
Publicly Auditable Secure Multi-Party Computation

Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi

Department of Computer Science, Aarhus University,
{cbaum,ivan,orlandi}@cs.au.dk

Abstract. In the last few years the efficiency of secure multi-party computation (MPC) increased in
several orders of magnitudes. However, this alone might not be enough if we want MPC protocols to be
used in practice. A crucial property that is needed in many applications is that everyone can check that
a given (secure) computation was performed correctly – even in the extreme case where all the parties
involved in the computation are corrupted, and even if the party who wants to verify the result was
not involved. An obvious example of this is electronic voting, but also in many types of auctions one
may want independent verification of the result. Traditionally, this is achieved by using non-interactive
zero-knowledge proofs.
A recent trend in MPC protocols is to have a more expensive preprocessing phase followed by a very
efficient online phase, e.g., the recent so-called SPDZ protocol by Damg̊ard et al. Applications such as
voting and some auctions are perfect applications for these protocols, as the parties usually know well
in advance when the computation will take place, and using those protocols allows us to use only cheap
information theoretic primitives in the actual computation. Unfortunately no protocol of the SPDZ
type supports an audit phase.
In this paper we formalize the concept of publicly auditable secure computation and provide an enhanced
version of the SPDZ protocol where, even if all the servers are corrupted, anyone with access to the
transcript of the protocol can check that the output is indeed correct. Most importantly, we do so
without compromising the performance of SPDZ i.e., the cost of our online phase is the same as that
of SPDZ, up to a small constant factor of about two.

Keywords: Efficient Multiparty Computation, Electronic voting, Public Verifiability.

Table of Contents

1 Introduction . 1
1.1 Contributions and Technical Overview . 1
1.2 Related Work . 2

2 The Concept of Auditable MPC . 3
2.1 Formal Definitions . 3

3 An Auditable MPC Protocol . 4
3.1 The [[·]]-representation . 5
3.2 Shared Randomness from an Offline Phase . 8
3.3 The Online Phase . 8

4 Security of the Online Phase . 9
5 An Implementation of the Offline Phase . 11

5.1 A Suitable Cryptosystem . 12
5.2 Concrete Encryption Algorithms . 14
5.3 Zero Knowledge Proofs of Plaintext Knowledge . 16
5.4 Resharing Plaintexts Among Parties . 17
5.5 Checking Correctness of Triples . 19
5.6 The Offline Phase . 19

6 Security Proof of the Offline Phase . 20
7 Summary and Open Problems . 25
A A Generic Implementation of Auditable MPC . 26

1 Introduction

The idea of computing on encrypted data is essentially as old as public-key cryptography [22] and in some
sense precedes the introduction of secure two- and multi-party computation by Yao [23] and Goldreich, Micali
and Widgerson [15].
During the last few years MPC has evolved from an academic topic to a practical tool. Several recent protocols
(e.g. BeDOZa [4], TinyOT [20] and the celebrated SPDZ [10], [8]) achieve incredible performance for the
actual function evaluation, even if all but one player is actively corrupted. This is done by pushing all the
expensive cryptographic work into an offline phase and using only simple arithmetic operations during the
online phase (note also that the offline phase is independent from the inputs and the circuit to be computed
– only an upper bound on the number of multiplication gates is needed). Since these protocols allow to
evaluate an arbitrary circuit (where a circuit represents a function over a field), one can in particular use
these protocols to implement, for instance, a “shuffle-and-decrypt” operation for a voting application or the
function that computes the winning bid in an auction. It is often the case that we know well in advance
the time at which a computation is to take place, and in any such case, these protocols offer very good
performances. In fact the computational work per player in the SPDZ protocol is comparable to the work
one needs to compute the desired function in the clear, with no security.
However efficiency is not always enough: if the result we compute securely has large economic or political
consequences, such as in voting or auction applications, it may be required that correctness of the result can
be verified later. Ideally, we would want that this can done even if all parties involved in the computation
are corrupted, and even if the party who wants to verify the result was not involved in the computation.
The traditional solution to this is to ask every player to commit to all his secret data and to prove in zero-
knowledge for every message he sends, that this message was indeed computed according to the protocol.
If a common reference string is available, we can use non-interactive zero-knowledge proofs, which allows
anyone to verify the proofs and hence the result at any later time. However, this adds a very significant
computational overhead, and would lead to a horribly inefficient protocol, compared to the online phase of
SPDZ, for instance. On the other hand, as mentioned, none of the efficient protocols in the preprocessing
model are auditable.
It is therefore natural to ask whether it is possible to achieve the best of both worlds and have highly efficient
MPC protocols with a non-cryptographic online phase that are auditable, in the sense that everyone who has
access to the transcripts of the protocol can check if the result is correct even when all the servers are
corrupted. In this paper we answer this question in the affirmative.

1.1 Contributions and Technical Overview

The Model. In this work we will focus on client-server MPC protocols, where a set of parties (called the
input parties) provide inputs to the actual working parties, who run the MPC protocol among themselves
and make the output public. Note that the sets need not be distinct, and using standard transformations
we can make sure that the servers do not learn the inputs nor the output of the computation (think of
the inputs/output being encrypted or secret shared). We will focus on the setting of MPC protocols for
dishonest majority (and static corruptions): as long as there is one honest party we can guarantee privacy of
the inputs and correctness of the results, but we cannot guarantee termination nor fairness. We will enhance
the standard network model with a “bulletin board” functionality. Parties are allowed to exchange messages
privately, but our protocol will instruct them also to make part of their conversation public.

Auditable MPC. Our first contribution is to provide a formal definition of the notion of publicly auditable
MPC as an extension of the classic formalization of secure function evaluation where we ask that the protocol
implements an ideal functionality that receives inputs from the clients and computes the desired function.
We require the usual security guarantees when there is at least one honest party, and in addition we ask
that anyone, having only access to the transcript of the computation published on the bulletin board, can
check the correctness of the output. This is formalized by introducing an extra, non-corruptible party (the

1

auditor) who can ask the functionality if the output was correct or not (of course, this only holds in the
case where the computation did not abort). We stress that the auditor does not need to be involved (or even
exist!) before and during the protocol. The role of the auditor is simply to check, once the computation is
over, whether the output was computed correctly or not.
In Appendix A we discuss how this notion can be achieved using generic primitives1.

SPDZ Recap. Given the motivation of this work, we are only interested in the notion of auditable MPC
if it can be achieved efficiently. Therefore our starting point is one of the most efficient MPC protocols for
arithmetic circuits with a cheap, information theoretic online phase, namely SPDZ.
In a nutshell SPDZ works as follows: At the end of the offline phase all parties hold additive shares of
multiplicative triples (x, y, z) with z = x · y. Now the players can use these preprocessed triples to perform
multiplications using only linear operations over a the finite field (plus some interaction). Moreover, these
linear operations can now be performed locally and are therefore essentially for free. However an adversary
could send the honest parties a share that is different from what he received at the end of the offline phase.
To make sure this is not the case, SPDZ adds information theoretic MACs of the form γ = α · x to each
shared value x, where both the MAC γ and the key α are shared among the parties. These MACs are trivially
linear and can therefore “follow” the computation. Once the output is reconstructed, the MAC keys are also
revealed and the MACs checked for correctness, and in the case the check goes through, the honest parties
accept the output.

Auditable SPDZ. In order to make SPDZ auditable, we enhance each shared value x with a Pedersen
commitment gxhr to x with randomness r. The commitment key (g, h) comes from a common reference
string (CRS), such that even if all parties are corrupted, those commitments are still binding. To allow the
parties to open their commitments, we provide them also with a sharing of the randomness r (the parties
already know a share of x). It is easy to see that this new “representation” of values is still linear and
therefore does not disturb any of the SPDZ functionalities. It seems now that we did not achieve our goal,
because the parties need to compute on the committed values and this requires exponentiations and other
expensive operations. However, this is not the case! Computing parties will simply ignore their commitments
(e.g., they only have to post them on the bulletin board) and it will be the job of the auditor to use the
linear properties of the commitments to verify that each step of the computation was carried out correctly,
using the commitments to the inputs, the multiplication triples, and the messages posted on the bulletin
board. The only extra cost for the players is that now they have to compute every operation in parallel on
the value x and on r as well – it is an interesting open problem to see if one could get rid of even this minor
slowdown.
Clearly the “offline phase” of SPDZ needs to be modified as well, in order to produce the commitments
to be used by the auditors and to satisfy the auditability requirement as well. In Chapter 5 we provide a
description of the offline phase, and we will prove its security in Chapter 6.

1.2 Related Work

In publicly verifiable delegation of computation (see e.g. [14,13] and references therein) a computationally
limited device delegates a computation to the cloud and wants to check that the result is correct. Verifiable
delegation is useless unless verification is more efficient than the evaluation. Note that in some sense our
requirement is the opposite: We want our workers to work as little as possible, while we are fine with asking
the auditor to perform more expensive computation. External parties have been used before in cryptography
to achieve otherwise impossible goals like fairness [17], but note that in our case anyone can be the auditor
and the auditor does not need to be online while the protocol is executed. This is a qualitative difference with
most of the other semi-trusted parties that appear in literature. A recent work [2] investigated an enhanced

1 In a nutshell we can achieve auditable MPC, starting from a strong semi-honest protocol and then compiling it
using NIZKoKs – a semi-honest MPC protocol alone would not suffice as we cannot force the parties to sample
uniform randomness, nor can we trust them to force each other to do so by coin flipping when everyone is corrupted.

2

notion of covert security, that allows anyone to determine if a party cheated or not given the transcript of the
protocol – note that the goal of our notion is different, as we are interested in what happens when all parties
are corrupted. The notion of public verifiability has been studied for voting protocols, see e.g. [19] but to the
best of our knowledge it has not been studied in the setting of secure computation, with the exception of [11],
where the author presents a general transformation that turns universally satisfiable protocols into instances
that are auditable in our sense. This transformation is general and slows down the computational phase of
protocols, whereas our focus lies not only on the auditability, but also efficiency of the computational phase.

2 The Concept of Auditable MPC

In the usual MPC setting, the only relevant parties are those taking part in the computation. In order to
introduce auditability after the fact, we add a new party which only performs the auditing and does not
need to participate during the offline or the online phase. That is, anyone can be the auditor. In fact, the
auditor does not even need to exist when the protocol is executed. In this sense, our notion of the auditor is
very different from the notion of a semi-trusted third party. Nevertheless, it can check the correctness of the
computation based on a protocol trace. Thus, our guarantee really holds even in the case where everyone
participating in the protocol is corrupted. We are not adding a honest party to the protocol: our guarantee is
that if there exist at least one honest party in the universe who cares about the output of the computation,
that party can check at any time that the output is correct.
As mentioned, we put ourselves in the client-server model, so the parties involved in an auditable MPC
protocols are:

The input parties: We consider m parties I1, ...,Im with inputs (x1, . . . , xm).
The computing parties: We consider n parties P1, ...,Pn that participate in the computation phase.

Given a set of inputs x1, ..., xm they compute an output y = C(x1, ..., xm) for some circuit C over a finite
field. Note that {I1, ...,Im} and {P1, ...,Pn} might not be distinct.

The protocol: The protocols starts with the input parties giving inputs to the servers – this could be done
entirely via the bulletin board (if the inputs are encrypted) or using also private channels to the servers
(as in the secret sharing case). Now the computing parties {P1, ...,Pm} interact with each other via the
bulletin board (and eventually also using private channels).

The auditor: After the protocol is executed, anyone acting as the auditor TAudit can retrieve the transcript
of the protocol τ from the bulletin board and (using only the circuit C and the output y) determines if
the result is valid or not.

Our security notion is the standard one if there is at least one honest party (i.e. we guarantee privacy,
correctness, etc.). However standard security notions do not give any guarantee in the fully malicious setting
e.g., when all parties are corrupted. We tweak the standard notions slightly and ask an additional property,
called auditable correctness.
This notion captures the fact that in the fully malicious case, the input can not be kept secret from ADV .
But we still want to prove if the computing parties deviate from the protocol, this will be caught by TAudit,
who has access to the transcript of the execution using a bulletin board FBulletin.
For an auditable MPC protocol and given C and x1, ..., xm as before, we require the following:

Auditable Correctness: In the fully malicious setting, TAudit can assess the correctness of the protocol
run after the fact. That is, given a protocol transcript τ the auditor TAudit outputs ’accept y’ with
overwhelming probability if the circuit C on input x1, ..., xm produces the output y. At the same time
the auditor TAudit will return ’reject’ (except with negligible probability) if P1, ...,Pn deviate from
the protocol such that the result is not correct.

2.1 Formal Definitions

In Figure 1 we present an ideal functionality that formalizes our notion of auditable MPC. We use the same
notation as in the preceding subsection.

3

Functionality FAuditMPC

Initialize: On input (init, C) from all parties the functionality stores the circuit C and waits for the sets ABI ⊆
{1, . . . ,m} and ABP ⊆ {1, . . . , n} from ADV that indicate which input and which computing parties the
adversary corrupts.

Input: On input (input,Ii, varid , x) from Ii and (input,Ii, varid , ?) from all parties Pj , with varid a fresh
identifier, the functionality stores (varid , x′), where x′ = x if i 6∈ ABI , else x′ is chosen by ADV . If |ABP | = n,
it outputs x to all parties Pj .

Compute: When all inputs are present, the functionality computes yo = C(x′1, . . . , x
′
m) and:

if |ABP | = 0 it sets y = yo.
if |ABP | > 0 it outputs yo to ADV and waits for y′ from ADV . If |ABP | < n, the functionality accepts only

y′ ∈ {⊥, yo}. If |ABP | = n, any value y′ 6= ⊥ is accepted. Set y = y′ and the flag f = > if y′ = yo or
f = ⊥ otherwise.

Finally the functionality outputs y to all parties.
Audit: On input (audit) from TAudit , the functionality does the following:

if f = > then output ’accept y’.
if f = ⊥ ∧ yo 6= ⊥ then output ’reject’.
if yo = ⊥ then output ’no audit possible’.

Fig. 1: The ideal functionality that describes the online phase

The functionality resembles a standard one for MPC, but we let ADV replace the output of the Output
phase if he corrupts all computing parties. In the presence of at least one honest party, FAuditMPC outputs
the correct value if the protocol was not aborted. Furthermore, TAudit will always be successful if the protocol
was not aborted. Note that we only defined our FAuditMPC for deterministic functionalities. The reason for
this is that when all parties are corrupted even the auditor cannot check whether the players “followed the
protocol correctly” in the sense of using real random tapes. This can be solved (using standard reductions) by
letting the input parties contribute also random tapes and define the randomness used by the functionality
as the XOR of those random tapes – but in the extreme case where all the input parties are corrupted this
will not help us.

3 An Auditable MPC Protocol

We now present an MPC protocol that is an extension of [10,8]. We obtain a fast online phase, which
almost only consists of opening shared values towards parties. Due to space restriction, we present only the
online phase in the main body of this submission (using an auditable ideal functionality to implement the
preprocessing) and we defer the implementation of the modified offline phase to Chapter 5.

Our setup. Let p ∈ P be a prime and G be some abelian group (in multiplicative notation) of order p
where the DLP is hard to solve. Furthermore, let g, h ∈ G be two elements such that 〈g〉 = 〈h〉 = G and
h is chosen such that logg(h) is not known (e.g. based on some CRS). For two values x, r ∈ Zp, we define
pc(x, r) := gxhr.
We assume that a secure channel towards the input parties can be established, that a broadcast functional-
ity is available and that we have access to a bulletin board FBulletin (Fig. 2), a commitment functionality
FCommit

2 (Fig. 3) and a random oracle FProvideRandom (Fig. 4). In practice, this functionality can be imple-
mented in several ways, e.g. using a pseudorandom number generator and the commitment scheme FCommit.
We use a bulletin board to keep track of all those values that are ever broadcasted (especially the commit-
ments). Observe that no information that was posted to FBulletin can ever be changed or erased.
Note that the we inherit the FCommit and FProvideRandom from the original SPDZ protocol, our only extra
assumption is the existence of a bulletin board FBulletin.

2 This other commitment functionality might be implemented by a hash function, and is used whenever the linear
operations of the commitment scheme are not necessary.

4

The ideal functionality FBulletin

Store: On input (store, id, i,msg) from Pi, where id was not assigned yet, the functionality stores (id, i,msg).
Reveal IDs: On input (all) from party Pi the functionality reveals all assigned id-values to Pi

Reveal message: On input (getmsg, id) from Pi, the functionality checks whether id was assigned already. If so,
then it returns (id, j,msg) to Pi. Otherwise it returns (id,⊥,⊥).

Fig. 2: The ideal Functionality for the Bulletin board

The ideal functionality FCommit

Commit: On input (Commit, v, r, i, τv) by Pi, where both v and r are either in Zp or ⊥, and τv is a unique
identifier, it stores (v, r, i, τv) on a list and outputs (i, τv) to all players.

Open: On input (Open, i, τv) by Pi, the ideal functionality outputs (v, r, i, τv) to all players. If (NoOpen, i, τv) is
given by the adversary, and Pi is corrupt, the functionality outputs (⊥,⊥, i, τv) to all players.

Fig. 3: The Ideal Functionality for Commitments

Sharing values for the online phase. All computations during the online phase are done using sum-
shared values. Moreover, the parties are committed to each such shared value using a MAC key α and a
commitment to the shared value. The key α is also sum-shared among the parties, where party Pi holds
share αi such that α =

∑n
i=1 αi, and that the commitments to each value are publicly known.

We define the 〈·〉-representation of a shared value as follows:

Definition 1. Let r, s, e ∈ Zp, then the 〈r〉-representation of r is defined as

〈r〉 := ((r1, ..., rn), (γ(r)1, ..., γ(r)n))

where r =
∑n
i=1 ri and α · r =

∑n
i=1 γ(r)i. Each player Pi will hold his shares ri, γ(r)i of such a represen-

tation. Moreover, we define

〈r〉+ 〈s〉 := ((r1 + s1, ..., rn + sn), (γ(r)1 + γ(s)1, ..., γ(r)n + γ(s)n))

e · 〈r〉 := ((e · r1, ..., e · rn), (e · γ(r)1, ..., e · γ(r)n))

e+ 〈r〉 := ((r1 + e, r2, ..., rn), (γ(r)1 + e · α1, ..., γ(r)n + e · αn))

This representation is closed under linear operations:

Remark 1. Let r, s, e ∈ Zp. We say that 〈r〉 =̂ 〈s〉 if both 〈r〉, 〈s〉 reconstruct to the same value. Then it holds
that

〈r〉+ 〈s〉 =̂ 〈r + s〉, e · 〈r〉 =̂ 〈e · r〉, e+ 〈r〉 =̂ 〈e+ r〉

During the online phase, the parties either open sharings (without revealing the MACs) or do the linear
operations defined above. Together with the Beaver circuit randomization technique from [3] and a MAC
checking procedure for the output phase, this already yields an actively secure MPC scheme that3 is secure
against up to n− 1 corrupted players.

3.1 The [[·]]-representation

In order to make SPDZ auditable we enhance the way shared values are represented and stored. In a nutshell
we force the computing parties to commit to the inputs, opened values and outputs of the computation. All
intermediate steps can then be checked by performing the computation using the data on FBulletin. The

3 Provided that the offline phase generates valid multiplication triples and random values together with MACs.

5

Functionality FProvideRandom

Uniformly Random: On input (urandomness, l, p, ri) from each party Pi, the functionality checks whether it
already stored a pair r, r1||...||rn, i in list L2. If yes, then it outputs r to all parties. If not, then it outputs a
uniformly random string r ← {0, . . . , p− 1}l to all players and stores r, r1||...||rn in list L2.

Fig. 4: The Ideal Functionality that provides random values

Procedure PMult

Multiply([[r]], [[s]], [[a]], [[b]], [[c]]):
(1) The players calculate [[γ]] = [[r]]− [[a]], [[δ]] = [[s]]− [[b]]
(2) The players publicly reconstruct γ, δ.
(3) Each player locally calculates [[t]] = [[c]] + δ[[a]] + γ[[b]] + γδ
(4) Return [[t]] as the representation of the product.

Fig. 5: Protocol to generate the product of two [[·]]-shared values

commitment scheme is information theoretically hiding, and we will carry both the actual value 〈r〉 as well
as the randomness 〈rrand〉 of the commitment through the whole computation.

The commitment to a value r will be a Pedersen commitment (see [21]) pc(r, rrand). When we open a [[·]]-
representation, we reconstruct both r and rrand. This way the commitment is also opened (it is already
published on FBulletin) and everyone can check that it is correct.

Definition 2. Let r, rrand ∈ Zp and g, h ∈ G where both g, h generate the group, then we define the [[r]]-
representation for r as

[[r]] := (〈r〉, 〈rrand〉, pc(r, rrand))

where 〈r〉, 〈rrand〉 are shared among the players as before.

The reader can easily verify that linear operations of two such representations [[a]], [[b]] can be efficiently
computed as follows:

Definition 3. Let a, b, arand, brand, e ∈ Zp. We define the following linear operations on [[·]]-sharings:

[[a]] + [[b]] := (〈a〉+ 〈b〉, 〈arand〉+ 〈brand〉, pc(a, arand) · pc(b, brand))
e · [[a]] := (e · 〈a〉, e · 〈arand〉, (pc(a, arand))e)
e+ [[a]] := (e+ 〈a〉, 〈arand〉, pc(e, 0) · pc(a, arand))

With a slight abuse in notation, we see that

Remark 2. Let r, s, e ∈ Zp. It holds that

[[r]] + [[s]] =̂ [[r + s]], e · [[r]] =̂ [[e · r]], e+ [[r]] =̂ [[e+ r]]

In order to multiply two representations, we rely on [3]: Let [[r]], [[s]] be two values where we want to calculate
a representation [[t]] such that t = r · s. We assume the availability of a triple ([[a]], [[b]], [[c]]) such that a, b are
uniformly random and c = a · b. To obtain [[t]], use the protocol in Figure 5. Correctness and privacy are
straightforward.

Finally observe that, during the online phase, one does not have to perform the computations on the com-
mitments. Instead, only the sharings are manipulated.

6

Functionality FSetup

Let � be the pointwise multiplication of vector entries.

Initialize: On input (init, p, l) from all players, the functionality stores the prime p and the SIMD factor l. ADV

chooses the set of parties ABP ⊆ {1, . . . , n} he corrupts.
(1) Choose a g ∈ G and s ∈ Z∗p, set h = gs. Send g, h to ADV .
(2) For all i ∈ ABP , ADV inputs αi ∈ Zp, while for all i 6∈ ABP , the functionality chooses αi ← Zp at random.
(3) Set they key α =

∑n
i=1 αi and send (αi, g, h) to Pi, i 6∈ ABP .

(4) Set the flag f = >.

Audit: On input (Audit), return ′reject′ if f = ⊥ or if Initialize or Compute was not executed. Else return
′accept′.

Compute: On input (GenerateData, T, ρ) from all players with T, ρ multiples of l:
(1) RandomV alues(T, l):

(1.1) For each i 6∈ ABP choose uniformly random ri, si ← ZTp , send these to Pi and pc(ri, si) to ADV .
(1.2) For i ∈ ABP , ADV inputs ri, si ∈ ZTp
(1.3) Compute [[r]]← Bracket(r1, . . . , rn, s1, . . . , sn, T).
(1.4) Return ([[r]]).

(2) Triples(ρ, l):
(2.1) For i 6∈ ABP , the functionality samples ai,arand,i, bi, brand,i ∈ Zρp at random, send them to Pi and

pc(ai,arand,i), pc(bi, brand,i) to ADV .
(2.2) For i ∈ ABP , ADV inputs ai,arand,i, bi, brand,i ∈ Zρp.
(2.3) For each i 6∈ ABP sample uniformly random oi ∈ Gρ and send them to ADV .
(2.4) For i ∈ ABP let ADV choose ci, crand,i ∈ Zρp.
(2.5) Define a =

∑n
j=1 aj , b =

∑n
j=1 bj .

(2.6) Let j 6∈ ABP be the smallest index of an honest player(if any). For all i 6∈ ABP , i 6= j choose ci ∈ Zρp
unifromly at random and crand,i ∈ Zρp subject to the constraint that oi = pc(ci, crand,i) using s.
For Pj let cj = a � b −

∑
i∈[n],i 6=j ci and crand,j ∈ Zρp such that oj = pc(cj , crand,j) using s. Send

ci, crand,i to Pi.
(2.7) Let c =

∑n
i=1 ci.

(2.8) Run the macros [[a]]← Bracket(a1, . . . ,an,arand,1, . . . ,arand,n, ρ),
[[b]]← Bracket(b1, . . . , bn, brand,1, . . . , brand,n, ρ),
[[c]]← Bracket(c1, . . . , cn, crand,1, . . . , crand,n, ρ).

(2.9) Let L′ = {1, ..., ρ}
(2.10) If |ABP | = n then let ADV input L, otherwise let L = L′. If L 6= L′ then set f = ⊥.
(2.11) Return ([[a[m]]], [[b[m]]], [[c[m]]])m∈L.

Macro Bracket(r1, . . . , rn, s1, . . . , sn, d): This macro will be run by the functionality to create [[·]]-representations.
(1) Define r =

∑n
i=1 ri, s =

∑n
i=1 si.

(2) If |ABP | = n, ADV inputs a vector ∆c ∈ Gd.
If ∆c contains is not the (1, . . . , 1) vector, set f = ⊥. If |ABP | < n set ∆c to the all-ones vector.

(3) Compute com = pc(r , s)�∆c.
(4) Run macro 〈r〉 ← Angle(r1, ..., rn, d) and 〈s〉 ← Angle(s1, ..., sn, d).
(5) Define [[r]] = (〈r〉, 〈s〉, com). Return [[r]].

Macro Angle(r1, . . . , rn, d): This macro will be run by the functionality to create 〈·〉-representations.
(1) Define r =

∑n
i=1 ri

(2) For i ∈ ABP , ADV inputs γi,∆γ ∈ Zdp, and for i 6∈ ABP , choose γi ∈R Zdp at random except for cj , with
j being the smallest index not in ABP (if there exists one).

(3) If |ABP | < n set γ = α · r +∆γ and γj = γ −
∑n
j 6=i=1 γi, else set γ =

∑n
i=1 γi.

(4) Define 〈r〉 = (r1, ..., rn,γ1, ...,γn). Return 〈r〉.

Fig. 6: The ideal functionality that describes the offline phase

7

Protocol ΠAuditMPC

Initialize: The parties use Initialize and Compute of FSetup to set up the MAC key α and get their share αi
as well as enough random values [[r]] and triples ([[a]], [[b]], [[c]]) to evaluate the circuit. Then the operations are
performed according to the circuit structure.

Input: Ii shares the input xi. He uses a random value [[r]] and does the following:
(1) [[r]] is privately opened to Ii, who checks that the Pedersen commitment on FBulletin is correct.
(2) Ii broadcasts ε = xi − r, which is also stored on FBulletin.
(3) All players compute [[xi]] = [[r]] + ε

Add: Add two values [[r]], [[s]]:
(1) Each party locally computes [[t]] = [[r]] + [[s]], but excludes the commitments from the computation.

Multiply: Multiply two values [[r]], [[s]], using the multiplication triple ([[a]], [[b]], [[c]]).
(1) The parties invoke PMult.Multiply([[r]], [[s]], [[a]], [[b]], [[c]]), but exclude the commitments from the computa-

tion.
(2) The opened values γ, δ are sent to FBulletin.

Output: The parties want to open the output [[y]]. Before this can be done, the MACs on all the opened values
a1, ..., at are checked.

(1) Let r ← PCheckMac.CheckOutput(a1, . . . , at, p). If r
?
= 0 then stop.

(2) The parties open the output [[y]] towards FBulletin.

(3) Let s← PCheckMac.CheckOutput(y, yrand, p). If s
?
= 0 then y or yrand is not correct (Observe that at this

point, the output is already correct if at most n− 1 parties act maliciously).
Audit: We first run Audit for FSetup. If it returns ′accept′ then continue, otherwise return ’no audit possible’.

Now, the following part is executed if the Output step of the protocol instance was completed and the delivered
results were correct with respect to PCheckMac. If this does not hold, return ’no audit possible’. We follow
the gates of the evaluated circuit C, in the same order. For the i-th gate, do the following:
Input: Let [[r]] be the opened value and varid be the ID of the shared value. Set cvarid = pc(ε, 0) · c, where c

is the commitment in [[r]] and ε is the opened difference.
Add: The parties added [[r]] with varidr and [[s]] with varids to [[t]] with varidt. Set cvaridt = cvaridr · cvarids .
Multiply: The parties multiply [[r]] with varidr and [[s]] with varids. The output has ID varidt, we use the

auxiliary values [[a]], [[b]], [[c]] with their respective IDs. Set cvaridt = cvaridc · cδvarida · c
γ
varidb

· pc(γ · δ, 0)
For the output step of the original protocol, we do the following:

Output Let c be the calculated commitment for the output value [[y]] . Check that c
?
= pc(y, yrand), where

both the values y, yrand where opened during the output phase of the computation.
If yes, then output ’accept y’, otherwise ’reject’.

Fig. 7: The protocol for the online phase

3.2 Shared Randomness from an Offline Phase

Our online phase relies on the availability of [[·]]-representations of random values and multiplication triples.
In Figure 6 and ?? we define the functionality FSetup that captures the behaviour of our preprocessing
protocol. This is essentially an “auditable” version of the SPDZ preprocessing functionality. If all parties
are corrupted, the functionality might output an incorrect result – however this can be checked by the
auditor. Crucially, even if all parties are corrupted, the functionality still outputs a random public key for
the commitment scheme. This allows the auditing phase to be correct (as it ensures that the even when
everyone is corrupted the commitments are binding).

3.3 The Online Phase

The online phase of our protocol is presented in Figure 7. In order to create the transcript, every party puts
all values it ever sends or receives onto FBulletin (except for the private reconstruction of input values).
This does not break the security, because (informally speaking) this is the same information that an ADV
receives if he corrupts n − 1 parties. Until now, we did not show how the MACs can be checked after the
computation - this can be easily done with the protocol in Figure 8.

8

Procedure PCheckMac

CheckOutput(v1, ..., vt,m) Here we check whether the MACs hold on t partially opened values.
(1) Each party samples a value ri and sends (urandomness, t,m, ri) to FProvideRandom to obtain the vector r.
(2) Each party computes v =

∑t
i=1 r[i] · vi.

(3) Each Pi computes γi =
∑t
j=1 r[j] · γ(vj) and σi = γi − αi · v.

(4) Each Pi commits to σi using FCommit as c′i.
(5) Each c′i is opened towards all players using FCommit.
(6) If σ =

∑n
i=1 σi is 0 then return 1, otherwise return 0.

Fig. 8: Procedure to check validity of MACs

Simulator SOnline

Wait for the set of corrupted parties ABP from the environment, and let n be the number of players.

If |ABP | 6= n, then forward all incoming messages that are not from SOnline,normal to SOnline,normal, and send all
messages that come from SOnline,normal to the proper recipient.

If |ABP | = n, then forward all incoming messages that are not from SOnline,full to SOnline,full, and send all messages
that come from SOnline,full to the proper recipient.

Fig. 9: Simulator for the online phase

4 Security of the Online Phase

In this section, we will prove that our new notion of auditable correctness holds for ΠAuditMPC. Moreover,
we also formally prove that the new commitments do not interfere with the original construction of SPDZ.
We start with the following Lemma from [8] (Lemma 1). It gives some insight into correctness and soundness
of the MAC check. We then prove the security of the online phase in Theorem 1.

Lemma 1. Assume that PCheckMac is executed over the field Zp. The protocol PCheckMac is correct and
sound: It returns 1 if all the values vi and their corresponding MACs are correctly computed, and rejects
except with probability 2/p in case at least one value or MAC is not correctly computed.

Theorem 1. In the FSetup,FBulletin,FProvideRandom,FCommit-hybrid model, the protocol ΠAuditMPC imple-
ments FAuditMPC’ with computational security against any static adversary corrupting all parties if the Dis-
crete Logarithm Problem(DLP) is hard in the group G.

Proof. We prove the above statement by providing a simulator SOnline (see Figure 9) which makes the ideal
world and the real world execution indistinguishable.
The simulator is divided for two cases, for the honest minority and the fully malicious setting:

(1) if there is at least one honest computing runs SOnline,normal (Fig. 10).
(2) if all computing parties are corrupt, it runs SOnline,full (Fig. 11).

Observe that in the case with at least one honest party, we can simply extend the simulator from [8] to have
an audit procedure and support for commitments.
The argument for the indistinguishability of both worlds now runs as follows: As already mentioned, the
simulator does the same as ΠAuditMPC for Initialize, Input, Add, Multiply, only that it uses a fixed input
for the honest parties during Input. Since all shares are uniformly random, this cannot be distinguished
from the protocol execution. During the output phase, we adjust the shares of one honest party to agree
with the correct output y: The simulator already has the output of the simulated computation, which is y′.
Hence it can adjust the share properly, as it also knows α. Moreover, since the discrete logarithm logg(h) is
known to SOnline,normal, it can also adjust the share of the randomness value yrand properly. Since all shares

9

look uniformly random as in the protocol, they can not be distinguished. Moreover, since the commitments
are information-theoretic, they do not reveal any information to the adversary. If moreover ADV decides to
stop the execution, then SOnline,normal will forward this to the ideal functionality and ADV will not receive
any additional information, as in the real execution.
During the Audit phase, we also do exactly the same as in the protocol. Note that both Output and Audit
will always reveal the correct values in the simulated case (with respect to the inputs of the dishonest parties
during the input phase), hence we have to show that in the real protocol, the probability that ADV can
cheat here is negligible.

Output: There are three ways how the output can be incorrect with respect to the inputs and the calculated
function, which is if a multiplication triple was not correct even though it passed the check, or if a
dishonest party successfully adjusted the MACs during the computation, or it successfully cheated during
the output phase. As argued in [10], the first event only happens with probability 1/p. For the second
case, a standard calculation shows that ADV will then be able to compute the secret MAC key α. For
the third case, Lemma 1 implies that this can only happen with probability 2/p. Since we must have p
being exponential in the security parameter, the distributions are statistically indistinguishable.

Audit: We assume that all provided commitments (before the execution) are correct except with negligible
probability. As they come from FSetup for both the ideal world execution and the real world execution,
incorrect commitments do not lead to distinguishability. In order to cheat in the real world execution of
the Audit phase, ADV must be able to provide an alternative opening for the resulting commitment,
which is equal to calculating the discrete log in G and which we assume can not be done in polynomial
time except with negl. probability. Moreover, after the collision is found, ADV must already adjust the
shares and MACs either during the computation or the output phase without being detected, which both
only happens with probability at most 1/p.

As both ways of cheating in the real world execution can only be done with negligible probability, the
simulation is statistically indistinguishable for the honest minority setting.

Fully malicious setting. The simulator now does not have to simulate honest parties when running the
protocol with the malicious parties.
The intuition behind the simulator SOnline,full is trivial - since we cannot force ADV to do anything par-
ticular, we leave the adversary the option to do whatever he wants during the online phase. This is due
to the fact that, since ADV now knows both every value and the MAC key α, he can cook up transcripts
for every possible output. Moreover, since we cannot guarantee privacy, no inputs must be substituted. But
note that we still have to extract inputs in order to run the Audit phase. This is trivially possible, since we
have all the inputs that a party ever receives. Note that we have this opportunity since the adversary might
arbitrarily replace these values during the computation, but is computationally bound to the correct value
in the commitment, as we will explain now.
In the ideal world execution of the Audit phase, the adversary can announce an arbitrary value during the
Output phase, but the simulator will reveal this as he announces the result of Audit from FAuditMPC’. In
the real world, the auditable correctness is checked by the Audit protocol only. Distinguishing both worlds
is only possible if ADV can make Audit output ’accept y’ for an incorrect audit trail. ADV might either
replace the input values of a party or change shares such that they fit to another value (this is also the
possibility for the output phase). In the first case, since both the commitment and the difference are public,
this equals finding shares for another value x′ with randomness x′rand that open the commitment. In the
second case, ADV also has to announce values such that they falsely open a commitment. As we argued
before, breaking the binding value of the commitment is the same as computing logg(h) in G. Hence the
distinguishing probability between the ideal world and the real world is negligible for every poly-time ADV .

The overall simulator SOnline is then constructed as seen in Figure 9. ut

10

Simulator SOnline,normal

Observe that values of g, h are provided as a CRS by this simulator, so we actually know s = logg(h) here.

Initialize: The simulator sets up the bulletin board FBulletin and afterwards runs a copy of FSetup, with which
the adversary communicates through the simulator.

Input: If Ii is honest, then follow the protocol for a fake input 0. If Ii is dishonest, then extract the value and
send it to FAuditMPC’.

Add: Follow the protocol and call Add of FAuditMPC’ for the respective elements.
Multiply: Follow the protocol and call Multiply of FAuditMPC’ for the respective elements.
Output: The simulator obtains the output y from FAuditMPC’ and generates valid shares for the honest parties as

follows:
Let Pi be an honest party and y′ be the current output of the computation with the adversary. Let [[y′]] =
(〈y′〉, 〈y′rand〉, c = pc(y′, y′rand)). We change the shares of Pi for 〈y′〉 from y′i to y′i+(y−y′) and γ′i to γ′i+α(y−y′)
since the simulator knows α.
Observe that s 6= 0, so s is invertible mod p, and set yrand = (y)′ − y + s · y′rand)/s mod p. We now set the
switch the share yrand,i to be yrand,i + (yrand − y′rand) and γrand,i to be γrand,i + α · (yrand − y′rand).
(1) Follow the protocol to check the MACs according to step 1 of Output of ΠAuditMPC. If that step fails, let
FAuditMPC’ deliver ⊥ to the honest parties and stop.

(2) Send the shares of the simulated honest parties to FBulletin. If not all malicious parties provide their shares
of [[y]], then let FAuditMPC’ deliver ⊥ to all honest parties and stop.

(3) Run PCheckMac for the output. If the output y is correct, let FAuditMPC’ deliver y to all honest parties,
otherwise ⊥.

Audit: Simulate the audit process according to ΠAuditMPC with the malicious players. Then invoke FAuditMPC’ to
run Audit there.

Fig. 10: Simulator for honest minority

Simulator SOnline,full

Initialize: The simulator sets up the bulletin board FBulletin and afterwards runs a copy of FSetup, with which
the adversary communicates through the simulator.

Input: If Ii is honest, then ask FAuditMPC’ to reveal the value. If Ii is dishonest, then extract the value and send
it to FAuditMPC’.

Add: Follow the protocol and call Add of FAuditMPC’ for the respective elements.
Multiply: Follow the protocol and call Multiply of FAuditMPC’ for the respective elements.
Output:

(1) Follow the protocol to check the MACs according to step 1 of Output of ΠAuditMPC. If that step fails, let
FAuditMPC’ set y′ = ⊥ and stop.

(2) Send all the shares of the parties to FBulletin. If not all malicious parties provide their shares of [[y]], then
let FAuditMPC’ set y′ = ⊥ and stop.

(3) Run PCheckMac for the output. If the MAC on the output o is correct, let FAuditMPC’ set y′ = o, otherwise
y′ = ⊥.

Audit: Run the audit process according to ΠAuditMPC with all players. Then invoke FAuditMPC’ to run Audit
there and reveal the output of FAuditMPC’.

Fig. 11: Simulator for the fully malicious setting

5 An Implementation of the Offline Phase

In this section, we provide an implementation of FSetup. To begin with, observe that our data generation
protocol must consist of two phases, an actual generation phase and a checking phase. During the latter one,
we check the triples so they are correct during ΠAuditMPC. We moreover have to introduce a way how to
perform the audit of the offline phase.
To implement this, a cryptosystem is required that allows a certain number of additions and multiplications

11

of vectors of plaintexts. We will now specify the properties of such a somewhat homomorphic cryptosystem,
further details can be found e.g. in [10,8].

5.1 A Suitable Cryptosystem

We define the plaintext space M as M = Zlp. This set forms a ring under the operations ’+’ and ’·’, which
we consider as component-wise applications of the field operations.
The ring A, which is isomorphic to ZN for some integer N ∈ N+, is an intermediate space. Encryption will
work as a map from A to some additive abelian group B, that also respects multiplication and distributivity
law under certain conditions that we will describe later. The operations of A will also be denoted as ’+’,’·’.
Addition will be component-wise, whereas there is no restriction on how the multiplication is implemented.
In order to map m ∈M to an element a ∈ A and back, there exist the two functions

encode :M→A
decode : A →M

where encode is injective. We want decode to be the inverse of encode (on its image) and to be structure-
preserving. Moreover, decode has to respect the characteristic of the field and encode must return short
vectors. This is formalized as follows:

(1) ∀m ∈M : decode(encode(m)) = m
(2) ∀m1,m2 ∈M : decode(encode(m1) + encode(m2)) = m1 + m2

(3) ∀m1,m2 ∈M : decode(encode(m1) · encode(m2)) = m1 ·m2

(4) ∀a ∈ A : decode(a) = decode(a mod p)
(5) ∀m ∈M : ||encode(m)||∞ ≤ τ with τ = p/2

Algorithms. We will now specify the cryptosystem with respect to M,A and B. The algorithms are
considered to be probabilistic polynomial time.

ParamGen(1λ,M) The algorithm outputs the dimension N of the ring A and descriptions for encode and

decode as well as a randomized algorithm Dd
ρ, an additive abelian group B and a set of allowable circuits

C. Dd
ρ outputs vectors r ∈ Zd such that Pr[||r||∞ ≥ ρ | r ← Dd

ρ] < negl(λ). B has the additive operation
⊕ and an operation ⊗ that is not necessarily closed, but commutative and distributive.
C is a set of allowable arithmetic Single Instruction Multiple Data (SIMD) circuits over Zlp, the cryp-
tosystem must be able to evaluate these circuits on ciphertexts that are generated in a certain way. The
SIMD property implies that there exists a function f ∈ Zp[X1, ..., Xn(f)] such that f̂ ∈ C evaluates the

function f l times on inputs in (Zp)n(f) in parallel.

Encpk(x, r) Let x ∈ A and r ∈ Zd then this algorithm creates a g ∈ B deterministically. One can also

apply this function to an m ∈ M, where it is implicitly assumed that Encpk(m) = Encpk(x′, r′) with
x′ ← encode(m) and r′ ← Dd

ρ.
For the ZKPOPKs, we require that Encpk is homomorphic for at least a small number V of correct
ciphertexts. More formally: Let x1, ...,xV ∈ image(encode), r1, ..., rV ← Dd

ρ. Then4 it holds that

Encpk(x1 + ...+ xV , r1 + ...+ rV) = Encpk(x1, r1)⊕ ...⊕ Encpk(xV , rV)

We think here of V being two times as large as the security parameter sec of the zero knowledge proof
that we will present later.

Decsk(g) For g ∈ B this algorithm will return an m ∈M∪ {⊥}.

4 We let image(f) be the function that returns the image of the function f .

12

Functionality FKeyGenDec

Key generation:

(1) When receiving (StartKeyGen) from all parties, run P ← ParamGen(1λ,M).
(2) Wait for randomness ri from every party Pi.
(3) Let r =

∑n
i=1 ri, and compute (pk, sk)← KeyGen() using the randomness r.

(4) Generate shares ski for all players consistent with sk, and send (pk, ski) to each party Pi.

Distributed decryption:
(1) When receiving (StartDistDec) from all players, check whether there exists a shared key pair (pk, sk). If

not, return ⊥.
(2) Hereafter on receiving (decrypt, c) for an (Bplain, Brand, C)-admissible c from all honest players, send c

and m← Decsk(c) to the adversary. On receiving m′ from the adversary, send (result,m′) to all players.
m,m′ can both be ⊥

(3) On receiving (decrypt, c,Pj) for an admissible c, if Pj is corrupt, send c,m← Decsk(c) to the adversary.
If Pj is honest, send c to the adversary. On receiving m′ from the adversary, if m′ 6∈ M, send ⊥ to Pj ,
if m′ ∈M, send Decsk(c) +m′ to Pj .

Fig. 12: The ideal functionality for distributed key generation and decryption

KeyGen() This algorithm samples a public key/private key pair (pk, sk).

KeyGen∗ A meaningless public key pk is returned. Let (pk, sk) ← KeyGen() and m ∈ M be arbitrary. It
require that
(1) Encpk(m) and Encpk(0) are statistically indistinguishable.

(2) pk and pk are computationally indistinguishable.

Correctness. Let n(f), f ∈ C be the number of input values of f and let f̂ be the embedding of f into
B where ’+’ is replaced by ⊕, ’·’ by ⊗ and the constant c ∈ Zp by Encpk(encode(c),0). For data vectors
x1, ...,xn(f), let f(x1, ...,xn(f)) be the SIMD application of f to this data.

To formally express that the scheme is correct if certain bounds can be proven on the size of the randomness,
we say that the scheme is (Bplain, Brand, C)-correct if

Pr

[
Decsk(c) 6= f(decode(x1), ..., decode(xn(f)))

∣∣∣∣
P ← ParamGen(1λ,M), for any sk and (pk, sk)← KeyGen(), for any f ∈ C,
any xi, ri with ||xi||∞ ≤ Bplain, ||ri||∞ ≤ Brand, decode(xi) ∈M,

i ∈ {1, ..., n(f)}, ci ← Encpk(xi, ri) and c← f̂(c1, ..., cn(f))

]
< negl(λ)

for a negligible function negl(λ). If a ciphertext c can be obtained using this chain of operations described
above, then c is called (Bplain, Brand, C)-admissible.

Distributed decryption and key generation. For the implementation, we require that the cryptosystem
supports distributed key generation and decryption, as captured in FKeyGenDec.
Now let sec ∈ N be a security parameter for zero knowledge proofs, then

Definition 4 (Admissible Cryptosystem). Let C contain formulas of the form

(

n∑
i=1

xi) · (
n∑
i=1

yi) +

n∑
i=1

zi

13

where arbitrary xi, yi, zi can be zero. A cryptosystem is called admissible if it is defined by the algorithms
(ParamGen,KeyGen,KeyGen∗, Enc,Dec), if it is (Bplain, Brand, C)-correct with

Bplain = N · τ · sec2 · 2(1/2+ν)sec

Brand = d · ρ · sec2 · 2(1/2+ν)sec

for some arbitrary constant ν > 0 and if it securely implements FKeyGenDec.

One can easily see that e.g. the Ring-LWE-based BGV scheme [7] or the BGH extension of LWE-based BGV
(see [6]) have the required features.

5.2 Concrete Encryption Algorithms

ParamGen(1λ,M):

Let M = Zlp. Consider the h-th cyclotomic polynomial F = Φh(x), where N = ϕ(h), h ∈ N+. We require
that F mod p factors into l′ ≥ l different irreducible factors.
Now we define an algebra Rp = Fp[X]/F and embedM into Rp. We furthermore define A := ZN and embed
Rp using the minimal representatives of the coefficients of the polynomials, as values from [−p/2, p/2).

It holds that ||encode(m)||∞ ≤ p/2 = τ . Addition in A naturally complies with addition inM, whereas the
multiplication in A can be carried out using polynomial multiplication.

Now pick a large prime q � p and set Rq = Fq[X]/F . We consider the elements from Rp as elements in Rq
as well, but depending on the size of q there might be some restrictions how the operations carry over — q
has to be picked depending on C (large enough such that for circuits from C, operations in Rq behave as
if they are done in R = Z[X]/F). Therefore, let encode from now on implicitly map to Rq, and decode will
map from Rq after the coefficients have been reduced mod p.
If one sets the operations in Rq to be + , ·, then let B = R3

q . ⊕ works componentwise and we define ⊗ if the
third component is 0:

⊗ : (a0,a1, 0)⊗ (b0, b1, 0) := (a0 · b0,a1 · b0 + a0 · b1,−a1 · b1)

Finally, the definition of Dd
ρ will be done as follows: We define the random variable x on ZNq which is sampled

according to the discrete Gaussian distribution DZN ,α. This means that every coefficient of x ← DZN ,α is

distributed according to a Gaussian distribution with mean 0 and standard deviation σ = α/
√

2 · π. Now
let d = 3N and set Dd

ρ = (DZN ,α)3. Even though (DZN ,α)3 does not refer to q explicitly, the elements still

origin from (ZNq)3 as defined above.

Key Generation and Distributed Decryption

We now want to mention again the protocols that can be used for key generation and distributed decryption
in the offline phase.
For the distributed decryption, assume that there is a plaintext that the parties want to decrypt. Every
player Pi will receive a share ski := (s1,i, s2,i) such that s =

∑n
i=1 s1,i, s · s =

∑n
i=1 s2,i using some other

MPC protocol. The protocol will proceed as follows:

In order to implement FKeyGenDec, one moreover needs a key generation technique. The approach from [8] is
only covertly secure, but can be made actively secure using ZKPoPKs (note that this blows up the parameter
size). One can also generate the shares based on another MPC protocol. The functionality is as follows:

14

Algorithms of the SHE scheme

KeyGen():
(1) Sample a← Rq and s, e← DZN ,α. s, e are rounded such that they can be seen as s, e ∈ Rq
(2) Compute b← (a · s) + (e · p)
(3) Set pk ← (a, b), sk ← s

KeyGen∗():

(1) Sample â, b̂← Rq

(2) Set p̂k ← (â, b̂)

Encpk(x, r):
(1) Check whether m ∈M
(2) Set x← encode(m) and (u,v,w) = r ∈ Dd

ρ .
(3) Compute c0 = (b · v) + (p ·w) + x, c1 = (a · v) + (p · u)
(4) Return (c0, c1,0).

Decsk(c):
(1) Let sk = s and c = (c0, c1, c2)
(2) Calculatea t = c0 − (s · c1)− (s · s · c2) mod q.
(3) Return x← decode(t mod p)

a This is the plaintext with some noise in it, and one can find a bound B such that ||t||∞ ≤ B.

Fig. 13: Other algorithms from the SHE scheme

Protocol ΠDistDec

Initialize: Each party received a ciphertext c = (c0, c1, c2) and a bound B on the norm
and computes

ui =

{
c0 − (si,1 · c1)− (si,2 · c2) if i = 1

−(si,1 · c1)− (si,2 · c2) if i 6= 1

and sets ti = ui + p · ri where ri ∈ Rq is uniformly random with ||ri||∞ ≤ 2secB/(n · p).

Public decryption:
(1) each Pi broadcasts ti
(2) all players compute t′ =

∑n
i=1 ti and obtain m′ ← decode(t′ mod p)

Private decryption: Decryption towards player Pj

(1) each party Pi sends ti to Pj

(2) Pj computes t′ =
∑n
i=1 ti and obtains m′ ← decode(t′ mod p)

Fig. 14: A distributed decryption protocol for the SHE scheme

Functionality FKeyGen

(1) When receiving (StartKeyGen) from all parties, run P ← ParamGen(1λ,M).
(2) Wait for randomness ri from every party Pi.
(3) Let r =

∑n
i=1 ri, and compute (pk, sk)← KeyGen() using the randomness r.

(4) Generate shares ski for all players consistent with sk, and send (pk, ski) to each party Pi.

Fig. 15: The ideal functionality for distributed key generation

15

5.3 Zero Knowledge Proofs of Plaintext Knowledge

During the online phase of the protocol, we rely on the fact that if a shared value is reconstructed, the related
commitment can be opened to the same value. We ensure this (and the correct generation of ciphertexts)
during the offline phase using zero knowledge proofs. Given the security parameter sec, 2 · sec ciphertexts
c1, ..., c2·sec ∈ image(Encpk(·)) and sec · l group elements d1,1, ..., dsec,l ∈ G, we prove the following relation:

RCTC = {(a,w)| a = (c1, ..., c2·sec, d1,1, d2,1, ..., dsec,l, pk),w = (x1, r1, ...,x2·sec, r2·sec) :

∀i ∈ {1, ..., sec} : ci = Encpk(xi, ri) ∧ csec+i = Encpk(xsec+i, rsec+i) ∧
||xi||∞ ≤ Bplain ∧ ||xsec+i||∞ ≤ Bplain ∧ decode(xi) ∈ Zlp ∧ decode(xsec+i) ∈ Zlp ∧
||ri||∞ ≤ Brand ∧ ||rsec+i||∞ ≤ Brand ∧
(∀j ∈ {1, ..., l} : di,j = pc(decode(xi)[j], decode(xsec+i)[j]))}

To prove this statement, we execute two instances of ΠZKPoPK from [10] for c1, ..., csec and
csec+1, ..., c2·sec simultaneously with the same randomness. At the same time, we will put the “blinding”
values of the proof into commitments, and then once again use the same randomness to prove both that we
can open the commitments and that their opening values equal the plaintexts of the encryptions. We use
an optimization for the proofs due to [18], called proof with abort, which yields smaller parameters for the
cryptosystem using the zero knowledge proofs with the Fiat Shamir heuristic ([12]). Moreover, its necessary
to use this heuristic to get actual randomness into the proof - since both the sender and the receiver are
corrupted in the fully malicious setting, hence we have to rely on a random oracle.
For the proof, we use the same notation as SPDZ: Let R ∈ Zsec×d be the matrix whose ith row is ri of ci
and R′ the similar matrix for rsec+i. Moreover, let V = 2 · sec− 1. For a vector e ∈ {0, 1}sec we define the
matrix Me ∈ ZV×sec2 as

Me(i, j) =

{
ei−j+1 if 1 ≤ i− j + 1 ≤ sec
0 else

In addition, we use as abbreviations the vectors c ← (c1, ..., csec) and c′ ← (csec+1, ..., c2·sec) for the
ciphertexts. Our plaintext values will be captured in the vectors x← (x1, ...,xsec),x

′ ← (xsec+1, ...,x2·sec)
and the commitments form the list d = (d1,1, d2,1, ..., dsec,l).

Given the protocol ΠZKPoPK, which is a honest-verifier zero knowledge proof of knowledge for a part of our
relation, the following statement is straightforward:

Theorem 2. The protocol ΠCTC is an honest-verifier zero knowledge proof of knowledge for the relation
RCTC .

Proof. We observe that the protocol ΠCTC runs three instances of the SPDZ proof ΠZKPoPK in parallel, two
for the ciphertext vectors c, c′ and one for the commitments d. Correctness, soundness and honest-verifier
zero knowledge follow directly for the first two instances due to the proof in [10], as we use different blinding
values a,a′ in both instances. Hence we obtain the statements about the ciphertexts and the norms of their
plaintexts, the randomness and the decodability of the plaintexts in RCTC . To fill in the gaps of the proof,
observe the following facts:

(1) Let us reason about the connection between the plaintext values and the commitments. First of all, we
once again use an instance of the BeDOZa proof again, and we use the same randomness (observe that
the group operations in the exponent coincide with the operations on the plaintexts). The connection
between the plaintexts and the committed values trivially follows from the fact that our initially chosen
blinding is equal, both for the ciphertexts y,y′ and the commitments q. We also observe that we once
again use the same randomness Me as before, hence the operations on the ciphertexts carry over directly
to the commitments.

16

The protocol ΠCTC

(1) For i ∈ {1, ..., V } the prover generates yi,y
′
i ∈ Zl and si, s

′
i ∈ Zd as follows: Let si, s

′
i be random such that

||si||∞, ||s′i||∞ ≤ 128 ·d ·ρ ·sec2. For yi,y
′
i, let mi,m

′
i ∈ Zlp be random elements and set yi = encode(mi)+ui,

y′i = encode(m′i) + u′i where both ui,u
′
i are generated such that each entry is a uniformly random multiple

of p subject to the constraint that ||yi||∞, ||y′i||∞ ≤ 128 ·N · τ · sec2
(2) For i ∈ {1, ..., V } the prover computes ai ← Encpk(yi, si),a

′
i ← Encpk(y′i, s

′
i) and

qi,j ← pc(decode(mi)[j], decode(m
′
i)[j]) for j ∈ {1, ..., l}. For S,S′ ∈ ZV×d, he sets S to be the matrix

where the ith column is si and S′ to have s′i as ith column respectively. Moreover, let y ← (y1, ..., yV),
y′ ← (y′1, ..., y

′
V),a← (a1, ...,aV) and a′ ← (a′1, ...,a

′
V),. For the commitments, we define qi ← (qi,1, ..., q1,l)

and q ← (q1, ..., qV).
(3) The prover sends a,a′, q to the verifier.
(4) The prover obtains e from FProvideRandom on input (urandomness, sec, 2,a||a′||c||c′||d||q).

(5) The prover sets z ← (z1, ..., zV),z′ ← (z′1, ..., z
′
V) where z> = y> + Me × x>,z′> = y′> + Me × x′>.

Furthermore, he sets T = S +Me ×R,T ′ = S′ +Me ×R′. If the ∞-norm of any value of z or z′ is bigger
than 128 ·N · sec2 − τ · sec or the ∞-norm of any value of T ,T ′ is bigger than 128 · d · ρ · sec2 − ρ · sec, then
the protocol is restarted.
If they are smaller, then the prover sends (z,z′,T ,T ′) to the verifier.

(6) The verifier obtains e from FProvideRandom using (urandomness, sec, 2,a||a′||c||c′||d||q). Let ti be the ith row
of T and t′i the respective row of T ′. He computes f i ← Encpk(zi, ti), f

′
i ← Encpk(z′i, t

′
i) and sets

f ← (f1, ...,fV),f ′ ← (f ′1, ...,fV). In addition, the verifier computes the commitments
gi,j = pc(decode(zi)[j], decode(z

′
i)[j]) for i ∈ {1, ..., V }, j ∈ {1, ..., l}.

(7) The verifier checks whether decode(zi) ∈ Zlp, decode(z′i) ∈ Zlp and whether all of the following conditions hold:
(7.1) f> = a> ⊕ (Mec

>)

(7.2) f ′> = a′> ⊕ (Mec
′>)

(7.3) ||zi||∞, ||z′i||∞ ≤ 128 ·N · τ · sec2
(7.4) ||ti||∞, ||t′i||∞ ≤ 128 · d · ρ · sec2

(7.5) Let mi be the ith row of Me. Check that ∀i ∈ {1, ..., sec} ∀j ∈ {1, ..., l} : gi,j = qi,j ·
∏sec
k=1(d

mi[k]
k,j)

(7.6) If all these conditions hold, then the verifier accepts. Otherwise he rejects.

Fig. 16: The protocol for the zero knowledge proof of plaintext knowledge

(2) It remains to show that the commitments do not break any property of one of the other proof instances.
Given two accepting proof instances for the same a,a′, q, we refer to the fact that the cryptosystem is
admissible. This means that the linear operations for the soundness proof give us plaintexts such that if
we solve the similar equations for the proof of the commitments, we obtain the same values as in these
plaintexts (this is because decode is homomorphic) except with negligible probability.

(3) For the construction of the simulator that shows the zero knowledge property, we can use the simulator for
ΠZKPoPK two times (for the first two instances) with the same value from the random oracle and obtain
a,a′, e, z, z′,T ,T ′ that are distributed perfectly as in the real execution. This also then uniquely defines
the gi,j for the third instance. One can now use the linearity of the scheme to obtain satisfying values q
and thereby the whole transcript. The commitments q are perfectly random as in the real execution, as
they cannot be related to the ciphertexts due to the IND-CPA property of the cryptosystem.

ut

Observe that ΠCTC would be the zero knowledge proof that should be used in practice if the circuit contains
many gates. For a small number of gates, the amortization technique will not pay off. We remark that the
protocol ΠCTC can easily be adjusted to prove the relation RCTC for only two ciphertexts.

5.4 Resharing Plaintexts Among Parties

This procedure shares the plaintext of a ciphertext among n parties, such that the sum of the shares equals
the plaintext if all parties act honestly.
The following statements about PReshare are straightforward:

17

Procedure PReshare

PReshare(em):
(1) Each Pi samples a uniformly random f i ∈ Zlp. We denote f :=

∑n
j=1 f j

(2) Each Pi computes and broadcasts efi
← Encpk(f i) to all parties and FBulletin.

(3) Each Pi proves with a ZKPoPK that efi
is (Bplain, Brand, C)-admissible using the Random Oracle version

of ΠZKPoPK. It sends the proof to FBulletin.
(4) The players compute ef =

⊕n
i=1 efi

, set em+f = em⊕ef and check the ZKPoPKs. If they are not correct,
then they abort.

(5) The players decrypt em+f to obtain m+ f publicly.
(6) P1 sets m1 = m+ f − f1 and each other player Pi sets mi = −f i.

Fig. 17: A procedure that shares the plaintext of a publicly encrypted value

Procedure PComReshare

PComReshare(em, er,1, ..., er,n, r1, ..., rn):
(1) Each Pi samples a uniformly random f i ∈ Zlp. We denote f :=

∑n
j=1 f j

(2) Each Pi computes and broadcasts efi
← Encpk(f i) to all parties and FBulletin.

(3) For each k ∈ {1, . . . , l}, each party Pi publishes cf,i,k ← pc(f i[k],−ri[k]) on FBulletin.
(4) Each Pi proves with a ZKPoPK using ΠCTC that efi

, er,i are (Bplain, Brand, C)-admissible and that the
commitments hold. It sends the proof transcript to FBulletin.

(5) Each player checks whether the proofs are valid.
(6) The players locally compute ef =

⊕n
i=1 efi

and set em+f = em ⊕ ef .
(7) The players decrypt em+f using FKeyGenDec to obtain m+ f .
(8) P1 sets m1 = m+ f − f1 and each other player Pi sets mi = −f i.
(9) For k ∈ {1, ..., l}, P1 sets c′m,1,k = pc((m+ f)[k], 0)/cf,1,k and all other players Pi set c′m,i,k = c−1

f,i,k.
(10) All players set e′m ← Encpk(m+f)	(

⊕n
i=1 efi

) with the default value for the randomness of Encpk(m+
f).

Fig. 18: A procedure that shares the plaintext of a publicly encrypted value together with a commitment

Remark 3. Assuming a (Bplain, Brand, C)-admissible cryptosystem and FBulletin, then the following state-
ments are true about PReshare in the Random Oracle model:

(1) if all parties honestly follow the protocol, then all parties afterwards obtain correct and randomly dis-
tributed shares of the plaintext of em w.h.p.

(2) if at least one and at most all parties are corrupted and the ZKPoPKs are correct, then the obtained
sharing might not be a correct sharing of m, but the parties know how to open all provided ciphertexts
w.h.p.

The statements can be verified in [10].
In this work, we moreover need a second version of the resharing functionality. In PComReshare we will also
generate commitments to the shared values.
We now give a similar characterization about PComReshare like in Remark 3:

Remark 4. Assuming a (Bplain, Brand, C)-admissible cryptosystem,FBulletin and a group G where the DLP
is hard, then the following statements are true about PComReshare in the Random Oracle model:

(1) if all parties honestly follow the protocol, then all parties afterwards obtain correct and randomly dis-
tributed shares of the plaintext of em and correct commitments to their shares (with randomness from
the er,i) w.h.p.

(2) if at least one and at most all parties are corrupted and the ZKPoPKs are correct, then the obtained
sharing might not be a correct sharing of m, but the parties know how to open all provided ciphertexts
and commitments w.h.p.

18

Procedure PDataCheck

CheckTriples(t1, ..., t2ρ): We put the triples into the checking and evaluation vectors C and O. Then, correctness
is established using the same trick as in PCheckMac. For a vector of triples C, we want to access all ith
[[·]]-representations in vector form as C(i).
(1) Let C ← (t1, ..., tρ) and O ← (tρ+1, ..., t2ρ)

a. Moreover, define c ← (c1, ..., c2ρ) with ci ← ci,1||ci,2||ci,3
where ci,j is the commitment of the jth value of the triple ti.

(2) Each party sends (urandomness, ρ, p, c) to FProvideRandom to generate the joint vector t.
(3) Calculate γ = t�O(1)−C(1) and ∆ = O(2)−C(2) locally.
(4) Open γ and ∆ towards all players.
(5) Each party evaluates v ← t�O(3)−C(3)−∆�C(1)− γ �C(2)−∆� γ and commits to its share of

v using FCommit.
(6) Each party broadcasts its opening value of the commitment to its share of v.
(7) Each party locally reconstructs v.
(8) For all positions i of v that are 0, output O[i] as a valid multiplication triple.

a Observe that one can get a lower error probability in the proof of soundness if the values are randomly assigned.

Fig. 19: A procedure to check the validity of triples

(3) if at least one and at most all parties are corrupted and the ZKPoPKs are correct, then m and m′ might
be different. The parties know a sharing of m′, and em′ is an admissible ciphertext and the players are
committed to the values in the ciphertexts w.h.p. Moreover, the parties know how to open all provided
ciphertexts and commitments w.h.p.

Observe that these statements follow from Remark 3 and Theorem 2.

5.5 Checking Correctness of Triples

We have to check that the commitments hold and that the triples are correctly formed. We rely on the
standard techniques from [10].
We will now prove that, given a passed CheckTriples execution, the triples will have the multiplicative
property whp.

Lemma 2. Let D = (ParamGen,KeyGen,KeyGen∗, Enc,Dec) be an admissible cryptosystem. In the
FProvideRandom-hybrid model, the test CheckTriples is correct and an adversary corrupting up to all parties
can pass the test CheckTriples with non-correct triples with probability at most ρ/|Zp|.

Proof. Correctness can easily be established by putting the formulas together.
Let us consider two triples a, b, c ∈ Zp and x, y, z ∈ Zp. For t · (a · b− c) = (x ·y−z) with t ∈ Zp, the following
cases can happen:

(1) a, b, c correct, x, y, z not: the adversary has no chance to win
(2) a, b, c not correct, x, y, z is: the adversary can only win with probability 1/|Zp|
(3) both not correct: there is only one t ∈ Zp such that the equation holds, hence winning probability is

1/|Zp|

If ADV cheats during this process and t is chosen uniformly at random, then he can cheat for every pair
of triples with probability at most 1/|Zp| as explained above. By the union bound, this yields ρ/|Zp| for
CheckTriples. ut

5.6 The Offline Phase

We define the function diag as diag : Zp →M, a 7→ (a, a, ..., a)︸ ︷︷ ︸
l times

. We call such an element Encpk(diag(a)) a

diagonal element. The offline phase can now be found in Figure 21 and Figure 20.

19

Procedure PDataGen

This procedure generates as many random values or multiplication triples as required. Note that we do not
guarantee that the triples are correct. We will check both requirements later. Denote with l the number of plaintext
slots in M and with ea an encryption of a ∈ M. Note that eα encrypts a ciphertext, where every plaintext item
equals the MAC key α.

RandomV alues(T, l): The parties generate random values, together with MACs and commitments to their shares.
Set h = dT/le, then for each j ∈ {1, . . . , h} the parties do the following:
(1) Each party Pi samples uniformly random ri, si ∈ M, calculates er,i ← Encpk(ri), es,i ← Encpk(si) and

broadcasts er,i, es,i to all players and FBulletin.
(2) For each k ∈ {1, . . . , l}, each party Pi publishes cr,i,k ← pc(ri[k], si[k]) on FBulletin.
(3) Each party Pi invokes ΠCTC on er,i, es,i, {cr,i,k}k∈{1,...,l} and publishes the transcript on FBulletin.
(4) Each party checks all the ZKPoPKs together with the commitments. If at least one transcript is not

correct, they stop here.
(5) The parties locally calculate er =

⊕
i er,i, es =

⊕
i es,i as well as {cr,k =

∏
i cr,i,k}k∈{1,...,l}.

(6) The parties locally calculate and reshare the product with the MAC key using
γr,i ← PReshare(er ⊗ eα), γs,i ← PReshare(es ⊗ eα).

(7) The values (ri[k], γr,i[k]), (si[k], γs,i[k]), (cr,k) are now the components of [[r[k]]] for Pi.

Triples(ρ, l): The same as for RandomV alues, but the parties additionally multiply values to generate triples.
Set h = dρ/le, then for j ∈ {1, . . . , h} the parties do the following:
(1) Each party Pi samples uniformly random ai, bi,f i, gi,hi ∈M, calculates ea,i ← Encpk(ai),

eb,i ← Encpk(bi) as well as ef ,i ← Encpk(f i), eg,i ← Encpk(gi), eh,i ← Encpk(hi) and broadcasts the
ciphertexts to all players and FBulletin.

(2) For each k ∈ {1, . . . , l}, each party Pi publishes ca,i,k ← pc(ai[k],f i[k]) and cb,i,k ← pc(bi[k], gi[k]) on
FBulletin.

(3) Each party Pi provides a ZKPoPK for (ai,f i, (ca,i,k)k∈{1,...,l}) and (bi, gi, (cb,i,k)k∈{1,...,l}) using ΠCTC

and sends the transcript to FBulletin.
(4) Each party Pi checks the correctness of the ZKPoPKs of all other parties. If at least one transcript is not

correct, they stop here.
(5) The parties locally calculate ea =

⊕
i ea,i and eb =

⊕
i eb,i.

(6) The parties compute ea·b = ea⊗eb and invoke PComReshare(ea·b, (eh,i)i∈{1,...,n}, (hi)i∈{1,...,n}). As a result,
each party Pi obtains shares ci and all parties obtain a ciphertext ec such that c =

∑
i ci.

(7) Locally compute ef =
⊕

i ef ,i, eg =
⊕

i eg,i and eh =
⊕

i eh,i. The parties compute the product of eα
with ea, eb, ec, ef , eg, eh and invoke PReshare(·) on each such product to distribute a sharing of the MAC
on each such value.

Fig. 20: Procedure PDataGen to generate both triples and random values

6 Security Proof of the Offline Phase

In this chapter, we will give a proof of security of the offline phase.

Theorem 3. Let D = (ParamGen,KeyGen,KeyGen∗, Enc,Dec) be an admissible cryptosystem. Then
ΠSetup implements FSetup with computational security against any static adversary corrupting at most all
parties in the (FCommit,FProvideRandom,FBulletin)-hybrid model if the DLP is hard in the group G.

Proof. Consider the simulator in Figure 22, we will now prove that ΠSetup is computationally indistinguish-
able from SOffline�FSetup. Once again, we will have different arguments for the honest minority and the fully
malicious setting. Observe that we assume in the protocol and in the simulator that we use the non-optimized
version of ΠCTC. We presented an optimized approach earlier for reasons of efficiency, but will prove it using
a version with less overhead, to simplify the proof and hence focus on the important details. We also only
present a simulator for one round of the offline phase - the simulation of multiple rounds is straightforward.

20

Protocol ΠSetup

This procedure sets up the cryptosystem for the protocol. Moreover, the random data for ΠAuditMPC is generated
that is needed during execution.

Initialize: On input (init, p, l) from all parties:
(1) The parties use FKeyGenDec to generate a public key pk and a shared private key sk.
(2) The parties extract the generators g, h ∈ G from the common reference string.
(3) Each Pi generates a private αi ∈ Zp. Let α =

∑n
j=1 αj .

(4) Each Pi computes and broadcasts eαi = Encpk(diag(αi)).
(5) Each player Pi uses ΠZKPoPK to prove that eαi is a (Bplain, Brand, C)-admissible, diagonal element.
(6) Each player checks the zero knowledge proofs from all other parties. If one is not correct, abort.
(7) All players compute eα =

⊕n
i=1 eαi .

Compute: On input (GenerateData, T, ρ) from all parties and if l divides T and ρ, the players execute the
subprocedures of PDataGen. Afterwards they check the results for correctness using PDataCheck.
(1) ([[r1]], ..., [[rT]])← PDataGen.RandomV alues(T, l)
(2) (t1, ..., tρ)← PDataGen.T riples(ρ, l)
(3) (v1, ..., vρ′)← PDataCheck.CheckTriples(t1, . . . , tρ)
(4) Return ([[r1]], ..., [[rT]], v1, ..., vρ′).

Audit: If Compute was executed successfully, do the following together with FBulletin,FProvideRandom:
(1) Obtain all ids and messages on FBulletin.
(2) For every encryption ei and commitment cj , check whether there exists a transcript of ΠCTC or ΠZKPoPK

that guarantees its correctness. Otherwise return ′reject′.
(3) For every transcript of ΠCTC or ΠZKPoPK, check whether the values for each instance are on FBulletin.

Otherwise return ′reject′.
(4) Run the verifier part for each transcript of ΠCTC, ΠZKPoPK. If the verifier rejects, return ′reject′.
(5) For each value [[a]] that was generated with PDataGen, check whether its commitment can be obtained from

the commitments to the shares as in PDataGen. If not, return ′reject′.
(6) Run PDataCheck on the commitments of the triples using FProvideRandom. If one of the triples that were

returned by Compute does not open to 0 in the sanity check, return ′reject′.
(7) Check for every opened value r with randomness s and commitment c whether c = pc(r, s). If not, return

′reject′.
(8) Return ′accept′.

Fig. 21: Protocol ΠSetup that performs the preprocessing for the online phase

Simulator SOffline

Wait for the set of corrupted parties ABP from the environment, and let n be the number of players.

If |ABP | 6= n, then forward all incoming messages that are not from SOffline,normal to SOffline,normal, and send all
messages that come from SOffline,normal to the proper recipient.

If |ABP | = n, then forward all incoming messages that are not from SOffline,full to SOffline,full, and send all
messages that come from SOffline,full to the proper recipient.

Fig. 22: Simulator for the offline phase

Fully malicious setting In the fully malicious setting, we do not have to simulate any honest party. This
makes a few steps in the proof easier. Observe that we always have to catch the case that the adversary does
something not according to the protocol, which means that he can be caught during Audit.

Our simulator basically behaves as an observer would do in the protocol, i.e. it decrypts all information and
feeds it into FSetup. Hence we do not have to argue whether the simulation is perfect, but just show that

21

Simulator SOffline,full, Part 1

Let n be the number of players.

Initialize:
(1) Choose random generators g, h ∈ G such that logg(h) is known and provide a CRS compatible with the

choice.
(2) The simulator sets up FProvideRandom locally and afterwards starts a local copy of FSetup, with which the

adversary communicates via the simulator.
(3) On input (init, p, l) from all parties, the simulator sends (init, p, l) to FSetup.
(4) The simulator runs an instance of FKeyGenDec to generate a public key pk and shares of a secret key sk

for all parties.
(5) Wait for the shares of eα,i from all parties Pi and the respective ZKPoPKs using ΠZKPoPK. If the proofs

are not correct, stop the execution of Initialize here. Otherwise, decrypt all eα,i to obtain αi.
(6) Send the αi to FSetup and compute α =

∑
i αi. Moreover, compute locally eα =

⊕
i eα,i.

Audit:
(1) Query FSetup with (Audit). Return the value of FSetup to the requesting party.

Fig. 23: Partial simulator for the offline phase, fully malicious

the probability of the event that happens when Audit from FSetup and from ΠSetup reveal different values
is negligible.

In our protocol, the audit process will return true if all zero knowledge proofs are correct, if the triple check
was done correctly and if the revealed values open the related commitments. We observe that, if one of these
conditions does not hold and hence the Audit fails, the same happens if the Simulator SOffline,full is used
(as we can simply check the opened values for the commitments and since the zero knowledge proofs are
complete). The case of the correctness of the triples is more subtle: A triple might be marked as correct even
though the multiplicative relation does not hold (see the proof of Lemma 2), but we allow ADV to choose a
set of the triples that are multiplicative. If this set does not coincide with the set of correct triples, the audit
will fail later on.

Conversely, if SOnline,full � FAuditMPC returns ’reject’ on Audit then this happens if the simulator set
f = ⊥. In the case of the zero knowledge proofs, this happens if either the proof was not correct or the proof
was correct and the relation did not hold (which only happens with negligible probability).

Hence we see that events that trigger FAuditMPC to return ’reject’ if ΠSetup returns ’accept y’ only occur
with negligible probability. The converse can not happen at all, and the distinguishing probability must be
negligible as well.

At least one honest party The proof goes along the same lines as in [10], with the difference that we
now have commitments in the protocol and that the triples are already checked in this offline phase. Our
subsimulator can be found in Figure 25, which as in [10] makes use of the available decryption key. A key
difference is that we do provide commitments to the values of the honest parties to ADV , but observe that
the commitments are i.t. hiding, and the commitments are distributed in the simulation as they are in the
actual protocol (we can choose the commitments for the multiplication in advance and later on open one to
the correct values using the trapdoor logg(h)).

Based on Figure 25 one can argue that a protocol transcript does computationally not reveal any information
using KeyGen∗, rewinding of a local environment and the zero knowledge property of ΠCTC based on
Theorem 2, Remark 3 and 4 as well as Lemma 2 (this is equivalent to the proof in [10] and is therefore
omitted here). Moreover, the outcome of Audit is indistinguishable as a cheating ADV was already caught
using the zero knowledge proofs during Compute, and Audit simply also computes these checks again.

22

Simulator SOffline,full Part 2

Compute:
(1) The simulator waits for the ciphertexts er,i, es,i, commitments cr,i,k and ZKPoPKs from all parties. It

sets cr,k =
∏
i cr,i,k for all k ∈ {1, ..., l}.

(2) The simulator decrypts the ciphertexts to ri ← Decsk(er,i), si ← Decsk(es,i) and sends them to FSetup.
(3) Compute ∆r[k] = pc(

∑
i ri[k],

∑
i si[k])/cr,k for all k ∈ {1, ..., l}. If the ZKPoPKS are not all correct,

then let ∆r be random values from G.
(4) Locally compute er =

⊕
i er,i, es =

⊕
i es,i as well as eαr = eα ⊗ er and eαs = eα ⊗ es.

(5) Do the following for x = αr and then x = αs:
(5.1) Wait for ef ,i from each party Pi and the related transcripts of ΠZKPoPK. If the ZKPoPKS are not

all correct, then let ∆r be random values from G. a

(5.2) Locally compute ea = ex ⊕
⊕

i ef ,i.
(5.3) Wait for the decryption a′ of ea using FKeyGenDec. Then let γ1 ← a′ −Decsk(ef ,1) and

γi ← −Decsk(ef ,i) for i ∈ {2, ..., n}.
(5.4) Let γx := (γ1, ...,γn).

(6) Send ∆r, γαr, γαs to FSetup.

(7) The simulator waits for the ciphertexts ea,i, eb,i, ef ,i, eg,i, eh,i, commitments ca,i,k, cb,i,k and ZKPoPKs
from all parties Pi. If one of the proofs is not correct, then let ca,i,k, cb,i,k be uniformly random values in
G.

(8) The simulator decrypts the ciphertexts to ai ← Decsk(ea,i), bi ← Decsk(eb,i),f i ← Decsk(ef ,i), gi ←
Decsk(eg,i) and hi ← Decsk(eh,i).

(9) Locally compute ea =
⊕

i ea,i, eb =
⊕

i eb,i, eh =
⊕

i eh,i and compute ea·b = ea ⊗ eb.
(10) Wait for e′c,i from each party Pi, the commitments (cc′,i,k)k∈{1,...,l} (using −hi as randomness) and the

related transcripts of ΠCTC. If one of the proofs is not valid, let cc′,i,k be random values in G.
(11) Locally compute e′c =

⊕
i e
′
c,i and ea·b+c = e′c ⊕ ea·b

(12) Wait for the decryption a′ of ea·b+c using FKeyGenDec.
(13) Let c1 ← a′−Decsk(e′c,1) and ci ← −Decsk(e′c,i) for i ∈ {2, ..., n}. Moreover, set ec = Encpk(a′)−

⊕
i e
′
c,i

with some standard randomness.
(14) For k ∈ {1, ..., l} compute cc,1,k = pc(a′[k], 0)/cc′,1,k and cc,i,k = c−1

c′,i,k for each i ∈ {2, ..., n} locally.
(15) For z ∈ {a, b, c, f, g, h} do:

(15.1) Compute ey ← eα ⊗ ez locally.
(15.2) Wait for ex,i from each party Pi and the related transcripts of ΠZKPoPK. If one of the proofs is not

valid, let cc,i,k be random values in G.
(15.3) Locally compute ex = ey ⊕

⊕
i ex,i.

(15.4) Wait for the decryption x′ of ex using FKeyGenDec. Then let γz,1 ← x′ −Decsk(ex,1) and
γz,i ← −Decsk(ex,i) for i ∈ {2, ..., n}.

(16) Send the subvectors with the indices l/2 + 1, ..., l of (ai,f i, bi, gi, ci,hi)i∈{1,...,n} to FSetup.
(17) Set ca,k =

∏
i ca,i,k, cb,k =

∏
i cb,i,k and cc,k =

∏
i cc,i,k for all k ∈ {1, ..., l}.

(18) Compute ∆a[k] = pc(
∑
i ai[k],

∑
i f i[k])/ca,k, ∆b[k] = pc(

∑
i bi[k],

∑
i gi[k])/cb,k and ∆c[k] =

pc(
∑
i ci[k],

∑
i hi[k])/cc,k for all k ∈ {1, ..., l}.

(19) For z ∈ {(a, f), (b, g), (c, h)} do
(19.1) Send the subvectors with the indices l/2+1, ..., l of ∆z[1], (γz[1],1, ...,γz[1],n) and (γz[2],1, ...,γz[2],n)

to FSetup.

(20) The simulator follows the procedure PDataCheck with all partiesb.
(21) Send the indices of the returned values from PDataCheck to FSetup.

a This is unrelated to this particular proof, but it will make Audit fail as we want.
b I.e. it provides randomness using its version of FProvideRandom.

Fig. 24: Partial simulator for the offline phase, fully malicious, continued

23

Simulator SOffline,normal

Let ABP be the set of corrupted players and n be the number of players.

Initialize:
(1) Choose random generators g, h ∈ G such that logg(h) is known and provide a CRS compatible with the

choice.
(2) The simulator sets up FProvideRandom locally and afterwards starts a local copy of FSetup, with which the

adversary communicates via the simulator.
(3) On input (init, p, l) from all parties, the simulator sends (init, p, l) to FSetup.
(4) The simulator runs an instance of FKeyGenDec to generate a public key pk and shares of a secret key sk

for all parties.
(5) Wait for the shares of eα,i for all Pi, i ∈ ABP and the respective ZKPoPKs using ΠZKPoPK. If the proofs

are not correct, stop the execution of Initialize here. Otherwise, decrypt all eα,i to obtain αi and send
them to FSetup.

(6) Decrypt the broadcasted values from the honest parties to obtain αi, i 6∈ ABP and compute α =
∑
i αi

locally.
Audit:

(1) Query FSetup with (Audit). Return the value of FSetup to the requesting party.
Compute:

(1) RandomV alues: The simulator behaves exactly as in the protocol, and additionally does the following:
– in step 1, it decrypts the ciphertexts er,i, es,i to obtain the vectors ri, si.
– in step 6 it calls SReshare for both er, es to obtain ∆γ,r,∆γ,s,γr,i,γs,i.
– call RandomV alues on FSetup and send the values ri, si in step 1.1 and ∆γ,r,∆γ,s,γr,i,γs,i in step

4 for i ∈ ABP to FSetup.
(2) Triples: The simulator behaves exactly as in the protocol, and additionally does the following:

– in step 2, additionally decrypt all obtained ciphertexts from step 1 to obtain ai, bi,f i, gi,hi for all
Pi.

– in step 6 run SComReshare to obtain ci.
– Obtain the values ∆γ,z,γz,i for z ∈ {a, b, c, f, g, h} using SReshare in step 7.
– Call Triples on the functionality FSetup. Then construct new vectors ai, bi, ci,f i, gi,hi out of the

existing ones. Pick those entries that have the following properties at the index j:
(2.1) j ∈ dl/2e+ 1, ..., l
(2.2) ai[j] · bi[j] = ci[j]
For i ∈ ABP send ai,f i, bi, gi in step 2.2, ci,hi in step 2.4 and ∆γ,a,∆γ,f ,γa,i,γf,i in first,
∆γ,b,∆γ,gγb,i,γg,i in the second and ∆γ,c,∆γ,hγc,i,γh,i in the third execution of the macro Bracket.

(3) the simulator runs CheckTriples with the adversary and the values of the honest parties. Announce as
result the set L of values as obtained from FSetup.

SReshare: The simulator performs the same steps as in the original SPDZ simulator (i.e. in addition to the
protocol):
– in step 2, it decrypts all ciphertexts ef ,i to obtain f i
– in step 5, it obtains (m+ f)′ from the adversary and (m+ f) using the secret key to decrypt em+f . It

then sets ∆γ = (m+ f)′ − (m+ f)
– the simulator sets m1 = (m− f)′ − f1 and mi = −f i for all remaining parties

SProReshare: The simulator performs the same steps as in the protocol, and in addition extracts the following
information:
– in step 2 it decrypts all ciphertexts ef ,i to obtain f i
– in step 7, it obtains (m+ f)′ from the adversary and (m+ f) using the secret key to decrypt em+f . It

then sets ∆p = (m+ f)′ − (m+ f)
– the simulator sets m1 = (m− f)′ − f1 and mi = −f i for all remaining parties

Fig. 25: Partial simulator for the offline phase, honest minority

We observe that the set of triples that FSetup outputs will be all those triples that are correct. In the protocol
execution, we will instead use the values that CheckTriples outputs. The statistical distance between those
outputs is ρ/p as stated in Lemma 2, which is negligible for large enough p.

24

The security of SOffline now trivially follows. ut

7 Summary and Open Problems

In this paper, we described how to formally lift MPC into a setting where all servers are malicious. We
outlined how this concept can then be securely realized on top of the SPDZ protocol. Though our approach
can also be implemented for other MPC protocols, we focused on SPDZ since, even as an publicly auditable
scheme, it still only consists of opening shared outputs and local computations during the online phase
(excluding the 2 ·n commitments and two Random Oracle calls during Output). We note that our protocol
would also work for Boolean circuits, but this would introduce a significant slowdown. It is an interesting
future direction to design an efficient auditable protocol optimized for Boolean circuits.
A second remark we want to make is concerning the preprocessing overhead. Though the offline phase of [10]
can directly be extended to support the computation of the commitments (as explained), one can reduce the
computational overhead that this direct approach introduces at the expense of an only moderate slowdown
of the online phase as follows: Instead of computing one commitment per value, one could also use s pairwise
distinct generators g1, ..., gs ∈ Zp together with just one randomness parameter, where generator gi is used to
commit to the ith value. A representation (a1, ..., at, r, g

a1
1 · · · g

at
t h

r) of t values in parallel is componentwise
linear, and multiplications can also be done componentwise as before. We observe that the computation of a
commitment with many generators can be substantially faster than computing all commitments individually,
thanks to techniques like multi-exponentiation. This optimization, similar to [9], works for a large class of
circuits. We moreover note that, in order to use this optimization, one also has to precompute permutations
between the representations.
Finally, we leave a working implementation of our scheme as a future work. As our protocol is very similar in
structure to the original SPDZ, it should be possible to implement it easily on top of the existing codebase
of [8].

Acknowledgements

Ivan Damg̊ard acknowledges support from the Danish National Research Foundation, the National Science
Foundation of China (under the grant 61061130540) and also from the CFEM research center within which
part of this work was performed. Carsten Baum’s work was partially supported by the European Research
Commission Starting Grant 279447 and the above grants. Claudio Orlandi is supported by The Danish
Council for Independent Research (DFF).

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital goods. In EURO-
CRYPT, pages 119–135, 2001.

2. Gilad Asharov and Claudio Orlandi. Calling out cheaters: Covert security with public verifiability. In ASI-
ACRYPT, pages 681–698, 2012.

3. Donald Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology —
CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 420–432. Springer, Berlin, Germany,
1992.

4. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multi-
party computation. In Advances in Cryptology – EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 169–188. Springer Berlin Heidelberg, 2011.

5. Elette Boyle, Sanjam Garg, Abhishek Jain, Yael Tauman Kalai, and Amit Sahai. Secure computation against
adaptive auxiliary information. In CRYPTO (1), pages 316–334, 2013.

6. Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based homomorphic encryption.
Cryptology ePrint Archive, Report 2012/565, 2012.

25

7. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pages 309–325, New York, NY, USA, 2012. ACM.

8. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical
covertly secure mpc for dishonest majority – or: Breaking the spdz limits. Cryptology ePrint Archive, Report
2012/642, 2012.

9. Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing.
In Theory of Cryptography, pages 621–641. Springer, 2013.

10. Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation from somewhat ho-
momorphic encryption. In Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 643–662. Springer, Berlin, Germany, 2012.

11. Sebastiaan Jacobus Antonius de Hoogh. Design of Large Scale Applications of Secure Multiparty Computation:
Secure Linear Programming. PhD thesis, Technische Universiteit Eindhoven, 2012.

12. Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems.
In Advances in Cryptology—CRYPTO’86, pages 186–194. Springer, 1987.

13. Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and matrix computations,
with applications. In ACM Conference on Computer and Communications Security, pages 501–512, 2012.

14. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct
nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

15. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages 218–229. ACM, 1987.

16. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - efficiently. In
CRYPTO, pages 572–591, 2008. Preliminary full version available at http://www.cs.illinois.edu/~mmp/pub/

mpc-ot.pdf.
17. Alptekin Küpçü and Anna Lysyanskaya. Optimistic fair exchange with multiple arbiters. In ESORICS, pages

488–507, 2010.
18. Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-based signatures. In Advances

in Cryptology–ASIACRYPT 2009, pages 598–616. Springer, 2009.
19. Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In CRYPTO, pages

373–392, 2006.
20. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to

practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 681–700. Springer Berlin
Heidelberg, 2012.

21. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 129–140. Springer,
Berlin, Germany, 1992.

22. Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks and privacy homomorphisms. Foun-
dations of secure computation, 32(4):169–178, 1978.

23. Andrew Chi-Chih Yao. How to generate and exchange secrets. In Foundations of Computer Science, 1986., 27th
Annual Symposium on, pages 162–167. IEEE, 1986.

A A Generic Implementation of Auditable MPC

Until now, we only provided a specific implementation of FAuditMPC based on the SPDZ protocol. We now
want to argue that it is possible to securely implement FAuditMPC using generic tools, namely a “strong”
semi-honest OT protocol in the sense that the protocol should be secure even if the adversary tampers
with the corrupted parties internal tapes (but follow the protocol honestly), and universally composable
non-interactive zero-knowledge proofs of knowledge(UC-NIZKoKs) in the CRS model.
First of all, note that UC-NIZKoKs trivially implement an auditable functionality: If the CRS and the
proof are posted on the bulletin board, then the auditor (i.e., anyone) can run the verifier algorithm and
double-check the output of the verifier.
Several notions of “strong” semi-honest protocols have been used in recent works – see Remark 1 in [16]
or the notion of “semi-malicious” in [5]. In all notions different requirements of security still hold when the
adversary can tamper with the randomness of otherwise semi-honest parties.

26

http://www.cs.illinois.edu/~mmp/pub/mpc-ot.pdf
http://www.cs.illinois.edu/~mmp/pub/mpc-ot.pdf

In our setting, we need that the OT protocol is still secure even if the adversary tampers with the random
tape of one of the parties, and in addition the protocol should still be correct even if the adversary tampers
with the random tape of both parties. Here security is defined as the usual notion of indistinguishability
of the joint distribution of the view of the corrupted party and the outputs of all parties (including the
honest ones) between a real execution of the protocol and a simulated one. The correctness requirements
can similarly be defined, but we only require that indistinguishability should hold w.r.t. the output of the
computation.
Note that in the case where there is at least one honest party, any semi-honest protocol can be turned into
one that gives full security (not only correctness) when the adversary tampers with the randomness of the
corrupted parties. The transformation goes as follows: At the beginning of the protocol Pi receives a random
string from all other parties and redefines his random tape as the xor of its original random tape and the
strings obtained externally. As long as one party is honest, Pi’s random tape will be uniformly distributed.
However it is easy to see that this transformation does not work when all parties are corrupted.
Fortunately many “natural” OT protocols, such as [1], are still correct even when the adversary tampers
with the randomness of all parties. Then we can construct an “auditable” GMW-protocol against active
adversaries using such an OT protocol and NIZKoK.
The protocol proceeds as follows: The input parties I1, ...,Im share their inputs using an n-out-of-n secret
sharing scheme and produce commitments to all of their shares. They now publish the commitments on
the bulletin board and send one share to each server Pj . Those commitments should be binding even if all
parties (including the input parties) are corrupted. This can be achieved by using e.g. a commitment scheme
where the receiver does not send any message to the sender.
Now the computing parties P1, ...,Pn engage in an execution of the GMW-protocol using the strongly-
correct OT and prove that all their messages are well formed using the NIZKoK. If there is at least one
honest party, this protocol can be shown to be secure following the GMW-protocol (the only step missing
is the “coin-flipping into the well” but this is taken care by the fact that the OT protocol enjoys “strong”
security against semi-honest corruptions). In the audit phase TAudit checks all the NIZKs on the bulletin
board and accepts y if they do and rejects if any NIZK verification fails. As the OT protocol is guaranteed
to be correct even when all parties use bad randomness but follow the protocol, the auditor only outputs
’accept y’ if this is the correct output.

27

	Publicly Auditable Secure Multi-Party Computation
	Introduction
	Contributions and Technical Overview
	Related Work

	The Concept of Auditable MPC
	Formal Definitions

	An Auditable MPC Protocol
	The [[]]-representation
	Shared Randomness from an Offline Phase
	The Online Phase

	Security of the Online Phase
	An Implementation of the Offline Phase
	A Suitable Cryptosystem
	Concrete Encryption Algorithms
	Zero Knowledge Proofs of Plaintext Knowledge
	Resharing Plaintexts Among Parties
	Checking Correctness of Triples
	The Offline Phase

	Security Proof of the Offline Phase
	Summary and Open Problems
	A Generic Implementation of Auditable MPC

