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Abstract

Known constructions of blind signature schemes suffer from at least one of the following
limitations: (1) rely on parties having access to a common reference string or a random oracle,
(2) are not round-optimal, or (3) are prohibitively expensive.

In this work, we construct the first blind-signature scheme that does not suffer from any of
these limitations. In other words, besides being round optimal and having a standard model
proof of security, our scheme is very efficient. Specifically, in our scheme, one signature is of
size 6.5 KB and the communication complexity of the signing protocol is roughly 100 KB. An
amortized variant of our scheme has communication complexity less that 1 KB.
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1 Introduction

Blind signatures, introduced by Chaum [Cha82], allow users to obtain signatures on messages of
their choice without revealing the messages itself to the signer. Additionally, the blind signature
scheme should satisfy unforgeability, i.e. no user can produce additional signatures on messages
without interacting with the signer. Blind signatures have widespread applications such as e-cash,
e-voting, and anonymous credentials.

Even after 30 years of research, and with 50+ candidate schemes in the literature, the state of
the art is not completely satisfactory. Essentially, all schemes in the literature can be partitioned
into two categories – (1) the schemes that rely on a random oracle or a setup, or (2) the schemes
which are round inefficient. Examples of constructions argued to be secure using the random oracle
methodology [BR94] include [PS96a, PS96b, Poi98, Abe01, BNPS01, Bol03] and using a setup
such as a shared random string include [AO09, AHO10, Fis06, Fuc09, KZ06, Oka06, MSF10]. On
the other hand, essentially all schemes that avoid the use of the random oracle methodology or a
setup [JLO97, CKW04, Oka06, HKKL07] are not round optimal.

The only scheme that does not fall in the above two categories is the recent construction of
Garg et al. [GRS+11]. Unfortunately, this scheme is prohibitively expensive. For example, the
communication complexity of this protocol is a large polynomial in the security parameter1. In this
work, we ask the following question:

Can we construct a very efficient round optimal blind signature scheme without relying on a
random oracle or a setup?

1.1 Our Results

We construct the first blind signature scheme that avoids all of the above limitations, namely it is
very efficient, round optimal and does not rely on a random oracle or a setup. We obtain parameters
for our scheme by using the concept of work factors from [Gal04, BR09]. A summary of the results
is highlighted in Table 1.

Table 1: Comparing the Efficiency of Different Round Optimal Blind Signature Schemes. κ is the
security parameter of the scheme. ε > 1 is an appropriate constant. The concrete parameters above
correspond to the setting for 80 bits of security.

Scheme Communication Complexity Signature Size
Asymptotic Concrete Asymptotic Concrete

[GRS+11] poly(κ) small2

DLIN (This work) O(κ1+ε) 100.6KB O(κε) 6.5KB
Amortized (This work) O(κε) 836 Bytes O(κε) 6.5KB

q-SFP (This work) O(κ1+ε) 100.2KB O(κε) 3.2KB
Amortized (This work) O(κε) 472 bytes O(κε) 3.2KB

1To give an estimate on how big this polynomial is, we instantiate the proofs being given in their construction
with Dwork-Naor Zaps using Kilian-Petrank NIZKs and get communication complexity of at least O(κ9) bits. One
can also use asymptotically more efficient ZAPs instantiated with PCP based Groth NIZKs with ultimate proof size
being O(κ5poly log(κ)). Note that polylog(κ) factor is quite large and for reasonable security parameters proof size
would be comparable to O(κ7).

2This scheme uses general MPC techniques and can be instantiated using arbitrary signature scheme and thus has
small signatures.
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- Standard Setting: We assume the sub-exponential hardness of Decisional Linear (DLIN)
Assumption and a variant of the discrete-log assumption. Then our signature scheme has one
signature of size 6.5 KB and the communication complexity of signing protocol roughly 100
KB.

- Amortized Setting: A number of applications require a user to obtain multiple signatures
from the same signer. In such a setting, for our scheme almost all of the communication costs
can be avoided. More specifically an amortized variant of our scheme has communication cost
roughly 100 KB when obtaining the first signature. However, for every subsequent signature
obtained the communication cost is less that 1 KB.

- Stronger assumption: Assuming a stronger assumption, namely sub-exponentially hard
q-Simultaneous Flexible Pairing Assumption (SFP) from [AHO10] we can improve the size of
a signature and the amortized communication complexity of our signing protocol by roughly
a factor of 2.

Qualitative Improvements. [GRS+11] uses complexity leveraging to obtain standard model
round optimal blind signature scheme, and it is the use of these techniques which makes this
scheme so inefficient. However, unfortunately, impossibility results of Fischlin et al. [FS10] and
Pass [Pas11] roughly indicate that the use of these techniques is essential for getting round optimal
scheme in the standard model. Nonetheless, in this work, we introduce new techniques to reduce
and optimize the use of complex leveraging, and thereby obtain a significantly more efficient scheme.

• Reducing the use of complexity leveraging. The technique of complexity leveraging
works by creating a gap between the power of an adversarial entity and the reduction proving
security. However, many a times this gap needs to be created multiple times in a layered
fashion leading to larger parameters. The previous scheme of Garg et al. [GRS+11] needed
to create this gap twice. However, in our scheme, we only need to create this gap once and
this allows us to get smaller parameters.

• Optimizing the use of complexity leveraging. Complexity leveraging techniques (par-
ticularly for our application) inherently make non-black-box use of the underlying primitives.
[GRS+11] in their construction end up rolling out the cryptographic primitive and viewing
it as circuit. This leads to prohibitively inefficient schemes. We also make non-black-box use
of the underlying primitive but avoid viewing it as a circuit. Instead, we cast it directly as
a set of very structured equations which fit the framework of Groth-Sahai proofs, drastically
improving the communication complexity of our protocol.

The techniques developed here are very general and we believe that they should be applicable to
other settings. We leave this exploration for future work.

1.2 Technical Difficulties and New Ideas

Now we will describe the key ideas behind our scheme. We assume some familiarity with Groth-
Sahai proofs. Lets us start by reminding the reader that GS proofs come in two modes – the hiding
mode and the binding mode. In hiding mode, proofs reveal nothing about the witness used in the
generation of a proof, and in binding mode, no fake proof exists.
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Starting Point. The starting point for our construction is to use a blind signature scheme
in the common reference string (CRS) model and remove the need for the CRS by letting the
signer generate it. Of course this is problematic because a malicious signer can generate the CRS
dishonestly (e.g. in a way such that it knows the trapdoors associated with the CRS) and use that
to break the blindness property of the scheme. We solve this problem by using a special blind
signature scheme for which blindness is statistical as long as the CRS is sampled from a certain
“honest” distribution. In this setting, it is enough for the signer to prove that the CRS is sampled
from the “honest” distribution. Looking ahead, this “honest” distribution is actually the CRS
distribution for GS proofs in the hiding mode. However, we are faced with the following three
issues.

Issue 1) First, in order to ensure blindness, the signer needs to prove to the user that the CRS was
indeed sampled from the “honest” distribution.

Issue 2) Secondly, for proving unforgeability we will need that the reduction playing as the signer can
“simulate” this proof. In other words, we need that the proof does not leak anything to the
user.

Issue 3) The third issue is more subtle and arises as an interleaving of the first two issues. Specifically,
the reduction for arguing unforgeability should be able to “extract” the messages on which
the signatures are being issued and simulate the view of the attacking user. In other words,
this extraction and simulation process should go unnoticed in the view of the attacking user.
However, if a cheating signer could replicate the same behavior then this would go unnoticed
as well. Hence, we certainly need to rule this out.

Before we describe our attempts to solve these issues, we note that for [GRS+11], this proof is
the main reason for inefficiency.

Attempt at using range proofs. As mentioned before, complexity leveraging makes non-black-
box use of primitives essential making schemes prohibitively inefficient. In order to solve this issue
we need to identify a problem such that: (1) the problem can be algebraically stated in groups of
prime order p and has an efficient Groth-Sahai proof, (2) but solving the problem should be much
easier than solving discrete log in the group of order p. The first property of the problem ensures
efficiency of the proof. The second property as we will see later will be essential in making the
complexity leveraging argument. We start by using a simple problem of solving discrete-log when
the domain is restricted to some subspace. In particular, the problem we consider is: Given C = gc

such that c < q (where q << p), one needs to find c. We then show that it satisfies both the above
properties. In particular, we will show that this problem can be cast in the language of efficient
Groth-Sahai proofs thus satisfying the first requirement. Secondly, improvement in the brute-force
attack when the sample space is restricted to c < q is easy to see.

For the protocol, our idea is that user sends the value gc for c < q to the signer. Further instead
of having the signer prove that the CRS was sampled honestly we have him prove that either the
CRS was honestly generated or that it is aware of c. This immediately solves our problems 1 and
2 from above. We know that a cheating signer will not be able to recover c and hence will not be
able to cheat. At the same time we can have the reduction for unforgeability extract c and thereby
generate simulated proofs.

However our solution to issues 1 and 2 has created a 4th issue. A cheating user may cheat by
generating gc such that c ≥ q. Next, we will show how issues 3 and 4 can be solved.

3



Solving issue 3. Very interestingly we can resolve issue 3 by requiring that the signer generates
the proof above under the CRS he had sampled for the underling blind signature scheme. This
is very counter-intuitive as we are requiring the signer to generate a proof under a CRS that it
generates on its own. The key idea is based on the observation that all we need is that the signer
generates the CRS from the hiding distribution for Groth-Sahai proofs. If this CRS is indeed hiding
then the whole exercise of having a proof is redundant. On the other hand, if this CRS is actually
generated dishonestly from the binding distribution then the signer is only hurting itself as it will
not be able to generate his proof. 3

Solving issue 4. Recall that the 4th issue was that the user might generate gc in a way such
that c > q. We solve this problem by having the user provide a Groth-Sahai proof that the value
c used is less that q. A question is under what CRS should this proof be give such that this proof
does not leak c to the signer? Of course, we can not use the CRS that the signer generated for
the underlying scheme. Our key observation here again is that we need to worry about this proof
only if the original CRS has been generated maliciously, or in other words, if this CRS is binding.
Recall that a binding CRS for Groth-Sahai proofs is a DLIN tuple. Our key idea here is that if
(g, g1, g2, h1, h2, h) is a DLIN tuple then its shift (g, g1, g2, h1, h2, h ·g) can not be a DLIN tuple and
hence the user can give his proof under this shifted CRS.4

2 Preliminaries

In this section, we recall and define basic notation and primitives used. Let λ denote the security
parameter. We call a function negligible in λ if it is asymptotically smaller than any inverse
polynomial. For a detailed description of blind signatures and its security properties refer to
Appendix B. Now, we define the primitives used in our construction.

Commitment scheme on groups. We describe a perfectly binding commitment scheme based
on the decisional linear (DLIN) assumption (see definition 1) with the special property that both the
message space and the commitment comprise only of group elements. Let (p,G,GT , g, e) be a prime
order bilinear pairing group. Then the function ComG(·) generates a commitment to an element

m ∈ G by first sampling g1, g2
$←− G, x, y

$←− Zp and then outputting (g, g1, g2, g
x
1 , g

y
2 ,m · gx+y). For

description of hiding and binding properties of commitment schemes see Appendix A.2.

Structure-Preserving Signatures. A signature scheme (SPGen, SPSign,SPVerify) is said to
be a structure preserving signature scheme over a prime order bilinear group (p,G,GT , g, e) (see
Appendix A.1), if public keys, signatures and messages to be signed are vectors of group elements
and verification only evaluates pairing product equations. For definition of security of signature
schemes refer to Appendix A.3. Structure preserving signature schemes that sign a vector of group
elements are known under different assumptions [Gro06, AHO10, ACD+12]. The first feasibility
result was given by Groth [Gro06]. This scheme is inefficient as the signature size grows linearly
with the number of group elements in the message to be signed and the constants are quite big. In
our scheme, we will use constant size structure preserving signatures [AHO10, ACD+12]. Both of

3In the final construction (Figure 1), the signer will prove under the CRS he had sampled that it is aware of c.
An honest signer who generates a hiding CRS will be able to simulate this proof successfully.

4A similar idea was also used by [Gro06] to get perfectly sound NIWI in the standard model using statistically
sound NIZKs.
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these results have been summarized in the table given below. The size of different parameters are
in terms of number of group elements.

Table 2: Efficiency of Structure Preserving Schemes
Scheme |msg| |gk |+ |vk | |σ| #(PPE) Assumption

AHO10 k 2k + 12 7 2 q-SFP
ACDKNO12 k 2k + 25 17 9 DLIN

When k is a constant, a public key as well as a signature generated consist of a constant number
of group elements only. Hence, these schemes are highly efficient for constant size messages. From
the security of these schemes, it follows that under assumptions which are hard to break in time
T·poly(λ), these schemes are secure against existential forgery under chosen message attack for
adversaries running in time T·poly(λ). More precisely, these schemes are T-eu-cma-secure (see
Appendix A.3) under hardness of T-q-SFP and T-DLIN, respectively.

2.1 Two-CRS Non-interactive Zero-Knowledge Proofs.

In this section, we will define a special notion of NIZK proofs that work in the setting with two
common reference strings.

Let R be an efficiently computable binary relation. For pairs (x,w) ∈ R we call x the statement
and w the witness. Let L be the language consisting of statements inR. A Two-CRS non-interactive
proof system for a relation R consists of three common reference string (CRS) generation algorithms
KB, Shift and Shift−1, a prover algorithm P and a verification algorithm V. We require that all
these algorithms be efficient, i.e. polynomial time. The CRS generation algorithm KB takes the
security parameter 1λ as input and produces a common reference string crs along with an extraction
key τ . Both Shift and Shift−1 are deterministic algorithms. They take as input a string crs and
output another string crs′. The prover algorithm P takes as input (crs, x, w) and produces a proof
π. The verification algorithm V takes as input (crs, x, π) and outputs 1 or 0. We require that:

CRS Indistinguishability. For all PPT adversaries A, we define AdvCRS−distinguish
A as

AdvCRS−distinguish
A (1λ) = 2·Pr

b = b′

∣∣∣∣∣∣∣∣∣
(crs, τ)← KB(1λ); crs′ ← Shift(crs); crs′′ ← Shift−1(crs)

b
$←− {0, 1}; if b = 0, (crs1, crs2) := (crs, crs′)

else (crs1, crs2) := (crs′′, crs)
b′ ← A(crs1, crs2)

−1 .

We say that a Two-CRS NIZK system has CRS indistinguishability if for all PPT adversaries
A, AdvCRS−distinguish

A is negligible in λ.

Perfect Completeness. Completeness requires that an honest prover with a valid witness can
always make an honest verifier output 1. For K ∈ {KB, Shift ◦KB,Shift−1 ◦KB}, where ◦ is
the the composition of functions, we require that for all x,w such that (x,w) ∈ R:

Pr
[
V(crs, x, π) = 1

∣∣∣ crs← K(1λ);π ← P(crs, x, w)
]

= 1.

Perfect Knowledge Extraction. We require that there exists a probabilistic polynomial time
knowledge extractor E such that for every (crs, τ) ← KB(1λ), x and purported proof π such
that V(crs, x, π) = 1 then we have

Pr
[
(x,w) ∈ R

∣∣∣ w := E(crs, τ, x, π)
]

= 1.
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Note that since perfect knowledge extraction implies the existence of a witness for the state-
ment being proven, it implies perfect soundness.

Perfect Zero-Knowledge. A proof system is zero-knowledge if the proofs do not reveal any
information about the witnesses. We require that there exists a polynomial time simulator S
such that for all (crs, τ)← KB(1λ), crs′ := Shift(crs) (or, crs′ := Shift−1(crs)) we have that for
all x ∈ L the distributions P(crs′, x, w) and S(crs′, τ, x) are identical.

Efficient realization of Two-CRS NIZKs based on Groth-Sahai Proofs. Groth-Sahai
proofs [GS08] can be used to give efficient Two-CRS NIZKs (under the DLIN assumption) for
special languages, namely pairing product equations, multi-scalar multiplication equations, and
quadratic equations (described below) in the setting of symmetric bilinear groups. For details, refer
to Appendix C. We also show that the range equations also fit this framework (Appendix C.1).
Next, we describe these equations formally.

- Pairing Product Equation. A pairing product equation (PPE) over the variablesX1, . . . Xn ∈
G is an equation of the form5

n∏
i=1

e(Ai, Xi) ·
n,n∏

i=1,j≥i

e(Xi, Xj)
γi,j = 1,

determined by constants Ai ∈ G and γi,j ∈ Zp.

- Multiscalar Multiplication Equation. A multiscalar multiplication equation over the
variables X1, . . . Xn ∈ G and y1, y2, . . . , ym ∈ {0, 1} is of the form6

m∏
j=1

Ayjj ·
n∏
i=1

Xbi
i ·

n∏
i=1

m∏
j=1

X
γi,jyj
i = T ,

determined by constants Aj ∈ G, bi, γi,j ∈ Zp, and T ∈ G.

- Quadratic Equation. A quadratic equation in Zp over variables y1, y2, . . . , yn ∈ {0, 1} is of
the form7

n∑
i=1

aiyi +

n,n∑
i=1,j≥i

γi,jyiyj = t,

determined by constants ai ∈ Zp, γi,j ∈ Zp, and t ∈ Zp.

- Range Equation. The range equation over the variable c ∈ Zp is of the form.

∃c : gc = C
∧

c < q,

determined by constants C ∈ G and q < p. We note that the range equation is not explicitly
a part of the Groth-Sahai framework but is implied by it. We establish this in Appendix C.1.

5General form of PPE can have any T ∈ GT on the R.H.S. Since GS NIZKs are only known for PPE having 1 on
the R.H.S., we use only such equations in our construction.

6Multiscalar Multiplication Equations can be defined for more general setting when y1, . . . , ym come from Zp. In
our case, we define it for a more restricted setting because of technical reason discussed in Appendix C.

7Quadratic Equations can be defined for more general setting when y1, . . . , ym come from Zp. In our case, we
define it for a more restricted setting because of technical reason discussed in Appendix C.
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Remark 1. We note that for the first three kinds of equations, under the above mentioned realiza-
tion of Two-CRS NIZKs, the proof size grows only linearly with the number of variables and the
number of equations. This follows directly from the GS proofs as explained in Appendix C.

Remark 2. As shown in Appendix C.1, a range equation can be expressed as one multiscalar
multiplication equation and log2 q quadratic equations over log2 q variables in Zp.

3 Blind Signature Scheme: Construction

We begin by giving an informal description of the scheme. In our scheme, we will use a bilinear
group G of prime order p, a structure preserving signature scheme for signing vectors of elements
in this group, Two-CRS NIZKs, and commitment scheme ComG.

During the key generation phase, the signer generates the verification key vk and the secret key
sk for the blind signature scheme as follows. vk consists of a verification key vkSP for the structure
preserving signature scheme, two CRSes, crs1 and crs2 under Two-CRS NIZK proof system, and a
parameter q = pε for some constant ε ∈ (0, 1). crs1 is sampled from KB and crs2 is set to be the
shifted crs1, i.e. crs2 ← Shift(crs1). sk consists of the signing key skSP corresponding to vkSP and
the extraction key τ for crs1.

Next, the two round blind signature scheme proceeds as follows: In the first round, the user
generates its message as follows: It begins by checking whether crs2 equals Shift(crs1). It aborts, if
this is not the case. Next, it blinds its message m by generating a commitment mblind using ComG
under randomness r. Then, it samples a random c < q and sets C = gc. Finally, it generates a
proof π under crs1 for the NP-statement Φ: ∃ c | gc = C

∧
c < q. It sends (mblind, C, π) as the

first round message to the signer.
In the second round, the signer generates its message as follows: It begins by checking if the

proof π is valid under crs1. It aborts, if this is not the case. Next, it extracts the witness c from
the proof π using extraction key τ . Then it generates a fresh proof π′ for the statement Φ under
crs2. Finally, it generates a signature σSP on mblind using signing key skSP. It sends (π′, σSP) as the
second round message to the user.

On receiving the above message from the user, it computes the signature on m as follows: User
aborts if π′ is not a valid proof under crs2. It then checks if σSP is a valid signature on mblind

under vkSP. It aborts if this is not the case. Otherwise, it outputs σ as the proof under crs2 of
the NP-statement Ψ: ∃ (mblind, r, σSP) | mblind = ComG(m; r)

∧
SPVerify(vkSP,mblind, σSP) = 1. In

other words, the user proves that there exists (mblind, r, σSP) such that mblind is the commitment of
m using randomness r under commitment scheme ComG and σSP is a valid signature on mblind.

To verify a signature σ on message m, check whether σ is a valid proof for the statement Ψ
under crs2.

Formal Description. Let SPSig = (SPGen, SPSign,SPVerify) be any structure preserving sig-
nature scheme which is existentially unforgeable, (KB, Shift, Shift−1,P,V) be a Two-CRS NIZK
proof system, ComG be the DLIN based commitment scheme for elements in G (Section 2). Formal
description of the blind signature scheme (Gen,S,U ,Vrfy) is given in Figure 1.

4 Proof of Unforgeability

Let Tdlog
G,q be the time it takes to break the discrete log problem in G when exponents are chosen

from Zq.
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Recalling from Section 2, let (SPGen,SPSign,SPVerify) be an existentially unforgeable structure
preserving signature scheme, (KB ,Shift,Shift−1,P,V) be a Two-CRS NIZK proof system and ComG
be a group based commitment scheme. And let 0 < ε < 1 be an appropriate (specified later) constant
parameter.

Key Generation Gen: On input 1λ, choose an appropriate bilinear group (p,G,GT , g, e)a and
proceed as follows:

• Sample a key pair for the structure preserving signature scheme (skSP, vkSP) ←
SPGen(1λ).

• Sample a CRS (crs1, τ)← KB(1λ) and generate its shift crs2 ← Shift(crs1).

• Output the verification-key for the blind signature scheme as vk = (vkSP, crs1, crs2, q =
pε) and the secret-key as sk = (skSP, τ).

Signing Protocol: The user U with input m ∈ G, vkSP and the signer S with input skSP proceed
as follows.

• Round 1: The user U generates its first message as follows:

– Abort if crs2 6= Shift(crs1).

– Sample mblind ← ComG(m; r).

– Samples a uniformly random c such that c < q and sets C := gc. Next sample a
proof π ← P(crs1,Φ, c) where Φ is the NP-statement:

∃ c | gc = C
∧

c < q. (1)

– Send (mblind, C, π) to the signer.

• Round 2: S generates the second round message as:

– If V(crs1,Φ, π) 6= 1 then abort, otherwise obtain c := E(crs1, τ,Φ, π) and sample a
proof π′ ← P(crs2,Φ, c).

– Sample a signature σSP := SPSign(skSP,mblind).

– Send (π′, σSP) to the user U .

• Signature Generation: U aborts if V(crs2,Φ, π
′) 6= 1. U also aborts if

SPVerify(vkSP,mblind, σSP) 6= 1 and otherwise outputs σ ← P(crs2,Ψ, (mblind, r, σSP))
where Ψ is the NP-statement:

∃ (mblind, r, σSP) | mblind = ComG(m; r)
∧

SPVerify(vkSP,mblind, σSP) = 1 (2)

Signature Verification Vrfy: For input a claimed signature σ on message m, output V(crs2,Ψ, σ).

aAll algorithms take this bilinear group as an implicit input.

Figure 1: Blind Signature Scheme

Theorem 1. For any PPT malicious user U∗ for the unforgeability game against the blind signature
scheme given in Section 3 the following holds:

AdvUnforge
U∗,BS (λ) ≤ AdvCRS−distinguish

B (λ) + AdvUnforge

Û∗,SPSig
(λ),

where B is an adversary against the CRS indistinguishability property of the two-CRS NIZK proof
system such that T(B) = k·Tdlog

G,q +T(U∗)+poly(λ) and Û∗ is the adversary against the unforgeability
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of the underlying structure preserving signature scheme SPSig such that T(Û∗) = k ·Tdlog
G,q +T(U∗)+

poly(λ). Also, U∗ and Û∗ make at most k signing queries.

If we use GS proof system based Two-CRS NIZKs (see Appendix C) in our construction, the
above theorem immediately implies the following corollary:

Corollary 1. For any PPT malicious user U∗ for the unforgeability game against the blind signature
scheme given in Section 3 the following holds:

AdvUnforge
U∗,BS (λ) ≤ 2 · Advdlin

B,G(λ) + AdvUnforge

Û∗,SPSig
(λ),

where B is an adversary against the DLIN assumption in G such that T(B) = k ·Tdlog
G,q + T(U∗) +

poly(λ) and Û∗ is the adversary against the unforgeability of the underlying structure preserving

signature scheme SPSig such that T(Û∗) = k ·Tdlog
G,q + T(U∗) + poly(λ). Also, U∗ and Û∗ make at

most k signing queries.

Following is a corollary of the above theorem:

Theorem 2. Assume that Tdlog
G,q -DLIN holds in G and SPSig is Tdlog

G,q -eu-cma-unforgeable. Then
the blind signature scheme in Section 3 is unforgeable.

Proof. (of Theorem 1) Let U∗ be any PPT malicious user then we will prove our theorem by consid-
ering a sequence of games starting with the unforgeabilty game from Definition 7 (see Appendix B).

• Game0: This is the challenger-adversary game between the challenger following the honest
signer S specification and the malicious user U∗. More specifically, the game starts with the
challenger generating a key pair (sk, vk). The challenger then sends vk to U∗. At this point
the challenger (playing as the honest signer) and U∗ proceed by interacting in k executions
of the signing protocol. Note that the challenger knows the secret key sk and uses it to
participate as the signer in the executions of the signing protocol. Finally U∗ outputs k + 1
message/signature pairs (mi, σi). U∗ is said to win if all the messages are distinct and all
signatures verify under vk.

• Game1: Recall that in the second round of the signing protocol the challenger (acting as the
signer) obtains the secret value c using the extraction algorithm E . Game1 is same as the
Game0 except that in each of the k instances of the signing protocol, instead of extracting the
secret c using the extraction algorithm, the challenger obtains c by evaluating the discrete
log of C assuming that it is less than q. (The challenger aborts if no values less than q is a
valid dlog of C.)

Note that since crs1 is sampled from KB, proofs under crs1 are perfectly sound. This implies
that the value c that challenger extracts by solving discrete log is exactly the same as the one
that challenger would have extracted using the extraction algorithm in Game0.

Note that the views of the malicious user U∗ in games Game0 and Game1 are identical.

It also follows from the perfect soundness of the two-CRS NIZK proof system that the chal-
lenger in Game1 runs in time k · Tdlog

G,q + poly(λ), where Tdlog
G,q is the time it takes to break

discrete log problem in G when the exponent is chosen from Zq.

• Game2: Game2 is same as Game1 except that the challenger generates the CRSes differently.
Instead of generating the CRSes by first sampling (crs1, τ)← KB(1λ) and then generating its
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shift crs2 ← Shift(crs1), it reverses the order in which the CRSes are generated. This reverses
the security properties of proofs under the two CRSes. More specifically the challenger first
samples (crs2, τ)← KB(1λ) and then sets crs1 := Shift−1(crs2). Note that now we get perfect
zero-knowledge for crs1 and perfect soundness for crs2.

Indistinguishability of Game1 and Game2 follows from the CRS-Indistinguishability property
of the two-CRS NIZK proof system. More precisely, the success probability of U∗ can change
by at most AdvCRS−distinguish

B , where B is an adversary against the CRS indistinguishability

property of the two-CRS NIZK proof system such that T(B) = k ·Tdlog
G,q + T(U∗) + poly(λ).

Now we will show how U∗ who wins in Game2 can be used to construct a malicious user Û∗
that winning the existential unforgeability game of the underlying structure preserving signature
scheme.
Û∗ starts by obtaining the verification key vkSP from the challenger of the structure preserving

signature scheme (SPGen, SPSign, SPVerify). Furthermore, it samples (crs2, τ) ← KB(1λ), sets
crs1 := Shift−1(crs2) and invokes U∗ with (vkSP, crs1, crs2, q) as input. At this point, the user U∗
expects to interact in k instances of the signing protocol. In each of these executions, it provides its
challenger (the adversary Û∗ in our case) with its first round message (mblind, C, π). Our adversary

Û∗ obtains c by solving the discrete log problem (aborting if c ≥ q) and uses the extracted value to
generate the response proof π′. Additionally, it obtains the signature σSP on mblind from the signing
oracle and passes (π′, σSP) to U∗. After k such executions, U∗ returns k+1 pairs (mj , σj). Note that

each σj given by U∗ is a proof of knowledge of (mblind,j , rj , σSP,j) under crs2. Furthermore, since Û∗
generates crs2 in the binding setting, therefore τ can be used to extract (mblind,j , rj , σSP,j) for each
j by invoking E(crs2, τ,Ψ, σj). Since all messages mj are distinct and ComG is perfectly binding, all
mblind,j will also be distinct. Since all mblind,j are distinct there exists at least one mblind,j∗ among

these that Û∗ never queried its challenger. Û∗ outputs (mblind,j∗ , σSP,j∗) as its output.
Hence, the advantage of U∗ in producing a valid forgery in Game3 is at most the advantage of

Û∗ in producing a valid forgery against the underlying structure preserving signature scheme, i.e.
AdvUnforge

U∗,BS,Game3
≤ AdvUnforge

Û∗,SPSig
(λ), where Û∗ runs in time k ·Tdlog

G,q + T(U∗) + poly(λ).

5 Proof of Blindness

Theorem 3. For any PPT malicious signer S∗ for the blindness game against the blind signature
scheme given in Section 3, which successfully completes the blindness game, the following holds

AdvUnblind
S∗,BS (λ) < 2 · Advhid

A,ComG
+ Advdlog

B,G,q

where A is an adversary against the non-uniform hiding property of ComG such that T(A) =
T(S∗) + poly(λ) and B is an adversary against the non-uniform discrete log problem in G when
exponents are chosen uniformly randomly in Zq such that T(B) = T(S∗) + poly(λ).

Since the hiding property of the commitment scheme ComG holds under the DLIN assumption
(definition 1) in G, the above theorem immediately implies the following corollary.

Corollary 2. For any PPT malicious signer S∗ for the blindness game against the blind signature
scheme given in Section 3, which successfully completes the blindness game, the following holds

AdvUnblind
S∗,BS (λ) < 4 · AdvDLIN

C,G + Advdlog
B,G,q

10



where C is an adversary against the non-uniform DLIN assumption in G such that T(C) = T(S∗) +
poly(λ) and B is an adversary against the non-uniform discrete log problem in G when exponents
are chosen uniformly randomly in Zq such that T(B) = T(S∗) + poly(λ).

Following is a corollary of the above.

Theorem 4. Assume that non-uniform DLIN assumption holds in G and the non-uniform discrete
log assumption holds in G even when the exponents are chosen uniformly randomly from Zq. Then
the blind signature scheme from Section 3 is blind.

Proof. (of Theorem 3) Let S∗ be any PPT malicious signer then we will prove our theorem by con-
sidering a sequence of games starting with the blindness game from Definition 8 (see Appendix B).

• Game0: This is a challenger-adversary game between the challenger following the honest
user strategy and the malicious signer S∗. The malicious signer S∗ has full control over
the scheduling of instances of the user in an arbitrary order. Since our scheme is only two
round, we can fix it to be the worst case ordering. Since S∗ does not receive any response
to the message it sends to the user, we can assume that S∗ first gathers all the incoming
messages from the user and then sends its responses. Thus, without loss of generality, the
Game0 proceeds as follows: S∗ first outputs the public key vk and the challenge messages
m0,m1. S∗ then expects the two incoming blinded messages mblind,0 and mblind,1 from the
user corresponding to mb,m1−b for a random bit b. After receiving both the messages, S∗
outputs its responses to the challenger. Our challenger at this point outputs the signature on
(m0,m1) generated in the two protocol executions. Finally the malicious signer S∗ outputs a
bit b′ and its advantage AdvUnblind

S∗,BS is equal to |2 · Pr[b = b′]− 1|.

• Game1: Same as Game0 except the following: The challenger after receiving the public key
vk, figures out whether crs2 is in the range of KB or not. The challenger may execute in
unbounded time when figuring this out; storing the extraction key τ for later use. Now it
proceeds as follows:

- crs2 is in the range of KB: In this case, our challenger proceeds just as in Game0, except
that if the first instance of the signing protocol completes successfully then our challenger
outputs DL-Abort.

- crs2 is not in the range of KB: Proceed as in Game0.

Note that conditioned on the fact that DL-Abort does not happen, we have that Game0

and Game1 are identical. Next we will show that the probability of DL-Abort happening is
bounded by Advdlog

B,G,q.

Lemma 1. The probability of DL-Abort happening is bounded by Advdlog
B,G,q, with T(B) =

T(S∗) + poly(λ), B is an adversary against the non-uniform discrete log problem in G when
exponents are chosen uniformly randomly in Zq.

Proof. We will show that an S∗ that can make our challenger output DL-Abort can be used
to construct an adversary B that breaks the non-uniform discrete log problem in G when the
exponent is restricted to < q.

11



Constructing the adversary B. Given this cheating signer S∗, there exists random coins
for S∗ such that our challenger in Game-1 outputs DL-Abort. We will hard-code the random
coins of S∗ such that our challenger outputs DL-Abort with maximum probability. Note that
we are in the case when crs2 is binding and hence crs1 is hiding. Next, our adversary B or
the challenger of the blindness game on receiving this public key vk will run in unbounded
time to compute the extraction key τ for crs2. Thus, the adversary B we constructed is a
non-uniform adversary with auxiliary input as the random coins of S∗ (specified above) and
the extraction key τ corresponding to vk.

Our adversary B obtains as input D (such that D = gd with d < q) and it wins if it outputs
d. On receiving D, B proceeds as the challenger does in Game1 except that it sets C := D
instead of choosing a fresh value for C. Also, invoking perfect zero-knowledge property of
crs1, B generates π as S(crs1, τ,Φ), where S is the zero-knowledge simulator. At this point
S∗ must output a proof π′ such that V(crs2,Φ, π

′) = 1 for the challenger in Game1 to output
DL-Abort. On obtaining the proof π′, B outputs E(crs2, τ,Φ, π

′) as the discrete log of D. By
perfect extraction under crs2, the extracted value will be the discrete log of D.

Note that after receiving the challenge D, B runs in polynomial time. Thus, the probability of
DL-Abort when we fix the worst case random coins of S∗ (as described above) is bounded by

Advdlog
B,G,q. Hence, it holds that the probability of DL-Abort in Game1 is bounded by Advdlog

B,G,q.

• Game2: Game2 is identical to Game1 except for the following modifications. Instead of gener-
ating the final signatures honestly, the challenger simulates them. More specifically, instead
of generating the signatures as P(crs2,Ψ, (mblind, r, σSP)), in Game2 the challenger generates
signatures as S(crs2, τ,Ψ).

Game2 and Game1 are perfectly indistinguishable based on the non-uniform perfect zero-
knowledge property of the two-CRS NIZK proof system.

• Game3: Now, we modify Game2 and remove all dependencies on the input messages m0 and
m1. That is, we let the user algorithm compute the blinded message mblind,0 as ComG(0)
instead of ComG(mb). We proceed similarly for m1−b.

The indistinguishability between Game3 and Game2 follows from the non-uniform computa-
tional hiding property of the commitment scheme ComG.

Since in Game3 the entire transcript is independent of the message, AdvUnblind
S∗,BS,Game3

is 0.

6 Concrete Efficiency

In this section we will compute the communication complexity for the blind signature scheme
described in Section 3 and the size of the final blind signature. First we need to compute the group
size p and number q which will give us the desired level of security. For this we will calculate the
work factors for different adversaries as discussed below. We begin by defining the work factors.
Work Factors. These have been used in [Gal04, BR09] to calculate concrete parameters. This
text has been taken verbatim from [BR09]. For any adversary running in time T(A) and gaining
advantage ε, we define the work factor of A to be WF(A) ≤ T(A)/ε. The ratio of A’s running time
to its advantage provides a measure of efficiency of the adversary. Generally speaking, to resist an
adversary with work factor WF(A), a scheme should have its security parameter (bits of security)
be κ ≥ log WF(A). Note that for a particular ε, this means a run time of T(A) ≤ ε2κ.
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Similar to [Gal04, BR09], in the discussion that follows we will assume that Pollard Rho’s
algorithm for finding discrete logs in G is the best known attack8 against DLIN in group G of
prime order p. The work factor of Pollard’s algorithm ends up being

WF(P) =
T (P)

εp
=

0.88

e

√
p

log2(p)

103

For security we require that the work factor of any adversary A against DLIN is at most the work
factor of Pollard’s algorithm, i.e. WF(A) ≤WF(P).

Parameters. In Appendix D, we calculate the values of p and q using the work factors for
adversaries against the blindness game and unforgeability game. We summarize the parameters
obtained in Table 3.

Table 3: Suggested parameters, where k is the number of signature queries and the adversary is
allowed to run in time t · TR where TR is the time taken by the reduction.

k t log q log |G|
220 230 155 291

220 240 155 311

230 230 155 331

230 240 155 351

6.1 Efficiency

Verification key size. In our blind signature scheme, the verification key is vk = (vkSP, crs1, crs2, q =
pε), where vkSP is the verification key of the structure preserving signature scheme in G and crs1

and crs2 are two CRSes for Two-CRS NIZK. Furthermore, as can be seen in Table 2, to sign k
group elements, vkSP has 2k + 25 group elements. Since in our case k = 6, there are 37 group
elements in vkSP. In GS proof system, we need 6 group elements in G to represent crs1 and crs2.
Hence, the size of the verification key for our scheme is 43 group elements. Taking the number of
bits to represent a group element as 291 bits, we get the key size to be 1.6KB.

Signature size. The final signature is a Groth-Sahai [GS08] proof of knowledge in G using crs2

as the common reference string. Under the DLIN assumption, the proof size is three group elements
for each variable and nine group elements for each pairing product equation (see Figure 2 in [GS08])
that is proved. The variables are mblind, σSP, r. By ComG, mblind has six group elements and in
order to prove mblind = ComG(m; r), we will have two additional variables (which capture the
randomness r used in commitment) and three pairing product equations in total. Furthermore, as
can be seen in Table 2, σSP has 17 group elements and nine pairing product equations in verification
algorithm. Hence, the size of the final blind signature will be 183 group elements in G. Taking the
number of bits to represent a group element as 291 bits, we get the signature size to be 6.5KB.

8If there is a faster attack against discrete log or DLIN problem for prime order groups, it can be used to obtain
the parameters for our blind signature scheme.
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Communication complexity. We begin by computing the communication complexity of the
user step by step as follows:

• U computes a commitment mblind in G which consists of six group elements in G.

• It computes a range proof π for an NP-statement which consists of log2 q quadratic equations
and one multiscalar multiplication equation over log2 q variables in Zp (Appendix C). In GS
proof system, each quadratic equations adds six group elements, multiscalar multiplication
equation adds nine group elements and each variable in Zp adds three group elements to the
proof ([GS08], Figure 2). Using this, π consists of 9 log2 q + 9 group elements of G.

Now we compute the communication complexity of signer step by step as follows:

• It computes σSP consisting of 17 elements in G as explained above.

• It also computes a range proof π′ for the same NP-statement as the user. As above, π′ consists
of 9 log2 q + 9 group elements of G.

Hence, the overall communication complexity of our blind signature protocol is 18 log2 q + 41
elements in G. Taking log2 q as 155 and log2 p as 291, the communication complexity is 100.56KB.
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A Preliminaries

Now we will describe various tools and assumptions we use in our round optimal blind signature
scheme.

A.1 Bilinear Groups.

Let G and GT be two groups of prime order p. Let g be a generator of G. Let e : G×G→ GT be
a bilinear map with the following properties:

• e(g, g) does not evaluate to the identity element of GT . We say that the map e is non-
degenerate.

• ∀u ∈ G, ∀v ∈ G, ∀a, b ∈ Zp : e(ua, vb) = e(u, v)ab. We say that the map e is bilinear.

Bilinear groups G, with efficient group operations, and for which a target group GT exists with
an efficient corresponding bilinear map e, are well-known. Note that this bilinear map is also
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

Definition 1. [Decisional Linear Assumption (DLIN)] Let G = 〈g〉 be a bilinear group of prime
order p with security parameter λ. For a non-uniform PPT A, its advantage AdvDLIN

A,G is defined as:

AdvDLIN
A,G (1λ) = 2 · Pr

b = b′

∣∣∣∣∣∣∣
g1, g2

$←− G; x, y, z
$←− Zp

b
$←− {0, 1}; if b = 0, set W = gx+y else set W = gz

b′ ← A(g1, g2, g
x
1 , g

y
2 ,W )

− 1 .

We say that the DLIN assumption holds for a bilinear group G if for all PPT algorithms A, AdvDLIN
A,G

is negligible in λ. More generally, we say that T -DLIN assumption holds in group G if for every
T · poly(λ) time algorithm A, AdvDLIN

A,G is negligible in λ.
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Definition 2. [Discrete Log Assumption (DLog)] Let G = 〈g〉 be a bilinear group of prime order

p with security parameter λ. For a non-uniform PPT A, its advantage Advdlog
A,G is defined as:

Advdlog
A,G(1λ) = Pr

[
c = c′

∣∣∣ c $←− Zp; C = gc; c′ ← A(C)

]
.

We say that the discrete log assumption holds for a group G if for all PPT algorithms A, Advdlog
A,G

is negligible in λ.

A.2 Non-interactive Commitment Scheme.

A commitment scheme Com takes as input a message m ∈ {0, 1}λ and randomness r and outputs
a commitment cmt. To decommit, the committer sends m, r.

Any commitment scheme Com must satisfy two properties: hiding and binding. In our con-
struction, we will use a scheme which is computational hiding and perfectly binding. Below we
describe these properties.

Computationally hiding property says that that no PPT adversary can distinguish between the
commitments of any two different messages. More precisely, let A be an adversary against the
hiding property of the scheme Com. We define its hiding-advantage as

Advhid
A,Com(1λ) = 2 · Pr

[
b = b′

∣∣∣∣∣ (m0,m1, st)← A(1λ); b
$←− {0, 1};

cmt = Com(mb, r); b
′ ← A(cmt, st)

]
− 1 .

Definition 3. Com is computationally hiding if the advantage function Advhid
A,Com is negligible in λ

for all PPT adversaries A.

A commitment scheme is perfectly binding if the underlying message is information theoretically
fixed by the commitment cmt itself. More precisely,

Definition 4. Com is perfectly binding if there does not exist values (cmt,m0,m1, r0, r1) such that
m0 6= m1, cmt = Com(m0, r0) and cmt = Com(m1, r1).

A.3 Digital Signatures.

A digital signature scheme SP = (SPGen, SPSign,SPVerify) with security parameter λ consists of
the following algorithms: SPGen outputs a pair (skSP, vkSP) of signing and verification keys; and
SPSign(skSP,M) outputs a signature σ, which is verified by SPVerify(vkSP,M, σ).

Now we define the existential unforgeability of the signature scheme under adaptively chosen
message attack (EU-CMA) [GMR88] as follows: Let A be an adversary against SP. We define its
eu-cma-advantage as

Adveu−cma
SP,A (λ) = Pr

[
SPVerify(vkSP,m

∗, σ∗) = 1 : (skSP, vkSP)← SPGen(1λ, gk);

(m∗, σ∗)← ASPSign(skSP,·)(vkSP)

]
,

where gk are public parameters. The adversary A is not allowed to query SPSign(skSP, ·) on m∗.

Definition 5. SP is said to be T -eu-cma-secure if for all adversaries A running in time T · poly(λ)
Adveu−cma

SP,A is negligible in λ.
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B Blind Signatures and Their Security

In this section we will recall the notion of blind signatures and define their security. Parts of this
section have been taken verbatim from [GRS+11]. By (a, b)← 〈X (x),Y(y)〉 we denote interactive
execution of algorithms X and Y, where x (resp., y) is the private input of X (resp., Y), and
a (resp., b) is the private output of X (resp., Y). We write X 〈·,Y〉

∞
for X with oracle access to

arbitrarily many interactions with Y. And X 〈·,Y〉
1

for X with oracle access to arbitrarily a single
interaction with Y.

Definition 6. A blind signature scheme BS consists of PPT algorithms Gen,Vrfy along with inter-
active PPT algorithms S,U such that for any λ ∈ N:

• Gen(1λ) generates a key pair (sk, vk).

• The joint execution of S(sk) and U(vk,m), where m ∈ {0, 1}λ, generates an output σ for the
user and no output for the signer. We write this as (⊥, σ)← 〈S(sk),U(vk,m)〉.

• Algorithm Vrfy(vk,m, σ) outputs a bit b.

We require completeness i.e., for any m ∈ {0, 1}λ, and for (sk, vk) ← Gen(1λ), and σ output by U
in the joint execution of S(sk) and U(vk,m), it holds that Vrfy(vk,m, σ) = 1 with overwhelming
probability in λ ∈ N.

Note that it is always possible to sign messages of arbitrary length by applying a collision-
resistant hash function to the message prior to signing.

Blind signatures must satisfy two properties: unforgeability and blindness [JLO97, PS00].
For unforgeability we require that a user who runs k executions of the signature-issuing protocol

should be unable to output k + 1 valid signatures on k + 1 distinct messages.

Definition 7. A blind signature scheme BS = (Gen, S, U , Vrfy) is unforgeable if for any PPT
algorithm U∗ the probability that experiment UnforgeBS

U∗(λ) defined in Figure 2 evaluates to 1 is
negligible in λ.

Experiment UnforgeBS
U∗(λ)

(sk, vk)← Gen(1λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← U∗〈S(sk),·〉∞(vk)

Return 1 iff
m∗i 6= m∗j for all i, j with i 6= j, and

Vrfy(vk,m∗i , σ
∗
i ) = 1 for all i ∈ [k + 1], and

at most k interactions with S(sk)
were completed.

Experiment UnblindBS
S∗ (λ)

(vk,m0,m1, stfind)← S∗(find, 1λ)
b← {0, 1}
stissue ← S∗〈·,U(vk,mb)〉1,〈·,U(vk,mb̄)〉1(issue, stfind)

and let σb, σb̄ denote the
(possibly undefined) local outputs

of U(vk,mb) and U(vk,mb̄) resp..
set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.

Figure 2: Security games of blind signatures.

Blindness says that it should be infeasible for any malicious signer S∗ to decide which of two
messages m0 and m1 has been signed first in two executions with an honest user U . This condition
must hold, even if S∗ is allowed to choose the public key maliciously [ANN06]. If one of these
executions has returned an invalid signature, denoted by ⊥, then the signer is not informed about
the other signature either. We define the advantage of S∗ in blindness game with respect to the
experiment UnblindBS

S∗ (λ) as
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AdvUnblind
S∗,BS (λ) =

∣∣2 · Pr[UnblindBS
S∗ (λ) = 1]− 1

∣∣
Definition 8. A blind signature scheme BS = (Gen,S,U ,Vrfy) satisfies blindness if the advantage
function AdvUnblind

S∗,BS is negligible for any S∗ (working in modes find, issue, and guess) running in time
poly(λ).

A blind signature scheme is secure if it is unforgeable and blind.

C Efficient Realization of Two-CRS NIZKs using Groth-Sahai
Proofs

In this section, we describe how Groth-Sahai (GS) proofs [GS08] can be used to construct efficient
Two-CRS NIZK proof system described in section 2.1. Groth and Sahai [GS08] gave direct con-
structions of NIZKs that do not require NP reductions and thus are efficient in practice. They
described these for languages which can be written as a set of following equations: pairing product
equations, multi-scalar multiplication equations in base group, and quadratic equations in Zp. For a
description of these equations, see Section 2.1. The GS proof system can be instantiated under the
DLIN assumption in the setting of symmetric bilinear groups. Next, we give an informal overview
of how GS proofs work.

Overview of GS NIZK proofs. GS proofs are given in the common reference string (CRS)
model where the CRS consists of commitment keys. GS proofs have two different modes, namely
GSSetupB and GSSetupH. These two modes have common reference strings (CRS) coming from
two different distributions. In GSSetupB, the CRS has perfectly binding keys and the proofs are
perfectly sound. In particular, the CRS consists of a DLIN tuple. In GSSetupH, the CRS has
perfectly hiding keys and the proofs are perfectly zero-knowledge. In particular, the CRS consists
of non-DLIN tuple.

When proving a statement, described as a set of equations, the GS proof system works as
follows: The prover first commits to the witness components (using CRS as the commitment key)
and then for each equation produces proof elements showing that the corresponding committed
values satisfy the equation.

The GS proof system satisfies the following properties:

Completeness. GS proof system is perfectly complete under both GSSetupB and GSSetupH.

Soundness and Witness Extraction. As stated above, in GSSetupB, GS proofs are perfectly
sound. Now we will describe how they achieve witness extraction in GSSetupB mode. This
mode, along with CRS, also has an extraction key GSek . GSek consists of the discrete log
of the elements in the CRS. Furthermore, GS show a PPT algorithm GSExtr, which given a
commitment of a group element, successfully extracts the underlying value. But there is a
problem.

Depending on the kind of equations used, the witness can consist of elements in G as well
as elements in Zp. While GS proofs under binding keys are proofs of knowledge of group
elements (using GSExtr), they are not proofs of knowledge of elements in Zp. In GS proof
system, the best one can extract from a commitment to y ∈ Zp is the value gy. Since we
assume that the Discrete Log problem is hard in G, there is no way to extract y given this
value.
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We will solve this problem by using properties of our equations. In the equations we will use
in our scheme, y will either be 0 or 1. Hence, the GS proof will also be a proof of knowledge
of elements in Zp in our case.

Zero-Knowledge. As stated above, the proofs under GSSetupH are perfect zero-knowledge. In
particular, given discrete logs of elements in the CRS, the proofs can be simulated perfectly
and efficiently.

CRS indistinguishability. It is easy to observe that the CRSes under GSSetupB and GSSetupH

are indistinguishable under the DLIN assumption in G.

Remark 3. A GS proof consists of a constant number of group elements for each variable and each
equation. For more details see Figure 2 in [GS08].

Now we give a description of efficient realization of Two-CRS NIZKs (defined in section 2.1)
using the algorithms GSSetupB,GSek and GSExtr.

Efficient Realization of Two-CRS NIZKs. Using GS proofs, we get an efficient realization
of Two-CRS NIZKs as follows: Define KB := GSSetupB which outputs a DLIN tuple, crs =
(g, ga, gb, gax, gby, gx+y). Define τ := GSek = (a, b, x, y). Define E := GSExtr. Define Shift and
Shift−1 as deterministic algorithms which change the last element of CRS output by GSSetupB as
crs′ = (g, ga, gb, gax, gby, gx+y+1) ← Shift(crs) and crs′′ = (g, ga, gb, gax, gby, gx+y−1) ← Shift−1(crs).
The prover algorithm P and verification algorithm V are same as the corrresponding algorithms in
GS proofs.

Next, we briefly state why the above system satisfies the properties described for Two-CRS
NIZK proof systems in section 2.1.

CRS Indistinguishability. It holds under the DLIN assumption in G.

Perfect Completeness. It holds under the perfect completeness of GS proofs.

Perfect Knowledge Extraction. It holds by perfect soundness and perfect witness extractability
of GS proofs under GSSetupB.

Perfect Zero-Knowledge. Since, the CRS output by both Shift and Shift−1 are non-DLIN tuples,
they will provide the guarantees given by a key output by GSSetupH. Also, note that the
discrete logs output by GSSetupB are a sufficient trapdoor information required to simulate
the proofs under crs′ and crs′′.

C.1 The Range Equation in our scheme fits the GS framework for NIZKs.

In this section, we describe how we can write a range equation as a set of equations for which
efficient GS proofs can be given. A range equation over variable c ∈ Zq is of the form

∃c : gc = C
∧

c < q,

where q < p. Let number of bits needed to represent q be n. Let x0, x1, . . . , xn−1 be the bit
representation of c and Ai = g2i for all i ∈ {0, 1, . . . , n − 1}. Then the above equation can be
written as

n−1∏
i=0

Axii = C
∧
∀i xi ∈ {0, 1}
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over variables xi ∈ Zp. This can be expressed as

n−1∏
i=0

Axii = C
∧
∀i xi · (1− xi) = 0

over variables xi ∈ Zp. This is a combination of multiscalar multiplication and quadratic equations
and fits well with the GS framework (described above). Note that all possible values for each of xi
are 0 and 1 and hence they can be extracted by GSExtr.

D Calculating Parameters

In the following subsections, we will calculate our parameters using work factors for adversaries
against the blindness game and unforgeability game.

D.1 Equations from Blindness

For any PPT malicious signer S∗ for the blindness game against the blind signature scheme given
in Section 3, which successfully completes the blindness game, the following holds

AdvUnblind
S∗,BS (λ) < 4 · AdvDLIN

C,G + Advdlog
B,G,q (3)

where C is an adversary against the DLIN assumption in G such that T(C) = T(S∗) + poly(λ)
and B is an adversary against the discrete log problem in G when exponents are chosen uniformly
randomly in Zq such that T(B) = T(S∗) + poly(λ).

As we will see, q << p and hence, under best known attacks, for any C, AdvDLIN
C,G << Advdlog

B,G,q.

Hence, taking AdvUnblind
S∗,BS (λ) = η and calculating the work factor of B we get

WF(B) =
T(B)

Advdlog
B,G,q

≈ T(S∗) + poly(λ)

η

For security we want WF(B) ≤ 0.88
e

√
q log2 q

103 , i.e.

T(S∗) + poly(λ)

η
≤ 0.88

e

√
q

log2 q

103

Note that if allow our adversary to run in at most 280 steps, i.e. T(S∗) + poly(λ) ≤ 280, and let
η = 1, we will get the following:

280 ≤ 0.88

e

√
q

log2 q

103

Solving this equation, we get log2 q = 155. Using this value of q we will calculate the value of p
from the security against unforgeability.

D.2 Equations from Unforgeability proof

For any PPT malicious user U∗ for the unforgeability game against the blind signature scheme
given in Section 3 the following holds:

21



AdvUnforge
U∗,BS (λ) ≤ 2 · Advdlin

B,G(λ) + AdvUnforge

Û∗,SPSig
(λ), (4)

where B is an adversary against the DLIN assumption in G such that T(B) = k ·Tdlog
G,q + T(U∗) +

poly(λ) and Û∗ is the adversary against the unforgeability of the underlying structure preserving

signature scheme SPSig such that T(Û∗) = k ·Tdlog
G,q + T(U∗) + poly(λ). Also, U∗ and Û∗ make at

most k signing queries.

To calculate the parameters for our blind signature scheme, we use the constant size structure
preserving signatures in [ACD+12]. Their scheme SIG1 is unforgeable under the DLIN assumption
in group G. In particular, they show the following in Theorem 7 [ACD+12]:

AdvUnforge

Û∗,SPSig
(λ) ≤ (k + 3) · AdvDLIN

C,G + 1/p

Also, T(C) = T(Û∗) + poly(λ), where poly(λ) is the time taken in answering k signature queries of
the user in the unforgeability game.

Substituting this in Equation 5 we get

AdvUnforge
U∗,BS (λ) ≤ (k + 5) · AdvDLIN

A,G +
1

p
, (5)

where A is an adversary against the DLIN assumption in G such that T(A) = k ·Tdlog
G,q + T(U∗) +

poly(λ).

Taking AdvUnforge
U∗,BS (λ) = ε, we calculate the work factor of A as follows:

WF(A) =
T(A)

AdvDLIN
A,G

≈
k ·Tdlog

G,q + T(U∗) + poly(λ)

ε− 1
p

k+5

For security we want WF(A) ≤ 0.88
e

√
p log2 p

103 , i.e.

k ·Tdlog
G,q + T(U∗) + poly(λ)

ε− 1
p

k+5

≤ 0.88

e

√
p

log2 p

103
.

Using Pollard Rho’s algorithm for breaking discrete logs Tdlog
G,q will be 0.88

e

√
q log2 q

103 . We will
assume that if our reduction runs in time TR, we allow the adversary to run in time t · TR. Hence,
by taking T(A) to be t · k ·Tdlog

G,q and ε = 1, we get

t ·
(

1− 1

p

)
· k · (k + 5)

0.88

e

√
q

log2 q

103
≤ 0.88

e

√
p

log2 p

103
.

When we solve the above equation for t = 230, k = 220 and log2 q = 155, we get log2 p = 291.
In table 3 we show the values of log2 p with different values of k and t.
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