
Garbled RAM Revisited

Part II

Steve Lu ∗ Rafail Ostrovsky †

February 5, 2014

Abstract

In EUROCRYPT 2013, Lu and Ostrovsky proposed the notion of Garbled RAM (GRAM) programs.
These GRAM programs are analogous to the classic result of Yao’s garbled circuits: a large encrypted
memory can first be provided to evaluator, and then a program can separately be garbled and sent to
an evaluator to securely execute while learning nothing but the output of the program and its running
time. The key feature of GRAM is that it harnesses the natural complexity-theoretic power that Random
Access Memory (RAM) programs have over circuits, such as in binary search or randomized algorithms,
where program can be executed in a garbled way without “unrolling” it into a circuit. The candidate
Lu-Ostrovsky GRAM scheme proposed in that paper is based on the existence of one-way functions, but
due to an implicit reliance on a complex “circular” use of Yao garbled circuits, the scheme requires an
additional circularity assumptions and may not be secure otherwise.

In this paper, we show how to construct efficient GRAM without circularity and based solely on
the existence of any one-way function. The novel approach that allows us to break the circularity is a
modification of the Goldreich-Goldwasser-Micali (PRF) construction. More specifically, we modify the
PRF to allow PRF-keys to be “adaptively revoked” during run-time at the additive cost of roughly log n
per revocation. Then, to improve the overhead of this scheme, we apply a delicate recursion technique
that bootstraps mini-GRAM schemes into larger, more powerful ones while still avoiding circularity
in the hybrid arguments. This results in secure GRAM with overhead of poly(κ)(min(t, nε)) for any
constant ε > 0 where n is the size of memory and t is the running time.

In a companion work (Part I), Gentry, Halevi, Raykova, and Wichs show an alternative approach
using identity-based encryption to solve the circularity problem1. Their scheme achieves overhead of
poly(κ)polylog(n) assuming the existence of IBE.

Keywords: Secure Computation, Oblivious RAM, Garbled RAM, Garbled Circuits.

1 Introduction

The problem of securely storing, accessing and computing on encrypted data is of increasing importance
as our resources are being outsourced, such as in cloud storage and computation. This can be modeled as
a general problem of secure computation of some functionality F . This problem has come from a long line
of research, starting with the two-party case of Yao’s garbled circuits [22] and the multi-party case of the
∗Department of Computer Science, UCLA. Email: stevelu@cs.ucla.edu. Research supported in part by NSF grants

CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174.
†Department of Computer Science and Department of Mathematics, UCLA. Email: rafail@cs.ucla.edu. Research sup-

ported in part by NSF grants CCF-0916574; IIS-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel BSF grant
2008411, OKAWA Foundation Research Award, IBM Faculty Research Award, Xerox Faculty Research Award, B. John Gar-
rick Foundation Award, Teradata Research Award, and Lockheed-Martin Corporation Research Award. This material is also
based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research
under Contract N00014-11-1-0392. The views expressed are those of the author and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

1A merged version of the two works appears in Eurocrypt 2014.

1

Goldreich-Micali-Wigderson [9] paradigm. In both of these approaches, the functionality is represented as
a circuit. Many of the subsequent works, including secure computation via fully homomorphic encryption,
requires representing F as a circuit, and there have only been a handful of results in other models such as
branching programs, Turing Machines, RAM programs, and so forth.

On the other hand, many algorithms are naturally represented as RAM programs and simply cannot be
represented by circuits without a large blowup. These include programs that run in poly-logarithmic time
on large data (e.g. binary search on large data), or Las Vegas style algorithms that can have exponential
running time but are efficient on average (e.g. simplex algorithm from linear programming). Performing
secure RAM computation was first suggested in the work of Ostrovsky and Shoup [20], and a line of
works [17, 12, 15, 16, 10] have considered the model of secure RAM computation.

We reiterate some of the main motivation of previous works of the advantages of using the RAM model
of secure computation. In the case of Yao’s garbled circuits [22], you can non-interactively first garble the
circuit and send it over during an “offline” phase, then when you have online inputs you can garble the
input separately and send it over to the evaluator. The evaluator can then online run the garbled circuit
and learn only the output. The Lu-Ostrovsky [16] GRAM construction achieves the same benefits of this
non-interactive online/offline garbling paradigm but for RAM programs: you can garble a large memory
and send it over, then separately garble a program and inputs that can be run online on this garbled
memory. In this paper, we show how to construct a solution that also enjoys these same non-interactive
garbling properties from any one-way function while avoiding circularity.

Of course, many complex real-world programs are more suitable for the RAM model instead of circuits:
unrolling programs with multiple execution paths, recursion, loops, etc. into a circuit is often inefficient
and prohibitive. The power of random access means that a program with small running time and code size
can still access a large memory (such as in database search), but when represented as a circuit it must be
at least as large as the size of the database and thus even in the online/offline model of secure computation,
the online cost is still proportional to the database size. The online/offline model is still important since
one can offload the cost of pre-processing a large database in preparation for secure computation.

In EUROCRYPT 2013, the work of [16] introduced the notion of Garbled RAM (GRAM) programs
and presented a candidate scheme under the minimal assumption of one-way functions. However, there is
a subtle “circularity” problem with the given construction, which prevents a proof of security from going
through as-is, and would require an additional circularity assumption (which seems difficult to prove) to
be secure. In a companion work (Part I), Gentry, Halevi, Raykova, and Wichs [6] proposed a modification
to the construction that avoids the circularity in the argument and is secure under the existence of IBE
schemes and asymptotically matches the efficiency of the [16] candidate.

In this work, we show how to construct a GRAM scheme that is secure based only on OWFs with a
mild drop in overhead compared to the original construction of [16]. We patch the [16] scheme by directly
breaking the circularity that lies in the PRF that is built into the construction. The main technique we
use to break the circularity is to use a notion of revocable PRFs that allows for the “adaptive revocation”
of PRF-keys and values. This notion is related to a well-studied theme of removing PRF values in the
literature that appear in various forms such as delegatable PRFs [13], functional PRFs [5], or punctured
PRFs [21]. That is to say, given a set X of values, and given a PRF key k, there is a “revoke” transformation
k → kX such that ∀y /∈ X,FkX

(y) = Fk(y) and ∀x ∈ X,Fk(x) is pseudorandom even given kX . When k is
revoked in such a fashion, we obtain a new key kX , which as stated above is powerful enough to compute
Fk on any value not in X, but still reveals no information about Fk on elements in X. The additional
important property is that we can further revoke values, i.e. given any X and kX , and any Y ⊃ X, there
is a transformation kX → kY .

This construction will be based on the Goldreich-Goldwasser-Micali [8] PRF, and it will allow keys
to be revoked at the cost of roughly log n per revocation. Then, to improve the overhead of this secure
scheme, we apply a recursion technique that bootstraps mini-GRAM schemes into larger, more powerful
ones. This results in our scheme having an overhead cost which is poly(κ)(min(t, nε)) for any constant
ε > 0 where n is the size of memory and t is the running time.

2

1.1 Related Work

The notion of Oblivious RAM, which is used to hide the contents and access pattern (namely, the sequence
of locations that is read from and written to during the execution of a RAM program) from memory, was
introduced in the context of software protection by Goldreich [7] and Ostrovsky [18, 19]. In the original
work by Goldreich [7], a solution was given with O(

√
n) and communication overhead where lookups

could be done in a single round and O(2
√

logn log logn) communication overhead for a recursive solution.
Subsequently, [18, 19] gave a solution with only poly-log overhead and constant client memory (the so-
called “hierarchical solution”). These works will be referenced in our construction of our GRAM scheme
in order to introduce regularity properties in the access pattern of our programs.

The work of [20] suggested how to perform secure RAM computation based on an oblivious reading
and writing scheme. Secure RAM computation was explored in the work of Naor and Nissim [17] using
circuits with lookup tables. Gordon et al. [12] proposed a solution in the case of RAM programs with
sublinear amortized cost. Namely, consider a client that holds a small input x, and a server that holds a
large database D, and the client wishes to repeatedly perform private queries f(x,D). In this model, an
expensive initialization (depending only on D) is first performed (say, in an offline phase). Afterwards,
if f can be computed in time T with space S with a RAM machine, then there is a secure two-party
protocol computing f in time O(T) · polylog(S) with the client using O(logS) space and the server using
O(S · polylog(S)) space. The interactive secure RAM computation solution of Lu and Ostrovsky [15] gave
a construction with lower concrete complexity and can also be viewed as a generalization of the [20] model
where servers must also perform sublinear work. Recently, the works [16] and [10] show how to construct
non-interactive garbled RAM solutions. The former construction was based off any one-way function (and
the additional circularity assumption), and the latter construction achieved full compactness under stronger
assumptions.

1.2 Our Results

Our main theorem covers the entire construction which is secure given any one-way function and does not
require additional circularity assumptions. We allow for the garbling of memory, inputs, program code2,
and program CPU steps, and the evaluator will evaluate this garbled information.
Main Theorem (Informal). Assume one-way functions exist, and let the security parameter be κ. Then,
for any initial RAM contents D of size n, programs P1, . . . , P` that run on D in at most t CPU steps,
there exists a Garbled RAM scheme with polylog(κ, n) overhead in the storage size of the garbled memory
contents, and poly(κ)(min(t, nε)) overhead in the size of the garbled program and its running time.

1.3 Remarks

Polynomial vs Exponential Size/Time RAM. Since the RAM CPU is of size at least κ, it can
theoretically index up to 2κ locations. While typically we consider κ, t and n to be polynomially related,
we obtain interesting regimes in the case of exponentially (or superpolynomially) large running-times or
memory sizes. In particular, if n is, say, exponentially large, we can strengthen our Main Theorem to drive
the overhead to be sub-polynomial in n, i.e. poly(κ)(min(t, 2

√
logn)).

Reactive Functionalities and Reusability. One of the nice properties that we retain from the con-
struction of [16] is that one can “reuse” the memory once initially garbled. I.e. a sequence of different
programs and different inputs can be garbled in sequence that all operate on a dynamically changing
memory store that is garbled once (which mimics a reactive functionality). Note that these changes, once
applied, cannot be rewound by the evaluator and the way to ensure this to have the garbler maintain an
ever-increasing counter. Note that we require only the garbler to choose these new programs and inputs to

2We mention that the program code and input can be thought of as a single object, but we separate them so that we can
run multiple programs on the same input or vice versa.

3

avoid any adaptivity issues that arise in garbling schemes (see Bellare-Hoang-Rogaway [2] for a discussion
on this issue). A formal treatment of this notion is provided in Part I [6], and we retain the notation.

An interesting concept introduced in the STOC 2013 paper of Goldwasser et al. [11] is the notion of
token-based obfuscation, where a reusable garbled circuit can be evaluated on multiple inputs as long as
the garbler provides a new “token” for each input. Because our scheme can garble the code of a program
and store it ahead of time, we achieve a slightly different notion of token-based obfuscation: we need to
garble each input, but we also need to provide garbled CPU steps that allow the evaluator to run a single
step of the program, thus resulting in tokens for both inputs and “time quota”.

Worst-case Versus Per-instance Running Time, Universal Programs, and Output Privacy.
As was noted in the CRYPTO 2013 work of Goldwasser et al. [10], the power of secure computation
on Turing Machines and RAM programs over that of circuits is that for algorithms with very different
worst-case and average-case running times, the circuit must be of worst-case size. Randomized algorithms
such as Las Vegas algorithms or even heuristically good-on-average programs would benefit greatly if the
online running time of the secure computation ran in time proportional to that particular instance. In
our solution, though we have an upper bound T on the number of execution steps of the algorithm which
affects the offline time and space, the online evaluation can have a CPU step output “halt” in the clear
when the program has halted and the evaluator will then only run in time depending on this particular
input.

In order to further mask the program, one can consider a T time-bounded universal program uT , which
takes as input the code of a program π and an input for that program. One can also provide an auxiliary
mask so that the output of P is blinded by this value (such a modification has appeared in the literature,
see, e.g. [1]).

2 Background

We follow the notational convention that was set forth in Part I [6]. A few of the subsections from this
section are restated for the convenience of the reader.

2.1 RAM Model

Notation for RAM Computation. Before we describe garbled RAM, let us fix a notation for describing
standard RAM computation. We will consider a program P that has random-access to a memory of size n
which may initially contain some data D ∈ {0, 1}n. In addition, the program gets a “short” input x, which
we can alternatively think of as the initial state of the program. In general, the distinction between what
to include in the program P , the memory data D and the short input x can be somewhat arbitrary. We
use the notation PD(x) to denote the execution of such program. The program can read/write to various
locations in memory throughout the execution. We will also consider the case where several different
programs are executed sequentially and the memory persists between executions. We denote this process
as (y1, . . . , y`) = (P1(x1), . . . , P`(x`))D to indicate that first PD1 (x1) is executed, resulting in some memory
contents D1 and output y1, then PD1

2 (x2) is executed resulting in some memory contents D2 and output y2

etc. As a useful example to keep in mind throughout this work, imagine that D is a huge database and the
programs Pi are database queries that can read and possibly write to the database and are parameterized
by some values xi.

CPU-Step Circuit. A useful representation of a RAM program P is through a small CPU-Step Circuit
which executes a single CPU step:

CPCPU(state, bread) = (state′, iread, iwrite, bwrite)

4

This circuit takes as input the current CPU state and a bit bread residing in the the last read memory
location. It outputs an updated state′, the next location to read iread ∈ [n], a location to write to
iwrite ∈ [n] ∪ {⊥} (where ⊥ values are ignored), a bit bwrite to write into that location.

The computation PD(x) starts in the initial state state1 = x, corresponding to the “short input” and
by convention we will set the initial read bit to bread1 := 0. In each step j, the computation proceeds by
running CPCPU(statej , breadj) = (statej+1, i

read, iwrite, bwrite). We first read the requested location iread by
setting breadj+1 := D[iread] and, if iwrite 6= ⊥, we write to the location by setting D[iwrite] := bwrite. The value
y = state output by the last CPU step serves as the output of the computation.

We say that a program P has read-only memory access, if it never overwrites any values in memory.
In particular, using the above notation, the outputs of CPCPU always set iwrite = ⊥.

2.2 Garbled Circuits

Garbled circuits was first suggested by Yao [22] and subsequently proven secure by Lindell and Pinkas [14].
We review the concept of garbled circuits and refer the reader to the work of Bellare et al. [3] for a thorough
treatment of garbling schemes. We continue with the notation of Part I and work with a projective circuit
garbling scheme which is a tuple of PPT algorithms (GCircuit,Eval). Since the scheme is projective, it is
helpful to think of individual wire labels for the input so that wire w of the circuit is associated with two
labels lblw0 , lblw1 corresponding to the bit-values 0, 1. Finally, since one can apply a generic transformation
(see, e.g. [1]) to blind the output, we allow output wires to also have arbitrary labels associated with them.
We take the following definitions and notation from Part I:

• (C̃, { (j, b, lblinput,j
b) }) ← GCircuit(1κ, C, { (i, b, lbloutput,i

b) }): Given a circuit C with input size
vinput and output size voutput, and a set of output labels lbloutput,i

b for all output wires i ∈ [voutput] and
b ∈ {0, 1}, outputs a garbled circuit C̃ and a set of input labels lblinput,j

b for every input wire j ∈ [vinput]
and b ∈ {0, 1}.

• (lbloutput,1, . . . , lbloutput,voutput) = Eval(C̃, (lblinput,1, . . . , lblinput,vinput)): Given a garbled circuit C̃ and a
sequence of input labels lblinput,j , outputs a sequence of output labels lbloutput,i. Intuitively, if the
input labels correspond to some input x ∈ {0, 1}vinput then the output labels should correspond to
y = C(x).

Correctness. For correctness, we require that for any circuit C and any input x ∈ {0, 1}vinput , x =
(x[1], . . . , x[vinput]) such that y = (y[1], . . . , y[voutput]) = C(x) and any set of output labels { (i, b, lbloutput,i

b) }
we have

Pr
[

Eval(C̃, (lblinput,1
x[1] , . . . , lbl

input,vinput

x[vinput]
)) = (lbloutput,1

y[1] , . . . , lbl
output,voutput

y[voutput]
)
]

= 1.

where (C̃, { (j, b, lblinput,j
b) })← GCircuit(C, { (i, b, lbloutput,i

b) }).

Security. For security, we require that there is a PPT simulator Sim such that for any C, x, { (i, b, lbloutput,i
b) }

as above, we have

(C̃ , lblinput,1
x[1] , . . . , lbl

input,vinput

x[vinput]
)

comp
≈ Sim(1κ, C , lbloutput,1

y[1] , . . . , lbl
output,voutput

y[voutput]
)

where (C̃, { (j, b, lblinput,j
b) })← GCircuit(C, { (i, b, lbloutput,i

b) }), y = C(x).

2.3 Goldreich-Goldwasser-Micali Pseudorandom Function

We review the GGM [8] PRF construction and make an observation that will be useful for us later on. Let
G be a PRG that stretches from λ bits to 2λ bits, and we can write G0 to denote the left half of the output

5

and G1 to denote the right half. We can write G00 to denote G0 ◦ G0, and similarly for G01, G10, G11.
Indeed for any bitstring x, we can write Gx to denote repeatedly going left/right using x as the indicator.

Then the GGM construction of a PRF F from G is as follows. Suppose k is the seed of the PRF, then
Fk(x) is defined to be Gx(k). This can be viewed as evaluating G on the “root” of a tree consisting of k,
and each bit of the input x defines whether to go left or right on the tree. The security property is that
any PPT algorithm A given oracle access to Fk(·) should behave as if it were interacting with a random
oracle R(·): ∣∣∣Pr[AFk(·)(1λ) = 1; k ← {0, 1}λ]− Pr[AR(·)(1λ) = 1]

∣∣∣ < ε

with ε being negligible.

2.4 Garbled RAM

We will right-away consider a scenario where the memory data D is garbled once and then many different
garbled programs can be executed sequentially with the memory changes persisting from one execution to
the next. We stress that each garbled program P̃i can only be executed on a single garbled input x̃i. In
other words, although the garbled data is reusable and allows for the execution of many programs, the
garbled programs are not reusable. The programs can only be executed in the specified order and are
not “interchangeable”. Therefore, they cannot be garbled completely independently. In our case, we will
assume that the garbling procedure of each program Pi gets tinit which is the total number of CPU steps
executed so far by P1, . . . , Pi−1 and tcur which is the number of CPU steps to be executed by Pi.

Syntax & Efficiency. A garbled RAM scheme consists of four procedures: (GData, GProg, GInput,
GEval) with the following syntax:

• D̃ ← GData(D, k) : Takes memory data D ∈ {0, 1}n and a key k. Outputs the garbled data D̃.

• (P̃ , kinput) ← GProg(P, k, n, tinit, tcur) : Takes a key k and a description of a RAM program P with
memory-size n and run-time consisting of tcur CPU steps. In the case of garbling multiple programs,
we also provide tinit indicating the cumulative number of CPU steps executed by all of the previous
programs. Outputs a garbled program P̃ and an input-garbling-key kinput.

• x̃← GInput(x, kinput): Takes an input x and input-garbling-key kinput and outputs a garbled-input x̃.

• y = GEvalD̃(P̃ , x̃): Takes a garbled program P̃ , garbled input x̃ and garbled memory data D̃ and
computes the output y = PD(x). We model GEval itself as a RAM program that can read and write
to arbitrary locations of its memory initially containing D̃.

For efficiency, we require that the run-time of GProg, and GEval is |CPCPU| · tcur ·poly(κ) ·polylog(n), which
also serves as the bound on the size of the garbled program P̃ . Moreover, we require that the run-time of
GData should be n · poly(κ), which also serves as an upper bound on the size of D̃.

Correctness & Security. To define the correctness and security requirements of garbled RAMs, let
P1, . . . , P` be any sequence of programs with polynomially-bounded run-times t1, . . . , t`. Let D ∈ {0, 1}n
be any initial memory data, let x1, . . . , x` be inputs and (y1, . . . , y`) = (P1(x1), . . . , P`(x`))D be the outputs
given by the sequential execution of the programs.

Consider the following experiment: choose a key k ← {0, 1}κ, D̃ ← GData(D, k) and for i = 1, . . . , `:

(P̃i, k
input
i)← GProg

(
Pi, n, t

init
i , ti, k

)
, x̃i ← GInput(xi, k

input
i)

where tiniti :=
∑i−1

j=1 ti denotes the run-time of all programs prior to Pi. Let

(y′1, . . . , y
′
`) = (GEval(P̃1, x̃1), . . . ,GEval(P̃`, x̃`))D̃,

denotes the output of evaluating the garbled programs sequentially over the garbled memory.
We require that the following properties hold:

6

• Correctness: We require that Pr[y′1 = y1, . . . , y
′
` = y`] = 1 in the above experiment.

• Security: we require that there exists a universal simulator Sim such that:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, n).

Our security definition is non-adaptive: the data/programs/inputs are all chosen ahead of time. This
makes our definitions/analysis simpler and also matches the standard definitions for our building blocks
such as ORAM. However, there does not seem to be any inherent hurdle to allowing each subsequent
program/input (Pi, xi) to be chosen adaptively after seeing D̃, (P̃1, x̃1), . . . , (P̃i−1, x̃i−1).

Security with Unprotected Memory Access (UMA). We also consider a weaker security no-
tion, which we call security with unprotected memory access (UMA). In this variant, the attacker may
learn the initial contents of the memory D, as well as the complete memory-access pattern throughout
the computation including the locations being read/written and their contents. In particular, we let
MemAccess = {(ireadj , iwrite

j , bwrite
j) : j = 1, . . . , t} correspond to the outputs of the CPU-step circuits during

the execution of PD(x). For security with unprotected memory access, we give the simulator the additional
values (D,MemAccess). Using the notation from above, we require:

(D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`)
comp
≈ Sim(1κ, {Pi, ti, yi}`i=1, D,MemAccess, n).

2.5 Review of the Lu-Ostrovsky Construction

A thorough review and intuition of the candidate construction of [16] is given in Part I. Here, we restate
the relevant technical details which will be used in our new construction. This construction is for GRAM
with UMA-security on programs with so-called “predictably timed writes” which we define below.

Predictably Timed Writes. As a first step, we describe how to incorporate a limited form of writing
to memory, which we call predictably timed writes (ptWrites). On a high level, this means that whenever
we want to read some location i in memory, it is easy to figure out the time (i.e., CPU step) j in which
that location was last written to, given only the current state of the computation and without reading any
other values in memory. We will later describe how to upgrade a solution for ptWrites to one that allows
arbitrary writes. We give a formal definition of ptWrites below:

Definition 2.1 (Predictably Timed Writes (ptWrites)). A program execution PD(x) has predictably
timed writes (ptWrites) if there exists a poly-size circuit WriteTime such that the following holds for
every CPU step j = 1, . . . , t. Let the inputs/outputs of the jth CPU step be CPCPU(statej , breadj) =
(statej+1, i

read
j , iwrite

j , bwrite
j). Then, u = WriteTime(j, statej , ireadj) is the largest value of u < j such that

the CPU step u wrote to location ireadj ; i.e., iwrite
u = ireadj . We also define a ptWrites property for a sequence

of program executions (P1(x1), . . . , P`(x`))D if the above property holds for each CPU step in the sequence.

Garbled Data. The garbled data D̃ consists of n secret keys for some symmetric-key encryption scheme.
For each bit i ∈ [n] of the original data D, the garbled data D̃ contains a secret key ski. The secret keys are
chosen pseudo-randomly using a pseudo-random function (PRF) family Fk via ski = Fk(u, i,D[i]) (where
u is the last CPU step in which it was written). Initially u = 0, so given k, there are two possible values
sk(i,0) = Fk(0, i, 0) and sk(i,1) = Fk(0, i, 1) that can initially reside in D̃[i] depending on the bit D[i] of the
original data, and we set D̃[i] = sk(i,D[i]).

7

Garbled Program (Technical). We define an augmented CPU-step circuit CP
CPU+ which gets as input

(state, bread) and outputs (state′, iread, iwrite, skwrite, translate). It contains some hard-coded parameters
(j, k, r0, r1, lbl

(read)
0 , lbl

(read)
1), where j is the current step, and performs the following computation:

• (state′, iread, iwrite, bwrite) = CPCPU(state, bread) are the outputs of the basic CPU-step circuit.

• translate = (ct0, ct1) consists of two ciphertexts, computed as follows. For b ∈ {0, 1}, first compute
sk(i,b) := Fk(u, i, b) for i = iread, where u←WriteTime. Then set cb = Encsk(i,b)

(lbl
(read)
b ; rb) where Enc

is a symmetric key encryption and rb is the encryption randomness.

• If iwrite 6= ⊥, set skwrite = Fk(j, iwrite, bwrite.

The garbled program P̃ consists of t garbled copies of this augmented CPU-step circuit C̃P
CPU+(j). We start

garbling from the end j = t. Each garbled circuit C̃P
CPU+(j) outputs the values iread, translate in the clear

and the updated state′ is garbled with the same labels as the input state in the next circuit C̃P
CPU+(j+1);

the last circuit outputs state′ in the clear as the output of the computation. Each garbled circuit C̃P
CPU+(j)

contains hard-coded values (j, k, r(j)0 , r
(j)
1 , lbl

(read,j+1)
0 , lbl

(read,j+1)
1) which are used to compute the translation

mapping translate as described above. The key k is the PRF key which was used to garbled the memory
data. The values r(j)0 , r

(j)
1 are fresh encryption random coins, and lbl

(read,j+1)
0 , lbl

(read,j+1)
1 are the labels of

the input-wire for the bit bread in the garbled circuit C̃P
CPU+(j + 1).

Garbled Input & Evaluation. The garbled input x̃ consists of the wire-labels for the value state1 = x
for the garbled circuit C̃P

CPU+(j = 1). The evaluator simply evaluates the garbled augmented CPU-step
circuits one by one starting from j = 1. It can evaluate the first circuit using only x̃, and gets out a garbled
output state2 along with the values (iread, translate = (c0, c1)) in the clear. The evaluator looks up the
secret key sk := D̃[iread] and attempts to use it to decrypt c0 and c1 to recover a label lbl(read,j=2). In case
of a write operation, it writes the new skwrite to the indicated location. The evaluator then evaluates the
second garbled circuit C̃P

CPU+(j = 2) using the garbled input state2 and the wire-label lbl(read,j=2) for the
wire corresponding to the bit bread. This process continues until the last circuit j = t which outputs state′

in the clear as the output of the computation.

Circularity in the Security Analysis. There is a complex circularity as seen below:

1. In order to argue that the evaluator does not learn anything about the “other” label lblread1 , we need
to rely on the security of the ciphertext ct1.

2. In order to rely on the security of the ciphertext ct1 we need to argue that the attacker does not
learn the decryption key sk(i,1) = Fk(i, 1), which requires us to argue that the attacker does not learn
the PRF key k. However, the PRF key k is contained as a hard-coded value of the second garbled
circuit C̃P

CPU+(j = 2) and all future circuits as well. Therefore, to argue that the attacker does not
learn k we need to (at the very least) rely on the security of the second garbled circuit.

3. In order to use the security of the second garbled circuit C̃P
CPU+(j = 2), we need to argue that the

evaluator only gets one label per wire, and in particular, we need to argue the the evaluator does not
have the “other” label lblread1 . But this is what we wanted to prove in the first place!

For the rest of this paper, we will show how to circumvent this issue while still using only the minimal
assumption of the existence of one-way functions.

3 Warm-up Read-only Construction

The main problem that arises in the circularity is that there is only one PRF key, and that this key when
embedded in any future time step is able to decode anything the circuit does in the current time step. The

8

intuitive way to circumvent this is to iteratively weaken the PRF key. In order to do so, we introduce the
following notion of revocable PRFs.

3.1 revocable PRFs

We define the notion of (adaptively) revocable PRFs and we explain how it differs from existing notions
such as [4, 5, 13, 21]. The idea is that we can revoke values from the key so that the PRF cannot be
evaluated on these values, and given an already-revoked key, one can further revoke new values.

Definition 3.1. A revocable PRF is a PRF F equipped with an additional revoke algorithm Rev. Given
any key kX , where X is the set of revoked values (with X = ∅ if k is a fresh key), kY ← Rev(kX , Y) is a
new revoked key relative to the set of values Y ⊃ X satisfying the following properties:

Correctness: FkY
(x) = FkX

(x) for all x /∈ Y , and ⊥ otherwise.

Pseudorandomness: Given any set of keys {kY1 , . . . , kYm}, Fk(x) is pseudorandom for all x /∈
⋂
i Yi.

Note that this definition appears similar to constrained PRFs [4]; however, we do not require that the
revoked set to be hidden in any way, and we allow for keys to be adaptively revoked further after the initial
fresh key has been operated on. Despite these differences, the concrete GGM-based instantiation that we
use is congruent to existing works, and we remind the reader of how it goes.

We start with the simple case of removing a single value x from the domain of Fk. Suppose we write x =
x0x1 . . . as the bits of x. Instead of giving out k, we can give out the set of values G1−x0(k), Gx0||1−x1(k), . . .,
which can be viewed as the siblings of all the nodes in the path from the root to the leaf x in the GGM
tree. Note that any value y 6= x can still be evaluated by this key since we have the root of the subtree
corresponding to the first bit on which x and y differ.

Let X = {x1, x2, . . . , xs} be a set of s distinct values that we want to “revoke” from this PRF. We
can produce a new key kX relative to the set X that contains at most s · |x| values (corresponding to the
values on the vertices of the minimal tree cover of the set {0, 1}|x| \X). Furthermore, if we are given kX
and Y ⊃ X, we can apply another revocation to this key to get the new key kY by removing the roots of
subtrees powerful enough to compute y ∈ Y , but adding in the siblings of the subtrees on paths to y.

3.2 Garbling a Read-Only, Read-Once Program

We begin with a warmup construction that gives intuition as to how our full solution works. Consider a
RAM program that is read-only, and it only reads each memory location at most once. Then for each
CPU step, after we publish the translation table translate, the augmented CPU revokes the two values
corresponding exactly to that table, namely {(u, i, 0), (u, i, 1)} where i is the memory location to be read
(and since this is read-only, u is always 0). Indeed, let F be a revocable PRF, and let (GCircuit,CircEval)
be a projective circuit garbling scheme. Let k be the master PRF key that we choose upon initiation.

Garbled Data. The garbled data D̃ is an array of secret keys, which are just outputs of F as we will
describe.

• D̃ ← GData(D, k): For each i ∈ [n], set D̃[i] := sk where sk = Fk(0, i,D[i]).

Garbled Program. We describe the augmented-CPU-step circuit CP
CPU+ for the program P in Figure 1.

The garbled RAM program for P will consist of t copies of a garbled augmented-CPU-Step circuit
C̃P

CPU+(j). As before, the labels for the output wires in each circuit are chosen carefully so that some wire
values are revealed in the clear while others remain garbled for the next circuit.

9

Input: (state, bread, X, kX) Output: (state′, iread, translate, X ′, kX′)
Hard-Coded Parameters: j, lblread0 , lblread1 ,

The circuit CP
CPU+ performs the following computation:

• (state′, iread) := CPCPU(state, bread) are the outputs of the basic CPU-step circuit.

• Set u := 0. For b ∈ {0, 1}, compute ctb := Fk(u, iread, b) ⊕ lblreadb . Revoke/puncture (u, iread, 0) and
(u, iread, 1) from kX and insert them into X to obtain kX′ and X ′ respectively. Set translate := (ct0, ct1).

Figure 1: The Augmented CPU-Step Circuit

• (P̃ , kinput) ← GProg(P, k, n, tinit, tcur): Let tmax := tinit + tcur. We let j count down from j = tmax to
tinit + 1. For each j, we garble CP

CPU+ by calling C̃P
CPU+(j) ← GCircuit(1κ, CP

CPU+ , lbl) where the output
labels lbl are chosen as follows:

- The outputs iread, translate, X ′ are given out in the clear (in fact, X ′ can be inferred simply from the
access pattern). For the last circuit j = tmax, we do not provide these outputs, but instead provide
the output state′ in the clear and this serves as the output of the computation. This completely
fixes all of the output-wire labels for that circuit.

- For j 6= tmax, the labels of the output wires corresponding to state′, k′, X ′ are set to match the
labels of the input wires corresponding to state, k,X in circuit C̃P

CPU+(j + 1).

- For the initial circuit j = tinit + 1, we also hard-code the input bit bread to 0, and hard-code k to be
the master PRF key k, and X to be the empty set.

For j 6= tmax, let lbl
(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of input wire for the bit bread in the (j+ 1)st garbled

circuit. The jth garbled circuit contains the hard-coded secret values:

(j, lbl
(read,j+1)
0 , lbl

(read,j+1)
1).

Set P̃ :=
[
C̃P

CPU+(tinit + 1), . . . , C̃P
CPU+(tmax)

]
, and set kinput := {(i, b, lblinput,i

b) : i ∈ [v], b ∈ {0, 1}} to
consist of all of the input-wire labels for the v input wires corresponding to the input in the initial circuit
C̃P

CPU+(tinit + 1).

Garbled Input. Finally, the garbled input x̃ is created the same way as in garbled circuits. It simply
consists of the subset of labels of kinput := {(i, b, lblinput,i

b) : i ∈ [v], b ∈ {0, 1}} corresponding to the bits of
x.

• x̃ ← GInput(x, kinput): Parse kinput := {(i, b, lblinput,i
b) : i ∈ [v], b ∈ {0, 1}} and output x̃ =

(lblinput,1
x[1] , . . . lblinput,v

x[v]) where x[i] denotes the ith bit of x and v := |x|.

Evaluation. To run y = GEvalD̃(P̃ , x̃): parse P̃ =
[
C̃P

CPU+(1), . . . , C̃P
CPU+(t)

]
as consisting of t garbled

circuits. The evaluator evaluates the circuits one-by-one. Set x̃1 := x̃. For j = 1, . . . , t:

• When j = 1, run CircEval(C̃P
CPU+(1), x̃1) else run CircEval(C̃P

CPU+(j), (x̃j , lblread,j , k̃, X̃)) where x̃j

consists of labels for the garbled statej , k̃ consists of labels for the garbled k, and X̃ consists of
labels for the garbled X, and lblread,j is a label for the read-bit in the jth CPU circuit. This reveals
the outputs
ireadj , translatej , X

′ in the clear. For j < t it also reveals the garbled output corresponding to the
labels of kX′ and statej+1 for circuit j + 1. For j = t it reveals the output of the computation
y = statet+1 in the clear.

10

• Look up sk = D̃[ireadj] and decrypt the corresponding row in translatej to obtain lblread,j+1.

Theorem 3.2 (Read-only Warmup to Main Theorem). Assume F is a revocable PRF, concretely the
revocable GGM-PRF, and suppose that (GCircuit,CircEval) be a projective circuit garbling scheme with wire
labels with security parameter κ (both of which can be constructed from any one-way function). Then the
warm-up RAM construction above is a read-only, read-once GRAM satisfying UMA-security. Furthermore
the space overhead of the garbled memory is poly(κ), and the space overhead of the garbled CPU steps, and
the running time overhead are poly(κ)polylog(n) · t where t is the running time.

Proof Sketch.
The overhead of the garbled memory is obviously the size of the outputs of the PRF which is poly(κ).

However, because each revocation increases the size of the key by a factor of log n, after t steps the size of
this key will be t log n.

We provide a sketch at a very high level to provide the intuition for the rest of our construction. This
intuition will be used for our full construction, and parallels the intuition for the alternative scheme found
in Part I [6]. Since we are dealing with UMA-security, the simulator is allowed to get both the contents of
memory and the access pattern, the simulator can pick its own master PRF key k and almost generate an
honest transcript by using the underlying garbled circuit simulator for every step. The only real difficulty
is in simulating the translation table, which in a real execution contains the wire labels for both zero and
one for the next CPU step. Since a simulated garbled circuit will only return one wire label, we must set
that to be the one corresponding to the bit we want, and the other one must be fabricated. Indeed, the
simulator sets this other dummy key to be all zeroes in the simulated execution.

Then in order to prove security, we set up a series of hybrids Hybj , where in hybrid j, garbled circuits
1, . . . , j are created as in the simulation and garbled circuits j + 1, . . . , tmax are created as in the real
distribution. We then have a series of companion hybrids Hyb′j , where in Hyb′j the wire label unused row
in the translation table is set to the correct label instead of all zeroes as in the simulation.

The proof then proceeds as follows. Hybj
comp
≈ Hyb′j+1 directly due to the security of garbled circuits.

In order to show Hybj
comp
≈ Hyb′j , we rely on the security of revocable PRFs. Any distinguisher A can

be used to construct a pseudorandomness breaker A′ for F : since Hybj can be generated using only a
revoked key, A′ invoke the PRF oracle to populate the entries of D̃ that have been revoked and plant the
PRF challenge in the revoked, unused row of the translation table in CPU step j. If the PRF challenge
was purely random, the two distributions are identical, and if it were pseudorandom, the two distributions
are as in the hybrid, thus A′ conveys any advantage A has.

4 GRAM With Reading and Writing From OWF

Notice that our scheme is not only read-only, it is read-once. This is due to the fact that once an element
has been read, it gets revoked, so no future time step could ever generate a valid symmetric-key encryption
for that entry in memory again. A tantalizing solution to this problem is to use a key mechanism that
allows the CPU to encrypt but not decrypt something, i.e. a public-key encryption scheme. The two main
issues are that 1) there is a black-box separation between OWFs and basic public-key encryption, and 2)
the public key needs to be compact and yet be able to encrypt to many possible secret keys. If we insist
on assuming only OWFs, it seems that 1) is difficult to overcome, however there is a beautiful resolution
using identity-based encryption for issue 2 in the companion work of Part I [6].

We resolve this issue of reading multiple times via repetition. By maintaining p copies of the database,
we can read from any location up to p times. If we restrict ourselves to RAM programs that are read-only
and read-p, we can now obtain GRAM with the overhead of another p. Note that this seems like a strong
restriction, but when we include RAM writing, we can relax the restriction to reading at most p times
between writes to a location. We can trivially relax this condition by overwriting a location after it has

11

been read p times. We define the following notion of bounded reads for RAM programs (with read and
write).

Bounded Reads. We impose another restriction on the number of read instructions that can be per-
formed on a given location before a new value is written to that location. We say that a program has
p-bounded reads (p-bdReads) if no location is read more than p times before it is overwritten. Formally:

Definition 4.1 (p-Bounded Reads (p-bdReads)). A program execution PD(x) has p-Bounded Reads (p-
bdReads) if the following holds for each location i ∈ [n]. For any set of p+ 1 CPU instructions j1 < . . . <
jp+1, let the inputs/outputs of the j-th CPU step be CPCPU(statej , breadj) = (statej+1, i

read
j , iwrite

j , bwrite
j). If

ireadj`
= i for all ` = 1, . . . , p + 1 then there must exist a CPU instruction j? (not necessarily equal to any

j`) with j1 ≤ j? < jp+1 such that iwrite
j? = i. Similarly, we define a p-bdReads property for a sequence of

program executions (P1(x1), . . . , P`(x`))D if the above property holds across all the conjoined CPU steps in
the sequence.

In order to enable writing, we again rely on the ptWrites restriction on RAM. Whenever we want to
write a bit b to a location i at time j, we simply write F evaluated on (j, i, b) under p different keys to D̃.
Whenever we want to read from some location i, we discover the time u in which it was last written to,
and proceed as before.

4.1 Overview of Construction

We describe at a high level how to construct a garbled RAM scheme for programs with ptWrites and
p-bdReads that satisfies UMA security. As in the read-only warmup construction, in order to break the
circularity, we must weaken the PRF key so the unopened entry in the translation table computationally
hides the information of the unopened wire label. To do this, instead of using any arbitrary PRF, we use
the above revocable GGM-PRF that allows us to adaptively constrain the PRF.

The main idea is that we maintain a “key schedule” K that is fed as garbled input to each garbled
augmented CPU step, which then processes it and outputs an updated garbled K′. This key schedule is
an array of p (possibly with different revocation sets) PRF keys. Each entry of the key schedule has a
revocation set X associated with it that is known in the clear (we omit writing this X every time for each
key, and implicitly allow a key kX to reveal X).

Whenever the j-th CPU step wants to issue a read from a location i which was last written to in
step u and this is the α-th read to that location since u, then it picks the key K[α]X , since we know
(u, i, 0), (u, i, 1) /∈ X. This is the key by which it will output (among other things) translate, and it
updates K to K′ by updating K[α]X to K[α]X′ by puncturing (u, i, 0) and (u, i, 1) from the key (so X ′ =
X ∪ {(u, i, 0), (u, i, 1)}). This is where we avoid the circularity: the translation table can only be decoded
by this key, but this key will have the critical values punctured, so all future keys in the key schedule still
computationally hide the table. Since there are p values in K, a location can be read up to p times before
it is overwritten.

Whenever the j-th CPU step wants to write a bit b to a location i, it computes Fk(j, i, b) for every
k = K[1], . . . ,K[p]. Since j is brand new, these values could not have possibly been revoked.

4.2 Detailed Construction

We now give the detailed construction of our GRAM scheme under any one-way function for programs with
ptWrites and p-bdReads satisfying UMA (unprotected memory access) security for multi-program execution
with persistent memory. Let F be the revocable GGM-PRF described above, which can be based on any
one-way function, and let K be the keyspace for F . Let (GCircuit,CircEval) be a projective circuit garbling
scheme with wire labels. The master key will be the fresh key schedule K[1] ← K, . . . ,K[p] ← K. We
also keep an array of sets corresponding to revoked values X[1], . . . , X[p] (implicitly), and we write K[`]X

12

whenever we want to alert the reader that this is not necessarily a fresh PRF key. One minor drawback is
that these sets X need to be carried across program boundaries in the case of multiple program executions
in order to ensure we do not run into circularity.

Garbled Data. The garbled data D̃ is a n × p matrix of “secret keys”, which are just outputs of F as
we will describe. We have a fresh key schedule, K, an array of p PRF keys as our master secret.

• D̃ ← GData(D,K): For each i ∈ [n], j ∈ [p] set D̃[i, j] := sk where sk = FK[j](0, i,D[i]).

Garbled Program. We describe the augmented-CPU-step circuit CP
CPU+ for the program P in Figure 2.

The garbled RAM program for P will consist of t copies of a garbled augmented-CPU-Step circuit

Input: (state, bread,Kinput) Output: (state′, iread, iwrite, {skwrite,1, . . . , skwrite,p}, translate,Koutput)
Hard-Coded Parameters: j, lblread0 , lblread1

The circuit CP
CPU+ performs the following computation:

• (state′, iread, iwrite, bwrite) := CPCPU(state, bread) are the outputs of the basic CPU-step circuit.

• If iwrite = ⊥ then set skwrite,` := ⊥ for ` = 1, . . . , p. Else set skwrite,` := FKinput[`]X (j, iwrite, bwrite).

• Compute u := WriteTime(j, state, iread). Find the entry α of K for which (u, iread, 0), (u, iread, 1) /∈ X[α]
(not revoked), which we will call k? = Kinput[α]X . For b ∈ {0, 1}, compute ctb := Fk?(u, iread, b) ⊕ lblreadb .
Set translate := (ct0, ct1). Update Koutput = Kinput except revoke the values (u, iread, 0), (u, iread, 1) from
Kinput[α]X , resulting in X[α] := X[α] ∪ {(u, iread, 0), (u, iread, 1)}.

Figure 2: The Augmented CPU-Step Circuit

C̃P
CPU+(j). As before, the labels for the output wires in each circuit are chosen carefully so that some wire

values are revealed in the clear while others remain garbled for the next circuit.

• (P̃ , kinput) ← GProg(P,K, n, tinit, tcur): Let tmax := tinit + tcur. We let j count down from j = tmax to
tinit + 1. For each j, we garble CP

CPU+ by calling C̃P
CPU+(j) ← GCircuit(1κ, CP

CPU+ , lbl) where the output
labels lbl are chosen as follows:

- The outputs iread, iwrite, skwrite, translate are given out in the clear. For the last circuit j = tmax, we
do not provide these outputs, but instead provide the output state′ in the clear and this serves as
the output of the computation. This completely fixes all of the output-wire labels for that circuit.

- For j 6= tmax, the labels of the output wires corresponding to state′ are set to match the labels of
the input wires corresponding to state in circuit C̃P

CPU+(j + 1).

- For the initial circuit j = tinit + 1, we also hard-code the input bit bread to 0, and Kinput = K but with
the appropriate “carried over” X values revoked.

For j 6= tmax, let lbl
(read,j+1)
0 , lbl

(read,j+1)
1 be the labels of input wire for the bit bread in the (j+ 1)st garbled

circuit. The jth garbled circuit contains the hard-coded secret values:

(j, lbl
(read,j+1)
0 , lbl

(read,j+1)
1).

Set P̃ :=
[
C̃P

CPU+(tinit + 1), . . . , C̃P
CPU+(tmax)

]
, and set kinput := {(i, b, lblinput,i

b) : i ∈ [v], b ∈ {0, 1}} to
consist of all of the input-wire labels for the v input wires corresponding to the input state in the initial
circuit C̃P

CPU+(tinit + 1).

13

Garbled Input. Finally, the garbled input x̃ is created the same way as in garbled circuits. It simply
consists of the subset of labels of kinput := {(i, b, lblinput,i

b) : i ∈ [v], b ∈ {0, 1}} corresponding to the bits of
x.

• x̃ ← GInput(x,K, kinput): Parse kinput := {(i, b, lblinput,i
b) : i ∈ [v], b ∈ {0, 1}} and output x̃ =

(lblinput,1
x[1] , . . . lblinput,v

x[v]) where x[i] denotes the ith bit of x and v := |x|.

Evaluation. To run y = GEvalD̃(P̃ , x̃): parse P̃ =
[
C̃P

CPU+(1), . . . , C̃P
CPU+(t)

]
as consisting of t garbled

circuits. The evaluator evaluates the circuits one-by-one. Set x̃1 := x̃. For j = 1, . . . , t:

• When j = 1, run CircEval(C̃P
CPU+(1), x̃1) else run CircEval(C̃P

CPU+(j), (x̃j , K̃j , lblread,j)) where x̃j con-
sists of labels for the garbled statej , K̃j consists of labels for the garbled Kj , and lblread,j is a label
for the read-bit in the jth CPU circuit. This reveals the outputs
ireadj , iwrite

j , {skwrite,1
j , . . . , skwrite,p

j }, translatej = (ct(j)0 , ct
(j)
1) in the clear. For j < t it also reveals the

garbled output x̃j+1 and K̃j+1 corresponding to the labels of statej+1 for circuit j + 1. For j = t it
reveals the output of the computation y = statet+1 in the clear.
• For ` = 1, . . . , p, look up skread, `j = D̃[ireadj , `]. WLOG we can efficiently tell when we have a valid

wire label, so we try all 2p possibilities: there is some unique `? ∈ [p] and b? ∈ {0, 1}, such that
skread,`?

j ⊕ (ct(j)b?) is a valid label, which we will call lblread,j+1.

• If iwrite
j 6= ⊥, update the row D̃[iwrite

j] := {skwrite,1
j , . . . , skwrite,p

j }.

4.3 Proof of Security

We now state a technical theorem.

Theorem 4.2. Given any OWF and a secure projective circuit garbling scheme (which can be built from
the OWF), the above construction is a UMA (unprotected memory access) secure garbled RAM scheme
for all program executions with ptWrites and p-bdReads. Furthermore, it is also secure in the setting of
multi-program execution with persistent memory. If p is O(polylog(n)), the garbled memory size is Õ(n),
the garbled program size is Õ(t2), and running time of evaluating the garbled program is Õ(t2) where Õ
denotes big-O up to poly(κ)polylog(n) terms.

The full proof appears in Appendix A.

5 Recursive Construction

In the previous section, we showed how to achieve a garbled data size of Õ(n), a garbled program size of
Õ(t2) (again observing that there are t CPU steps, and K can grow to size Õ(t)) and online running time
of Õ(t2) where Õ denotes big-O up to poly(κ)polylog(n) terms. In this section, we describe a way to use a
recursive construction that gives an garbled program size of size of Õ(t · nc) and running time of Õ(t · nc)
where c is a constant depending on the security parameter as we describe below.

We consider a balancing technique to further lower the overhead: observe that we can re-encode
everything under new PRF keys more frequently if we do not want to wait t steps and let the keys K
grow to size t log n. Suppose, for example, after

√
n steps we overwrite the entire contents of memory with

a single big “refresh” garbled circuit with fresh PRF keys. This ensures that each CPU step is no larger
than Õ(

√
n), but now we incur an extra Õ(n)-sized circuit every

√
n steps, a total of t/

√
n such refreshes

across the full execution. Thus, the total size of the garbled program we calculate as follows: there are t
CPU steps, each of size at most Õ(

√
n), and we incur also an additional Õ(t/

√
n) refresh steps, each of

size Õ(n), giving a total of Õ(t
√
n).

14

Pretend we have a CPU of size f(n), then we only need a refresh of size n every f(n) steps, but we
also need to simulate this large CPU with a smaller CPU. In order to do so, we must emulate the CPU
as a RAM program. We can simply convert the circuit into a RAM program generically, and then apply
ORAM to guarantee the properties we need: ptWrites and polylog(n)-bdReads, which incurs a poly-log
overhead. We can then simulate this CPU using our GRAM construction. This simulation loses a factor of
poly(κ)polylog(n) so it needs to be carefully balanced against the CPU size f . If C(n) denotes the average
cost per CPU step, then we have a recurrence relation

C(n) =
n

f(n)
+ poly(κ)polylog(n) · C(f(n)).

The left summand is for the the average running time for the refresh steps, and the right summand
is average running time of emulating an ordinary CPU step with a smaller GRAM of size f(n). In
the case where κ is polylog(n) (for exponential size RAM), this can be solved can be solved by setting
C(n) = 2

√
2 logn log poly(κ)polylog(n) and f appropriately. Thus the amortized overhead is less than nc for any

c > 0. On the other hand, if κ is polynomially related to n, then suppose poly(κ)polylog(n) is O(nd), then
we solve the recurrence by setting f to be 2na and C(n) to be nε as follows:

nε =
n

2na
+ nd · (2n)εa

which we balance as

nε/2 =
n

2na

and nε/2 = nd · (2n)εa

Which is then solved as a = 1−ε and d = ε2+ ε2−ε−1
logn . By appropriately choosing the security parameter,

ε can be made arbitrarily small. We therefore obtain the following theorem.

Theorem 5.1. Given any OWF and a secure projective circuit garbling scheme (which can be built from
the OWF), the above construction is a UMA (unprotected memory access) secure garbled RAM scheme
for all program executions with ptWrites and p-bdReads. Furthermore, it is also secure in the setting of
multi-program execution with persistent memory. If p is O(polylog(n)), the garbled data size is Õ(n), the
garbled program size is Õ(t · nε), and running time of evaluating the garbled program is Õ(t · nε) where Õ
denotes big-O up to poly(κ)polylog(n) terms.

Combining this with the following lemma, we obtain our main theorem.

Lemma 5.2. Any garbled RAM scheme G that provides UMA security and supports programs with ptWrites
and p-bdReads (where p is polylog(n)) can be extended to a scheme G′ with full security supporting arbitrary
programs with at most poly(κ)polylog(n) overhead.

The proof of this lemma is of the same spirit of the security upgrade found in Part I [6]. For complete-
ness, we include the proof in Appendix B.

We then obtain our main theorem, where we balance the running time with nε.

Theorem 5.3 (Main Theorem). Given any OWF and a secure projective circuit garbling scheme (which
can be built from the OWF), there exists a garbled RAM scheme that is fully secure supporting arbitrary
programs, and also secure in the setting of multi-program execution with persistent memory. The resulting
garbled memory size is Õ(n), the garbled CPU steps size is Õ(t ·min(t, nε)), and running time of evaluating
the garbled program is Õ(t ·min(t, nε)) where Õ denotes big-O up to poly(κ)polylog(n) terms.

15

6 Conclusions and Open Problems

In this paper, we showed how to construct Garbled RAM programs from one-way functions where, ignoring
poly(κ)polylog(n) factors, the garbled memory size stays the same, and the garbled CPU size and running
time grow by a factor of min(t, nε). It remains open whether or not poly(κ)polylog(n) can be achieved just
under one-way functions.

In our construction, we note that although the program code can be compactly garbled, the CPU steps
that are needed to run the program grow with the number of steps. The recent work of Goldwasser et
al. [10] have shown how to compactly transmit a Turing Machine that can be ran on encrypted data,
though under stronger assumptions. We leave as an open problem the question of constructing a compact
Garbled RAM where the size does not grow in the number of steps executed under just one-way functions.

References

[1] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient verification
via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf
der Heide, and Paul G. Spirakis, editors, ICALP (1), volume 6198 of Lecture Notes in Computer
Science, pages 152–163. Springer, 2010.

[2] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling with applications to
one-time programs and secure outsourcing. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT,
volume 7658 of Lecture Notes in Computer Science, pages 134–153. Springer, 2012.

[3] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting Yu,
George Danezis, and Virgil D. Gligor, editors, ACM Conference on Computer and Communications
Security, pages 784–796. ACM, 2012.

[4] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT (2), volume 8270 of Lecture Notes in Computer Science,
pages 280–300. Springer, 2013.

[5] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
IACR Cryptology ePrint Archive, 2013:401, 2013.

[6] Craig Gentry, Shai Halevi, Mariana Raykova, and Daniel Wichs. Garbled ram revisited (part i).
volume 2014. To appear in EUROCRYPT 2014.

[7] Oded Goldreich. Towards a theory of software protection and simulation by oblivious rams. In
Alfred V. Aho, editor, STOC, pages 182–194. ACM, 1987.

[8] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions (extended
abstract). In FOCS, pages 464–479. IEEE Computer Society, 1984.

[9] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[10] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. How to run turing machines on encrypted data. In Ran Canetti and Juan A. Garay, editors,
CRYPTO (2), volume 8043 of Lecture Notes in Computer Science, pages 536–553. Springer, 2013.

[11] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai Zel-
dovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh, Tim Roughgar-
den, and Joan Feigenbaum, editors, STOC, pages 555–564. ACM, 2013.

16

[12] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova,
and Yevgeniy Vahlis. Secure two-party computation in sublinear (amortized) time. In CCS, 2012.

[13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, ACM Conference on Computer and Communications Security, pages 669–684. ACM, 2013.

[14] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.
J. Cryptology, 22(2):161–188, 2009.

[15] Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-party computation. In
TCC, pages 377–396, 2013.

[16] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages 719–734.
Springer, 2013.

[17] Moni Naor and Kobbi Nissim. Communication preserving protocols for secure function evaluation. In
Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, STOC, pages 590–599. ACM,
2001.

[18] Rafail Ostrovsky. Efficient computation on oblivious rams. In Harriet Ortiz, editor, STOC, pages
514–523. ACM, 1990.

[19] Rafail Ostrovsky. Software Protection and Simulation On Oblivious RAMs. PhD thesis, Massachusetts
Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1992.

[20] Rafail Ostrovsky and Victor Shoup. Private information storage (extended abstract). In Frank Thom-
son Leighton and Peter W. Shor, editors, STOC, pages 294–303. ACM, 1997.

[21] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable encryption, and
more. IACR Cryptology ePrint Archive, 2013:454, 2013.

[22] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In FOCS, pages
160–164, 1982.

A Proof of Theorem 5.3

Correctness follows from the definition. We calculate the efficiency as follows: D̃ stores n · p “keys” which
are PRF outputs. Each CPU step must be large enough to keep the key schedule which has p PRF keys,
and since each time a key gets punctured it grows by log n, after t steps the key schedule may take up
to p · t keys. Then during evaluation, the running time is as large as the space since the entire circuit is
evaluated. If p is polylog(n), then our claim follows. Now we prove security.

Let CircSim be the simulator of the circuit garbling scheme. We describe a simulator Sim for our garbled
program:

Input: Under UMA-security, Sim gets the inputs {Pa, ta, ya}`a=1, D,MemAccess = {(ireadj , iwrite
j , bwrite

j)}tmax

j=1 ,
where program Pa executes ta CPU steps and output ya, the initial memory contents are D ∈
{0, 1}n and MemAccess describes the entire memory access throughout all tmax =

∑`
a=1 ta CPU

steps executed.

Output: The simulator Sim outputs: D̃, P̃1, . . . , P̃`, x̃1, . . . , x̃`, K̃1, . . . , K̃`.

Initialization: The simulator Sim samples the master key schedule K[1]← K, . . . ,K[p]← K.

17

Garbled Data: It creates D̃ using the honest process.

Garbled Programs/Inputs: The simulator Sim processes each program a ∈ [`] separately. Let jinita =∑a−1
b=1 ta + 1 be the first CPU step executed by the program Pa and let jmaxa = jinita + ta − 1 be the

last step. The simulator starts from j = jmaxa and counts down to j = jinita . For each j:

• For the last circuit j = jmaxa , create C̃P
CPU+(j) by calling CircSim on the circuit CP

CPU+ with the
output-labels of statej+1 set to the value ya in the clear. This produces some set of input labels
for the input statej , they key schedule Kj , and the bit breadj .

• For any other j 6= jmax, create C̃P
CPU+(j) by calling CircSim on the circuit CP

CPU+ where the
output-labels for ireadj , iwrite

j , {skwrite,1
j , . . . , skwrite,p

j }, translate are given “in the clear” and the
output-labels of of the updated statej+1 are set to match the input labels for statej+1 given
by the circuit-simulator for the circuit j + 1. The actual values {skwrite,1

j , . . . , skwrite,p
j }, translate

are computed via:

– If iwrite
j = ⊥ then set skwrite

j := ⊥. Otherwise,set skwrite,`
j = FK[`](j, iwrite

j , bwrite
j).

– Let u < j be the last write-time to location ireadj and let b = bwrite
u be the bit written to the

location at time u. Let α be the α-th time this location has been read since u. The values
u, b, α can be easily computed given MemAccess. Set k? = K[α] (which corresponds to the
entry in the key schedule from which the CPU will read), and set:

ctb := Fk?(u, ireadj , b)⊕ lblread,j+1 , ct1−b := Fk?(u, ireadj , 1− b)⊕ 0vlbl

where lblread,j+1 is the label of the “read-bit” wire given by the circuit-simulator for the
circuit j + 1 and vlbl is the label-length. Set translate := (ct0, ct1).

Set x̃ to be the input labels created by the circuit-simulator for the input state of the initial circuit,
and similarly for K̃.

Our proof follows the overall structure of [6] where we argue indistinguishability of the real output and
the output of Sim by using a series of hybrid distributions Hybj for j = 1, . . . , tmax. In the hybrid j,
garbled circuits 1, . . . , j are created as in the simulation and garbled circuits j + 1, . . . , tmax are created as
in the real distribution.

We also define a hybrid distribution Hyb′j which is like Hybj except for the simulation of the jth
CPU-step circuit (except for j = tmax for which we set Hyb′j = Hybj). Instead of choosing translate as in
the simulation described above, we choose translate = (ct0, ct1) to both be encryptions of the correct label
of the next circuit:

ct0 := Fk?(u, ireadj , 0)⊕ lblread,j+1
0 , ct1 := Fk?(u, ireadj , 1)⊕ lblread,j+1

1

where lblread,j+1
0 , lblread,j+1

1 are the labels corresponding to the bits 0,1 for the wire bread in circuit j + 1
which is still created using the real garbling procedure.

Notice that Hyb0 is equal to the real distribution and Hybtmax is equal to the simulated distribution.
Therefore, we prove the theorem by showing that for each j, we have:

Hybj
comp
≈ Hyb′j+1

comp
≈ Hybj+1

We prove this in the following two claims.

Claim A.1. For each j ∈ {0, . . . , tmax} we have Hybj
comp
≈ Hyb′j+1.

Proof. This follows directly from the security of the circuit-garbling scheme applied only to the garbled
augmented-CPU circuit j + 1.

18

Claim A.2. For each j ∈ {1, . . . , tmax} we have Hyb′j
comp
≈ Hybj.

Proof. This follows from the security of our revocable GGM-PRF scheme. The only difference between
Hyb′j and Hybj is the value of translatej = (ct0, ct1) used to simulate the jth garbled circuit. Let b = breadj+1

be the value of the read-bit in location ireadj in the real computation. Then, in Hyb′j we set

ctb := Fk?(u, ireadj , b)⊕ lblread,j+1
b , ct1−b := Fk?(u, ireadj , 1− b)⊕ lblread,j+1

1−b

whereas in Hybj we set

ctb := Fk?(u, ireadj , b)⊕ lblread,j+1
b , ct1−b := Fk?(u, ireadj , 1− b)⊕ 0vlbl

where u < j. Observe the following, where we consider the key schedule and how it interacts with D̃:

• When b was written to D̃ in CPU step u, the PRF was evaluated on (u, ireadj , b) under K[1], . . . ,K[p],
one of which is k?.

• For the real CPU steps after j, (u, ireadj , b) has been revoked from k?.

• If this location is written to again, it will be under some different time u′ 6= u, where it can then be
further read again.

Suppose on the contrary that some adversary A is able to distinguish the two hybrids. Then we devise
an adversary A′ that will break the pseudorandomness of F as follows. A produces an input and memory
that it wishes to be challenged upon. Using MemAccess, A′ will determine exactly which k? will be used
and what values have already been revoked from K. It asks for these partially-revoked keys from the PRF
challenger, and therefore can construct all subsequent real steps after j. In order to obtain the sk output
by some earlier CPU step in order to simulate it, A′ asks the PRF challenger to evaluate F at those
points. Note by the definition of k? it will never be the case that A′ asks the PRF oracle for (u, ireadj , 0)
or (u, ireadj , 1). Then in order to generate translate, A′ asks the oracle to evaluate Fk?(u, ireadj , b) on the
correct read bit b, and asks to be challenged on (u, ireadj , 1 − b). A′ gets from the PRF challenger a value
R which is either real or random, and A′ completes the translation table by picking a challenge bit c and
if c = 0 sets the ciphertext to be R ⊕ lblread,j+1

1−b and R otherwise. Clearly, the advantage of A is then
inherited by A′ since these two distributions perfectly indistinguishable if R is random, and identical to
the hybrids if R is real. Since the PRF key k? is punctured after step j, indistinguishability follows from
the pseudorandomness of F .

B Upgrading to Full Security/Functionality

This section is largely a restatement from Part I [6] with the key difference of bdReads.
We now describe a general transformation from any garbled RAM scheme that only provides UMA

security and only supports program executions with ptWrites and bdReads into a fully secure garbled
RAM scheme for arbitrary programs. This transformation uses oblivious RAM (ORAM) to first compile
the original program P into a new program P ∗ that stores/accesses its memory using ORAM. This ensures
that the memory contents and access pattern of the compiled program do not reveal anything about those
of the original program. For simplicity, we assume the ORAM scheme already ensures that the compiled
program satisfies the ptWrites and p-bdReads property. Indeed, many ORAM scheme do satisfy these
with p = polylog(n), e.g. Ostrovsky’s hierarchical scheme [18]. Now we can simply apply our original
UMA-secure garbled RAM scheme for ptWrites on this compiled program to get a fully secure solution.

19

The Compiler. Let G = (GData,GProg,GInput,GEval) be any garbled RAM scheme that provides UMA
security and only supports program executions with ptWrites and p-bdReads. Let O = (OData,OProg)
be any ORAM that guarantees ptWrites and p-bdReads. We define a garbled RAM scheme G′ which first
applies the ORAM O to the program to make it oblivious and satisfy ptWrites and p-bdReads, and then
uses G to garble it. In detail, we define G′ = (GData′,GProg′,GInput′,GEval) as follows:

• GData′(D, k = (k1, k2)) : Call D∗ ← OData(D, k1), D̃∗ ← GData(D∗, k2). Output D̃∗.

• GProg′(P, k = (k1, k2)), n, tinit, tcur) : Call P ∗ ← OProg(P) and (P̃ ∗, kinput
2)← GProg(P ∗, k2, n, t

∗
init, t

∗
cur)

where t∗init, t
∗
cur are the updated times with the overhead of the ORAM scheme.

Output P̃ ∗, kinput = (k1, k
input
2).

• GInput′(x, kinput = (k1, k
input
2)): Output x̃∗ ← GInput((x, k1), kinput

2).

Theorem B.1. If G is a garbled RAM scheme that provides UMA security and supports programs with
ptWrites and p-bdReads and O is an ORAM with ptWrites then G′ is a garbled RAM with full security
and supporting arbitrary programs.

Proof. It is clear that the use of ORAM with ptWrites and p-bdReads in the above construction ensures
that G is only used on program executions that satisfy ptWrites. Therefore, we only need to prove that G′

provides security. Let Sim1 be the ORAM simulator and let Sim2 be the simulator for G. Then we define
the simulator Sim′ for G′ which first calls (D∗sim,MemAccesssim) ← Sim1(1κ, n, {ti}`i=1) to compute the
simulate data and access pattern, and then outputs Sim2(1κ, {P ∗i , t∗i , yi}`i=1, D

∗
sim,MemAccesssim) where t∗i

are the updated running times after applying ORAM. Security follows from two simple hybrid arguments:

• By the security of G′, the real distribution is indistinguishable from

Sim2(1κ, {P ∗i , t∗i , yi}`i=1, D
∗,MemAccess)

where D∗,MemAccess are the “real” data and access pattern produced by the oblivious RAM scheme.

• By the security of the ORAM scheme O, we know that (D∗,MemAccess) is indistinguishable from
the simulated (D∗sim,MemAccesssim).

This completes the proof.

20

