r ; RLj

Join(gpk)↔ Issue(gpk, isk)

1. [i] Pick f ′
$← Zp ; Set F ′ := hf

′

2. [i] Compute Π := PoK{C := Ext-Commit(f ′) ∧ NIZKPEqDL(f ′, C, F ′, h)}3

3. [U → IA] Send F,Π [IA] Check Π

4. [IA] Pick x, f ′′ ∈ Zp ; Set F := F ′ · hf ′′ ; A :=
(
g1 · F

) 1
γ+x ; Z := e(A, g2)

5. [U ← IA] Send f ′′, A, x, Z

6. [i] Set f := f ′ + f ′′ ; Check e(A, g2
x · w)

?
= e(g1 · hf , g2)

The user gets uski := (f, A, x, Z) ; The issuer gets rti := (F, x)

NymGen(gpk, dpkj, uski)

1. Parse uski as (fi, Ai, xi, Zi) ; Return nymij := hfi · (dpkj)
xi

Sign(gpk, dpk, usk, nym,m)

1. Parse usk as (f, A, x, Z)

2. Pick a, ra, rf , rx, rb, rd
$← Zp ; Set T := A · ha

3. Set R1 := hrf · dpkrx ; R2 := nymra · h−rd · dpk−rb

4. Set R3 := Zrx · e(h, g2)a·rx−rf−rb · e(h,w)−ra

5. Compute c := H(dpk‖nym‖T‖R1‖R2‖R3‖m)

6. Set sf := rf +c ·f ; sx := rx+c ·x ; sa := ra+c ·a ; sb := rb+c ·a ·x ; sd := rd+c ·a ·f
7. Return σ := (T, c, sf , sx, sa, sb, sd)

Verify(gpk, dpk, nym,m, σ,RL)

1. If nym ∈ RL, then return reject and abort.

2. Parse σ as (T, c, sf , sx, sa, sb, sd)

3. Set R′1 := hsf · dpksx · nym−c ; R′2 := nymsa · h−sd · dpk−sb

2This description is independent of the concrete use-case. In particular, it is not said which entity gen-
erates the parameters and the domain keys. We assume here that these parameters (including the domains’
parameters) are honestly computed. Note that r is not a private key associated to dpk. dpk is just a public
random element in G1 that identifies a given domain.

3Ext-Commit is an extractable commitment scheme (a perfectly binding computationally hiding commitment
scheme where an extraction key allows to extract the committed value). NIZKPEqDL(f, C, F, h) denotes a Non
Interactive Zero Knowledge Proof of Equality of the Discrete Logarithm f of F in basis h with the value
committed in C.
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4. Set R′3 := e(T, g2)
sx · e(h, g2)−sf−sb · e(h,w)−sa ·

[
e(g1, g2) · e(T,w)−1

]−c
5. Compute c′ := H(dpk‖nym‖T‖R′1‖R′2‖R′3‖m)

6. Return accept if c = c′, otherwise return reject.

Revoke(gpk, rti,D′)

1. Parse rti as (Fi, xi) ; Return {auxj := Fi · (dpkj)
xi}j∈D′

DomainRevoke(gpk, dpkj, auxj, RLj)

1. Return RLj := RLj ∪ {auxj}

Note about the revocation. A revocation list is a set of revoked pseudonyms. Given a
(pseudonym, signature) pair, the revocation test is a simple membership test. In practice,
this can be done very efficiently.

3.3 A Proof of Knowledge of a Valid Certificate

The Sign procedure is obtained by applying the Fiat-Shamir heuristic [12] to a proof of
knowledge of a valid user’s certificate. We explicitly give this proof of knowledge Figure 2.
More precisely, the P protocol given Figure 2 allows for proving knowledge of (f, (A, x)) such

that A =
(
g1 · hf

) 1
γ+x and nym = hf · dpkx. In the Appendices A.1 to A.3, we prove the

following lemmas.

Lemma 1 (Completeness) The P protocol is complete.

Lemma 2 (Zero-Knowledge) The P protocol is honest-verifier zero-knowledge.

Lemma 3 (Proof of Knowledge) There exists an extractor for the P protocol.

3.4 Security Properties of our Solution

In the Appendices A.4 to A.7, we prove the following theorem regarding the security of our
scheme.

Theorem 4 The D scheme achieves seclusiveness, unforgeability and cross-domain anonymity
in the sense of Section 2 in the random oracle model under the DL, q-SDH and DDH assump-
tions.

We first show that, under a chosen-message attack, in the random oracle model, it is com-
putationally impossible to produce a valid D signature σ := (T, c, sf , sx, sa, sb, sd) without the
knowledge of a valid certificate (f, A, x, Z). In other words, from a valid signature, we can
extract a valid certificate. This “extraction step” of a valid certificate is standard when sig-
nature schemes are built by applying the Fiat-Shamir heuristic [12] to a given Σ-protocol (cf.
[15, 14, 11]).

Lemma 5 (Σ-unforgeability) If there exists a (t, ε)-adversary A such that ε ≥ 1
2λ

+ η +
qS ·(qH+qS)

p4
for some η > 240qH

2λ
after qH queries to the random oracle H and qS queries to the

Sign oracle, then one can build a certificate (f, A, x, Z) in expecting time O( qH t
η

).
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Parameters. (p,G1,G2,GT , e), g1, h ∈ G1, g2 ∈ G2.

Issuer. isk := γ ∈ Zp, ipk := w := g2
γ .

Domain. r ∈ Zp, dpk := g1
r 6= 1G1 .

User. usk := (f,A, x, Z), f ∈ Zp, x ∈ Zp \ {−γ}, A :=
(
g1 · hf

) 1
γ+x ∈ G1, Z := e(A, g2) ∈ GT .

Pseudonym. nym := hf · dpkx

a
$← Zp ; T := A · ha

rf , rx, ra, rb, rd
$← Zp

R1 := hrf · dpkrx ; R2 := nymra · h−rd · dpk−rb

R3 := Zrx · e(h, g2)a·rx−rf−rb · e(h,w)−ra

R1, R2, R3−→

c
$← {0, 1}λ

c←−

sf ← rf + c · f ; sx ← rx + c · x ; sa ← ra + c · a
sb ← rb + c · a · x ; sd ← rd + c · a · f

~s := (sf , sx, sa, sb, sd)−→

hsf · dpksx · nym−c ?
= R1

nymsa · h−sd · dpk−sb ?
= R2

e(T, g2)
sx · e(h, g2)−sf−sb · e(h,w)−sa ·

[
e(g1, g2) · e(T,w)−1

]−c ?
= R3

Figure 2: The P protocol

Then, we prove the following theorems.

Theorem 6 (Seclusiveness) In the random oracle model, the D scheme achieves seclusive-
ness in the sense of Section 2 if the SDH problem is hard.

More precisely, if the SDH problem is (q, t′, ε′)-hard in (p,G1,G2,GT , e), then the D scheme
is (qU , t, ε)-seclusive where qU is the number of queries to the AddUser and SendToIssuer

oracles as long as t ≤ t′ −O(q2), qU ≤ q and ε ≤ 2qε′.

Theorem 7 (Unforgeability) In the random oracle model, the D scheme achieves unforge-
ability in the sense of the Section 2 if the DL problem is hard.

More precisely, given (p,G1,G2,GT , e), if the DL problem is (t′, ε′)-hard in G1, then the D

scheme is (t, qU , ε)-unforgeable where qU is the number of queries to the SendToUser oracle as
long as t ≤ t′ −O(qU) and ε ≤ qUε

′.

Theorem 8 (Cross-domain anonymity) The D scheme achieves cross-domain anonymity
in the sense of Section 2 if the DDH problem is hard in G1.

More precisely, given bilinear environment (p,G1,G2,GT , e), if the DDH problem is (t′, ε′)-
hard in G1, then the D scheme is (t, qH , qS, qU , qD, qC , ε)-cross-domain-anonymous where qH is
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the number of queries to the random oracle, qS to the NymSign oracle, qU to the AddUser and
SendToIssuer oracles, qD to the AddDomain oracle and qC to the UserSecretKey oracle, as
long as t ≤ t′ − (qU + 2) · Tpairing − (3 · qS + qU · (qD + 1) + 1) · Texp:G1 − qS · Texp:GT and

ε′ ≥ ε

qU · qD
·
(

1− qS · (qH + qS)

p4

)

4 Implementation Considerations

4.1 Signature Size

A signature σ := (T, c, sf , sx, sa, sb, sd) is composed of one element in G1, a challenge of size
λ and five scalars, which is particularly short for this level of security. By comparison, a
signature of [4] is of the form (B, J,K, T, c, sf , sx, sa, sb) ∈ G1

4 × {0, 1}λ × Zp4. The short
group signature of [11] lies in ∈ G1

4 × {0, 1}λ × Zp4 as well, which highlights the fact that we
do not need the whole power of group signatures here.

4.2 Pre-Computations and Delegation of Computation

In the D scheme, the issuer computes the element Z := e(A, g2) and adds it to the user secret
key. Thanks to this pre-computation, the user avoids to compute any pairing. In the signature
procedure, the user only computes (multi)-exponentiations in G1 and GT . This is an advantage
if we consider that the user is a smart-card, as in the ID document use-case.

But we can go a step further by delegating some computation from the card to the reader.
The MRTD interacts with the SP through the reader but, in the RI protocol, even in signature
mode, the reader just transfers the messages. In our case however, we take advantage of the
computational power of the reader. A proposal for this kind of delegation is given Figure 3.
We obtain a piece of valuable advantages since there is no need to implement large groups
operations (like operations in GT ) in the MRTD. As a consequence, we do not need to develop
specific chips for achieving those heavy computations, and existing chips can be used. We
implemented our protocol on a PC. Following first estimations of a partial implementation
on a chip, the overall signature and communication (including delegation) between the reader
and the passport cost around 890ms, for equipment currently in use.

4.3 Security of the Delegation

Of course, this delegation of computation must be done without compromising the security.
In the DAA analysis of [6], a DAA scheme (with distinct host and TPM) is built upon a pre-
DAA scheme (where TPM and host are not separated). However, our analysis differs, because
the MRTD is not linked to a single reader. Therefore we adapt our model. We add a pair of
successive oracles (with a lock mechanism between their calls): GetPreComp(i, j,m), enabling a
corrupted reader to obtain pre-computations from an honest user, and Sign′(i, j,D), where the
same user produces a signature given a delegated computation D supplied by the adversary.
Formal definitions are given Figure 4.

Now, in the seclusiveness game, users are corrupted and try to cheat with the issuer and the
verifier. We can assume that readers are corrupted, so the adversary might call GetPreComp
and Sign′ to interact with honest users. In the unforgeability game, we can also assume that
the reader is corrupted and add the two oracles above. Regarding the anonymity, in our use

15



MRTD(gpk, usk) Reader(gpk) SP(gpk, dpk,m)

usk := (f,A, x)
dpk,m←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

nym := hf · dpkx

a, ra, rf , rx, rb, rd
$← Zp

B1 := Arx · ha·rx−rf−rb
B2 := h−ra

B1, B2−−−−−−−−−−−−−−−−→
R3 := e(B1, g2) · e(B2, w)

R3←−−−−−−−−−−−−−−−−
T := A · ha ; R1 := hrf · dpkrx
R2 := nymra · h−rd · dpk−rb
c := H(dpk‖nym‖T‖R1‖R2‖R3‖m)
sf := rf + c · f ; sx := rx + c · x
sa := ra + c · a ; sb := rb + c · a · x
sd := rd + c · a · f

nym, T, c, sf , sx, sa, sb, sd−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 3: Delegation of computation from the MRTD to the reader

case, the reader is able to read the data on the ID document, so there is no anonymity in front
of the reader (for the concerned domain/user), as there is no anonymity of the TPM from
the host’s point of view in a DAA scheme. However, we still want a notion of unlinkability
across domains. Even if a reader is corrupted, the same user must remain anonymous in
other domains, which is exactly our DSPS notion of anonymity. So the adversary might call
GetPreComp and Sign′, and we restrict the Challenge query to involve at most one user for
which the adversary called GetPreComp (before and after the Challenge call).

Finally, we adapt our proofs. In particular, we must show that the challenger can still
simulate signatures in front of an active adversary impersonating a corrupted reader. In the
Appendix A.8, we show the following theorem.

Theorem 9 (Delegation security) The D scheme with delegated computations is secure in
the model with delegated computations.

In our construction, the adversary can compute A from B2 and σ (if σ = (T, c, sf , sx, sa, sb, sd),
then A = T · (B2 ·hsa)−1/c). The fact that we can simulate signatures even in the cross-domain
anonymity game shows that the knowledge of A does not help linking users across domains.

5 Conclusion

In this paper, we supplied a clean security model for dynamic domain-specific pseudonymous
signatures, and compared this notion with other privacy-friendly cryptographic primitives.
We then highlighted the fact that, in some sense, using group signatures is “too strong” for
constructing DSPS signatures. Following this intuition, we provided a new construction that
is more efficient than the one of [4], while achieving the same strong security and privacy
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Three algorithms are added in the DSPS functionality.

PreComp. On input the global parameters gpk, a public key dpkj of a domain j ∈ D, a user secret key
uski of a user i ∈ U , a pseudonym nymij for the user i and the domain j and a message m ∈ M,
this algorithm outputs two pre-computations Pin and Pout.

(Pin, Pout)← PreComp(gpk, dpkj , uski, nymij ,m)

DelComp. On input the global parameters gpk and some pre-computations Pout, this algorithm outputs
some delegated computation D.

D ← DelComp(gpk, Pout)

Sign′. On input the global parameters gpk, a public key dpkj of a domain j ∈ D, a user secret key uski
of a user i ∈ U , a pseudonym nymij for the user i and the domain j, some pre-computations Pin

and some delegated computation D, this algorithm outputs a signature σ.

σ ← Sign′(gpk, dpkj , uski, nymij , Pin, D)

The correctness requires that for all gpk, dpkj , uski, nymij , m ∈ M, P such that (Pin, Pout) :=
PreComp(gpk, dpkj , uski, nymij ,m), D such that D := DelComp(gpk, Pout) and σ such that σ := Sign′(gpk,
dpkj , uski, nymij , Pin, D), we have Verify(gpk, dpkj , nymij , m, σ) = accept.

Two tables, lock and precomp, and two oracles are added in the games.

GetPreComp(i, j,m)
– if i 6∈ HU or j 6∈ D or (i, j) ∈ CH, abort
– if lock[(i, j)] == true, then abort
– UU[(i, j)] := {i} ; All[j] := All[j] \ {i}
– ∀i′ ∈ HU \ {i}, if UU[(i′, j)] 6= &(All[j]),

then UU[(i′, j)] := UU[(i′, j)] \ {i}
– (Pin, Pout)

:= PreComp(gpk,dpk[j],usk[i],nym[i][j],m)
– precomp[(i, j)] := Pin

– lock[(i, j)] := true
– return Pout

Sign′(i, j,D)
– if lock[(i, j)] == false, then abort
– Pin := precomp[(i, j)]
– σ := Sign′(gpk,dpk[j],usk[i],nym[i][j], Pin, D)
– Σ[(i, j)] := Σ[(i, j)] ∪ {m}
– lock[(i, j)] := false
– return σ

Figure 4: Extended model of DSPS with delegation of computation

properties. Finally, we concentrated on the use of our DSPS scheme in the RI protocol for
MRTD private authentication. Our construction might be implemented on existing chips if
one takes advantage of the computational power of the reader. We supplied an analysis of
such a delegation of computation.
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A Appendix

A.1 Proof of Lemma 1

By inspection, one can be convinced that the P protocol is complete. In particular, we have:

hsf · dpksx · nym−c = hrf+c·f · dpkrx+c·x · (hf · dpkx)−c = hrf+c·f−f ·c · dpkrx+c·x−x·c

= hrf · dpkrx = R1

nymsa · h−sd · dpk−sb = (hf · dpkx)ra+c·a · h−rd−c·a·f · dpk−rb−c·a·x

= (hf · dpkx)ra · hf ·c·a−rd−c·a·f · dpkx·c·a−rb−c·a·x

= (hf · dpkx)ra · h−rd · dpk−rb = R2

e(T, g2)
sx · e(h, g2)−sf−sb · e(h,w)−sa ·

[
e(g1, g2) · e(T,w)−1

]−c
= e(T rx · h−rf−rb , g2) · e((A · ha)c·x · h−c·f−c·a·x · g1−c, g2) · e(h−ra , w) · e(h−c·a · (A · ha)c, w)

= e(T rx · h−rf−rb , g2) · e(h−ra , w) · e(Ax · h−f · g1−1, g2)c · e(A,w)c

= R3 · e(
(
g1 · hf

) 1
x+γ , g2

x · g2γ)c · e(g1 · hf , g2)−c = R3

A.2 Proof of Lemma 2

For an honest verifier, the transcripts T , (R1, R2, R3), c, (sf , sx, sa, sb, sd) can be simulated in
an indistinguishable way, without knowing any valid certificate.

We first simulate T , which can be done by picking T
$← G1. This element is indis-

tinguishable from the output of any prover since, given (p,G1,G2,GT , e), g1, h
$← G1 \ {1},

g2
$← G2\{1}, γ, f, r

$← Zp, x
$← Zp\{−γ}, A :=

(
g1 ·hf

) 1
γ+x , dpk := g1

r and nym := hf ·dpkx,
the following distributions ∆ and ∆′ are the same.

∆ :=
{
T
∣∣∣ a $← Zp ; T := A · ha

}
and ∆′ :=

{
T
∣∣∣ T $← G1

}
Then, we pick c

$← {0, 1}λ and sf , sx, sa, sb, sd
$← Zp. We simply compute (R1, R2, R3) using

the verification equations: R1 := hsf · dpksx · nym−c, R2 := nymsa · h−sd · dpk−sb , R3 :=
e(T sx · h−sf−sb , g2) · e(h−sa , w) ·

[
e(g1, g2) · e(T,w)−1

]−c
. This second step does not assume

any knowledge about the data used to generate usk, dpk, nym and T in the first step. So the
simulation of the second step is perfect. ut

A.3 Proof of Lemma 3

Let us assume that a prover is able to give two valid responses ~s, ~s′ to two different challenges
c, c′ given the same values T, (R1, R2, R3). First, by dividing

hsf · dpksx = R1 · nymc by hs
′
f · dpks

′
x = R1 · nymc′ ,

we obtain hsf−s
′
f ·dpksx−s

′
x = nymc−c′ . Since c 6= c′, then c−c′ 6= 0 mod p, so c−c′ is invertible

modulo p. Hence f̃ := (sf − s′f )/(c− c′) and x̃ := (sx− s′x)/(c− c′) such that nym = hf̃ · dpkx̃.
Then by dividing

nymsa · h−sd · dpk−sb = R2 by nyms′a · h−s′d · dpk−s
′
b = R2,
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we obtain nymsa−s′a = hsd−s
′
d · dpksb−s

′
b . Substituting nym = hf̃ · dpkx̃ gives that (sd − s′d) =

f̃ · (sa−s′a) and (sb−s′b) = x̃ · (sa−s′a) (which holds if h and dpk are generators of G1). Finally
by dividing

e(T, g2)
sx · e(h, g2)−sf−sb · e(h,w)−sa = R3 ·

[
e(g1, g2) · e(T,w)−1

]c
by

e(T, g2)
s′x · e(h, g2)−s

′
f−s

′
b · e(h,w)−s

′
a = R3 ·

[
e(g1, g2) · e(T,w)−1

]c′
,

we obtain: e(T, g2)
sx−s′x · e(h, g2)−sf+s

′
f−sb+s

′
b · e(h,w)−sa+s

′
a =

[
e(g1, g2) · e(T,w)−1

]c−c′
. If we

set ã := (sa − s′a)/(c − c′) and use the previously obtained equality (sb − s′b) = x̃ · (sa − s′a),
then we have that

e(T, g2
x̃) · e(h−f̃−ã·x̃, g2) · e(h−ã, w) = e(g1, g2) · e(T,w)−1.

Thus e(T ·h−ã, g2x̃ ·w) = e(g1 ·hf̃ , g2). By setting Ã := T ·h−ã, (f̃ , (Ã, x̃)) is a valid witness. ut

A.4 Proof of Lemma 5

A signature scheme based on a Σ-protocol is a signature scheme {KeyGen, Sign, Verify} such

that each signature σ is of the form (m, ~R, c, ~s) where m is the message (and more generally

the statement to be proven, that may contain information in addition to the message), ~R is

a commitment vector, c := H(~R‖m) is a hash belonging to {0, 1}λ for a security parameter λ
and ~s is a response vector. We now recall some lemmas from [14, 11].

Lemma 10 (Forking [11]) Let A be a probabilistic polynomial time Turing machine whose
input is pk and which can ask qH queries to the random oracle, with qH > 0 (this is then a
no message attack against a generic signature scheme based on a Σ-protocol in the random
oracle model). Let us assume that, within time t, A produces a valid signature (m, ~R, c, ~s),
with probability ε ≥ 1

2λ
+η for some η > 240qH

2λ
. Then, within time t′ ≤ 9qH t

ε
and with probability

ε′ ≥ 1
6
, a replay of this machine outputs two valid signatures (m, ~R, c, ~s) and (m, ~R, c′, ~s′) such

that c 6= c′.

(Cf. [11] for more details): with probability greater than η, A outputs a valid signature

(m, ~R, c, ~s) such that c has been obtained as an H answer on ~R‖m. So 2
η

replays of A with

different random tapes provide a success such that the query H(~R‖m) has been asked and
answered by c (the crucial query) with probability greater than 1 − e−2 ≥ 6

7
. By applying

Lemma 11, we know that with probability of 1
4
, for each replay, we have a new success with

probability greater than η
4qH

: we thus replay the attack 8qH
η

times with a new random oracle

(but the same answers until the crucial query). With probability greater than 6
7
, we get

another success. The challenge is different from the previous one with probability 8qH
η2λ

. Finally,

after less than 2(1+4qH)
η

replays of the attack, with probability greater than 1
5
− 8qH

η2λ
which is

greater than 1
6

as soon as η ≥ 240qH
2λ

, we get two valid signatures (m, ~R, c, ~s) and (m, ~R, c′, ~s′)
with c′ 6= c.

Lemma 11 (Splitting [14]) Let X, Y be sets and A ⊆ X × Y such that Pr[(x, y) ∈ A] ≥ ε.
For any α < ε, define B := {(x, y) ∈ X × Y |Pry′∈Y (x, y′) ∈ A ≥ ε− α} and B̄ = (X×Y )\B.
Then the following statements hold: (i) Pr[B] ≥ α, (ii) for all (x, y) ∈ B, Pry′∈Y [(x, y′) ∈
A] ≥ ε− α, and (iii) Pr[B|A] ≥ α/ε.
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Lemma 12 (ΣUnforgeability) Under a chosen-message attack in the random oracle model,
it is computationally impossible to produce a valid D signature σ := (T, c, sf , sx, sa, sb, sd)
without the knowledge of a valid certificate (f, A, x, Z).

More precisely, if there exists a (t, ε)-adversary A against the ΣUnforgeability game below

such that ε ≥ 1
2λ

+ η + qS ·(qH+qS)
p4

for some η > 240qH
2λ

after qH queries to the random oracle

H and qS queries to the Sign oracle, then one can build a certificate (f, A, x, Z) in expecting
time O( qH t

η
).

Let A be an adversary against the following ΣUnforgeability game under chosen message attack
in the random oracle model, and B be the challenger. We introduce two games, depending on
whether B gives A the secret issuing key or not.

ΣUnforgeabilityDA(λ)

1. Let (p,G1,G2,GT , e) be a bilinear environment ; g1, h
$← G1

2. Game 1: g2, w
$← G2

2. Game 2: g2
$← G2 ; γ

$← Zp ; w := g2
γ

3. gpk := (p,G1,G2,GT , e, g1, h, g2, w)

4. Game 1: (dpk∗, nym∗,m∗, σ∗)← AH(·),Sign(·,·,·)(gpk)

4. Game 2: (dpk∗, nym∗,m∗, σ∗)← AH(·),Sign(·,·,·)(gpk, γ)

5. Return 1 if

(a) σ∗ 6∈ S[dpk∗‖nym∗‖m∗] and

(b) D.Verify(gpk, dpk∗, nym∗,m∗, σ∗, {}) = accept

return 0 otherwise.

We show that B can, in both games, simulate signatures without knowledge of the secret key.
B maintains two tables S for the signed messages and H for the hash queries, both initially
empty.

H(m). On input m ∈ {0, 1}∗, if H[m] 6= ⊥, then B returns H[m], otherwise B picks c
$←

{0, 1}λ, sets H[m] := c and returns c.

Sign(dpk, nym,m). On input dpk, nym ∈ G1, m ∈ {0, 1}∗, B picks T
$← G1, c

$← {0, 1}λ

and sf , sx, sa, sb, sd
$← Zp, sets R1 := hsf · dpksx · nym−c, R2 := nymsa · h−sd · dpk−sb ,

R3 := e(T, g2)
sx · e(h, g2)−sf−sb · e(h,w)−sa ·

[
e(g1, g2) · e(T,w)−1

]−c
.

B sets m := dpk‖nym‖T‖R1‖R2‖R3‖m.

If H[m] 6= ⊥ and c 6= H[m], then B returns ⊥ and aborts. Otherwise, B sets H[m] := c,
σ := (T, c, sf , sx, sa, sb, sd), S[dpk‖nym‖m] := S[dpk‖nym‖m] ∪ {σ} and returns σ.

Therefore B can simulate the Sign oracle in the name of any pseudonym, with a probability
of failure when setting a random oracle value. This probability is less than (qH+qS)

p4
for each

signature simulation.

Now, since B can simulate the signatures without the knowledge of the secret key, then
we can build from B and A a no message adversary (that is an adversary against the
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ΣUnforgeability game without call to the Sign oracle), say C, and apply Lemma 10. If A suc-

ceeds with probability ε ≥ 1
2λ

+η+ qS ·(qH+qS)
p4

, then C makes a forgery with probability greater

than 1
2λ

+η. From Lemma 10, we extract two related signatures, with the same hash-query but
different challenges (m, dpk, nym, T ), (R1, R2, R3), c, (sf , sx, sa, sb, sd), c

′, (s′f , s
′
x, s
′
a, s
′
b, s
′
d) in

expected time O( qH t
η

). Finally, by applying Lemma 3, B gets a valid (f, A, x) and returns

(f, A, x, e(A, g2)).

A.5 Proof of Theorem 6

Let (h1, h1
θ, h1

θ2 , . . . , h1
θq , h2, h2

θ) ∈ Gq+1
1 ×G2

2 be a SDH instance on a bilinear environment
(p,G1,G2,GT , e) for an unknown and uniformly distributed θ ∈ Z∗p. We build an algorithm B

that outputs (c, g1
1/(θ+c)), for a c ∈ Zp \ {−θ}, from an adversary A against the seclusiveness

of our scheme.

Parameters. B picks k
$← {1, . . . , q}, x1, . . . , xq

$← Zp and s1, . . . , sq
$← Zp.

B sets g2 := h2 and w := (h2
θ) · h2−xk .

[Note. The issuing secret key is γ := θ − xk, but B does not know γ.]
For {x1, . . . , xq} ∈ Fp, let P , Pm and P−m for m ∈ [1, q] be the following polynomials on Fp[X]:

P :=

q∏
n=1

(X + xn − xk) Pm :=

q∏
n=1,n 6=m

(X + xn − xk) P−m :=

q∏
n=1,n 6=m,n 6=k

(X + xn − xk).

[Note. We have P = X · Pk, Pm = X · P−m if m 6= k, and Pk = P−k .]
Expanding P on θ, we get P (θ) =

∑q
n=0 anθ

n for some {an}qn=0 depending on the xn. Since

B knows h1
θn from the q-SDH challenge, B is able to compute h1

P (θ) without the knowledge
of θ. The same remark is equally true for Pm and P−m .

B picks α
$← Zp, β

$← Z∗p, sets g1 := h1
β(αP (θ)−skPk(θ)) and h := h1

βPk(θ).
B gives A parameters (e,G1,G2,GT , e, g1, h, g2, w,H).

[Note. Thanks to α and β, the parameters are distributed as in the D scheme.]

Simulating the issuing algorithm. Let Aux be the following sub-routine, taking as input (f ′, ctr)
∈ Zp × N and outputting (f ′′, A, x, Z) as in the fourth step of the D.Issue algorithm.

B sets Actr := h1
β(αPctr(θ)+P

−
ctr(θ)(sctr−sk)) and returns (sctr − f ′, Actr, xctr, e(Actr, g2)).

One can check that (sctr, Actr, xctr) is a valid certificate under w:(
g1 · hsctr

) 1
γ+xctr =

(
h1

β(αP (θ)−skPk(θ)) · h1βPk(θ)sctr
) 1
θ−xk+xctr

= h1
(βαPctr(θ)(θ+xctr−xk)−βskP−ctr(θ)(θ+xctr−xk)+βsctrP

−
ctr(θ)(θ+xctr−xk)) 1

θ−xk+xctr

= h1
(βαPctr(θ)−βskP−ctr(θ)+βsctrP

−
ctr(θ))

θ+xctr−xk
θ−xk+xctr = h1

β(αPctr(θ)+P
−
ctr(θ)(sctr−sk)) = Actr.

We note that, if ctr = k, we have Ak = h1
βαPk(θ).

Simulating the oracles. B initializes a counter ctr := 0.

AddDomain(j). When A wants to add a domain j, B sets RL[j] := {}, computes a new public

key dpkj := g1
rj for a fresh rj

$← Zp, records dpk[j] := dpkj, computes pseudonyms for
all existing honest users i ∈ HU as nymij := hfi · dpkj

xi for (fi, Ai, xi, Zi) ← usk[i],
records nym[i][j] := nymij, and sends back (dpkj, {nymij}i∈HU) to A.
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AddUser(i). When A asks for adding a new honest user, B increments the counter ctr := ctr+

1, picks f ′ctr
$← Zp, calls the Aux procedure on input (f ′ctr, ctr), gets (f ′′ctr, Actr, xctr, Zctr),

records usk[ctr] := (f ′ctr + f ′′ctr, Actr, xctr, Zctr) and rt[ctr] := (hf
′+f ′′ctr , xctr), and computes

pseudonyms for all existing j ∈ D as nym[ctr] := hf
′+f ′′ctr · dpkj

xctr where dpkj ← dpk[j].

CorruptUser(i). When A asks for adding a new corrupted user, B does nothing.

ReadRegistrationTable(i). When A asks for the content of the registration table, B returns
rt[i].

SendToIssuer(i,Min). When A asks for interacting with the issuer as a corrupted user, B
increments the counter ctr := ctr + 1 and initializes the table nym[ctr] := ⊥. Since
the D.Join↔ Issue protocol is one-round, then Min := (F,Π). From Π, thanks to the
extraction key ek, B extracts f ′ such that F := hf

′
. B then calls the Aux procedure on

the input (f ′, ctr), and gets (f ′′ctr, Actr, fctr, Zctr) back, which B transfers to A. B records
usk[ctr] := (f ′ + f ′′ctr, Actr, xctr, Zctr) and rt[ctr] := (hf

′+f ′′ctr , xctr).

Sign(i, j,m). When A asks for a signature from i ∈ HU near j ∈ D on a message m, then
B returns D.Sign(gpk,dpk[j],usk[i],nym[i][j],m).

Response. A eventually outputs (dpk∗, nym∗,m∗, σ∗). If this is a non trivial response, then
there exists j ∈ D such that dpk∗ = dpk[j]. At this point, B blacklists all users near j, by
updating RL[j]. Since the initialization for corrupted users was postponed to the issuing step,
then for all i ∈ U , we have (i) usk[i] 6= ⊥ and (ii) rt[i] 6= ⊥. If the response is valid, then
Verify(gpk, dpk∗, nym∗,m, σ, RL[j])= accept. This means that through the Σ-unforgeability
Lemma (Lemma 5, Game 1), B can extract a new certificate (f∗, A∗, x∗, Z∗) in reasonable
expecting time. Since this certificate is valid, we have

A∗ =
(
g1 · hf∗

) 1
γ+x∗ =

(
h1

β(αP (θ)−skPk(θ)) · (h1βPk(θ))f∗
) 1
θ−xk+x∗ = h1

βPk(θ)(αθ−sk+f∗) 1
θ−xk+x∗ .

Solving the SDH challenge. Since from (ii) for all i ∈ U , rt[i] 6= ⊥, then, if the signature
is not rejected, then there is no n ∈ [1, q], such that nym∗ = hfn · (dpk∗)

xn . Hence (iii)
(f∗, x∗) 6∈ {(f1, x1), . . . , (fq, xq)}. We distinguish two cases A and B.

(A) x∗ ∈ {x1, . . . , xq}. (A.I) If x∗ 6= xk, B returns ⊥ and aborts. (A.II) Let us now assume
that x∗ = xk. We have f∗ 6= sk (since f∗ = sk contradicts (iii)) and

(A∗
sk · Ak−f∗)

1
sk−f∗ =

(
h1

skβPk(θ)(αθ−sk+f∗) 1
θ−xk+x∗ · h1−f∗βαPk(θ)

) 1
sk−f∗

= h1
(skβPk(θ)(αθ−sk+f∗) 1θ−f∗βαPk(θ))

1
sk−f∗

= h1
skβPk(θ)(αθ−sk+f∗) 1θ

1
sk−f∗

−f∗βαθPk(θ) 1θ
1

sk−f∗

= h1
(βPk(θ)αθ(sk−f∗)+skβPk(θ)(sk+f∗)) 1θ

1
sk−f∗ = h1

β(αP (θ)−skPk(θ)) 1θ

P vanishes in 0, but this is not the case for Pk. Then by dividing β(αP (θ)− skPk(θ)) by θ we
get R and Q such that

C := R(0) = −βsk

[
q∏

n=1,n 6=k

(xn − x∗)

]
and (A∗

sk · Ak−f∗)
1

sk−f∗ = h1
C
θ
+Q(θ)

where C 6= 0. B computes h1
1/θ := ((A∗

sk · Ak−f∗)
1

sk−f∗ · h1−Q(θ))1/C , sets c := 0 and returns
(0, h1

1/θ) as a solution to the SDH challenge.
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(B) x∗ 6∈ {x1, . . . , xq}. In particular, we have (iv) xn− x∗ 6= 0 for all n ∈ [1, q]. Let us now
consider the quantity βPk(θ)(αθ+f∗−sk) as a polynomial D in θ. If we carry out the Euclidean
division of D by (θ + x∗ − xk), we get Q and R such that D(θ) = (θ + x∗ − xk)Q(θ) + R(θ).
As (θ+ x∗− xk) is a first degree polynomial X − (xk − x∗), we know that R(θ) = D(xk − x∗),
so B can compute

C := R(θ) = D(xk − x∗) = β

[
q∏

n=1,n6=k

(xn − x∗)

]
(α(xk − x∗) + f∗ − sk).

Let us recall that A∗ = h1
βPk(θ)(αθ−sk+f∗) 1

θ−xk+x∗ so A∗ = h1
(θ+x∗−xk)Q(θ)+R(θ)

θ−xk+x∗ = h1
Q(θ)+ C

θ+x∗−xk .
B can compute h1

Q(θ) from the SDH challenge. We again distinguish two cases.

(B.I) (f∗ − sk) 6= α(x∗ − xk). In this case, C 6= 0 by (iv) and by the choice of β, so B

can compute g1
1

θ+x∗−xk =
(
A∗ · g1−Q(θ)

) 1
C , set c = x∗ − xk, and return (c, g1

1/(θ+c)) as a
solution to the SDH challenge.

(B.II) (f∗ − sk) = α(x∗ − xk). B returns ⊥ and aborts.

Probability of success. No information is available about k from A’s point of view. So:

– in case A, B succeeds with probability 1/q.

– in case B, if B aborts, then we have

A∗ = h1
βPk(θ)(αθ−sk+f∗) 1

θ−xk+x∗ = h1
βPk(θ)(αθ+α(x∗−xk)) 1

θ−xk+x∗ = h1
βαPk(θ) = Ak.

If A∗ 6∈ {An}qn=1, then B does not abort. If (f∗, x∗) is a new pair corresponding to an
existing An, then B aborts with probability 1/q (plus a negligible quantity: all An are
distinct with very high probability). So B succeeds with probability at least 1− 1/q.

As a conclusion, if A outputs a valid forgery with probability ε, then B solves the SDH challenge
with probability at least ε/2q (considering the more pessimistic case).

Cost of the reduction. We need O(q) multiplications in order to compute h1
P (θ), and we need

to carry out an Euclidean division of a polynomial of degree q by a polynomial of degree 1,
which can be done in O(q2) (in a standard and non optimized way). ut

A.6 Proof of Theorem 7

Let A be an adversary against the unforgeability of the D scheme. Let (p,G1,G2,GT , e) be
a bilinear environment and (g,H) be a discrete logarithm instance in G1. We construct an
algorithm B that computes θ := logg H.

Parameters. B picks g1
$← G1, g2

$← G2, γ
$← Zp, sets h := g and w := g2

γ. B gives
parameters gpk := (e,G1,G2,GT , e, g1, h, g2, w) to A. In addition, B generates parameters
for the extractable commitment scheme Ext-Commit and the non-interactive proof system
NIZKPEqDL.

Simulating the oracles. At each time B interacts (as an honest user) with A (as the corrupted
issuing authority), B follows the Join procedure, but for the i-th user. In the latter case,
B sets F ′ := H and simulates the proof Π (in the random oracle model, with negligible
probability of failure, the precise quantity depending on the actual non-interactive proof) and
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receives (f ′′i , Ai, xi, Zi) where Ai = (g1 · H · hf
′′
i )

1
xi+γ for some f ′′i . B does not know fi, but can

compute the pseudonym for i and all domains j ∈ D by setting nymij := H · hf ′′i · dpkj
xi . B

records usk[i] := (f ′′i , Ai, xi, Zi). When A asks for a signature from the i-th user, B simulates
a signature including nymij (in the random oracle model). Other signatures are normally
computed and other oracles are normally simulated.

Response. A play of A eventually gives (dpk∗, nym∗,m∗, σ∗). If this is a valid and non trivial
response, then (i) we can find a domain j such that dpk∗ = dpk[j] and an honest user i
with consistent values nymij ∈ nym[i][j], (Fi, xi) ∈ rt[i] and (∗, Ai, xi, Zi) ∈ usk[i] such that
nym∗ = nymij = Fi·(dpk∗)

xi , and (ii) according to the Σ-unforgeability (Lemma 5, Game 2), we
are able to extract a valid certificate (f∗, A∗, x∗, Z∗) where (in particular) nym∗ = hf∗ ·(dpk∗)

x∗ .
Since discrete representations in G1 are unique modulo p, then we have that f∗ = logg Fi (the
pseudonym must be valid in a non trivial forgery) and x∗ = xi. With probability 1

qU
we

have i = i, since i is independent of the view of A. This implies that Ai = A∗ (a value A is

determined by f , x and γ). Therefore A∗ = (g1 · gf∗)
1

x∗+γ = (g1 · H · hf
′′
i )

1
x∗+γ and we obtain

θ = f∗ − f ′′i . ut

A.7 Proof of Theorem 8

Let A be an adversary against the cross-domain-anonymity of the D scheme. Let (p,G1,G2,GT ,
e) be a bilinear environment and (g,A,B,C) be a Diffie-Hellman instance in G1. We construct
B that decides whether C is the Diffie-Hellman of A and B in base g. B picks two bits

bA, bB
$← {0, 1}, a random user i

$← {1, . . . , qU} and a random domain j
$← {1, . . . , qD}.

Parameters. The parameters gpk := (p,G1,G2,GT , e, g1, h, g2, w) for the D scheme are com-
puted honestly, knowing isk = γ, except that g1 := g.

Simulating the oracles. Since the challenger knows the issuing secret key, and moreover can
simulate signatures on behalf of any user, then the simulation of the oracles is done without
noticeable facts, except that B acts as if dpkj = B and xi = logg A. B aborts and returns a
random bit if the user i is queried to the UserSecretKey oracle (B has no valid uski) or if i
and j are not queried to the Challenge oracle. Moreover, B aborts if nymij is not returned by
the Challenge oracle. The reduction relies upon the following SimNym procedure, called by
the AddUser and AddDomain oracles.

SimNym(i, j).

(I) If i 6= i and j 6= j, then B retrieves (fi, Ai, xi, Zi) ← usk[i], (dpkj, rj) ← dpk[j]
and sets nym[i][j] := hfi · g1rjxi .

(II) If i = i and j 6= j, then B retrieves (fi, ∗, ∗, ∗) ← usk[i], (dpkj, rj) ← dpk[j] and
sets nym[i][j] := hfi · Arj .

(III) If i 6= i and j = j, then B retrieves (fi, Ai, xi, Zi) ← usk[i] and sets nym[i][j] :=
hfi · Bxi .

(IV) If i = i and j = j, then B retrieves (fi, ∗, ∗, ∗)← usk[i], sets nym[i][j] := hfi · C.

Response. Eventually, A outputs a bit b′, its guess for (bA == bB). B returns true if (b′ ==
(bA == bB)), or false otherwise, as response to its own challenge.

Probability to win. Let us now estimate the advantage that B has of solving the DDH challenge.

AdvDDH
B =

∣∣Pr[B ⇒ true|C = DHg(A,B)]− Pr[B ⇒ true|C is random]
∣∣
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=
∣∣Pr[abort] ·P1 + Pr[abort] ·P2 − Pr[abort] ·P3 − Pr[abort] ·P4

∣∣
where

P1 := Pr[B ⇒ true|abort ∧ C = DHg(A,B)], P2 := Pr[B ⇒ true|abort ∧ C = DHg(A,B)],

P3 := Pr[B ⇒ true|abort ∧ C is random], P4 := Pr[B ⇒ true|abort ∧ C is random].

We know that P1 = P3 = 1
2
, since B outputs a random bit if the simulation aborts. Moreover

P2 = (ε+1)
2

: if C = DHg(A,B) and B does not abort, then the simulation is perfect, and P2 is
the probability that A solves its own anonymity challenge. Finally, we have P4 = 1

2
: if C is a

random element in G1, then no information is available to guess if the users are identical in
the output of the Challenge oracle and A has advantage 0 to win the game.

It remains to estimate the probability to abort. B aborts if it fails on setting some random
oracle values or if A asks for the secret of i or if nymij is not returned by the Challenge oracle.
Let us define the following events.

E0: B does not abort on simulating signatures.

E1: B does not abort on UserSecretKey before the Challenge call.

E2: B does not abort on Challenge.

E3: B does not abort on UserSecretKey after the Challenge call.

We have: Pr[abort] = Pr[E0 ∧ E1 ∧ E2 ∧ E3]
= Pr[E0] · Pr[E1|E0] · Pr[E2|E0 ∧ E1] · Pr[E3|E0 ∧ E1 ∧ E2].

Fact: Pr[E0] ≥ 1− qS ·(qH+qS)
p4

. For the simulation of a single signature, the probability to fail

on setting some random oracle value is bounded by (qH+qS)
p4

. There are qS calls to the NymSign

oracle, so B fails to simulate signatures with probability at most qS ·(qH+qS)
p4

.

Fact: Pr[E1|E0] ≥ 1 − qC
qU

. The index i is independent of the adversary’s view until asked
to UserSecretKey. The distribution of the corresponding secret keys is indeed correct and
the oracles’ responses are perfectly simulated: the pseudonym hf · C does not leak informa-
tion about C as long as f is unknown to A (as in a Pedersen commitment) and a signature
(T, c, ~s) leaks no information about f . Then the probability of not aborting after qC calls to
UserSecretKey is at least 1− qC

qU
.

Fact: Pr[E2|E0∧E1] ≥ 2
(qU−qC)·qD

. Let us first estimate the probability that i and j are queried

to the Challenge oracle. The adversary A chooses two distinct users among 2 ≤ q′U − q′C ≤ qU
and two distinct domains among 2 ≤ q′D ≤ qD, where q′U , q′D and q′C are respectively the
number of users, domains and UserSecretKey calls until the Challenge call. If A did not
abort before the Challenge call, i and j are independent of the adversary’s view at this point.
Moreover, they are mutually independent. So Pr[E2|E0 ∧E1] = 4

(q′U−q
′
C)·q

′
D
≥ 4

(qU−qC)·qD
. Then,

if i and j are queried to the Challenge oracle, B aborts with probability 1
2
, since nymij belongs

to the returned pseudonyms with probability 1
2
.

Fact: Pr[E3|E0 ∧ E1 ∧ E2] = 1. If A did not abort on the Challenge call, then i was queried
to Challenge. So, they will no longer be queried to UserSecretKey because the cross-domain
anonymity definition disallows it.
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Putting it all together we obtain:

Pr[abort] ≥ 2

(qU − qC) · qD
·
(

1− qC
qU

)
·
(

1− qS · (qH + qS)

p4

)
=

2

qU · qD
·
(

1− qS · (qH + qS)

p4

)
Conclusion. From the precedent facts, we conclude that:

AdvDDH
B =

∣∣∣Pr[abort] · 1

2
+ Pr[abort] · ε+ 1

2
− Pr[abort] · 1

2
− Pr[abort] · 1

2

∣∣∣
≥ 2

qU · qD
·
(

1− qS · (qH + qS)

p4

)
· ε

2
=

ε

qU · qD
·
(

1− qS · (qH + qS)

p4

)
If ε is non negligible, then so is the advantage of B. ut

A.8 Proof of Theorem 9

We adapt the proofs of Theorems 6, 7 and 8 to the extended model of Section 4.3 where the
oracles GetPreComp and Sign′ are also supplied to the adversary.

Pre-computations. We first simulate the pre-computations in the three security proofs.

Seclusiveness. All signatures are honestly computed.

Unforgeability. We just add the following simulation.

GetPreComp(i, j,m). If i 6= i, then all signatures are honestly computed. If i = i, then, given

H (from the DL challenge), Ai, xi and f ′′i , B picks a, c, sf , sx, sa, sb
$← Zp and computes

B1 := (Ai
−xi · H · hf ′′i )c · Asx · ha·sx−sf−sb and B2 := ha·c−sa .

One may check that B1 and B2 are perfectly simulated:

B1 = (A−x · H · hf ′′)c · Asx · ha·sx−sf−sb = A−x·c+sx · Hc · hf ′′·c+a·sx−sf−sb

= A−x·c+rx+c·x · hf·c+f ′′·c+a·rx+a·c·x−rf−c·f−rb−c·a·x = Arx · ha·rx−rf−rb

B2 = ha·c−sa = ha·c−ra−a·c = h−ra

H is still independent of the adversary’s view.

Cross-domain anonymity. The challenger honestly computes signatures for all users, but i, for
which signatures are simulated. Then we add the following simulation.

GetPreComp(i, j,m). If i 6= i, then all signatures are honestly computed. If i = i, then,

given A (from the DDH challenge) and fi, B picks α
$← Zp. The same α is used in

each signature, for consistency. Then, for each signature query, B picks fresh values
a, c, sf , sx, sa, sb and computes B1 := (A−α · hfi)c · T sx · h−sf−sb and B2 := ha·c−sa . (The
simulation is done as if Ai := g1

α.)

One may check that B1 and B2 are perfectly simulated:

B1 = (A−α · hf )c · Asx · ha·sx−sf−sb = g1
−α·a·c+α·sx · hf ·c+a·sx−sf−sb

= A−x·c+rx+c·x · hf ·c+a·rx+a·c·x−rf−c·f−rb−c·a·x = Arx · ha·rx−rf−rb

B2 = ha·c−sa = ha·c−ra−a·c = h−ra

A is still independent of the adversary’s view.

Signatures. We now simulate the Sign′ oracle. This oracle is simulated identically in the three
proofs.
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Sign′(i, j,D). Retrieve m, B1, B2, c, sa, sx, sa, sb from the GetPreComp step. Whatever D

is (D may not equal e(B1, g2) · e(B2, w)), B picks sd
$← Zp, computes T , R1 and R2 as

usual (T := A · ha, R1 := hsf · dpksx · nym−c and R2 := nymsa · h−sd · dpk−sb) and sets c
as the random oracle’s hash value for the input dpk‖nym‖T‖R1‖R2‖D‖m.

If the D value supplied by the adversary is correctly computed with respect to B1 and B2,
then the challenger returns a valid signature. If not, then the signature is no longer valid
but, from the adversary’s point of view, the response (T, c, ~s) remains consistent with the
pre-computed B1 and B2 values and the incorrect D value supplied by the adversary. In other
words, B perfectly simulates the protocol given Figure 3 as long as B does not fail on setting
the random oracle value.

Regarding this probability to fail, note that sd is picked after the reception of R3 and that
R2 depends on sd. Since sd is uniformly picked in Zp, then R2 is uniform in G1. So the

simulation fails in setting a random oracle value with probability at most
qS+q

′
S+qH
p

for each

Sign′ simulation (where q′S is the number of Sign′ queries and qS and qH are still the number
of Sign / NymSign and H queries respectively).

This concludes the proof. ut
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