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Abstract. In the last decade, pairing-based cryptography has been the
most intensively studied subject in the cryptography field. Various opti-
mization techniques have been developed to speed up the pairing compu-
tation. However, implementing a pairing-based cryptosystem in resource
constrained devices has been less tried. Moreover, due to progress on
solving the discrete logarithm problem, those implementations are no
longer safe to use. In this paper, we report an implementation of a cou-
ple of pairing-based cryptosystems at a high security level on a 32-bit
microcontroller in a USB token. It shows that USB tokens supporting
secure pairing-based cryptosystems are viable.

1 Introduction

Since the seminal work of Joux’s tripartite key agreement protocol [22] and Sakai-
Ohgishi-Kasahara’s non-interactive identity-based key agreement [30], particu-
larly after Boneh-Franklin [6] introduced identity-based encryption with pair-
ings, there have been a flood of innovative work to create various new cryptosys-
tems using pairings, including short signatures [11, 32], identity-based encryp-
tions [5, 7], identity-based signatures [15, 12], attribute-based encryptions [18],
etc. We refer the interested reader to the book ”Identity-Based Cryptogra-
phy” [23] for more references.

Meanwhile, because of its great complexity, computing pairing efficiently
at proper security levels is also of great interest. During the past ten years,
many optimizations to the Miller algorithm [20] have been proposed to speed up
cryptographic-friendly pairings [10, 9, 19, 25, 27, 31, 3, 17]. Although, great progress
has been made, pairing computation complexity is still much greater than the
traditional cryptographic operations such as the elliptic curve point scalar or
even the big size integer modular multiplication at the same security level. This
explains why most of the work focuses on algorithm implementation on generic
CPUs and only a few attempts to compute pairings in resource constrained de-
vices [8, 28, 16, 26] have been reported.

In [8], Bertoni et al. described an implementation of Tate [10] pairing on a
supersingular curve over a 512-bit prime base field on a ST22 processor aiming
at RSA-1024 bit security level. With the increase of computation power, now
the digital society is moving towards a higher security level. It is generally ver-
ified that the Tate pairing on supersingular curves defined over prime fields is



not a promising choice for high security levels, as it requires a large base field.
Scott et al. attempted to improve the pairing efficiency on this platform by using
Eta pairing [9] on a supersingular curve over a 379-bit binary field. This imple-
mentation clearly shows better performance and was considered to be easier to
scale to higher security levels. Unfortunately recent progress [1] on computing
the discrete logarithm problem (DLP) shows it is unwise to use supersingular
curves over characteristic 2 or 3 fields to implement pairing-based cryptosystems.
In [16], Devegili et al. implemented the Ate pairing [19] on the Barreto-Naehrig
curves [13] aiming at the RSA-3072 security level, but it takes approximately 3
seconds to complete the computation. The performance of several implementa-
tions on 8-bit or 16-bit microcontrollers such as on MSP430 [26] is even worse
because the computation capability of those chips is weaker.

Instead of proposing new hardware implementation for better performance
or giving a slow implementation on an unsuitable architecture, we choose a
32-bit microcontroller which is mainly used to make USB tokens for security
applications such as executing ECC or RSA algorithms. We report an efficient
implementation of a couple of identity-based cryptosystems on the chip. Partic-
ularly, we give a full implementation of identity-based encryption scheme SK-
KEM [7] and identity-based signature scheme BLMQ-IBS [12], both are stan-
dardized in [21]. For the implementation, we not only need to choose proper curve
parameters concerning the schemes but also consider various restrictions posed
by the chosen chip. We shall make use of the existing mathematic hardware
module, which boosts medium size integer modular multiplications, to imple-
ment pairing at a high security level. The final product as a secure USB token
can complete all the required cryptographic operations in just over half a second.

The paper is organized as follows. In the next section, pairing is briefly intro-
duced. The implemented identity-based cryptosystems are reviewed in Section 3.
The chosen chip is described in Section 4. Curve parameters for the cryptosys-
tems are presented in Section 5. The details of implementation and computation
performance analysis are reported in Section 6.

2 Pairings

A pairing is a bilinear map e : G1 ×G2 → G3 where G1,G2 are additive groups
and G3 is a multiplicative group. All three groups have prime order r. For
cryptographic purpose, a pairing should be well defined with bilinearity, non-
degenerate and easy to compute. In particular, for all (P,Q) ∈ G1 ×G2 and for
all (a, b) ∈ Zr × Zr,

e([a]P, [b]Q) = e(P,Q)ab.

Let E(Fp) be an elliptic curve defined over field Fp. Let k be the least positive
integer such that r | pk−1 and r2 - pk−1. Such integer k is called the embedding
degree of r with regard to Fp. For every Q ∈ E(Fpk) and integer s, let fs,Q be
the Fpk -rational function with divisor

(fs,Q) = s(Q)− ([s]Q)− (s− 1)(∞)



where ∞ represents the infinity point.
On elliptic curves several pairings satisfying the cryptographic requirements

can be defined. So far the most efficient one is the optimal Ate pairing [19, 31].
The Ate pairing over G2 ×G1 can be defined by

a(Q,P ) = ft−1,Q(P )(p
k−1)/r,

where G1 = E[r] ∩ Ker(πp − [1]) = E(Fp)[r] and G2 = E[r] ∩ Ker(πp − [p]) ⊆
E(Fpk)[r] with the Frobenius endomorphism πp : E → E given by πp(x, y) =
(xp, yp). t is the trace of Frobenius of the curve and G3 = F∗pk/(F

∗
pk)r.

To compute pairing, the Miller algorithm [20] is used to evaluate function
ft−1,Q at point P . The complexity of the process is mainly decided by the Miller
iterations t. Vercauteren [31] showed the Miller iterations may be further reduced
for certain curves to define the optimal Ate pairing. More details of such pairing
with some chosen curve parameters will be given in Section 5.

3 Identity-Based Cryptosystems

We implement two identity-based cryptosystems SK-KEM [7] and BLMQ-IBS [12],
both use the Sakai-Kasahara key generation algorithm [29] to generate identity
private keys. The key generation algorithm proceeds as follow.
Setup GID(1k). On input 1k, the algorithm works as follows:

1. Generate three cyclic groups G1, G2 and G3 of prime order r and a bilinear
pairing map ê : G1 ×G2 → G3. Pick random generator P1 ∈ G∗1, P2 ∈ G∗2.

2. Pick a random s ∈ Z∗r and compute Ppub = [s]P1.
3. Pick a cryptographic hash function

H1 : {0, 1}∗ → Z∗r

4. Output the master public key Mpk = (G1,G2,G3, ê, P1, P2, Ppub, H1) and the
master secret key Msk = s.

Extract XID(Mpk,Msk, IDA). Given an identifer string IDA ∈ {0, 1}∗ of entity
A, Mpk and Msk, the algorithm returns DA = [ 1

s+H1(IDA)
]P2.

SK-KEM is an identity-based key encapsulation mechanism with the encapsu-
late algorithm EID−KEM and decapsulate algorithm DID−KEM as shown in Ta-
ble 1, where

H2 : G3 → {0, 1}n,
H3 : {0, 1}n → Z∗r ,
H4 : {0, 1}n → {0, 1}ld ,

for data encapsulation mechanism key length ld and random variable length n.
BLMQ-IBS is an identity-based signature scheme with the Sign and Verify
algorithm as shown in Table 2, where H2 : {0, 1}∗ × G3 → Z∗r and M is the
signed message.

The SK key generation algorithm bases its security on the following the `-
SDH assumption [7, 12].



Table 1. SK-KEM

EID−KEM(Mpk, IDA)

– m←{0, 1}n
– x←H3(m)
– QA←Ppub + [H1(IDA)]P1

– C1 = [x]QA

– C2 = m⊕H2(ê(P1, P2)x)
– K←H4(m)
– Return (K, 〈C1, C2〉)

DID−KEM(Mpk, IDA, DA, 〈C1, C2〉)

– α←ê(C1, DA)
– m = C2 ⊕H2(α)
– x←H3(m)
– QA←Ppub + [H1(IDA)]P1

– U←[x]QA

– If C1 6= U , return ⊥
– K←H4(m)
– Return K

Table 2. BLMQ-IBS

Sign(Mpk, DA,M)

– x←Z∗r
– y←ê(P1, P2)x

– h←H2(M,y)
– S = [x+ h]DA

– Return 〈h, S〉

Verify(Mpk, IDA,M, 〈h, S〉)

– QA←Ppub + [H1(IDA)]P1

– y′←ê(QA, S) · ê(P1, P2)−h

– h′←H2(M,y′)
– If h 6= h′, return Failed
– Return OK

Assumption 1 `-Strong Diffie-Hellman (`-SDH) Let P be an element of
prime order r in an Abelian group. For a positive integer `, and α←Z∗r, given
([α]P, [α2]P , . . . , [α`]P ), computing (h, [ 1

α+h ]P ) for some h ∈ Z∗r is hard.

Cheon presented an algorithm showing that the computational complexity of
`-SDH can be reduced by O(

√
`) from that of the DLP in the group [14]. Here

we restate Cheon’s two main results:

Theorem 1 Let P be an element of prime order r in an Abelian group. Sup-
pose that ` is a positive divisor of r − 1. If P, P1 = [α]P and P` = [α`]P are
given, α can be computed in O(log r · (

√
(r − 1)/`+

√
`)) group operations using

O(max{
√

(r − 1)/`,
√
`}) memory.

Theorem 2 Let P be an element of prime order r in an Abelian group. Sup-
pose that ` is a positive divisor of r + 1. If Pi = [αi]P for i = 1, 2, . . . , 2` are
given, α can be computed in O(log r · (

√
(r + 1)/` + `)) group operations using

O(max{
√

(r + 1)/`, 2`}) memory.

We assume that the adversary can obtain private keys because the adversary
may be the user of the system and may also compromise other users’ private



keys. By assuming an adversaryA has gathered ` different pairs of public/private
keys (hi,

1
s+hi

P2) with hi = H1(IDi), using Cheon’s algorithm A can recover the
master secret key in the following manner.

– Randomly sample h0 ∈ Z∗r different from hi for 1 ≤ i ≤ `.
– Set α = s+ h0 which A does not know, and

Q = [
1

(s+ h1) · · · (s+ h`)
]P2.

– For j = 0, . . . , `− 1, A computes

[αj ]Q = [
(s+ h0)j

(s+ h1) · · · (s+ h`)
]P2 = [

∑̀
i=1

cij
s+ hi

]P2

where cij ∈ Zr are computable from hi’s.
– Given [αj ]Q for 0 ≤ j ≤ `− 1, use Cheon’s algorithm to compute α and so
s = α− h0.

By Theorem 2 the complexity of the above attack to recover the master
secret key s in SK-KEM/BLMQ-IBS is with O(log r ·(

√
2(r + 1)/`+`/2)) group

operations using O(max{
√

2(r + 1)/`, `}) memory. Note that if there is a divisor
d of r − 1 with d ≤ ` and d ≈ `, then the attack is still working with similar
computational complexity by Theorem 1.

To defend Cheon’s attack on SK key generation algorithm, it is better to
have both r − 1 and r + 1 with small divisors as few as possible. In Section 5,
we show such curve parameters can be found.

4 The AisinoChip’s AC4384 Architecture

AC4384 is a microcontroller supplied by AisinoChip [2]. The chip has a 32-bit
RISC core designed specifically for secure applications including USB tokens
or smart cards. This core has a 32-bit load/store architecture and is able to
complete 32x16 multiplication in a single cycle. It equips with 16 32-bit general
purpose registers and can complete a branch execution in two cycles. The chip
has 4K CPU cache, 32K SDRAM and 384K eflash. The maximum clock speed
is 100MHz.

For the purpose of high speed security applications such as ECC or RSA,
the chip is incorporated with a mathematic module which is capable of comput-
ing 192 to 1024-bit integer modular multiplication at high speed. The module
supports modular multiplication pre-computation. The pre-computation is done
once for every different modular and the pre-computed value is loaded before
each modular multiplication. This module shall be used to boost the underlining
field multiplication in pairing.

Table 3 shows the time of main operations in a 256-bit prime field. The
modular addition and subtraction are implemented in assembly code. From the
table we can see the timing ratio between modular multiplication and addition
or subtraction with random values is about 3.4.



Table 3. Timing of 256-bit Prime Field Operations

Operation Condition Timing Timing Ratio

A+B mod P A+B < P 0.0024ms 1

A+B mod P A+B ≥ P 0.0047ms ' 2

A−B mod P A ≥ B 0.0024ms 1

A−B mod P A < B 0.0047ms ' 2

A×B mod P pre-computation 0.012ms 5

A×B mod P no pre-computation 0.024ms 10

5 Curve Parameters

For pairing-based cryptosystems, one should keep the right balance between the
intended security level and system efficiency. Pairing may be used to convert
DLP in G1 or G2 into the corresponding problem in G3. For pairings defined
on elliptic curves, this has serious security implications. There exist algorithms
for DLP in the finite fields running much faster than the best known general
algorithms for the elliptic curve DLP. This requires G3 to be large enough to
make sure the DLP in G3 has the same complexity as those in G1 and G2. On
the other hand, pairing computation involves many operations in G3 and if G3

is too large, the computation would become very slow.
Barreto-Naehrig curves [13] defined over a 256-bit prime field is the de facto

choice to implement pairing-based cryptosystems at the RSA-3072 security level.
The standard Weierstrass representation of the curves is

Y 2 = X3 +B.

The characteristic p of the prime field, the prime group order r of E(Fp)[r], the
trace t of the Frobenius of the curves are parameterised by the variable u as
follows:

p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1
r(u) = 36u4 + 36u3 + 18u2 + 6u+ 1
t(u) = 6u2 + 1

The optimal Ate pairing on E is defined as [31]

aopt(Q,P ) = [fz,Q(P ) · l[z]Q,πp(Q)(P ) · l[z]Q+πp(Q),−π2
p(Q)(P )](p

12−1)/r

where z = 6u+ 2 and lQ1,Q2
(P ) is the equation of the line corresponding to the

addition of Q1 and Q2 and its evaluation at P .
A Barreto-Naehrig curve admits a sextic twist E′(Fp2). The D-type sextic

twist is defined as Y 2 = X3 + B/ξ, where ξ ∈ Fp2 is an element that is neither
a square nor a cube in Fp2 [16].

Regarding to the implemented cryptosystems, to defend Cheon’s attack, we
may choose r such that both r−1 and r+1 have small divisors as few as possible.
At the same time to keep the Miller iterations few, | z | should have hamming



Table 4. Curve Parameters

– Barreto-Naehrig Curve 1: p is 264-bit prime.

B = 2
u = 18000000002840543

p(u) = B640000004C6A1FDAB8C03C8A47B7DABE6C3DC8
D9E7C76F1D30469A1D3A7840E9B

r(u) = B640000004C6A1FDAB8C03C8A47B7DABD943DC8
D9E4F2E931D0443A8D4D04DF165

t(u) = D800000002D485EB60025F8FED7361D37
r(u)− 1 = 22 × 3× 5× 68D1EC4A0419(47-bit)×

4CCCCCCCCD4D9AA7(63-bit)×
18BA64EDD57110C5DBB8D755A70745054D0AB9(149-bit)

r(u) + 1 = 2× 3× 73× 30E236F939FA7D(54-bit)×
7BF6E71655DDCA91C1(71-bit)×
1EDB6DB6DBD537B3E924E9148FA2C4D51(129-bit)

| z |= 9000000000F181F94
HW(| u |) = 10

NAF-length(| u |) = 10
HW(| z |) = 16

NAF-length(| z |) = 10

– Barreto-Naehrig Curve 2: p is a 254-bit prime.

B = 3
u = 4000000001E11061

p(u) = 24000000043A64DAD02FABEC83B0BDA0A0A60F7F
7E1723468B1BFE04FF448327

r(u) = 24000000043A64DAD02FABEC83B0BDA040A60F7F7
873F2238B06CE0DADEEE6A1

t(u) = 6000000005A3312300152FF751559C87
r(u)− 1 = 25 × 3× 7× 924924924D70257 (60-bit)×

18000000021D326D800FE3F982A38E58BACBA39D99
F77C7(185-bit)

r(u) + 1 = 2× 5× 29× 13C1F0BB9E04B(49-bit)×
894161E4B4F7A84E65(72-bit)×
3000000002D19892400A97FBAE4DFF67(126-bit)

| z |= 1800000000B466248
HW(| u |) = 10

NAF-length(| u |) = 8
HW(| z |) = 13

NAF-length(| z |) = 13

weight (HW) as low as possible to keep its non-adjacent form (NAF) short. This
in turn requires | u | to have low hamming weight. Shorter NAF of | u | also
benefits the final exponentiation in pairing computation.

For the strict RSA-3072 security level, one may choose slightly larger field to
compensate the complexity deduction due to the attack. On the other hand, to



benefit the computation with the lazy reduction technique [3], a 254-bit prime p
was proposed to implement pairings. We also give a 254-bit prime curve example,
although our implementation on AC4384 does not use the technique.

Table 4 gives two curve parameter examples. One is defined over a 264-
bit field for better security, the other is defined over a 254-bit field for better
performance. A few more curve parameter sets with | u | having lower hamming
weights are presented in Appendix.

According to [24], while the special form of p can be used to construct
a more efficient number field sieve, the complexity of DLP in G3 reduced to
Lp12(1/3, ( 80

9 )1/3) is still greater than the one of the integer factorization prob-
lem. The parameters of Curve 1 provides security at the RSA-3072 security level
against Cheon’s attack if an attacker collects less than 247 private keys. For the
parameters of Curve 2, if an attacker collects less than 249 private keys, the cryp-
tosystems may still stand above the AES-122 bit security level against Cheon’s
attack.

6 Implementation Issues

Since Barreto et al.’s major improvement [10] to the Miller algorithm, during the
years, steady improvements have been made, one over the other. Now pairings
on Barreto-Naehrig curves at the RSA-3072 security level may be computed on
general CPUs within a millisecond [3].

Our implementation makes use of those techniques suitable for the chosen
architecture with a few exceptions. First, as the chip has a hardware module for
modular multiplications (but no inversion), we use the homogeneous projective
coordinate and do not consider the lazy reduction optimization [3]. Second, on
the chip the timing of modular square (SQR) and modular multiplication (MUL)
is the same and the ratio between MUL and addition (ADD) or subtraction
(SUB) (3.4 as shown in Table 3) is not high. Hence, those tricks intended to
make use the timing difference between SQR and MUL should be avoided if they
increase ADD or SUB operations. Third, when the efficiency of the implemented
cryptosystems is above the acceptable level, reducing the code size and storage
requirement become the first priority. Those speed optimizations requiring extra
complicated functions or extra memory is excluded.

Following lists the optimization techniques to the Miller algorithm adopted
in the implementation:

– Use the BKLS algorithm [10] which removes denominators from the Miller
algorithm.

– Represent the first input of aopt on the sextic twist of the Barreto-Naehrig

curve, i.e, Q now is in E′(Fp2)[r] [16]. Q is untwisted back to E(Fp12) during
the line evaluation l·,·(·) in Algorithm 1.

– Represent Fp12 as a tower of finite extensions as suggested in [16]:

Fp2 = Fp[X]/(X2 − β),where β is a non-quadratic in Fp
Fp6 = Fp2 [Y ]/(Y 3 − ξ),where ξ is neither a square nor a cube in Fp2
Fp12 = Fp6 [Z]/(Z2 − µ),where µ is a non-quadratic in Fp6



For the two curves listed in Section 5, β, ξ and µ’s value is listed in Table 5.

Table 5. Parameters for Extension Field Representation

β ξ µ

Curve 1 -2 −1−
√
β 3

√
ξ

Curve 2 -1 1 +
√
β 3

√
ξ

– Use the efficient formulas proposed in [4] to evaluate l·,·(·) in Algorithm 1,
particularly pre-computed −P is used.

– Use the fact that the value of l·,·(·) in Algorithm 1 is sparse in Fp12 to improve
the efficiency of field multiplication in line 4, 6, 8, 13 and 15 [3].

– Use the method in [27] to compute the final exponentiation in line 16 in
Algorithm 1. The implementation does not adopt the slightly faster method
in [17] for compatibility reason. Exponentiation to power of p are computed
using Frobenius function with only one pre-computation [16].

– Use NAF to represent both | z | in Algorithm 1 and | u | in the final
exponentiation computation.

– Replace any inversion in Fp12 with conjugation conj if possible as suggested
in [3].

Algorithm 1: BKLS Algorithm for Optimal Ate Pairing on B-N Curve

Input: P ∈ G1, Q ∈ G′2, u, | z |=| 6u+ 2 |= (1, zs−1, . . . , z0)NAF
Output: aopt(Q,P )

1 Z ← Q, f ← 1;
2 for i← s1; i ≥ 0; i−− do
3 f ← f2;
4 f ← f · lZ,Z(−P ), Z ← [2]Z;
5 if zi = 1 then
6 f ← f · lZ,Q(P ), Z ← Z +Q;

7 if zi = −1 then
8 f ← f · lZ,−Q(P ), Z ← Z −Q;

9 if u < 0 then
10 f ← conj(f);
11 Z = −Z;

12 T ← πp(Q);
13 f ← f · lZ,T (P ), Z ← Z + T ;
14 T ← −πp(T );
15 f ← f · lZ,T (P ), Z ← Z + T ;

16 f ← f (p12−1)/r;
17 return f ;



The performance of the optimal Ate pairing and point scalar is measured on
two platforms: the AC4384 microcontroller and the i7-4650U 1.70GHz (boosted
to 2.3GHz). On the i7 machine, prime field elements are in Montgomery repre-
sentation and underlying integer operations are completed with the GMP library
v5.1.2. The whole library is compiled using GCC v4.4.7 with option −O2. On
AC4384 microcontroller the code is compiled in favor of small code size. Hence
here instead of going after a speed record, we merely show that implementation
of IBC on such type of chips may achieve reasonably good performance.

The pairing is computed with at most 131 variables in Fp, each is stored
in a 36-byte array. The total 4716 bytes are reserved in advance from a global
memory shared with other routines implemented in the USB token.

SK-KEM uses identity private keys in G2 to reduce ciphertext size and im-
proves encryption/decryption speed. BLMQ-IBS may use identity private keys
in G1 for smaller signature size and faster signing operation. If a user has only
one identity private key used in both schemes, it is better to map the private
key in G2 because the signing operation in BLMQ-IBS has no heavy pairing
operation and the point scalar in G2 can be completed fairly fast. In this case,
the point scalar in G2 may be computed with the same l·,·(·) in Algorithm 1 but
without evaluating on point P to reduce the code size.

Table 6 lists the timing of optimal Ate pairing and point scalar in G2 over
Curve 1 and 2. Table 7 lists the timing of SK-KEM decryption and BLMQ-IBS
signing operation over Curve 1 and 2 with identity private keys generated in G2.

Table 6. Timing of Group Operations

a254opt Pairing a264opt Pairing Point Scalar in G254
2 Point Scalar in G264

2

AC4384 0.49s 0.55s 0.24s 0.27s

i7-4650U 1.65ms 1.86ms 0.993ms 1.16ms

Table 7. Timing of Decrypt/Sign Operations

SK-KEM254
G2

Dec SK-KEM264
G2

Dec BLMQ-IBS254
G2

Sign BLMQ-IBS264
G2

Sign

AC4384 0.57s 0.69s 0.41s 0.49s

i7-4650U 1.73ms 1.92ms 1.65ms 2.04ms

7 Conclusion

Pairing-based cryptosystems have been intensively studied for more than ten
years. Several identity-based schemes from pairings have already been standard-
ized and widely deployed. Many optimization techniques have been developed
to improve such systems’ efficiency. In this paper, by carefully choosing curve



parameters and adopting many those state-of-art improvements, we have suc-
cessfully implemented two important identity-based cryptosystems on a 32-bit
microcontroller. The final product as a USB token shows identity-based cryp-
tography is able to perform decently well at a high security level in a resource
constrained device.
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Appendix

Here we give a couple of extra curve parameter sets of which | u | has slightly
low hamming weights and r(u) − 1 or r(u) + 1 has divisors of around 40 bits.
The implementation of optimal Ate pairing on these curve parameters on the i7
CPU is slower than on the ones given in Section 5. If one is willing to accept
parameters with r(u)− 1 or r(u) + 1 having divisors of around 30 bits, she may
use those parameters resulting in better system efficiency such as those with
u = − 40000FEFF7FFFFF6.



– Barreto-Naehrig Curve 3: p is 264-bit prime.

B = 5
u = -18000200000013804

p(u) = B6403CC0079A50C3B29813F9F84313D3F36D74ECB9C9
F13987248B1DB77E88CC69

r(u) = B6403CC0079A50C3B29813F9F84313D3E5ED72ACB9B1
DB493D50851DAE94CE4C09

t(u) = D800240001815F049D4060008E9BA8061
r(u)− 1 = 23 × 32 × 200002AAAAAAC4AB(62-bit)×

14400510006C315F9CBA1917E923B4A9109C293CF609A
8292B(197-bit)

r(u) + 1 = 2× 5× 297B8FF5B95(42-bit)×
29A7F38A869F523593FA651(90-bit)×
2B333A6666B3796752A67999B61F219AD(130-bit)

| z |= 90000C00000075016
HW(| u |) = 8

NAF-length(| u |) = 7
HW(| z |) = 12

NAF-length(| z |) = 11
β = −5
ξ =
√
β

µ = 3
√
ξ

– Barreto-Naehrig Curve 4: p is a 254-bit prime.

B = 5
u = -400010000000F108

p(u) = 240024000D82209306E179BB4521C1FD7FCDF4058082A
F1C0194453316D2D7D1

r(u) = 240024000D82209306E179BB4521C1FD1FCDC4057A7F
DC034CCE452DC5327651

t(u) = 600030000602D318B4C6000551A06181
r(u)− 1 = 24 × 3× 7× 19864F3D291 (41-bit)×

124929249249697(57-bit)× B35CE76183E5F192B(68-bit)×
1578F9956E01AB6113375(81-bit)

r(u) + 1 = 2× 11× 13× 17A8B7604589170D(61-bit)×
27F3D6A82B6CE201(62-bit)×
8BA32E8BABA7048106F17464D3D2023(124-bit)

| z |= 1800060000005A62E
HW(| u |) = 8

NAF-length(| u |) = 6
HW(| z |) = 14

NAF-length(| z |) = 13
β = −5
ξ =
√
β

µ = 3
√
ξ



– Barreto-Naehrig Curve 5: p is a 254-bit prime.

B = 2
u = -40000FEFF7FFFFF6

p(u) = 240023DBFB65022FB6D6B42EF2DF822F34ECBEEA7A2
7C120863C9C54B006147D

r(u) = 240023DBFB65022FB6D6B42EF2DF822ED4EC8F1A8C3
3C13884C414D0F0061225

t(u) = 60002FCFEDF3FFE801788783C0000259
r(u)− 1 = 22 × 3× 200007F7FBFFFFFB (62-bit)×

180011EDFB770057C1AAF589E768012691F7B793E7FFE
619(189-bit)

r(u) + 1 = 2× 193× 54BC6217D(35-bit)× 290DB508C7F(42-bit)×
4AF782A8D59(43-bit)× 417BD1FB7B63B(51-bit)×
1774D71493CDEA971C7B(77-bit)

| z |= 180005F9FCFFFFFC2
HW(| u |) = 41

NAF-length(| u |) = 6
HW(| z |) = 39

NAF-length(| z |) = 10
β = −2
ξ =
√
β

µ = 3
√
ξ


