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Abstract

In recent years, lattice-based cryptography has been recognized for its many attractive properties, such
as strong provable security guarantees and apparent resistance to quantum attacks, flexibility for realizing
powerful tools like fully homomorphic encryption, and high asymptotic efficiency. Indeed, several works
have demonstrated that for basic tasks like encryption and authentication, lattice-based primitives can
have performance competitive with (or even surpassing) those based on classical mechanisms like RSA or
Diffie-Hellman. However, there still has been relatively little work on developing lattice cryptography for
deployment in real-world cryptosystems and protocols.

In this work we take a step toward that goal, by giving efficient and practical lattice-based protocols
for key transport, encryption, and authenticated key exchange that are suitable as “drop-in” components
for proposed Internet standards and other open protocols. The security of all our proposals is provably
based (sometimes in the random-oracle model) on the well-studied “learning with errors over rings”
problem, and hence on the conjectured worst-case hardness of problems on ideal lattices (against quantum
algorithms).

One of our main technical innovations (which may be of independent interest) is a simple, low-
bandwidth reconciliation technique that allows two parties who “approximately agree” on a secret value
to reach exact agreement, a setting common to essentially all lattice-based encryption schemes. Our
technique reduces the ciphertext length of prior (already compact) encryption schemes nearly twofold, at
essentially no cost.

1 Introduction

Recent progress in lattice cryptography, especially the development of efficient ring-based primitives, puts
it in excellent position for use in practice. In particular, the short integer solution over rings (ring-SIS)
problem [Mic02, PR06, LM06] (which was originally inspired by the NTRU cryptosystem [HPS98]) has
served as a foundation for practical collision-resistant hash functions [LMPR08, ADL+08] and signature
schemes [LM08, GPV08, Lyu12, MP12, DDLL13], while the learning with errors over rings (ring-LWE)
problem [LPR10, LPR13] is at the heart of many kinds of encryption schemes. Much like their less efficient
integer-based counterparts SIS [Ajt96, MR04, GPV08] and LWE [Reg05, Pei09, BLP+13], both ring-SIS
and ring-LWE enjoy strong provable hardness guarantees: they are hard on the average as long as the Shortest
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Vector Problem is hard to approximate on so-called ideal lattices in the corresponding ring, in the worst case.
These results provide good theoretical evidence that ring-SIS and ring-LWE are a solid foundation on which to
design cryptosystems, which is reinforced by concrete cryptanalytic efforts (e.g., [CN11, LP11, LN13]). (We
refer the reader to [Mic02, PR06, LM06, LPR10, LPR13] for further details on these problems’ attractive
efficiency and security properties.)

By now there is a great deal of theoretical work constructing a broad range of powerful cryptographic
objects from (ring-)SIS and (ring-)LWE. However, far less attention has been paid to lower-level, “workhorse”
primitives like key exchange and key transport protocols, which are widely used on real-world networks
like the Internet. Indeed, almost all asymmetric cryptography standards are still designed around traditional
mechanisms like Diffie-Hellman [DH76] and RSA [RSA78].

1.1 Our Contributions

Toward the eventual goal of broader adoption and standardization of efficient lattice-based cryptography, in
this work we give efficient and practical lattice-based protocols for central asymmetric tasks like encryption,
key encapsulation/transport, and authenticated key exchange (AKE). Our proposals can all be proved secure
(in some cases, in the random oracle model [BR93b]) in strong, commonly accepted attack models, based on
the presumed hardness of the ring-LWE problem plus other generic assumptions (e.g., signatures and message
authentication codes).

Because our goal is to obtain primitives that are suitable for real-world networks like the Internet, we seek
designs that adhere as closely as possible to the abstract protocols underlying existing proposed standards,
e.g., IETF RFCs like [Hou03, RKBT10, HC98, Kau05, KHNE10]. This is so that working code and other
time-tested solutions to engineering challenges can be reused as much as possible. Existing proposals are built
around classical mechanisms like Diffie-Hellman and RSA, and ideally we would just be able to substitute
those mechanisms with lattice-based ones without affecting the protocols’ surrounding structure. However,
lattices have very different mathematical properties than RSA and Diffie-Hellman, and many protocols are not
easily adapted to use lattice-based mechanisms, or can even become insecure if one does so. Fortunately, we
are able to show that in certain cases, existing protocols can be generalized so as to yield secure lattice-based
instantiations, without substantially affecting their overall form or security analysis.

In the rest of this introduction we give an overview of our proposals.

Encryption and key transport. We first consider the task of asymmetric key encapsulation (also known as
key transport), where the goal is for a sender to transmit a random cryptographic key K using the receiver’s
public key, so that K can be recovered only by the intended receiver. This task is central to the use of
“hybrid” encryption, in which the parties later encrypt and/or authenticate bulk data under K using symmetric
algorithms. Of course, one way to accomplish this goal is for the sender to choose K and simply encrypt it
under the receiver’s public encryption key. However, it is conceptually more natural (and can offer better
efficiency and security bounds) to use a key encapsulation mechanism (KEM), in which the keyK is produced
as an output of the sender’s “encapsulation” algorithm, which is run on the receiver’s public key alone.

Our first technical contribution is a new ring-LWE-based KEM that has better bandwidth (i.e., cipher-
text length) than prior compact encryption/KEM schemes [LPR10, LPR13] by nearly a factor of two, at
essentially no cost in security or other efficiency measures. The improvement comes from our new, simple
“reconciliation” technique that allows the sender and receiver to (noninteractively) reach exact agreement
from their approximate or “noisy” agreement on a ring element. (See Section 3 for details.) Compared to the
encryption schemes of [LPR10, LPR13], this technique allows us to replace one of the two ring elements

2



modulo q = poly(n) in the ciphertext with a binary string of the same dimension n, thus nearly halving
the ciphertext length. (See Section 4 for details.) We remark that approximate agreement is common to
essentially all lattice-based encryption and key-agreement protocols, and our reconciliation technique is
general enough to apply to all of them.

The KEM described above is passively secure, i.e., secure against passive eavesdroppers that see the
public keys and ciphertexts, but do not create any of their own. Many applications require a much stronger
form of security against active attackers, or more formally, security against adaptive chosen-ciphertext attacks.
The literature contains several actively secure encryption/KEM schemes (sometimes in the random oracle
model), obtained either via generic or semi-generic transformations from simpler objects (e.g., [DDN91,
BR94, Sho01, FO99a, FO99b]), or more directly from particular algebraic structures and assumptions
(e.g., [CS98, CS02, BCHK07, PW08]). For various reasons, most of these construction paradigms turn
out to be unsuitable for obtaining highly efficient, actively secure lattice-based KEM/encryption schemes
(see Section 5.3 for discussion). One method that does work well, however, is the Fujisaki-Okamoto
transformation [FO99b]. In Section 5 we apply it to obtain an actively secure encryption and KEM scheme
that is essentially as efficient as our passively secure KEM. This can be used as an alternative to, e.g.,
RSA-based actively secure key encapsulation as in the proposed standard [RKBT10].

Authenticated key exchange (AKE). An AKE protocol allows two parties to generate a fresh, mutually
authenticated secret key, e.g., for use in setting up a secure point-to-point channel. Formal attack models,
security definitions, and protocols for AKE have been developed and refined in several works, e.g., [BR93a,
BR95, Kra96, BCK98, Sho99, CK01, CK02b, CK02a, LMQ+03, Kra05]. In this work we focus on the strong
notion of “SK-security” [CK01] in the “post-specified peer” model [CK02a]. This model is particularly
relevant to the Internet because it allows the identity of the peering party to be discovered during the protocol,
rather than specified in advance. It also ensures other desirable properties like perfect forward secrecy.

We give a generalization of an AKE protocol of Canetti and Krawczyk [CK02a] which inherits from
Krawczyk’s SIGMA family of protocols [Kra03], and underlies the Internet Key Exchange (IKE) proposed
standard [HC98, Kau05, KHNE10]. All these protocols are built specifically around the (unauthenticated)
Diffie-Hellman key-exchange mechanism. We show that the Canetti-Krawczyk protocol can be generalized
to instead use any passively secure KEM—in particular, our lattice-based one—with only minor changes to
the proof of SK-security in the post-specified peer model. Again, we view the relative lack of novelty in our
protocol and its analysis as a practical advantage, since it should eventually allow for the reuse of existing
code and specialized knowledge concerning the real-world implementation of these protocols.

1.2 Organization

The rest of the paper is organized as follows.

• In Section 2 we recall the necessary cryptographic and mathematical background, including the relevant
basics of cyclotomic rings and the ring-LWE problem.

• In Section 3 we give the details of our new reconciliation mechanism for transforming approximate
agreement to exact agreement.

• In Section 4 we present and analyze our new passively secure KEM using the above reconciliation
mechanism.

• In Section 5 we transform our passively secure KEM to an actively secure one using the Fujisaki-
Okamoto transformation [FO99b], and discuss the problems with other candidate transformations.

3



• In Section 6 we present and analyze a generalization of the Σ0 authenticated key exchange (AKE)
protocol of Canetti and Krawczyk [CK02a], which can be instantiated with our passively secure KEM.

2 Preliminaries

For x ∈ R, define bxe = bx+ 1
2c ∈ Z. For an integer q ≥ 1, let Zq denote the quotient ring Z/qZ, i.e., the

ring of cosets x+ qZ with the induced addition and multiplication operations. For any two subsets X,Y of
some additive group, define −X = {−x : x ∈ X} and X + Y = {x+ y : x ∈ X, y ∈ Y }.

2.1 Cryptographic Definitions

As is standard in cryptography, in this work all algorithms are implicitly given the same security parameter λ
(represented in unary), which indicates the desired level of security. Every defined algorithm must be efficient,
i.e., it must run in time polynomial in λ. A function f(λ) is negligible if it decreases faster than any inverse
polynomial, i.e., f(λ) = o(n−c) for every constant c ≥ 0. We say that two distributions X,Y (or more
accurately, two ensembles {Xλ}, {Yλ} of distributions indexed by λ) are computationally indistinguishable
if for all efficient algorithms A, |Pr[A(Xλ)]− Pr[A(Yλ)]| is negligible (in λ). This asymptotic treatment
can be made more concrete by quantifying runtimes, probabilities, etc. more precisely.

We define encryption and key encapsulation in a model in which the algorithms have access to some
public parameters, which are generated according to a setup algorithm by a trusted party, and which can be
used by all parties. If no trusted party is available, then the setup algorithm can be run first as part of the
key-generation algorithm, and the public parameters included in the resulting public key.

A public-key cryptosystem (PKC) with ciphertext space C and (finite) message spaceM is given by four
efficient algorithms: Setup, Gen, Enc (which may be randomized) and Dec (which must be deterministic)
having the following syntax:

• Setup() outputs a public parameter pp.

• Gen(pp) outputs a public encryption key pk and secret decryption key sk.

• Enc(pp, pk, µ) takes a public key pk and a message µ ∈M, and outputs a ciphertext c ∈ C.

• Dec(sk, c) takes a decryption key sk and a ciphertext c, and outputs some µ ∈M∪ {⊥}, where ⊥ is
some distinguished symbol denoting decryption failure.

For correctness, we require that for all µ ∈M, if pp← Setup(), (pk, sk)← Gen(pp) and c← Enc(pk, µ),
then Dec(sk, c) = µ with all but negligible probability over all the randomness in the experiment.

A key encapsulation mechanism (KEM), sometimes also called a key transport mechanism (KTM), is
a one-message protocol for transmitting an ephemeral secret key to a receiver, using the receiver’s public
key. Unlike with encryption, the ephemeral key is an output of the sender’s algorithm, not an explicit input.
Formally, a KEM with ciphertext space C and (finite) key space K is given by efficient algorithms Setup, Gen,
Encaps (which may be randomized) and Decaps (which must be deterministic) having the following syntax:

• Setup() outputs a public parameter pp.

• Gen(pp) takes the public parameter and outputs a public encapsulation key pk and secret decapsulation
key sk.

• Encaps(pp, pk) take the public parameter and an encapsulation key pk, and outputs a ciphertext c ∈ C
and a key k ∈ K.
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• Decaps(sk, c) takes a decapsulation key sk and a ciphertext c, and outputs some k ∈ K∪{⊥}, where⊥
is some distinguished symbol denoting decapsulation failure.

For correctness, we require that if pp← Setup(), (pk, sk)← Gen(pp), and (c, k)← Encaps(pk), we have
Decaps(sk, c) = k with all but negligible probability over all the randomness in the experiment.

A KEM is passively secure, or more formally, satisfies IND-CPA security, if the outputs of the following
“real” and “ideal” experiments are computationally indistinguishable:

pp← Setup()
(pk, sk)← Gen(pp)
(c, k)← Encaps(pp, pk)

Output (pp, pk, c, k)

pp← Setup()
(pk, sk)← Gen(pp)
(c, k)← Encaps(pp, pk)
k∗ ← K
Output (pp, pk, c, k∗)

Any passively secure KEM can be converted into a passively secure encryption scheme for message space
M = K by having the sender use the ephemeral key k ∈ K as a one-time pad to conceal the message (this
assumes that K has a group structure); this lengthens the ciphertext by an element of K. In the other direction,
any passively secure encryption scheme can be converted into an passively secure KEM with key space
K =M by having the sender choose the ephemeral key and encrypt it.

A public-key cryptosystem is actively secure (against adaptive chosen-ciphertext attacks), or more
formally, satisfies IND-CCA security, if the following experiments for b = 0, 1 are computationally indis-
tinguishable: generate pp← Setup() and (pk, sk)← Gen(pp), and give the adversary (pp, pk) and oracle
access to Dec(sk, ·); then, when the adversary returns two messages µ0, µ1 ∈M, generate c∗ ← Enc(pk, µb)
and give the adversary oracle access to Dec(sk, ·), with the restriction that it may not query the oracle on c∗.

2.2 Subgaussian Random Variables

In our constructions we analyze the behavior of “error” terms using the standard notion of subgaussian
random variables, relaxed slightly as in [MP12]. (For further details and full proofs, see [Ver12].) For any
δ ≥ 0, we say that a random variable X (or its distribution) over R is δ-subgaussian with parameter r > 0 if
for all t ∈ R, the (scaled) moment-generating function satisfies

E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2).

By Markov’s inequality, X has Gaussian tails, i.e., for all t ≥ 0,

Pr[|X| ≥ t] ≤ 2 exp(δ − πt2/r2). (2.1)

A standard fact is that any B-bounded centered random variable X (i.e., E[X] = 0 and |X| ≤ B always) is
0-subgaussian with parameter B

√
2π.

We extend the notion of subgaussianity to vectors. Specifically, we say that a random real vector X is
δ-subgaussian with parameter r if for all real unit vectors u, the random variable 〈u, X〉 ∈ R is δ-subgaussian
with parameter r. More generally, X and u may be taken from any real inner product space.

Fact 2.1. IfX1 is δ1-subgaussian with parameter r1, andX2 is δ2 subgaussian with parameter r2 conditioned
on any value of X1 (in particular, if X1 and X2 are independent), then X1 +X2 is (δ1 + δ2)-subgaussian
with parameter

√
r21 + r22.
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2.3 Cyclotomic Rings

Here we briefly recall the relevant background on cyclotomic rings as they relate to ring-LWE. Many more
details can be found in [LPR10, LPR13]. The latter reference especially covers many computational aspects
of cyclotomics and ring-LWE.

For a positive integer index m, let K = Q(ζm) and R = Z[ζm] ⊂ K denote the mth cyclotomic number
field and ring (respectively), where ζm denotes an abstract element having order m. The minimal polynomial
of ζm over the rationals, i.e., the unique monic f(X) ∈ Q[X] of minimal degree having ζm as a root, is
an integer polynomial called the mth cyclotomic polynomial Φm(X) ∈ Z[X]. Its complex roots are all the
primitive mth roots of unity ωim for i ∈ Z∗m, where ωm = exp(2π

√
−1/m) ∈ C. Therefore, R has degree

n = ϕ(m) as a ring extension of Z, and is isomorphic to the quotient ring Z[X]/(Φm(X)) by identifying ζm
with X , and similarly for K over Q. In particular, {1, ζm, ζ2m, . . . , ζn−1m } is a Z-basis of R, called the power
basis. However, the power basis is just one particular basis of R, and it turns out that other bases are better
suited to the kinds of computational operations and analysis used in ring-LWE cryptography (see [LPR13]
for details). For the most part, in this work we remain agnostic to the choice of basis used for representing
and operating upon ring elements, except when analyzing the coefficients of error terms, in which case we
use the decoding basis of R, described in Section 2.3.2 below.

For any integer modulus q ≥ 1, let Rq denote the quotient ring R/qR. For a given basis of R, we
can represent any element of Rq by an n-dimensional vector of Zq-coefficients with respect to that basis.
Fixing a basis of R and a set of distinguished representatives of Zq therefore induces a set of distinguished
representatives of Rq. For security, implementations must represent Rq-elements using their distinguished
representatives with respect to some public basis, the choice of which must not depend on any secret
information.

For any p|m, let ζp = ζ
m/p
m ∈ R (which has order p), and define

g =
∏

odd prime p|m

(1− ζp) ∈ R.

Also define m̂ = m/2 if m is even, and m̂ = m otherwise. We recall a standard fact about these elements
(see, e.g., [LPR13, Section 2.5.4]).

Fact 2.2. The element g divides m̂ in R, and is coprime in R with all integer primes except the odd primes p
dividing m.

2.3.1 Canonical Embedding

Here we recall the classical notion of the canonical embedding ofK, which endows it (and henceR ⊂ K) with
a geometry. There are n = ϕ(m) ring embeddings (i.e., injective ring homomorphisms) σi : K → C that fix Q
pointwise. They are defined by σi(ζm) = ωim for each i ∈ Z∗m, where again ωm = exp(2π

√
−1/m) ∈ C.

Note that these embeddings map ζm to each of the primitive mth roots of unity in C, and that the embeddings
come in conjugate pairs, i.e., σm−i = σi.

The canonical embedding σ : K → Cn is simply the concatenation of the above ring embeddings, i.e.,

σ(e) =
(
σi(e)

)
i∈Z∗

m
.

Due to the conjugate pairs of embeddings, σ actually maps into the subspace H ⊆ Cn characterized by this
conjugate symmetry. It is straightforward to verify that H is an n-dimensional real inner product space under
the standard inner product 〈x,y〉 =

∑
i xiyi on Cn.

6



We extend geometric notions, such as norms and subgaussianity, to K by identifying its elements with
their canonical embeddings in H . In particular, the `2 (Euclidean) and `∞ norms on K are defined by

‖e‖2 := ‖σ(e)‖2 =

(∑
i∈Z∗

m

|σi(e)|2
)1/2

and ‖e‖∞ := ‖σ(e)‖∞ = max
i∈Z∗

m

|σi(e)|,

respectively. (For example, ‖1‖2 =
√
n and ‖1‖∞ = 1.) Similarly, we say that e ∈ K is δ-subgaussian with

parameter r if σ(e) ∈ H is.
Note that because σ(e+ e′) = σi(e) + σi(e

′) and σi(e · e′) = σi(e) · σi(e′), for p ∈ {2,∞} we have the
triangle inequality and “expansion bound”

‖e+ e′‖p ≤ ‖e‖p + ‖e′‖p
‖e · e′‖p ≤ ‖e‖p · ‖e

′‖∞.

2.3.2 Decoding Basis

Here we recall a certain Q-basis of K that plays an important role in the generation of error terms and in
decryption for ring-LWE-based cryptosystems. As background, a central object in the definition and usage of
ring-LWE is the fractional “codifferent” ideal R∨ = (m̂/g)−1R ⊂ K. In [LPR13, Section 6] it is shown
that a certain Z-basis of R∨ (and hence Q-basis of K), called the decoding basis, has essentially optimal
error tolerance (e.g., for decryption) and admits fast sampling of error terms from appropriate distributions.
We will not need the formal definition of the decoding basis in this work, but will only rely on a few of its
important properties as demonstrated in [LPR13].

In this work, for convenience we avoid the codifferent ideal R∨ = (m̂/g)−1R, and instead give an
alternative (but equivalent) definition of the decoding basis, by multiplying by m̂/g ∈ R where appropriate
to map R∨ to R. More specifically, we replace any e∨ ∈ R∨ that would normally belong to the codifferent
by e = (m̂/g)e∨ ∈ R. Similarly, we define the decoding basis of R to be m̂/g times the elements of the
decoding basis of R∨. Then by linearity, the coefficient vector of any e∨ ∈ K with respect to the “true”
decoding basis (of R∨) is identical to that of e = (m̂/g)e∨ with respect to the decoding basis of R. In
particular, any algorithm for sampling an error term e∨ as represented in the decoding basis of R∨, such
as the one given in [LPR13, Section 6.3], is also (without any modification) an algorithm for sampling
e = (m̂/g)e∨ as represented in the decoding basis of R.

We caution that multiplying an element by m̂/g can significantly distort its canonical geometry. More
precisely, the ratio of the lengths (or subgaussian parameters) of e = (m̂/g)e∨ versus e∨ can vary widely
depending on e∨, because the embeddings σi(1/g) can vary widely in magnitude. However, multiplying
by g ∈ R undoes this distortion, because σ(g · e) = m̂ · σ(e∨). So, we typically deal with error terms e ∈ R
where g · e is subgaussian, and analyze the coefficients of e itself with respect to the decoding basis of R.
The following is a reformulation of [LPR13, Lemma 6.6] to our definition of decoding basis.

Lemma 2.3. Let e ∈ K be such that g · e is δ-subgaussian with parameter m̂ · r, and let e′ ∈ K be arbitrary.
Then every decoding-basis coefficient of e · e′ is δ-subgaussian with parameter r · ‖e′‖2.

2.3.3 Error Distributions

In the context of ring-LWE we work with certain Gaussian-like error distributions over the number field K,
and discretized to R. For r > 0, the Gaussian distribution Dr over R with parameter r has probability
distribution function exp(−πx2/r2)/r. More generally, the Gaussian distribution Dr over a real inner
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product space V (e.g., Rn or H ⊂ Cn) is such that the marginal distributions 〈u, Dr〉 = Dr (over R) for all
unit vectors u ∈ V . In particular, Dr over the subspace H ⊂ Cn (as defined above in Section 2.3.1) outputs
an element whose real and complex coordinates are all Gaussian with parameter r/

√
2, and are independent

up to the conjugate symmetry of H . For convenience, but with a slight abuse of formality, we also define
the Gaussian distribution Dr over the number field K to output an element a ∈ K for which σ(a) ∈ H has
distribution Dr.1

In our applications we use error distributions of the form ψ = (m̂/g) ·Dr over K; the extra m̂/g factor
corresponds to the translation from R∨ to R as described above in Section 2.3.2. We also discretize such
distributions to the ring R, denoting the resulting distribution by χ = bψe, by sampling an element a ∈ K
from ψ and then rounding each of its rational decoding-basis coefficients to their nearest integers. (Other
discretization methods are described in [LPR13, Section 2.4.2]; our applications can use any of them with
only minor changes to the analysis.) We rely on the following facts from [LPR13].

Fact 2.4. Let e← χ where χ = bψe for ψ = (m̂/g) ·Dr. Then:

1. g · e is δ-subgaussian with parameter m̂ ·
√
r2 + 2π rad(m)/m for some δ ≤ 2−n.

2. ‖g · e‖2 ≤ m̂ · (r +
√

rad(m)/m) ·
√
n except with probability at most 2−n.

For computational purposes, [LPR13, Section 6.3] gives a fast algorithm for sampling from (m̂/g) ·Dr,
where the output is represented as a vector of rational coefficients with respect to the decoding basis of R;
this allows for immediate discretization.

2.4 Ring-LWE

We now recall the ring-LWE probability distribution and (decisional) computational problem. For simplicity
and convenience for our applications, we present the problem in its discretized, “normal” form, where all
quantities are from R or Rq = R/qR, and the secret is drawn from the (discretized) error distribution.
(See [LPR10] for a more general form.)

Definition 2.5 (Ring-LWE Distribution). For an s ∈ R and a distribution χ over R, a sample from the
ring-LWE distribution As,χ over Rq ×Rq is generated by choosing a← Rq uniformly at random, choosing
e← χ, and outputting (a, b = a · s+ e).

Definition 2.6 (Ring-LWE, Decision). The decision version of the ring-LWE problem, denotedR-DLWEq,χ,
is to distinguish with non-negligible advantage between independent samples from As,χ, where s ← χ is
chosen once and for all, and the same number of uniformly random and independent samples from Rq ×Rq.

Theorem 2.7 ([LPR10]). Let R be the mth cyclotomic ring, having dimension n = ϕ(m). Let α = α(n) <√
log n/n, and let q = q(n), q = 1 mod m be a poly(n)-bounded prime such that αq ≥ ω(

√
log n). There

is a poly(n)-time quantum reduction from Õ(
√
n/α)-approximate SIVP (or SVP) on ideal lattices in R to

solvingR-DLWEq,χ given only `−1 samples, where χ = bψe and ψ is the Gaussian distribution (m̂/g) ·Dξq

for ξ = α · (n`/ log(n`))1/4.

1This is an abuse because σ(K) is not equal to H , but is merely dense in it. To be formal, we would define the Gaussian
distribution over the field tensor product KR = K ⊗Q R, which is isomorphic to H (as a real inner product space) under the natural
extension of σ. Since in practice Gaussians can only be sampled with finite precision, in this work we ignore such subtleties.
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Note that the above worst-case hardness result deteriorates with the number of samples `; fortunately, all
our applications require only a small number of samples.

In addition to the above theorem, a plausible conjecture is that the search version of ring-LWE is hard
for the fixed error distribution ψ = (m̂/g) ·Dαq, where αq ≥ ω(

√
log n).2 (Informally, the search problem

is to find the secret s given arbitrarily many ring-LWE samples; see [LPR10] for a precise definition.)
Unfortunately, for technical reasons it is not known whether this is implied by the worst-case hardness of
ideal lattice problems in R, except for impractically large q and small α. However, it is proved in [LPR10,
Theorem 5.3] that the decision version with error distribution ψ (or its discretization bψe) is at least as hard
as the search version. Note that unlike Theorem 2.7, this results avoids the extra (n/ log n)1/4 factor in the
error distribution for the decision version, which leads to better parameters in applications.

3 New Reconciliation Mechanism

As mentioned in the introduction, one of our contributions is a more bandwidth-efficient method for two
parties to agree on a secret bit, assuming they “approximately agree” on a (pseudo)random value modulo q.
This is based on a new reconciliation mechanism that we describe in this section.

For an integer p that divides q (where typically p = 2), we define the modular rounding function
b·ep : Zq → Zp as bxep := bpq · xe, and similarly for b·cp. Note that the function is well-defined on the
quotient rings because p

q · qZ = pZ. For now we have restricted to the case p|q so that the rounding function
is unbiased. In Section 3.2 below we lift this restriction, using randomness to avoid introducing bias.

3.1 Even Modulus

In this subsection let the modulus q ≥ 2 be even, and define disjoint intervals I0 := {0, 1, . . . , b q4e − 1},
I1 := {−b q4c, . . . ,−1} mod q consisting of b q4e and b q4c (respectively) cosets in Zq. Observe that these
intervals form a partition of all the elements v ∈ Zq such that bve2 = 0 (where we identify 0 and 1 with their
residue classes modulo two). Similarly, q2 + I0 and q

2 + I1 partition all the v such that bve2 = 1.
Now define the cross-rounding function 〈·〉2 : Zq → Z2 as

〈v〉2 := b4q · vc mod 2.

Equivalently, 〈v〉2 is the b ∈ {0, 1} such that v belongs to the disjoint union Ib ∪ ( q2 + Ib); hence the
name “cross-rounding.” If v is uniformly random, then 〈v〉2 is uniformly random if and only if q/2 is even;
otherwise, 〈v〉2 is biased toward zero. Regardless of this potential bias, however, the next claim shows
that 〈v〉2 hides bve2 perfectly.

Claim 3.1. For even q, if v ∈ Zq is uniformly random, then bve2 is uniformly random given 〈v〉2.

Proof. For any b ∈ {0, 1}, if we condition on 〈v〉2 = b, then v is uniform over Ib ∪ ( q2 + Ib). As already
observed, if v ∈ Ib then bve2 = 0, whereas if v ∈ ( q2 + Ib) then bve2 = 1, so bve2 is uniformly random
given 〈v〉2.

2The conjecture seems plausible even for the weaker bound αq ≥ 1. However, when αq = o(1), the search problem can be
solved in subexponential 2o(n) time, given a sufficiently large number of samples [AG11].
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We now show that if v, w ∈ Zq are sufficiently close, we can recover bve2 given w and 〈v〉2. Define the
set E := [− q

8 ,
q
8) ∩ Z, and define the reconciliation function rec : Zq × Z2 → Z2 as

rec(w, b) :=

{
0 if w ∈ Ib + E (mod q)

1 otherwise.

Claim 3.2. For even q, if w = v + e mod q for some v ∈ Zq and e ∈ E, then rec(w, 〈v〉2) = bve2.

Proof. Let b = 〈v〉2 ∈ {0, 1}, so v ∈ Ib ∪ ( q2 + Ib). Then bve2 = 0 if and only if v ∈ Ib. This in turn holds
if and only if w ∈ Ib + E, because ((Ib + E) − E) ⊆ Ib + (− q

4 ,
q
4) and ( q2 + Ib) are disjoint (modulo q).

The claim follows.

3.2 Odd Modulus

All of the above applies when q is even, but in applications of ring-LWE this is often not the case. (For
instance, it is often desirable to let q be a sufficiently large prime, for efficiency and security reasons.) When q
is odd, while it is possible to use the above methods to agree on a bit derived by rounding a uniform v ∈ Zq,
the bit will be biased, and hence not wholly suitable as key material. Here we show how to avoid such bias
by temporarily “scaling up” to work modulo 2q, and introducing a small amount of extra randomness.

Define the randomized function dbl : Zq → Z2q that, given a v ∈ Zq, outputs v̄ = 2v − ē ∈ Z2q for
some random ē ∈ Z that is uniformly random modulo two and independent of v, and small in magnitude
(e.g., bounded by one).3 The first of these properties imply that if v is uniformly random in Zq, then so is v̄
in Z2q, and hence the following extension of Claim 3.1 holds:

Claim 3.3. For odd q, if v ∈ Zq is uniformly random and v̄ ← dbl(v) ∈ Z2q, then bv̄e2 is uniformly random
given 〈v̄〉2.

Moreover, if w, v ∈ Zq are close, then so are 2w,dbl(v) ∈ Z2q, i.e., if w = v+e (mod q) for some (small) e,
then 2w = v̄ + (2e+ ē) (mod 2q). Therefore, to (cross-)round from Zq to Z2, we simply apply dbl to the
argument and then apply the appropriate rounding function from Z2q to Z2. Similarly, to reconcile some
w ∈ Zq we apply rec to 2w ∈ Z2q; note that this process is still deterministic.

3.3 Extending to Cyclotomic Rings

We extend (cross-)rounding and reconciliation to cyclotomic rings R using the decoding basis. For even q,
the rounding functions b·e2, 〈·〉2 : Rq → R2 are obtained by applying their integer versions (from Zq to Z2)
coordinate-wise to the input’s decoding-basis Zq-coefficients. Formally, if D = {dj} ⊂ R denotes the
decoding basis and v =

∑
j vj · dj ∈ Rq for coefficients vj ∈ Zq, then bve2 :=

∑
jbvje2 · dj ∈ R2, and

similarly for 〈·〉2. The reconciliation function rec : Rq × R2 → R2 is obtained from its integer version as
rec(w, b) =

∑
j rec(wj , bj) · dj , where w =

∑
j wj · dj and b =

∑
j bj · dj .

For odd q, we define the randomized function dbl : Rq → R2q which applies its (randomized) integer
version independently to each of the input’s decoding-basis coefficients. The (cross-)rounding functions
from Rq to R2 are defined to first apply dbl to the argument, then (cross-)round the result from R2q to R2.
To reconcile w ∈ Rq we simply reconcile 2w ∈ R2q.

3For example, we could simply take ē to be uniform over {0, 1}. However, it is often more analytically convenient for ē to be
zero-centered and hence subgaussian. To achieve this we can take ē = 0 with probability 1/2, and ē = ±1 each with probability
1/4.
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4 Passively Secure KEM

In this section we construct, based on ring-LWE, an efficient key encapsulation mechanism (KEM) that is
secure against passive (i.e., eavesdropping) attacks. In later sections this will be used as a component of
actively secure constructions. Specifically, we use the KEM as part of an authenticated key exchange protocol,
and we use the induced passively secure encryption scheme to obtain actively secure encryption/KEM
schemes via the Fujisaki-Okamoto transformation.

Our KEM is closely related to the compact ring-LWE cryptosystem from [LPR13, Section 8.2] (which
generalizes the one sketched in [LPR10] to arbitrary cyclotomics), with two main changes: first, we avoid
using the “codifferent” ideal R∨ using the approach described in Section 2.3.2; second, we use the reconcilia-
tion mechanism from Section 3 to improve ciphertext length. A third minor difference is that the system is
constructed explicitly as a KEM (not a cryptosystem), i.e., the encapsulated key is not explicitly chosen by
either party. Instead, the sender and receiver “approximately agree” on a pseudorandom value in Rq using
ring-LWE, and use the reconciliation technique from Section 3 to derive the ephemeral key from it.

As compared with the previous most efficient ring-LWE cryptosystems and KEMs, the new reconciliation
mechanism reduces the ciphertext length by nearly a factor of two, because it replaces one of the ciphertext’s
two Rq elements with an R2 element. So the ciphertext length is reduced from 2n log q bits to n(1 + log q)
bits, where n is both the dimension of R and the length of the agreed-upon key. In terms of security, the
reconciliation technique requires a ring-LWE error rate that is half as large as in prior schemes, but this
weakens the concrete security only very slightly. (The reason for the smaller error rate is that we need the
error term’s decoding-basis coefficients to be bounded by q/8 instead of by q/4; see Claim 3.2.) Of course, if
necessary we can compensate for this security loss by increasing the parameters (and hence the key size) very
slightly. For practical purposes, the improvement in ciphertext length seems to outweigh the small loss in
security or key size.

4.1 Construction

The KEM is parameterized by:

• A positive integer m specifying the mth cyclotomic ring R of degree n = ϕ(m).

• A positive integer modulus q which is coprime with every odd prime dividing m, so that g ∈ R is
coprime with q (see Fact 2.2). For efficiency and provable security, we typically take q to be prime
and 1 modulo m (or if necessary, a product of such primes), which implies the coprimality condition.

• A discretized error distribution χ = bψe over R, where ψ = (m̂/g) ·Dr is over K (see Section 2.3.3),
for some parameter r > 0.

The ciphertext space is C = Rq ×R2, and the key space is K = R2. We can identify elements in K = R2

with bit strings in {0, 1}n = Zn2 in some canonical way, e.g., the jth bit of the string is the jth decoding-basis
coefficient of the element in R2.

In what follows we assume that q is odd (since this will typically be the case in practice), and use the
randomized function dbl : Zq → Z2q and (deterministic) reconciliation function rec : Zq × Z2 → Z2 from
Section 3.4 In dbl we take the random term ē to be 0 with probability 1/2, and ±1 each with probability 1/4,

4If q is even, then the Encaps and Decaps algorithms can be simplified by using the deterministic (cross-)rounding and associated
reconciliation functions from Section 3.1. Lemmas 4.1 and 4.2 then remain true as stated, with essentially the same (but somewhat
simpler) proofs.
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so that ē is uniform modulo two (as needed for security) and 0-subgaussian with parameter
√

2π. We also
extend dbl and rec to cyclotomic rings as described in Section 3.3.

The algorithms of the KEM are as follows.

• KEM1.Setup(): choose a← Rq and output pp = a.

• KEM1.Gen(pp = a): choose s0, s1 ← χ, let b = a · s1 + s0 ∈ Rq, and output public key pk = b and
secret key sk = s1.

• KEM1.Encaps(pp = a, pk = b): choose independent e0, e1, e2 ← χ. Let u = e0 · a+ e1 ∈ Rq and
v = g · e0 · b+ e2 ∈ Rq. Let v̄ ← dbl(v) and output the encapsulation c = (u, v′ = 〈v̄〉2) ∈ Rq ×R2

and key µ = bv̄e2 ∈ R2.

• KEM1.Decaps(sk = s1, c = (u, v′)): compute w = g · u · s1 ∈ Rq and output µ = rec(w, v′) ∈ R2.

4.2 Security

Lemma 4.1. KEM1 is IND-CPA secure, assuming the hardness of R-DLWEq,χ given two samples.

Proof. We show that, under the assumption, adjacent games below (where Gen and Encaps are from KEM1)
are computationally indistinguishable:

a← Rq
(b, sk)← Gen(a)
((u, v′), µ)← Encaps(a, b)

Output (a, b, (u, v′), µ)

a← Rq
b← Rq
((u, v′), µ)← Encaps(a, b)

Output (a, b, (u, v′), µ)

(a, b)← Rq ×Rq
(u, v)← Rq ×Rq
v̄ ← dbl(v), v′ = 〈v〉2
µ∗ ← R2

Output (a, b, (u, v′), µ∗)

Notice that the first game is the “real” IND-CPA attack game on KEM1 (as defined in Section 2.1). The last
game is not actually the “ideal” IND-CPA game, because it does not involve Gen or Encaps, but at the end of
the proof we argue that it is computationally indistinguishable from the ideal game.

First consider the first pair of adjacent games above. It is immediate that they are computationally
indistinguishable (under the assumption) because (a, b) is either one sample from As1,χ where s1 ← χ, or
uniform over Rq ×Rq. A formal reduction from the R-DLWEq,χ problem is straightforward.

We now show that the second and third games above are computationally indistinguishable. To do so, we
construct an efficient reduction S . It takes as input two pairs (a, u), (b′, v) ∈ Rq ×Rq, lets v̄ ← dbl(v), and
outputs

(a, b = g−1 · b′ ∈ Rq, (u, v′ = 〈v̄〉2), µ = bv̄e2).

Note that g−1 ∈ Rq is well-defined because g, q are coprime in R. Now first suppose that the inputs to S
are drawn from Ae0,χ where e0 ← χ. Then the output of S is distributed exactly as in the second game,
because a, b ∈ Rq are uniformly random and independent (since a, b′ are, and g is a unit modulo q), because
u = e0 · a+ e1, v = e0 · b′+ e2 = g · e0 · b+ e2 for independent e1, e2 ← χ, and because v′, µ are computed
exactly as in Encaps(a, b). Now suppose that the inputs given to S are uniformly random over Rq ×Rq and
independent. Then the output of S is distributed exactly as in the third game, because a, b, u, v are uniform
and independent, and hence by Claim 3.3, µ = bv̄e2 is uniformly random conditioned on v′ = 〈v̄〉2. Since S
is efficient and the two types of inputs to S are computationally indistinguishable (by assumption), so are the
second and third games.

12



Finally, we claim that the third game above is computationally indistinguishable from the “ideal” game in
the IND-CPA attack on KEM1. This follows by modifying the first and second games above to additionally
choose µ∗ ← R2 and output it in place of µ. Then the modified first game is exactly the ideal game, and
computational indistinguishability of adjacent games follows by the same reasoning as above. This completes
the proof.

4.3 Correctness

We now analyze the parameters of the scheme that suffice for correctness of decapsulation.

Lemma 4.2. Suppose ‖g · si‖2 ≤ ` for i = 0, 1 (where si are the secret values chosen by KEM1.Gen), and

(q/8)2 ≥ (r′2 · (2`2 + n) + π/2) · ω2

for some ω > 0, where r′2 = r2 + 2π rad(m)/m. Then KEM1.Decaps decrypts correctly except with
probability at most 2n exp(3δ − πω2) over the random choices of KEM1.Encaps, for some δ ≤ 2−n.

Proof. On an encapsulation (u = e0 ·a+e1, v = g ·e0 ·b+e2) produced under public key (a, b = a ·s1+s0),
the decapsulation algorithm computes

w = g · u · s1 = v + g(e0 · s0 + e1 · s1)− e2 ∈ Rq.

Let e = g(e0 · s0 + e1 · s1) − e2 ∈ R, and let ē ∈ R be the random element chosen by v̄ ← dbl(v) in
KEM1.Encaps, so v̄ = 2v − ē ∈ R2q. Then by Claim 3.2, it suffices to show that the decoding-basis
coefficients of 2e + ē are all in [−2q

8 ,
2q
8 ) with the claimed probability. We do so by showing that the

coefficients are all 3δ-subgaussian with parameter 2(r′2 · (2`2 + n) + π/2)1/2. The lemma then follows by
Equation (2.1) and the union bound over all n coefficients.

To prove the above claim on 2e+ ē, first recall from Item 1 of Fact 2.4 that g · ei (for i = 0, 1, 2) is δ-
subgaussian with parameter m̂ · r′. Then because ‖g · si‖2 ≤ ` for i = 0, 1, by Lemma 2.3 the decoding-basis
coefficients of g · ei · si are all δ-subgaussian with parameter r′ · `. Also, by Lemma 2.3 (with e′ = 1 and
‖e′‖2 =

√
n), the decoding-basis coefficients of e2 are all δ-subgaussian with parameter r′ ·

√
n. Finally, by

assumption the decoding-basis coefficients of ē are all 0-subgaussian with parameter
√

2π. Since the ei and ē
are all mutually independent, by Fact 2.1 the decoding-basis coefficients of 2e+ ē are all 3δ-subgaussian
with parameter 2(r′2 · (2`2 + n) + π/2)1/2, as claimed.

4.4 Instantiating the Parameters

We now instantiate the parameters to analyze their asymptotic behavior and the underlying (worst-case)
hardness guarantees. These calculations work for arbitrary choices of m and error parameter r ≥ 1, and can
therefore be slightly loose by small constant factors. Very sharp bounds can easily be obtained for particular
choices of m and r using Lemma 4.2.

Since rad(m)/m ≤ 1, by Item 2 of Fact 2.4 we have that each ‖g · si‖2 ≤ m̂ · (r + 1) ·
√
n except with

probability at most 2−n. Similarly, r′2 ≤ r2 + 2π. Therefore, by taking ω =
√

ln(2n/ε)/π and

q ≥ 8
√

(r2 + 2π)(2m̂2 · (r + 1)2 + 1) · n · ω = O(m̂ · r2 ·
√
n) · ω,

we obtain a probability of decryption failure bounded by ≈ ε. Thus we may take q = O(r2 · n3/2 log n) in
the typical case where m̂ = O(n) and, say, ε = 2−128.

To apply Theorem 2.7 for ` = 2 samples, we let r = ξq and ξ = α · (3n/ log(3n))1/4, where
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• r = (3n/ log(3n))1/4 · ω(
√

log n) to guarantee αq ≥ ω(
√

log n), and

• q = O(r2 · n3/2 log n) = Õ(n2) is a sufficiently large prime congruent to one modulo m.

Then we obtain that R-DLWEq,χ is hard (and hence the KEM is IND-CPA secure, by Lemma 4.1) assuming
that SVP on ideal lattices in R is hard to approximate to within Õ(

√
n/α) = Õ(

√
n · q) = Õ(n5/2) factors

for quantum algorithms.
Alternatively, we may conjecture that the search version of ring-LWE with error distribution ψ = Dr is

hard for r ≥ ω(
√

log n) (or even r ≥ 1), which by [LPR10, Theorem 5.3] implies that R-DLWEq,χ is hard
as well. This lets us use a modulus as small as q = Õ(n3/2), and implies a smaller modulus-to-noise ratio
of q/r = Õ(n3/2), rather than Õ(n7/4) as when invoking Theorem 2.7 above. A smaller modulus-to-noise
ratio provides stronger concrete security against known attacks, so this parameterization may be preferred in
practice.

5 Actively Secure KEM

In this section construct an actively secure (i.e., secure under chosen-ciphertext attack) encryption scheme,
using the passively secure encryption derived from KEM1 as a component. As noted in the preliminaries,
actively secure encryption immediately yields an actively secure KEM or key transport protocol. Our
construction may be seen as an alternative to proposed Internet standards for RSA-based key transport, such
as [Hou03, RKBT10].

5.1 Overview

The literature contains many constructions of actively secure encryption, both in the standard and random-
oracle models, and from both general assumptions and specific algebraic or structural ones (including lattices
and LWE), e.g., [DDN91, BR93b, BR94, BR97, FO99a, FO99b, OP01, ABR01, CS98, CS02, BCHK07,
PW08, Pei09, MP12]. Since our focus here is on efficiency, we allow for the use of the random-oracle
heuristic as well as potentially strong (but plausible) non-standard assumptions. However, even with this
permissive approach, it turns out that most known approaches for obtaining active security are either insecure
when applied to our KEM (and other lattice-based encryption schemes more generally), or are unsuitable for
other reasons. See Section 5.3 for further discussion on this point.

Considering all the options from the existing literature, we conclude that the best choice appears to be the
second Fujisaki-Okamoto transformation [FO99b], which converts any passively secure encryption scheme
into one which is provably actively secure, in the random-oracle model. (Note that the transformation requires
an encryption scheme, and cannot be applied directly to a KEM.) Among the reasons for our choice are that
the original passively secure scheme can have a minimally small plaintext space, and the resulting scheme is
a “hybrid” one, i.e., it symmetrically encrypts a plaintext of arbitrary length. However, the transformation
does have one important efficiency and implementation disadvantage in our setting: the random oracle’s
output is used as the randomness for asymmetric encryption, and the decryption algorithm re-runs the
encryption algorithm with the same randomness to check ciphertext validity. This is somewhat unnatural
in the (ring-)LWE setting, where encryption uses many random bits to generate high-precision Gaussians.5

5This disadvantage could be mitigated by using uniformly random error terms from a small interval, rather than Gaussians. When
appropriately parameterized, the (ring-)LWE problem does appear to be hard with such errors, and there is some theoretical evidence
of hardness as well [DMQ13, MP13]. However, the theoretical bounds are rather weak, and more investigation of concrete security
is certainly needed.
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We therefore slightly modify the construction so that the random oracle’s output is used as the seed of a
cryptographic pseudorandom generator (sometimes also referred to as a stream cipher), which produces the
randomness for asymmetric encryption.

We remark that another approach is to use a different transformation, such as one like OAEP [BR94,
Sho01] or REACT [OP01], in which the asymmetric encryption randomness is “freely chosen.” In our context,
these transformations require the use of an injective trapdoor function. Such functions can be constructed
reasonably efficiently based on (ring-)LWE [PW08, GPV08, MP12], but it is not clear whether they can offer
efficiency and bandwidth comparable to that of our passively secure KEM. An interesting open problem is to
devise a passive-to-active security transformation that does not suffer any of the above-discussed drawbacks.

5.2 Construction

Our (actively secure) encryption scheme PKC2 is parameterized by:

• an integer N ≥ 0, the bit length of the messages that PKC2 will encrypt;

• an asymmetric encryption scheme PKC with message space {0, 1}n, where PKC.Enc uses at most L
uniformly random bits (i.e., PKC.Enc(·; r) is a deterministic function for any coins r ∈ {0, 1}L), e.g.,
the encryption scheme induced by KEM1;

• a cryptographic pseudorandom generator PRG : {0, 1}` → {0, 1}L, for some seed length `;

• hash functionsG : {0, 1}n → {0, 1}N andH : {0, 1}n+N → {0, 1}`, modelled as independent random
oracles.

PKC2 is defined as follows:

• PKC2.Setup(): let pp← PKC.Setup() and output pp.

• PKC2.Gen(pp): let (pk, sk)← PKC.Gen(pp) and output public key pk and secret key sk.

• PKC2.Enc(pp, pk, µ): choose σ ← {0, 1}n, let c = PKC.Encpk(pp, σ;PRG(H(σ‖µ))) and w =
G(σ)⊕ µ, and output the ciphertext c‖w.

• PKC2.Dec(sk, (c, w)): compute σ = PKC.Dec(sk, c) and µ = G(σ) ⊕ w, and check whether

c
?
= PKC.Encpk(pp, σ;PRG(H(σ‖µ))). If so, output µ, otherwise output ⊥.

Theorem 5.1. PKC2 is IND-CCA secure, assuming that PKC is passively one-way secure, PRG is a secure
pseudorandom generator, and G and H are modeled as random oracles.

The proof of Theorem 5.1 is essentially the same as the one given in [FO99b], with minor changes to
deal the use of the pseudorandom generator. Since the generator is invoked only on uniformly random bits
(from the random oracle H) that are independent of everything else, the changes are straightforward.

5.2.1 Variants

Removing PRG. Of course, by setting ` = L we can let PRG : {0, 1}L → {0, 1}L be the identity function,
which is a trivial (and trivially secure) pseudorandom generator. The possible disadvantage is that the random
oracle H must then have output length L, which in practice would correspond to many invocations of a hash
function on distinct but related inputs. How this compares to invoking PRG would depend on the choice of
instantiations.
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Alternative symmetric encryption. In PKC2.Enc, letting w = G(σ) ⊕ µ is just a particular method of
encrypting µ under symmetric key G(σ), namely, the one-time pad. As in [FO99b], we may instead use any
symmetric encryption which is one-time passively secure (i.e., the adversary cannot make any chosen-plaintext
or chosen-ciphertext queries). With this generalization, it is important to use the variant transformation
from [AGKS05], in which H is applied to σ‖w rather than to σ‖µ, and so w must be computed before c (and
H’s input length should be adjusted accordingly). This is because the symmetric encryption may not be a
bijection between µ and w for every key G(σ), and such a property is required by the security proof for the
original Fujisaki-Okamoto transformation (but not for the variant from [AGKS05]).

5.3 Alternatives

We considered several other known methods for obtaining active security. Unfortunately, most of them are
either insecure when instantiated with our KEM1, or suffer from other costly drawbacks. For example:

• Constructions in the spirit of “hashed ElGamal,” such as DHIES [BR97, ABR01] or variants [CS98,
Section 10], in which the key from the passively secure KEM (and possibly ciphertext as well) are
hashed by a random oracle to derive the final output key, are not actively secure when instantiated
with our KEM1 or others like it. Briefly, the reason is related to the search/decision equivalence for
(ring-)LWE: the adversary can query the decryption oracle on specially crafted ciphertexts for which
the random oracle input is one of only a small number of possibilities (and depends on only a small
portion of the secret key), and can thereby learn the entire secret key very easily.

• For similar reasons, applying the REACT transformation [OP01] to our KEM does not yield an actively
secure scheme, because the KEM is not one-way under a “plaintext checking attack” (OW-PCA) due
to the search/decision equivalence.

• The Bellare-Rogaway [BR93b] and OAEP transformations [BR94, Sho01] cannot be applied to our
KEM, because they require a trapdoor permutation (or an injective trapdoor function). We remark that
injective trapdoor functions can be constructed from (ring-)LWE [PW08, GPV08, MP12], and the most
recent constructions are even reasonably efficient. However, it is not clear whether they can compete
with the efficiency and bandwidth of our KEM.

• The first Fujisaki-Okamoto transformation [FO99a] does yield actively secure encryption when instan-
tiated with our KEM’s associated encryption scheme. However, it has the big disadvantage that the
message length of the resulting scheme is substantially shorter than that of the original one, by (say) at
least 128 bits for reasonable security bounds. Since our KEM’s plaintext-to-ciphertext expansion is
somewhat large, it is important to keep the size of the plaintext as small as possible.

6 Authenticated Key Exchange

In this section we give a protocol for authenticated key exchange which may be instantiated using our passively
secure KEM from Section 4, together with other generic cryptographic primitives like signatures, which may
also be instantiated with efficient ring-based constructions, e.g., [GPV08, MP12, Lyu12, DDLL13].

6.1 Overview

Informally, a key-exchange protocol allows two parties to establish a common secret key over a public
network. The first such protocol was given by Diffie and Hellman [DH76]. However, it is well-known that
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this protocol can only be secure against a passive adversary who only reads the network traffic, but does not
modify it or introduce messages of its own. An authenticated key exchange (AKE) protocol authenticates the
parties’ identities to each other, and provides a “consistent view” of the completed protocol to the peers, even
in the presence of an active adversary who may control the network entirely (e.g., it may delete, delay, inject,
or modify messages at will). Moreover, an AKE protocol may provide various security properties even if the
adversary compromises some of the protocol participants and learns their local secrets. For example, “perfect
forward secrecy” ensures the security of secret keys established by prior executions of the protocol, even if
the long-term secrets of one or both parties are exposed later on. An excellent in-depth (yet still informal)
discussion of these issues, and of the design considerations for AKE protocols, may be found in [Kra03].

Formal attack models, security definitions, and abstract protocols for AKE have been developed and
refined in several works, e.g., [BR93a, BR95, Kra96, BCK98, Sho99, CK01, CK02b, CK02a, LMQ+03,
Kra05]. Of particular relevance to this work is the notion of “SK-security” due to Canetti and Krawczyk [CK01],
which was shown to be sufficient for the prototypical application of constructing secure point-to-point chan-
nels. However, this model is not entirely appropriate for networks like the Internet, where peer identities
are not necessarily known at the start of the protocol execution, and where identity concealment may be
an explicit security goal. With this motivation in mind, Canetti and Krawczyk then gave an alternative
formalization of SK-security which is more appropriate in such settings, called the “post-specified peer”
model [CK02a], and gave a formal analysis of an instance of the “SIGn-and-MAc” (SIGMA) family of
protocols due to Krawczyk [Kra03]. (In [CK02b] they also investigated the relationship between SK-security,
key exchange, and secure channels in Canetti’s “universal composability” model [Can01, Can00].) The
formal definitions of SK-security and the post-specified peer models are somewhat lengthy and we will not
need them here, so we refer the reader to [CK01, CK02a] for the details.

Regarding real-world protocols, the Internet Key Exchange (IKE) protocols [HC98, Kau05, KHNE10]
define an open standard for authenticated key exchange as part of the Internet Protocol Security (IPsec)
suite [KA98, KS05]. IKE’s signature-based authentication mode follows the design of the SIGMA protocols
from [Kra03] that were formally analyzed in [CK02a].

Our contribution. In the next subsection we give a protocol, called Σ′0, which is a slight generalization
of the Σ0 protocol from [CK02a], which itself follows the SIGMA design [Kra03] underlying the IKE
protocol. The only difference between Σ′0 and Σ0 is that we replace the (unauthenticated) Diffie-Hellman key-
agreement steps in Σ0 with an abstract IND-CPA-secure KEM (which can be instantiated by our lattice-based
KEM1 from Section 4). Such a replacement is possible because the Diffie-Hellman steps in Σ0 are used only
to establish the common secret key (whereas the other steps provide authentication), and because the protocol
has designated “initiator” and “responder” roles. In particular, the responder gets the initiator’s start message
before having to prepare its response, so the start message can contain a (fresh) KEM public key and the
responder can run the encapsulation algorithm using this key. The security proof for Σ′0 is also just a slight
variant of the one for Σ0, because the latter proof uses only the KEM-like features of Diffie-Hellman, and not
any of its other algebraic properties.

As mentioned in the introduction, from a practical perspective we believe the relatively minor differences
between Σ′0 and Σ0 (and their security proofs) to be an advantage: it should lessen the engineering burden
required to implement the protocol correctly and securely, and may facilitate migration from, and co-existence
with, existing Diffie-Hellman-based implementations.
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6.2 The Protocol

The protocol Σ′0 is parameterized by an (IND-CPA-secure) a digital signature scheme SIG, a key-encapsulation
mechanism KEM with key space K, a pseudorandom function F : K × {0, 1} → K′, and a message authen-
tication code MAC with key space K′ and message space {0, 1}∗. A successful execution of the protocol
outputs a secret key in K′.

As in [CK02a], we assume that each party has a long-term signing key for SIG whose corresponding
verification key is registered and bound to its identity ID, and is accessible to all other parties. This may be
achieved in a standard way using certificate authorities. We also assume that trusted public parameters pp for
KEM have been generated by a trusted party using KEM.Setup, and are available to all parties. As noted in
the preliminaries, if no trusted party is available then KEM.Setup can be folded into KEM.Gen.

1. Start message (I → R): (sid, pkI).

The protocol is activated by the initiator IDI with a session identifier sid, which must be distinct
from all those of prior sessions initiated by IDI . The initiator generates a fresh keypair (pkI , skI)←
KEM.Gen(pp), stores it as the state of the session (IDI , sid), and sends the above message to the
responder.

2. Response message (R→ I): (sid, c, IDR,SIG.SignR(1, sid, pkI , c),MAC.Tagk1(1, sid, IDR)).

When a party IDR receives a start message (sid, pkI), if the session identifier sid was never used
before at IDR, the party activates session sid as responder. It generates an encapsulation and key
(c, k)← KEM.Encaps(pp, pkI), derives k0 = Fk(0) and k1 = Fk(1), and erases the values pkI and k
from its memory, storing (k0, k1) as the state of the session. It generates and sends the above response
message, where SIG.SignR is computed using its long-term signing key, and MAC.Tag is computed
using key k1.

3. Finish message (I → R): (sid, IDI ,SIG.SignI(0, sid, c, pkI),MAC.Tagk1(0, sid, IDI)).

When party IDI receives the (first) response message (sid, c, IDR, σR, τR) having session identifier sid,
it looks up the state (pkI , skI) associated with session sid and computes k = KEM.Decaps(skI , c)
and k0 = Fk(0), k1 = Fk(1). It then retrieves the signature verification key of IDR and uses that key
to verify the signature σR on the message tuple (1, sid, pkI , c), and also verifies the MAC tag τR on the
message tuple (1, sid, IDR) under key k1. If either verification fails, the session is aborted, its state is
erased, and the session output is (abort, IDI , sid). If both verifications succeed, then IDI completes the
session as follows: it generates and sends the above finish message where SIG.SignI is computed using
its long-term signing key, and MAC.Tag is computed using key k1. It then produces public session
output (IDI , sid, IDR) and session secret output k0, and erases the session state.

4. Responder completion: when party IDR receives the (first) finish message (sid, IDI , σI , τI) having
session identifier sid, it looks up the state (k0, k1) associated with session sid. It then retrieves the
signature verification key of IDI and uses that key to verify the signature σI on the message tuple
(0, sid, c, pkI), and also verifies the MAC tag τI on the message tuple (0, sid, IDI) under key k1. If either
verification fails, the session is aborted, its state is erased, and the session output is (abort, IDr, sid). If
both verifications succeed, then IDR completes the session with public session output (IDR, sid, IDI)
and secret session output k0, and erases the session state.
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6.3 Security

Theorem 6.1. The Σ′0 protocol is SK-secure in the post-specified peer model of [CK02a], assuming that SIG
and MAC are existentially unforgeable under chosen-message attack, that KEM is IND-CPA secure, and
that F is a secure pseudorandom function.

The proof of Theorem 6.1 follows by straightforwardly adapting the one from [CK02a]. Because the
changes are simple and affect only small parts of the proof, we do not duplicate the whole proof here, but
only describe the differences.

According to the definition of SK-security in the post-specified peer model from [CK02a], we need
to show two properties: property P1 is essentially “correctness,” or more precisely, equality of the secret
outputs when two uncorrupted parties IDI , IDR complete matching sessions with respective public outputs
(IDI , sid, IDR), (IDR, sid, IDI). Property P2 is essentially “secrecy,” or more precisely, that no efficient
attacker (in the post-specified peer model) can distinguish a real response to a test-session query from a
uniformly random response, with non-negligible advantage.

Property P1 follows by adapting the proof in [CK02a, Section 4.2, full version]. It suffices to show that
both parties compute the same decapsulation key k. This is guaranteed by the correctness of KEM and the
security of the signature scheme, which ensures that the key k is obtained by decapsulating the appropriate
ciphertext. (Security of MAC or the PRF is not needed for this property.)

Property P2 follows by adapting the proof in [CK02a, Section 4.3, full version]. While the proof is
several pages long, very little of it is specific to the Diffie-Hellman mechanism or the DDH assumption. For
example, the proof does not use any algebraic properties of the Diffie-Hellman problem beyond its assumed
pseudorandomness. In the proof from [CK02a], a distinguisher for the DDH problem is constructed, i.e.,
it gets as input a tuple (g, gx, gy, gz) where either z = xy or z is uniformly random modulo the order of
the group generated by g. In our setting, we instead construct a distinguisher for the IND-CPA security
of KEM, i.e., it gets as input a tuple (pp, pk, c, k) where either k is the decapsulation of ciphertext c, or is
uniformly random in the key space K. To modify the proof from [CK02a], throughout it we syntactically
replace the components of the DDH tuple with the corresponding ones of the KEM tuple (replacing gxy by
the real decapsulation key k, and gz for uniform and independent z by a uniformly random and independent
key k∗ ∈ K). With these and corresponding other syntactic changes to the component lemmas, the proof
from [CK02a] remains valid.

6.4 Variants and IKE

As in [CK02a], we can consider variants of Σ′0 that extend its functionality or security properties, and also
some important differences in the real IKE protocol that affect the analysis.

Perhaps most importantly, the signatures modes of the IKE protocol do not actually include the special
distinguishing values 0,1 in the signed/MAC-tagged response and finish messages. (These values were
included in Σ0 for “symmetry breaking,” to ease the analysis.) The Σ0 protocol remains secure even without
these values, as shown in [CK02a, Section 5.1, full version] via a more involved analysis. The analysis
also carries over to the corresponding Σ′0 variant, based on the negligible “collision” probabilities of two
uncorrupted parties generating the same KEM public key pk, or an equal public key and KEM ciphertext.
Passive security immediately implies that such collision probabilities are negligible.

Another important difference with the IKE signature mode is that in the response and finish messages of
the latter, the MAC tag is not sent separately, but instead is treated as the message to be signed. (Because of
this, the MAC tag is computed on a tuple of all the values that are either signed or tagged in Σ0.) In order
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to handle this, we need the MAC.Tag algorithm to be deterministic, which is standard. Then the analysis
in [CK02a, Section 5.2, full version] goes through unchanged, as it relies only on the security of the MAC
and signature schemes. The resulting protocol (also without the 0,1 values) essentially corresponds to IKE’s
“aggressive mode of signature authentication.”

Other changes include offering identity concealment via encryption; a protocol corresponding to IKE’s
“main mode with signature authentication;” and more. These are all analyzed in [CK02a, Sections 5.3-5.4],
and that analysis also goes through essentially unchanged for Σ′0.
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