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Abstract. In this paper, we propose a new lightweight block cipher named RECT-
ANGLE. The main idea of the design of RECTANGLE is to allow lightweight
and fast implementations using bit-slice techniques. RECTANGLE uses an SP-
network. The substitution layer consists of 16 4×4 S-boxes in parallel. The per-
mutation layer is composed of 3 rotations. As shown in this paper, RECTAN-
GLE offers great performance in both hardware and software environment, which
proves enough flexibility for different application scenario. The following are 3
main advantages of RECTANGLE. First, RECTANGLE is extremely hardware-
friendly. For the 80-bit key version, a one-cycle-per-round parallel implementa-
tion only needs 1467 gates for a throughput of 246 Kbits/sec at 100KHz clock
and an energy efficiency of 1.11 pJ/bit. Second, RECTANGLE achieves a very
competitive software speed among the existing lightweight block ciphers due to
its bit-slice style. Using 128-bit SSE instructions, a bit-slice implementation of
RECTANGLE reaches an average encryption speed of about 5.38 cycles/byte for
messages around 1000 bytes. Last but not least. We propose new design criteria
for 4×4 S-boxes. RECTANGLE uses such a new type of S-box. Due to our care-
ful selection of the S-box and the asymmetric design of the permutation layer,
RECTANGLE achieves a very good security-performance tradeoff. Our exten-
sive and deep security analysis finds distinguishers for up to 14 rounds only, and
the highest number of rounds that we can attack, is 18 (out of 25).
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1 Introduction

Small embedded devices (including RFIDs, sensor nodes, smart cards) are now widely
used in many applications. They are usually characterized by strong cost constraints,
such as area, power, energy consumption for hardware aspect, and low memory, small
code size for software aspect. Meanwhile, they also require cryptographic protection.
As a result, many new lightweight ciphers have been proposed to provide strong security
at a lower cost than standard solutions. Since symmetric-key ciphers, especially block
ciphers, play an important role in the security of small embedded devices, the design of
lightweight block ciphers has been a very active research topic over the last few years.



In the literature, quite a few lightweight block ciphers with various design strategies
have been proposed, such as DESL/DESX/DESXL [33], Hummingbird [21], KATAN/
KTANTAN [19], KLEIN [25], LBlock [48], LED[27], PRESENT [11], TWINE [45]
and so on. PRESENT was proposed at CHES’2007, and has attracted a lot of attention
from cryptographic researchers due to its simplicity, impressive hardware performance
and strong security. The design of PRESENT is extremely hardware-efficient, since it
uses a bit permutation as its diffusion layer, which is a simple wiring in hardware im-
plementation. In 2012, PRESENT was adopted as ISO/IEC lightweight cryptography
standard. Many lightweight ciphers, such as PRESENT, KATAN/KTANTAN and Hum-
mingbird, succeed in achieving a low area in hardware but the software performance is
not good. However, high software performance is also needed from the same algorithm
for many classical lightweight applications, as pointed out in [2, 12, 25, 27, 37]. The
reason is that many constrained devices need to communicate with a server, hence it
is very crucial that the lightweight cipher also has good software performance. LED
is proposed at CHES’2011, the designers claim that LED is not only very compact in
hardware but also maintains a reasonable performance profile for software implemen-
tation.

Among the new proposals, some present weaknesses, including ARMODILLO-2,
Hummingbird-1 and KTANTAN [13, 39, 44]. Furthermore, as pointed out in [27], de-
signers of “second generation” lightweight ciphers can learn from the progress and
the omissions of the“ first generation” proposals. The S-box of PRESENT is mainly
selected according to its hardware area instead of security of the underlying cipher.
Hence, the S-box of PRESENT is “weak” with respect to cipher security. As pointed
out in [31], the PRESENT S-box is among the 8 percent worst S-boxes with respect
to clustering of one bit linear trails. Along with the strong symmetry of the PRESENT
permutation layer, there are very serious clustering problems both for linear trails and
differential trails [10, 14, 31, 40, 46]. We give more details in section 3. As a result, for
PRESENT, the best distinguisher so far can reach 24 rounds [14], which can be used to
mount a shortcut attack on 26-round PRESENT (out of 31).

The bit-slice technique was introduced for speeding up the software speed of DES
[4], and was used in the design of the Serpent block cipher [1]. In a bit-slice imple-
mentation, one software logical instruction corresponds to simultaneous execution of
n hardware logical gates, where n is the length of a subblock. Take Serpent for exam-
ple. Serpent is a 128-bit SP-network block cipher. The substitution layer is composed
of 32 4× 4 S-boxes, thus the subblock length is n = 128/4 = 32 for a bit-slice im-
plementation. Noekeon [16], Keccak(SHA-3) [3] and JH [47] are 3 other primitives
that can benefit from the bit-slice technique for their software performance. It is worth
noticing that Serpent, Noekeon, Keccak and JH not only perform well in hardware but
also in software. Furthermore, a bit-slice implementation is safe against implementa-
tion attacks such as cache and timing attacks compared with a table-based implementa-
tion [38]. However, the main design goal of all the mentioned bit-sliced ciphers is not
“lightweight”, there is plenty of room for improvement when it comes to a dedicated
lightweight block cipher with bit-slice style.



1.1 Contributions

In this paper, we present a new lightweight block cipher RECTANGLE. The design of
RECTANGLE makes use of the bit-slice technique in a lightweight manner, hence to
achieve not only a very low area in hardware but also a very competitive performance in
software. As a result, RECTANGLE adopts the SP-network structure. The substitution
layer (S-layer) consists of 16 4×4 S-boxes in parallel. The permutation layer (P-layer)
is composed of 3 rotations. The following are 3 main advantages of RECTANGLE:

1. RECTANGLE is extremely hardware-friendly, it has a competitive hardware cost
as PRESENT in lightweight applications, while having a higher throughput/area
ratio and lower energy per bit than PRESENT. The bit-sliced design principle of
RECTANGLE allows for very efficient and flexible hardware implementations. For
the 80-bit key version, using UMC 0.13µm standard cell library at 100 KHz , our
round-based implementation could obtain a throughput of 246 Kbits/sec and an
energy efficiency of 1.11 pJ/bit with only 1467 gates, our serialized implementa-
tion could obtain a throughput of 13.9 Kbits/sec and an energy efficiency of 31.7
pJ/bit with only 1066 gates. Also, the round-based implementation can be easily ex-
tended to parallel implementation for different application scenarios. More details
are given in section 5.1.

2. Due to its bit-slice style, RECTANGLE achieves a very competitive software speed
among the existing lightweight block ciphers. With a parallel mode of operation, a
bit-slice implementation of RECTANGLE reaches an average encryption speed of
about 5.38 cycles/byte for messages around 1000 bytes, using Intel 128-bit SSE in-
structions. For comparison, the bit-slice implementation of LED-64 and PRESENT
reach an speed of 11.9 cycles/byte and 17.3 cycles/byte respectively [2]. More de-
tails are given in section V-B.

3. Last but not least. We propose new design criteria for 4×4 S-boxes. RECTANGLE
uses such a new type of S-box. Due to our careful selection of the RECTANGLE S-
box, together with the asymmetric design of the permutation layer, RECTANGLE
achieves a very good security-performance trade off. After our extensive and deep
security analysis, the best distinguisher of RECTANGLE can only reach 14 rounds.
Using one 14-round differential distinguisher, we can mount a shortcut attack on
18-round RECTANGLE (out of 25), which is the highest number of rounds that we
can attack.

This paper is organized as follows. Section 2 presents a specification of RECTAN-
GLE; Section 3 discusses the security of RECTANGLE against known attacks; Section
4 motivates the design choices of RECTANGLE; Section 5 presents the hardware and
software implementation results of the cipher; Section 6 presents the relation of RECT-
ANGLE to several early designs. Section 7 concludes the paper.

2 The RECTANGLE Block Cipher

RECTANGLE is an iterated block cipher. The block length is 64 bits, the key length
can be 80 or 128 bits.



2.1 The Cipher State, the Subkey State
A 64-bit plaintext, or a 64-bit intermediate result, or a 64-bit ciphertext is collectively
called as a cipher state. A cipher state can be pictured as a 4× 16 rectangular array of
bits, which is the origin of the cipher name RECTANGLE. Let W = w63|| · · · ||w1||w0
denote a 64-bit cipher state, the first 16 bits w15|| · · · ||w1||w0 are arranged in row 0, the
next 16 bits w31|| · · · ||w17||w16 are arranged in row 1, and so on, as illustrated in Figure
1. Similarly, a 64-bit subkey is also pictured as a 4× 16 rectangular array. In the fol-
lowing, for convenience of description, a cipher state is described in a two-dimensional
way, as illustrated in Figure 2.

w15 w14 · · · w2 w1 w0
w31 w30 · · · w18 w17 w16
w47 w46 · · · w34 w33 w32
w63 w62 · · · w50 w49 w48




a0,15 a0,14 · · · a0,2 a0,1 a0,0
a1,15 a1,14 · · · a1,2 a1,1 a1,0
a2,15 a2,14 · · · a2,2 a2,1 a2,0
a3,15 a3,14 · · · a3,2 a3,1 a3,0


Figure 1. A Cipher State Figure 2. Two-dimensional Representation

2.2 The Round Transformation
RECTANGLE is a 25-round SP-network cipher. Each of the 25 rounds consists of the
following 3 steps: AddRoundkey, SubColumn, ShiftRow. After the last round, there is
a final AddRoundKey.

AddRoundkey: A simple bitwise XOR of the round subkey to the intermediate state.

SubColumn: Parallel application of S-boxes to the 4 bits in the same column. The
operation of SubColumn is illustrated in Figure 3. The input of a S-box is Col( j) =
a3, j||a2, j||a1, j||a0, j for 0≤ j ≤ 15, and the output is S(Col( j)) = b3, j||b2, j||b1, j||b0, j.
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Figure 3. SubColumn Operates on the Columns of the State

The S-box used in RECTANGLE is a 4-bit to 4-bit S-box S : F4
2 → F4

2 . The action
of this S-box in hexadecimal notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 9 4 F A E 1 0 6 C 7 3 8 2 B 5 D

ShiftRow: A left rotation to each row over different offsets. Row 0 is not rotated, row
1 is left rotated over 1 bit, row 2 is left rotated over 12 bits, row 3 is left rotated over 13
bits. Let ≪ (x) denote left rotation over x bits, the operation ShiftRow is illustrated in
Figure 4.



(
a0,15 a0,14 · · · a0,2 a0,1 a0,0

) ≪(0)−−−→
(

a0,15 a0,14 · · · a0,2 a0,1 a0,0
)

(
a1,15 a1,14 · · · a1,2 a1,1 a1,0

) ≪(1)−−−→
(

a1,14 a1,13 · · · a1,1 a1,0 a1,15
)

(
a2,15 a2,14 · · · a2,2 a2,1 a2,0

) ≪(12)−−−−→
(

a2,3 a2,2 · · · a2,6 a2,5 a2,4
)

(
a3,15 a3,14 · · · a3,2 a3,1 a3,0

) ≪(13)−−−−→
(

a3,2 a3,1 · · · a3,5 a3,4 a3,3
)

Figure 4. ShiftRow Operates on the Rows of the State

2.3 Key Schedule

RECTANGLE can accept keys of either 80 or 128 bits.

80-bit key For a 80-bit user-supplied key V = v79|| · · · ||v1||v0, the key is firstly stored
in a 80-bit key register, see Figure 5.

v19 v18 · · · v2 v1 v0
v39 v38 · · · v22 v21 v20
v59 v58 · · · v42 v41 v40
v79 v78 · · · v62 v61 v60




κ0,19 κ0,18 · · · κ0,2 κ0,1 κ0,0
κ1,19 κ1,18 · · · κ1,2 κ1,1 κ1,0
κ2,19 κ2,18 · · · κ2,2 κ2,1 κ2,0
κ3,19 κ3,18 · · · κ3,2 κ3,1 κ3,0


Figure 5. A 80-bit Key State and its Two-dimensional Representation

At round i (i = 0,1, · · · ,24), the 64-bit round subkey Ki consists of the 16 rightmost
columns of the current contents of the key register, i.e., Ki =(κ3,15|| · · · ||κ3,1||κ3,0)||(κ2,15||
· · · ||κ2,1||κ2,0)||(κ1,15|| · · · ||κ1,1||κ1,0)||(κ0,15|| · · · ||κ0,1||κ0,0). After extracting Ki, the
key register is updated as follows:

1. Applying the S-box S to the 0-th column, i.e.,
κ3,0||κ2,0||κ1,0||κ0,0 := S(κ3,0||κ2,0||κ1,0||κ0,0)

2. A left rotation to each row over different offsets. Row 0 is left rotated over 7
bits, row 1 is left rotated over 9 bits, row 2 is left rotated over 11 bits, row 3 is
left rotated over 13 bits.

3. A 5-bit round constant RC[ i ] is XORed with the 5-bit key state (κ0,4||κ0,3||
κ0,2||κ0,1||κ0,0), i.e.,

κ0,4||κ0,3||κ0,2||κ0,1||κ0,0 := (κ0,4||κ0,3||κ0,2||κ0,1||κ0,0)⊕RC[i]

Finally, K25 is extracted from the updated key state. The round constants RC[ i ] (i =
0,1, · · · ,24) are generated by a 5-bit LFSR. At each round, the 5 bits (rc4,rc3,rc2,rc1,rc0)
are left shifted over 1 bit, with the new value to rc0 being computed as rc4⊕ rc2. The
initial value is defined as RC[0] := 0x1. We list all the round constants in Appendix A.

128-bit key Due to the limitation of the paper length, the 128-bit key schedule is pre-
sented in Appendix B.



2.4 The Cipher

The encryption algorithm of RECTANGLE consists of 25 rounds and a final subkey
XOR. The following is a pseudo C code:

GenerateRoundKeys()
for i = 0 to 24 do
{ AddRoundKey(STAT E,Ki)

SubColumn(STAT E)
Shi f tRow(STAT E)

}
AddRoundKey(STAT E,K25)

3 Security Analysis

In this section, we present the results of our security analysis of RECTANGLE.

3.1 Differential Cryptanalysis

Differential [7] and linear [35] cryptanalysis are among the most powerful techniques
available for block ciphers.

To attack an n-bit block cipher using differential cryptanalysis (DC), there must be
a predictable difference propagation over all but a few rounds with a probability signif-
icantly larger than 21−n. A difference propagation is composed of a set of differential
trails, where its probability is the sum of the probabilities of all differential trails that
have the specified input difference and output difference [17]. For RECTANGLE, to be
resistant against DC, it is a necessary condition that there is no difference propagation
with a probability higher than 2−63.

M.Matsui has presented a search algorithm for the best differential/linear trail of
DES in [36], which uses branch-and-bound methods and very effective for DES. Based
on this algorithm, we have written a program to search for the best differential trails
of RECTANGLE from 1 round to 15 rounds , the results are presented in Table 1. The
probability of the best 15-round differential trail is 2−66.

Because of the simplicity of the ShiftRow transformation, we also need to con-
sider the security of RECTANGLE against multiple differential cryptanalysis [10] and

Table 1. Probabilities of the Best Differential Trails of RECTANGLE

♯ Rounds Probability ♯ Rounds Probability ♯ Rounds Probability

1 2−2 6 2−18 11 2−46

2 2−4 7 2−25 12 2−51

3 2−7 8 2−31 13 2−56

4 2−10 9 2−36 14 2−61

5 2−14 10 2−41 15 2−66



the structure attack [46]. From a differential point of view, since all the operations in
RECTANGLE have rotational symmetry, every trail has up to 16 rotation equivalent
variants. For 15-round RECTANGLE, based on the branch-and-bound algorithm, we
have searched for all the differential trails with probability between 2−66 and 2−76 (up
to a rotation equivalence) and examined all the difference propagations made up of the
investigated trails, the following are the experimental results:

1. There are 32 best difference propagations with probability 81× 2−72 ≈ 2−65.66

each. Each is composed of 4 differential trails. Among the 4 trails, one with proba-
bility 2−66, two with probability 2−69 each, and one with probability 2−72.

2. Among all the difference propagations, the maximum number of trails of a dif-
ference propagation is 108, i.e., a difference propagation is composed of at most
108 different differential trails. For such a difference propagation, the probability
is 281×2−76 ≈ 2−67.87.

From result 1, the probability of the best difference propagation is lower than 2−63.
From the two results, it can be seen that the clustering of differential trails of RECT-
ANGLE is very limited, which can not be used to construct an effective difference
propagation with more than 14 rounds.

In the case of PRESENT, there exists a large number of trails which can result
in difference propagations with much higher probability [10, 46]. For comparison, we
give some statistical data concerning the clustering of differential trails of 16-round
PRESENT from [46]. For 16-round PRESENT, the probability of the best differential
trail is 2−70. There exists a 16-round difference propagation satisfying the following
properties:

1. It includes 31996 trails when restricting the probability of differential trails between
2−70 and 2−80. The probability is 2−62.175 when only considering these 31996 trails;

2. It includes 83720 trails when restricting the probability of differential trails between
2−70 and 2−92. The probability is 2−62.133 when considering all the 83720 trails.

Therefore, we believe that it is impossible to construct an effective 15-round (mul-
tiple) differential distinguisher for RECTANGLE. Full dependency is reached already
after 4 rounds, hence we believe 25-round RECTANGLE is enough to resist against
(multiple) differential cryptanalysis.

Using one 14-round differential distinguisher, we can mount an attack on 18-round
RECTANGLE, which is the best short-cut attack on RECTANGLE we found. Appendix
E presents the distinguisher.

3.2 Linear Cryptanalysis

Assume a linear trail hold with probability p , define the bias ε as (p− 1
2 ), the correlation

coefficient C as 2ε . To attack an n-bit block cipher using linear cryptanalysis (LC), there
must be a predictable linear propagation over all but a few rounds with an amplitude
significantly larger than 2−

n
2 . A linear propagation is composed of a set of linear trails,

where its amplitude is the sum of the correlation coefficients of all linear trails that have
the specified input and output selection patterns [17]. The correlation coefficients of



Table 2. Correlation Coefficients of the Best Linear Trails of RECTANGLE

♯ Rounds Cor. Coeffi. ♯ Rounds Cor. Coeffi. ♯ Rounds Cor. Coeffi.

1 ±2−1 6 ±2−10 11 ±2−25

2 ±2−2 7 ±2−13 12 ±2−28

3 ±2−4 8 ±2−16 13 ±2−31

4 ±2−6 9 ±2−19 14 ±2−34

5 ±2−8 10 ±2−22 15 ±2−37

the linear trails are signed and their sign depends on the value of the round keys. For
RECTANGLE, to be resistant against LC, it is a necessary condition that there is no
linear propagation with an amplitude higher than 2−32.

Since the strong round key dependence of interference makes locating the input and
output selection patterns for which high correlations occur practically infeasible [17],
we have to use the following theorem for an estimation.

Theorem 1 ([17]). The square of the correlation is called correlation potential. The
average correlation potential between an input and an output selection pattern is the
sum of the correlation potentials of all linear trails between the input and output selec-
tion patterns:

E(C2
t ) = ∑

i
(Ci)

2

where Ct is the overall correlation, and Ci the correlation coefficient of a linear trail.

We have modified the search program used in the differential case to search for the
best linear trails of RECTANGLE from 1 round to 15 rounds, the results are presented
in Table 2. All of the best linear trails avoid the weakness that there is only one active
S-box in each round, which occurs in PRESENT.

Similarly, we also need to consider the security of RECTANGLE against multiple
linear cryptanalysis [9] and multidimensional linear cryptanalysis [24]. For 15-round
RECTANGLE, the amplitude of the correlation coefficient of the best linear trail is
2−37. Also based on the branch-and-bound algorithm, we have searched for all the lin-
ear trails with an amplitude of the correlation coefficient between 2−37 and 2−40 (up to
a rotation equivalence) for 15-round RECTANGLE and examined all the linear propa-
gations made up of the investigated trails, the following are the experimental results:

1. There are 128 best linear propagations with an amplitude of the average correlation
(1846× 2−80)0.5 ≈ 2−34.58 each, which is lower than 2−32. Each is composed of
883 linear trails. Among the 883 trails, 2 with correlation coefficient ±2−37 each,
26 with correlation coefficient ±2−38 each, 149 with correlation coefficient ±2−39

each, and 706 with correlation coefficient ±2−40 each.
2. Among all the linear propagations, the maximum number of trails of a linear prop-

agation is 883. Actually, the best linear propagations have the maximum number of
trails.



For comparison with PRESENT, notice the following two facts :

1. There exists a 16-round linear propagation of PRESENT, which is composed of
435,600 linear trails with an amplitude of the correlation 2−32 each [40]. Thus, the
amplitude of the average correlation is (435600×2−64)0.5 ≈ 2−22.63.

2. There exists a 23-round linear propagation of PRESENT, which is composed of
367,261,713 linear trails with an amplitude of the correlation 2−46 each [40]. Thus,
the amplitude of the average correlation is (367261713×2−92)0.5 ≈ 2−31.77.

From the above results and a comparison with PRESENT, it can be seen that the
clustering of linear trails of RECTANGLE is limited, which can not be used to con-
struct an effective linear propagation with more than 14 rounds. Therefore, we believe
that it is impossible to construct an effective 15-round (multiple, multidimensional) lin-
ear distinguisher for RECTANGLE. Full dependency is reached already after 4 rounds,
hence we believe 25-round RECTANGLE is enough to resist against linear cryptanaly-
sis and its extension attacks.

3.3 Statistical Saturation Attack

The statistical saturation attack [15] is specially designed for PRESENT. It uses the
weak diffusion of the PRESENT permutation. More specifically, for 4 selected S-box
positions, 8 out of 16 input bits are directed to the same 4 S-box positions after the per-
mutation. Using this property, there exists a theoretical attack against 24-round PRESENT.

Due to the weak diffusion of the permutation layer of RECTANGLE, we must con-
sider the security of RECTANGLE against statistical saturation attack. Consider the
following 4 properties:

1. Consider the 3 columns with an index set {0,1,13}, then 6 out of 12 bits are still
directed to the same 3 column positions after ShiftRow.

2. Consider the 4 columns with an index set {0,1,12,13}, then 9 out of 16 bits are
still directed to the same 4 column positions after ShiftRow.

3. Consider the 5 columns with an index set {0,1,4,12,13}, then 12 out of 20 bits are
still directed to the same 5 column positions after ShiftRow.

4. Consider the 6 columns with an index set {0,1,3,4,12,13}, then 15 out of 24 bits
are still directed to the same 6 column positions after ShiftRow.

Figure 6 illustrates the 2nd property, and Algorithm 1 presents the procedure of our
experiment using this property. Assuming the data complexity required to distinguish
two distributions is proportional to the inverse of the squared Euclidean distance Dis,
then the threshold of Dis is 2−32. Our experimental results show that the distinguisher
can reach 7 rounds at most using either the 1st or the 4th property , and the distinguisher
can reach 8 rounds at most using either the 2nd or the 3rd property. Table 3 gives a part
of the results using the 2nd property. Considering the full rounds is 25, we believe there
is enough security margin for RECTANGLE against the statistical saturation attack.



: 9 concerned bits

Figure 6. A Weak Property of ShiftRow

Algorithm 1
Set the subkey in each round to a random value.
for r = 1 to 10 do
for m = 1 to 37 do

{ 1. Choose a set of 2m plaintexts which have zero values in the 4 columns with an index set
{0,1,12,13}, while having random values in the other 64−16 = 48 bits.

2. Calculate the distribution of the outputs in the concerned 9 bit positions after r-round
encryption, and compute the squared Euclidian distance between this distribution and
uniform distribution. Let O denote the output after r-round encryption, j denote the
value of the 9-bit string O3,13||O2,13||O2,12||O1,13||O1,1||O0,13||O0,12||O0,1||O0,0, the
distance is defined as:

Dis = ∑29−1
j=0 (

counter[ j]
2m − 1

29 )
2

where counter j denotes the times of occurence of j among all the 2m values.
}

Table 3. A Part of Experimental Results using the 2nd Property

m Dis for 7 rounds Dis for 8 rounds Dis for 9 rounds

33 1.37089×2−28 1.81821×2−31 1.392×2−33

34 1.3564×2−28 1.67983×2−31 1.74206×2−34

35 1.34684×2−28 1.62867×2−31 1.24087×2−34

36 1.34594×2−28 1.58832×2−31 1.00152×2−34

37 1.34584×2−28 1.56878×2−31 1.78638×2−35

3.4 Impossible Differential Cryptanalysis

Impossible differential cryptanalysis [6] exploits differential trails with probability 0.
Impossible differential distinguishers are usually constructed by meet-in-the-middle ap-
proach, that is to say, one differential trail with probability one along the encryption
direction and one differential trail with probability one along the decryption direction,
whose conditions cannot be met in the middle.



We found some 8-round impossible differential distinguishers for RECTANGLE.
Here is one. Firstly, a 4-round differential trail with probability 1 along the encryption
direction, then a 4-round differential trail with probability 1 along the decryption direc-
tion. More exactly, let (i, j) denote the bit position in the i-th row and j-th column of a
cipher state, as Figure 2 shows. Given a pair of round inputs in round 0 which are equal
in all bits except one bit position (2,0), then the round outputs in round 3 can not be
equal in one bit position (2,0). In the backward direction, given a pair of round outputs
in round 7 which are equal in all bits except two bit positions (2,12) and (3,13), then
the round inputs in round 4 must be equal in one bit position (2,0). It is obvious that
the output in round 3 equals to the input in round 4, thus we have a contradiction.

Notice that the following properties of the RECTANGLE S-box are used to con-
struct the above distinguisher. Let x = x3||x2||x1||x0, where xi is the i-th bit of x, i =
0,1,2,3. Let (∆x → ∆y) denote a differential with input difference ∆x and output
difference ∆y. For the S-box of RECTANGLE, (0100 → ∗1 ∗ ∗) holds with proba-
bility 1, where “∗” denotes an unknown bit; For the inverse S-box of RECTANGLE,
(1100→ ∗∗∗0) holds with probability 1. Since 4-round RECTANGLE reach the full
dependency, it is expected that full-round RECTANGLE has enough security against
impossible differential cryptanalysis.

3.5 Integral Cryptanalysis

Integral cryptanalysis [30] considers the propagation of sums of many values. An inte-
gral distinguisher holds with probability 1.

We found some 7-round higher-order integral distinguishers. Here is one. First is
a 4-round integral distinguisher. Choose a set of two plaintexts P and P∗, set P0,1 =
P0,2 = 0 and P∗0,1 = P∗0,2 = 1, while they have a fixed random value in the other 62
bit positions. Note that P and P∗ only have a non-zero difference in column 0, with
PCol(0)⊕P∗Col(0) = 0110. The difference (0110→∗0∗∗) holds with probability 1 for the
S-box. Then, it can be easily checked that after 4-round encryption the round outputs in
round 3 have a zero difference in the following 4 bit positions: (0,4),(1,5),(2,0),(3,1).
In other words, the XOR sum in any of the 4 bit positions equals to 0. Next, consider
the decryption direction, we can extend the above 4-round distinguisher to a 7-round
higher-order integral distinguisher. Choose a set of 256 plaintexts which have certain
fixed values in column 0 and column 9, while having all the 256 possible values in
the other 14 columns. Then, after 3-round encryption, the 256 intermediate values can
be divided into 255 subsets, the two values in each subset satisfy the data condition
of the above 4-round distinguisher. If the sum of the elements in each subset can be
determined, then the sum of all the elements in the set can also be determined. Hence,
after 7-round encryption, the XOR sum of all the 256 outputs in any of the 4 bit positions
equals to 0, which is a 7-round integral distinguisher. Similarly, it is expected that full-
round RECTANGLE has enough security against integral cryptanalysis.

3.6 Key Schedule Attacks

Among key schedule attacks, the most effective ones are slide attack [8] and related-key
cryptanalysis [5]. For RECTANGLE, the adding of different round constants in the key



schedule will prevent slide attacks. For 80-bit user-supplied keys, the union of subkey
bits of any consecutive two rounds depends on each of the 80 bits of the user-supplied
key. For 128-bit user-supplied keys, the union of subkey bits of any consecutive three
rounds depends on each of the 128 bits of the user-supplied key. The choice of the
rotation offsets of ShiftRow operation in the round function is different from that in the
key schedule. We believe that the above properties are sufficient for RECTANGLE to
resist against key schedule attacks.

4 Motivation for Design Choices of RECTANGLE

In this section, we justify the choices we took during design of RECTANGLE.

4.1 Bit-Slice Technique and Lightweight Block Cipher

Consider a 64-bit SP-network block cipher, the S-layer consists of 16 4× 4 S-boxes
in parallel, thus the subblock length is 16 for a bit-slice implementation. Let a 64-
bit state be arranged as a 4× 16 array. First applying the same S-box to each column
independently. Then, the P-layer should make each column dependent on some other
columns, aiming to provide good diffusion. In such a situation, 16-bit rotations are
probably the best choice: they are simple wirings in hardware implementation, they can
achieve the goal of mixing up different columns, they can be easily implemented in
software using bit-slice technique. So far, we got the framework of RECTANGLE.

4.2 The ShiftRow Transformation

Let ci (i = 0,1,2,3) denote the left rotation offset of the i-th row. The choice criteria of
ci are as follows:

1. The four offsets are different;
2. c0 < c1 < c2 < c3, and c0 = 0;
3. Full dependency after a minimal number of rounds.

Our experimental result shows that there are 16 candidates satisfying the above
criteria. For each of the 16 candidates, after 4 rounds each of the 64 input bits influence
each of the 64 output bits. From them, we choose (c1,c2,c3) = (1,12,13) as the rotation
offsets of ShiftRow transformation for RECTANGLE.

4.3 Design Criteria of the S-box

A 4×4 S-box is typically much more compact in hardware than a 8×8 S-box. Serpent
uses 8 different S-boxes, however. The use of different S-boxes for different rounds
does not result in a plausible improvement of the resistance against known attacks (a
variant view from [17]). Moreover, the hardware area can be reduced using only one
S-box. Hence, we decide to use only one 4×4 S-box for RECTANGLE.

Let S denote a 4×4 S-box. Let△I,△O ∈ F4
2 , define NDS(△I,△O) as:



NDS(△I,△O) = ♯{x ∈ F4
2 |S(x)⊕S(x⊕△I) =△O}.

Let Γ I,Γ O ∈ F4
2 , define the imbalance ImbS(Γ I,Γ O) as:

ImbS(Γ I,Γ O) = |♯{x ∈ F4
2 |Γ I • x = Γ O•S(x)}−8|.

where • denotes the inner product on F4
2 .

The design criteria of the S-box of RECTANGLE are as follows:

1. Bijective, i.e., S(x) ̸= S(x′) for any x ̸= x′.
2. For any non-zero input difference△I ∈ F4

2 and any non-zero output difference
△O ∈ F4

2 , we require:
NDS(△I,△O)≤ 4.

3. Let △I ∈ F4
2 be a non-zero input difference and △O ∈ F4

2 a non-zero output
difference. Let wt(x) denote the Hamming weight of x. Define SetD1S as:

SetD1S = {(△I,△O) ∈ F4
2 ×F4

2 |wt(△I) = wt(△O) = 1 and
NDS(△I,△O) ̸= 0}.

Let CarD1S denote the cardinality of SetD1S, we require CarD1S = 2.
4. For any non-zero input selection pattern Γ I ∈ F4

2 and any non-zero output se-
lection pattern Γ O ∈ F4

2 , we require:
ImbS(Γ I,Γ O)≤ 4.

5. Let Γ I ∈ F4
2 be a non-zero input selection pattern and Γ O ∈ F4

2 a non-zero
output selection pattern, define SetL1S as:

SetL1S = {(Γ I,Γ O) ∈ F4
2 ×F4

2 |wt(Γ I) = wt(Γ O) = 1 and
ImbS(Γ I,Γ O) ̸= 0}.

Let CarL1S denote the cardinality of SetL1S, we require CarL1S = 2.
6. No fixed point, i.e., S(x) ̸= x for any x ∈ F4

2 .

Note that CarD1S = 0 and CarL1S = 8 for the S-box of PRESENT, the best shortcut
attack on PRESENT [14] uses the fact that CarL1S = 8.

4.4 Selection of the S-box of RECTANGLE

In the following, a S-box means a 4×4 S-box.

Definition 1 ([32]). Two S-boxes S and S′ are called affine equivalent if there exist
bijective linear mappings A,B and constants a,b ∈ F4

2 such that S′(x) = B(S(A(x)+
a))+b. The equivalence is called affine equivalence.

If a S-box satisfies criteria 1, 2 and 4 (see section 4.3), then any of its affine equiva-
lent S-boxes also satisfies criteria 1, 2 and 4.

Definition 2 ([32]). Two S-boxes S and S′ are called permutation-then-XOR equiva-
lent if there exist 4× 4 permutation matrices P0,P1 and constants a,b ∈ F4

2 such that
S′(x) = P1(S(P0(x)+a))+b. The equivalence is called PE equivalence for short.



Table 4. Representatives for all the 4 PE classes of all 4×4 S-boxes fulfilling criteria 1-5

PE0 6,0,8,15,12,3,7,13,11,14,1,4,5,9,10,2

PE1 3,2,8,13,15,5,6,10,9,14,4,7,0,12,11,1

PE2 6,8,15,4,12,7,9,3,11,1,0,14,5,10,2,13

PE3 8,1,6,12,5,15,10,3,7,11,13,2,0,14,9,4

If a S-box satisfies criteria 1-5, then any of its PE equivalent S-boxes also satisfies
criteria 1-5.

It is a surprising fact that all 4×4 S-boxes satisfying criteria 1, 2 and 4 can be clas-
sified into only 16 affine equivalence classes [32]. By using the 16 representatives of
the 16 affine equivalence classes presented in [32] (Using another set of the 16 repre-
sentatives in [18], the same result is derived), we have designed an efficient algorithm
to classify all 4×4 S-boxes fulfilling criteria 1-5 into PE classes. Our program outputs
the result within 3 minutes, it is also a surprising fact that there are only 4 different PE
classes . We list a representative for each PE class in Table 4. In each row of Table 4,
the first integer represents the image of 0, the second the image of 1, and so on.

Up to adding constants before and after a S-box, which does not change any of
the criteria 1-5 and furthermore does not change the probability of the best differen-
tial/linear trail for a specific number of rounds, there are 4× 4!× 4! = 2304 S-boxes
that can be generated from the 4 representatives in Table 4. The 2304 S-boxes are de-
noted as {Si}, i = 0,1, · · ·2303.

In [14], a multidimensional linear attack is successfully applied on 26-round PRESENT,
which mainly uses the fact that there are relatively high number of linear trails with a
single active S-box in each round. To avoid such a weakness, we have designed Algo-
rithm 2.

Consider 2-round RECTANGLE, it can be easily seen that the i-th (i = 0,1,2,3) bit
of a S-box output in the first round will be the i-th bit of a S-box input in the second
round. Hence, if the condition in Step 2 holds, it can be easily verified that there exists
a differential trail with a single active S-box in each round, for any number of rounds.
Similarly, if the condition in Step 4 holds, then there exists a linear trail with a single
active S-box in each round, for any number of rounds.

One may say that the permutation layer lets the positions inside the S-box invariant
may introduce some weaknesses. However, we believe that it will not be a problem for
the security of the cipher, since the S-box has the property that each of the 4 output bits
depends on all of the 4 input bits, for 4-round RECTANGLE each of the 64 output bits
depends on all of the 64 input bits.

We have implemented Algorithm 2. The result shows that 1776 S-boxes are dis-
carded and only 528 S-boxes are remained. Next, we create a further filtering by consid-
ering the security of the underlying cipher against differential and linear cryptanalysis.

Let Prob D15 denote the probability of the best 15-round differential trail, and
Cor L15 the absolute value of the correlation coefficient of the best 15-round linear
trail. Fixing the ShiftRow transformation, for each choice of the remained 528 S-boxes,



Algorithm 2
INPUT: 2304 S-boxes {Si}, i = 0,1, · · ·2303.
OUTPUT: Discard a part of the S-boxes which can result in a differential (or linear) trail with a
single active S-box in each round.

for i = 0 to 2303 do

{ 1. For the i-th S-box Si, calculate the two (△I,△O) pairs which belong to the set SetD1S.
Let (△I1,△O1) and (△I2,△O2) denote the two pairs, i.e., wt(△Ii) =wt(△Oi) = 1 and
NDS(△Ii,△Oi) ̸= 0, for i = 1,2.

2. If (△I1 =△O1) or (△I2 =△O2) or (△I2 =△O1 and △ I1 =△O2), then discard the
S-box and i← i+1; else go to the following Step 3.

3. For the i-th S-box Si, calculate the two (Γ I,Γ O) pairs which belong to the set SetL1S.
Let (Γ I1,Γ O1) and (Γ I2,Γ O2) denote the two pairs, i.e., wt(Γ Ii) = wt(Γ Oi) = 1 and
ImbS(Γ Ii,Γ Oi) ̸= 0, for i = 1,2.

4. If (Γ I1 = Γ O1) or (Γ I2 = Γ O2) or (Γ I2 = Γ O1 and Γ I1 = Γ O2), then discard the
S-box and i← i+1.

}

Table 5. 5 groups of the 32 S-boxes

Group Number 1 2 3 4 5

Prob D15 66 66 66 66 67

Cor L15 37 36 35 33 33

Number of S-boxes 4 8 4 8 8

check whether the two inequalities hold for the underlying cipher : Prob D15 < 2−64

and Cor L15 < 2−32. Our experimental result shows that only 32 S-boxes satisfy the
two inequalities. According to the values of Prob D15 and Cor L15, the 32 S-boxes
can be divided into 5 groups, we illustrate the result in Table 5.

For the 5 groups, by checking the probability of the best differential trail and the
correlation coefficient of the best linear trail up to 15 rounds, we finally choose group 1.
There are 4 S-boxes in group 1, which belong to 2 different PE classes. Thus, we only
need to consider 2 out of the 4 S-boxes. By adding constants before and after the S-box,
we can get 2× 16× 16 = 512 different S-boxes. Among the 512 S-boxes, we choose
one with no fixed point and low area requirement as the S-box for RECTANGLE.

4.5 The Key Schedule

80-bit key The design criteria of 80-bit key schedule are as follows:

1. Similarity with the design of the round function;
2. The union of subkey bits of any 2 consecutive rounds depends on each of the

80 bits of the user-supplied key;
3. Each bit in the 80-bit key register is a non-linear function of the 80-bit user-

supplied key after 21 rounds;
4. Use round constants to eliminate symmetries.



128-bit key See Appendix B.

4.6 The Number of Rounds

The number of rounds is mainly determined by investigating the highest number of
rounds which can be distinguished from a random function. Our analysis shows that
there exist 14-round (multiple) differential distinguishers and 14-round (multiple or
multidimensional) linear distinguishers of RECTANGLE, which are the longest dis-
tinguishers known to us. There is no 15-round distinguisher of RECTANGLE, and
4-round RECTANGLE reaches the full dependency, hence it is impossible to attack
15+2×4 = 23 rounds according to the state-of-art security analysis of block ciphers.
By adding 2 more redundant rounds, we take 25 as the round number of RECTANGLE.

5 Performance in Various Environments

5.1 Hardware Implementation

We implemented RECTANGLE in Verilog HDL and used Mentor Graphics Modelsim
SE PLUS 6.6d for functional simulation. All proposed hardware designs in this pa-
per were synthesized with Synopsys Design Compiler D-2010.03-SP4 to the UMC’s
0.13µm.1P8M Low Leakage Standard cell Library with typical values (voltage of 1.2V
and temperature of 25◦C). A round-based architecture is a direct mapping of the algo-
rithm, which is the most often used for evaluation. Because there is no overhead on
multiplexers and flip-flops, this architecture typically has the lowest energy/bit, which
can show a good trade off among area, time and throughput. Moreover, this architec-
ture can be straightforwardly reduced to a serial architecture or unfolded into a parallel
architecture to meet specific demands for different application scenarios. Due to the
limitation of the paper length, we only present the detail of a round-based architecture.

Round-based Architecture Round-based RECTANGLE-80 uses 64/80-bit datapaths
for state and key respectively. It performs one round in one clock cycle. The state data-
path consists of the 64-bit register for storing, one S-layer, one P-layer and 64-bit XOR
of key addition. Except the 80-bit register for key storing, the S-box, P-layer and 5-bit
XOR are utilized to update the subkey. A Finite State Machine is used to generate con-
trol logic. The plaintext and the key are loaded into each register via multiplexers. Then
on each of the following 25 clock cycles, data is read out from the registers, passed
through the state and key datapaths and stored back to register respectively. Finally, we
can obtain the ciphertext at the output of the 64-bit XOR. Figure 7 illustrates the design
diagram of RECTANGLE-80. For the 128-bit version, the state datapath is the same as
the 80-bit version, and the key datapath has one more S-box and a different P-layer.

As indicated in Table 6, the area consumption of a round-based RECTANGLE-80 is
1466.25 GE (Gate Equivalent: The size of one NAND gate under specified technology).
The most area consuming parts are the flip-flops for the state and key storing, the 17
S-boxes and the 64-bit XOR array. Based on this specified CELL Library, our S-box



Figure 7. The datapath of the round-based RECTANGLE-80

Table 6. Implementation results of round-based RECTANGLE-80&128

Key:80-bit Key:128-bit
module Area(GE) % Area(GE) %
data state 400 27.28 400 22.38
s-layer 324 22.10 324 18.13
p-layer 0 0 0 0
key XOR 176 12.00 176 9.85
FSM 3 0.20 3 0.17
KS:key state 500 34.1 800 44.77
KS:S-box 20.75 1.42 41.5 2.32
KS:p-layer 0 0 0 0
KS:counter-XOR 42.5 2.90 42.5 2.38
sum 1466.25 100 1787 100

Table 7. Comparison of light weight cipher implementations ( Area vs. Throughput )

Key Block Cycles per Tput.At Tech. Area
size size Block 100KHz(Kbps) µm (GE)

Block Ciphers
RECTANGLE-80 80 64 26 246 0.13 1467
RECTANGLE-128 128 64 26 246 0.13 1787
PRESENT80[43] 80 64 32 200 0.18 1570
AES-128[22] 128 128 1032 12.4 0.35 3400
DESXL[42] 184 64 144 44.4 0.18 2168

Stream Ciphers
Trivium[26] 80 1 1 100 0.13 2599
Grain[26] 80 1 1 100 0.13 1294

consumes only 20.75 GE. The P-layer is only wiring. The round-based RECTANGLE-
80 has a simulated power consumption of 27.3µw at 10MHz. For the round-based
RECTANGLE-128 implementation, the area consumption is 1787 GE and the simu-
lated power consumption is 33.0µw at 10MHz.



Table 8. Comparison of 3 different architectures of implementations

Tech. Datapath Freq. Area Tput Energy/Bit
(µm) (Bit) (MHz) (GE) (pJ/bit)

Round-based
RECTANGLE-80 0.13 64 10 1467 24.6Mbps 1.11
PRESENT80[43] 0.18 64 10 1570 20.6Mbps 3.74
ICEBERG[34] 0.13 64 250 7732 1000.0Mbps 9.6
HWang AES[28] 0.18 128 50 79K 582Mbps 93

Parallel
RECTANGLE-80 0.13 64 200 21101 12.8Gbps 0.40
PRESENT80[43] 0.18 64 200 27027 10.22Gbps 0.67

Serial
RECTANGLE-80 0.13 4 0.1 1066 13.9Kbps 31.7
PRESENT80[43] 0.18 4 0.1 1075 11.4Kbps 221.1
Feldhofer AES[23] 0.35 8 0.1 3400 12.4Kbps 362.9

Results and Comparisons A comparison of round-based implementations of RECT-
ANGLE and other ciphers follows in Table 7. The throughput is calculated in bits per
second. The result in Table 7 illustrates that RECTANGLE has a rather high throughput
with a compact area consumption.

Table 8 gives a comparison of the 3 architectures of RECTANGLE-80 and other
ciphers. The power consumption is estimated on the gate level by PowerCompiler, based
on the switching activates generated by a real testbench. The power strongly depends
on the clock frequency and technology. To draw a fair comparison, we use energy per
bit to represent the energy efficiency. The results show that RECTANGLE meets the
needs under different scenarios and has a rather low energy consumption. The round-
based architecture has a good tradeoff between the area and the throughput. The parallel
implementation achieve a high throughput rate but consumes the most area and power
consumption. The serial design has more ideal compact structure. However, the cost of
this area saving is the increasing processing time of 461 cycles.

5.2 Software Implementation

We have implemented RECTANGLE on a 2.70GHz Intel(R) Core i7-2620M CPU run-
ning a 64-bit operating system with an Intel C++ compiler.

For one block data, our bit-slice implementation gives a speed at about 36.5 cy-
cles/byte for encryption and 33.5 cycles/byte for decryption. The S-box S can be imple-
mented using a sequence of 12 logical instructions, the P-layer only needs 3 rotations,
and the subkey addition only needs 4 XORs. The above 3 functions can be compiled
under a low register pressure by the Intel C++ compiler. The inverse S-box can be also
implemented using 12 logical instructions. In addition, the memory footprint of the
encryption/decryption routines is also very low.

In the case of a parallel mode of operation such as CTR, using Intel 128-bit SSE
instructions can give RECTANGLE a very impressive performance. First, consider 8
64-bit blocks, put the first 16 bits of each of the 8 blocks to the first 128-bit vector reg-
ister, the second 16 bits of each of the 8 blocks to the second 128-bit vector register,
and so on. Next, consider messages with x blocks (1 ≤ x ≤ 128). If x is not a multi-
ple of 8, then the corresponding part of the 128-bit registers is set to all zero. Since



RECTANGLE is designed as a bit-sliced cipher, the cost of data load and data for-
mat conversion is very low, which takes less than 0.2 cycles/byte when x ≥ 7. When
40 ≤ x ≤ 128 and x is a multiple of 8, it always gives an encryption speed of 5.2 cy-
cles/byte; When 75≤ x≤ 128, the encryption speed is lower or equal to 5.6 cycles/byte;
When 121 ≤ x ≤ 128, it gives an average encryption speed of about 5.38 cycles/byte.
Figure 8 illustrates our experimental result.

Our bit-slice implementation of RECTANGLE reaches an average speed of about
5.38 cycles/byte for messages with a length from 120 blocks to 128 blocks (around
1000 bytes). Refer to the latest software performance results of LED and PRESENT
presented in [2], the best reported speed is 11.9 cycles/byte and 17.3 cycles/byte re-
spectively for LED and PRESENT, we can see that the software performance of RECT-
ANGLE is quite impressive.

Figure 8. Performance of RECTANGLE with SSE Instruction Set

6 Relation to Early Designs

The main idea of the design of RECTANGLE is to allow lightweight and fast imple-
mentations using bit-slice techniques. Serpent and Noekeon are two early bit-slice based
block ciphers. However, the design goal of the two ciphers is general-purpose instead
of lightweight, almost all aspects need to be reconsidered when it comes to a dedicated
lightweight block cipher, including the block length, the key length, the selection of the
S-box, the design of the P-layer and the design of the key schedule.

Many block ciphers use parallel 4×4 S-boxes to provide confusion such as Serpent,
Noekeon, PRESENT, LED, KLEIN, LBlock and TWINE. In this paper, we proposed
new design criteria for 4× 4 S-boxes, i.e. CarD1S = CarL1S = 2. RECTANGLE uses
such a new type of S-box. The new criteria are mainly motivated by the existing se-
curity analysis of PRESENT, specifically (multiple) differential/linear cryptanalysis on
reduced-round PRESENT [14, 40, 46]. Moreover, one can get more confidence in the
security of RECTANGLE, by comparing the security of PRESENT and RECTANGLE
against (multiple) differential/linear cryptanalysis, which was shown in section 3.1 and
3.2.



Table 9. A summary of Serpent, Noekeon, PRESENT and RECTANGLE

Serpent Noekeon PRESENT RECTANGLE

block length 128 128 64 64

key length 128, 192, 256 128 80, 128 80, 128

S-box Serpent-type: a new type: Serpent-type: a new type:

(4×4) CarD1S = 0 CarD1S = 7 CarD1S = 0 CarD1S = 2

CarL1S = 6 CarL1S = 2

P-layer 6 32-bit rotations 4 32-bit rotations a 64-bit permutation 3 16-bit rotations

2 32-bit shifts 10 32-bit XORs

8 32-bit XORs

♯ rounds attacked / 12 / 32 [20] 12 / 16 [16] 26 / 31 [14] 18 / 25

♯ rounds in cipher (for Serpent-256)

hardware 0.35 µm 0.13 µm, 0.1 MHz 0.18 µm, 10 MHz 0.13 µm, 10 MHz

implementation 504000 GE 4981 GE, 0.178 Mbps 1570 GE, 20.6 Mbps, 1467 GE, 24.6 Mbps,

931.58 Mbps [29] 5 pJ/bit [41] 3.74 pJ/bit [11] 1.11 pJ/bit

(for Serpent-128) (for PRESENT-80) (for RECTANGLE-80)

software 15.2 cycles/byte [38] 29.69 cycles/byte [16] 17.3 cycles/byte [2] 5.38 cycles/byte

implementation Intel Core2, E6400@2.13GHz Intel Core,i3-2367M @ 1.4GHz Intel Core, i7-2620M @ 2.7GHz

The design of the P-layer of RECTANGLE depends largely on the bit-slice tech-
nique, which is determined by 3 rotation offsets. Compared with the P-layers of Serpent
and Noekeon, the P-layer of RECTANGLE is much more friendly for hardware imple-
mentation. Furthermore, the P-layer of RECTANGLE is not symmetric, which reduces
the differential/linear trail clustering greatly.

We summarize the design, security, hardware implementation and software imple-
mentation of the four ciphers in Table 9. Note that the software speed of Noekeon could
be improved by a factor of 3 if using 128-bit SSE instructions, i.e., to about 9.9 cy-
cles/byte.

7 Conclusion

We have proposed RECTANGLE, a new lightweight block cipher based on the bit-
slice technique. RECTANGLE is a simple design. Largely due to our careful selection
of the S-box, RECTANGLE achieves a very good security-performance tradeoff. The
highest number of attacked rounds is 18 (out of 25) after we have done an intensive and
careful security analysis on RECTANGLE. The bit-sliced design principle allows for
very efficient hardware and software implementations. A one-cycle-per-round parallel
implementation of RECTANGLE-80 only needs 1467 gates for a throughput of 246
Kbits/sec at 100 KHz clock. It also allows for the lowest energy per bit implementation
with only 1.11 pJ/bit. Using Intel 128-bit SSE instructions, a bit-slice implementation
of RECTANGLE reaches an average encryption speed of 5.38 cycles/byte for messages
around 1000 bytes on a 64-bit operating system.
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A The round constants

RC[0] = 0X01, RC[1] = 0X02, RC[2] = 0X04, RC[3] = 0X09,
RC[4] = 0X12, RC[5] = 0X05, RC[6] = 0X0B, RC[7] = 0X16,
RC[8] = 0X0C, RC[9] = 0X19, RC[10] = 0X13, RC[11] = 0X07,
RC[12] = 0X0F, RC[13] = 0X1F, RC[14] = 0X1E, RC[15] = 0X1C,

RC[16] = 0X18, RC[17] = 0X11, RC[18] = 0X03, RC[19] = 0X06,
RC[20] = 0X0D, RC[21] = 0X1B, RC[22] = 0X17, RC[23] = 0X0E,
RC[24] = 0X1D.

B Key schedule for 128-bit version of RECTANGLE and its design
criteria

Key Schedule for 128-bit Version For a 128-bit user-supplied key, the key is firstly
stored in a 128-bit key register and arranged as a 4×32 array of bits.

The corresponding two-dimensional representation of the 128-bit key state is as
follows: 

κ0,31 κ0,30 · · · κ0,2 κ0,1 κ0,0
κ1,31 κ1,30 · · · κ1,2 κ1,1 κ1,0
κ2,31 κ2,30 · · · κ2,2 κ2,1 κ2,0
κ3,31 κ3,30 · · · κ3,2 κ3,1 κ3,0


At round i(i = 0,1, · · · ,24), the 64-bit round subkey Ki consists of the 16 rightmost

columns of the current contents of the key. After extracting the round subkey Ki, the
key register is updated as follows:

1. Applying the S-box S to column 0 and column 1, i.e.,
κ3,0||κ2,0||κ1,0||κ0,0 := S(κ3,0||κ2,0||κ1,0||κ0,0)
κ3,1||κ2,1||κ1,1||κ0,1 := S(κ3,1||κ2,1||κ1,1||κ0,1)

2. A left rotation to each row over different offsets. Row 0 is left rotated over 10
bits, row 1 is left rotated over 14 bits, row 2 is left rotated over 18 bits, row 3
is left rotated over 22 bits.

3. A 5-bit round constant RC[ i ] is XORed with the 5-bit key state (κ0,4||κ0,3||κ0,2||
κ0,1||κ0,0), where RC[ i ] (i = 0,1, · · · ,24) are the same as those used in the 80-
bit key schedule.

Finally, K25 is extracted from the updated key state.

Design Criteria The design criteria of the 128-bit key schedule are as follows:

1. Same with criterion 1 of the 80-bit version;
2. Each bit in the 128-bit key register is a non-linear function of the 128-bit user-

supplied key after 17 rounds;
3. The union of subkey bits of any 3 consecutive rounds depends on each of the

128 bits of the user-supplied key;
4. Same with criterion 4 of the 80-bit version.



C Test Vectors

Plaintext Key Ciphertext

0000000000000000 00000000000000000000 0111100100011110
REC-80 0000000000000000 00000000000000000000 1100111100101100

0000000000000000 00000000000000000000 1110111100001001
0000000000000000 00000000000000000000 1010011101100011
1111111111111111 11111111111111111111 1010011011010110

REC-80 1111111111111111 11111111111111111111 0110010110010110
1111111111111111 11111111111111111111 1110101100001111
1111111111111111 11111111111111111111 0101110000001010
0000000000000000 00000000000000000000000000000000 0111000110110011

REC-128 0000000000000000 00000000000000000000000000000000 1110101110110101
0000000000000000 00000000000000000000000000000000 1000011100100011
0000000000000000 00000000000000000000000000000000 0100000011010000
1111111111111111 11111111111111111111111111111111 1101100010111110

REC-128 1111111111111111 11111111111111111111111111111111 0001110010111111
1111111111111111 11111111111111111111111111111111 1011100010110101
1111111111111111 11111111111111111111111111111111 1010101010111101

D A Bit-slice Description of RECTANGLE

Our essential thoughts for the design of RECTANGLE will become more clear as we
consider the bit-slice description of RECTANGLE. In the following, we present an
equivalent description of SubColumn and ShiftRow transformations. Based on them,
one can easily write a code for a software implementation of RECTANGLE, i.e., a
bit-slice implementation. Our software implementation of RECTANGLE is just based
on these results. Although the representation of SubColumn given here is also suitable
for a hardware implementation, we point out that it is not the best one. Indeed, we
have found a better representation of SubColumn when it comes to area-first hardware
implementation.

D.1 SubColumn

As shown in Figure 2, a 64-bit state is described as a 4×16 array. Let Ai = ai,15||ai,14|| · · · ||
ai,2||ai,1||ai,0 denote the i-th row, i = 0,1,2,3. Ai can be regarded as a 16-bit word.

Let A0,A1,A2,A3 be 4 16-bit inputs of SubColumn, B0,B1,B2,B3 the 4 16-bit out-
puts, where Ai and Bi denote the i-th row of the cipher state. Let Ti denote 16-bit tempo-
rary variables, i = 1,2,3,5,6,8,9,11,12. The SubColumn transformation can be com-
puted in the following 12 steps:

1. T1 = A0⊕A1; 2. T2 = A0|A3; 3. T3 = A2⊕T2;
4. B2 = A1⊕T3; 5. T5 = A0 &T3; 6. T6 = A3⊕B2;
7. B1 = T5⊕T6; 8. T8 = ¬B1; 9. T9 = T3|T8;
10. B3 = T1⊕T9; 11. T11 = T8|B3; 12. B0 = T3⊕T11;



D.2 ShiftRow

Let B0,B1,B2,B3 be 4 16-bit inputs of ShiftRow transformation, C0,C1,C2,C3 the 4
16-bit outputs. Then:

C0 = B0; C1 = B1 ≪ 1; C2 = B2 ≪ 12; C3 = B3 ≪ 13.
where “A ≪ (x)” denotes a left rotation over x bits within a 16-bit word A.

E A Short-cut Attack on 18-round RECTANGLE

E.1 14-round Differential Distinguishers

For 14-round RECTANGLE, the probability of the best differential trail is 2−61. We
have searched for all 14-round differential trails with probability between 2−61 and
2−71 (up to a rotation equivalence), and examined all the difference propagations made
up of these investigated trails, the following are the experimental results:

1. There are 32 best difference propagations with probability 81× 2−67 ≈ 2−60.66

each. Each is composed of 4 differential trails. Among the 4 trails, one with proba-
bility 2−61, two with 2−64 each, and one with 2−67.

2. Among all the difference propagations, the maximum number of trails of a differ-
ence propagation is 114, i.e., a difference propagation is composed of at most 114
different trails. For such a difference propagation, the probability is 500× 2−71 ≈
2−62.03.

3. There are 10872 difference propagations with a probability larger than 2−64.

There are 10872 effective 14-round difference propagations, the question is, which
one should we choose? Our goal is to investigate what is the highest number of at-
tacked rounds of RECTANGLE. Using one (or some) 14-round difference propaga-
tion(s), adding rb rounds at the beginning and re rounds at the end, an attacker means to
mount an attack on 14+ rb + re rounds. After comparing our attack results by choosing
several different 14-round difference propagations, we found that the time complexity
depends largely on the number of guessed subkey bits for attacking 17 or 18 rounds.
The number of guessed subkey bits mainly depends on two values, one is the number
of active bits of the input difference of a difference propagation, the other is the num-
ber of active S-boxes of the output difference of the difference propagation. Generally,
the smaller the two values, the lower the time complexity. Let sum denote the sum of
the two values, our experiment shows that the minimum value of sum is 4. Among all
the effective 14-round difference propagations with sum = 4, we choose one with the
highest probability. In the following, we present this difference propagation.

A 14-round Difference Propagation of RECTANGLE The difference propagation
we have chosen is composed of 2 differential trails. Among the 2 trails, one with prob-
ability 2−63, the other with probability 2−66, thus the total probability of this difference
propagation is 2−63+2−66 ≈ 2−62.83. The following table gives the input difference and
the output difference:



Input Difference of Round 0 Output Difference of Round 13
0000000000000000 0000000000000000
0000000000000001 0000001000010000
0000000000000001 0000000000010000
0000000000000000 0000000000000000

The first differential trail with probability 2−63:

Round Index Round Prob. Input Difference Output Difference

(−log2) of the Round of the S-box
0000000000000000 0000000000000001

0 2 0000000000000001 0000000000000000
0000000000000001 0000000000000000
0000000000000000 0000000000000000
0000000000000001 0000000000000000

1 3 0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000001
0000000000000000 0010000000000000

2 3 0000000000000000 0010000000000000
0000000000000000 0000000000000000
0010000000000000 0000000000000000
0010000000000000 0000000000000000

3 5 0100000000000000 0100000000000000
0000000000000000 0100000000000000
0000000000000000 0010000000000000
0000000000000000 0000000000000000

4 5 1000000000000000 1000010000000000
0000010000000000 1000000000000000
0000010000000000 0000000000000000
0000000000000000 0000000000000000

5 5 0000100000000001 0000100000000001
0000100000000000 0000000000000001
0000000000000000 0000000000000000
0000000000000000 0000000000000000

6 5 0001000000000010 0001000000000010
0001000000000000 0000000000000010
0000000000000000 0000000000000000
0000000000000000 0000000000000000

7 5 0010000000000100 0010000000000100
0010000000000000 0000000000000100
0000000000000000 0000000000000000
0000000000000000 0000000000000000

8 5 0100000000001000 0100000000001000
0100000000000000 0000000000001000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

9 5 1000000000010000 1000000000010000
1000000000000000 0000000000010000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

10 5 0000000000100001 0000000000100001
0000000000000001 0000000000100000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

11 5 0000000001000010 0000000001000010
0000000000000010 0000000001000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

12 5 0000000010000100 0000000010000100
0000000000000100 0000000010000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

13 5 0000000100001000 0000000100001000
0000000000001000 0000000100000000
0000000000000000 0000000000000000



The second differential trail with probability 2−66:

Round Index Round Prob. Input Difference Output Difference

(−log2) of the round of the S-box
0000000000000000 0000000000000001

0 2 0000000000000001 0000000000000000
0000000000000001 0000000000000000
0000000000000000 0000000000000000
0000000000000001 0000000000000001

1 3 0000000000000000 0000000000000000
0000000000000000 0000000000000000
0000000000000000 0000000000000001
0000000000000001 0010000000000000

2 6 0000000000000000 0010000000000000
0000000000000000 0000000000000000
0010000000000000 0000000000000001
0010000000000000 0000000000000000

3 5 0100000000000000 0100000000000000
0000000000000000 0100000000000000
0010000000000000 0010000000000000
0000000000000000 0000000000000000

4 5 1000000000000000 1000010000000000
0000010000000000 1000000000000000
0000010000000000 0000000000000000
0000000000000000 0000000000000000

5 5 0000100000000001 0000100000000001
0000100000000000 0000000000000001
0000000000000000 0000000000000000
0000000000000000 0000000000000000

6 5 0001000000000010 0001000000000010
0001000000000000 0000000000000010
0000000000000000 0000000000000000
0000000000000000 0000000000000000

7 5 0010000000000100 0010000000000100
0010000000000000 0000000000000100
0000000000000000 0000000000000000
0000000000000000 0000000000000000

8 5 0100000000001000 0100000000001000
0100000000000000 0000000000001000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

9 5 1000000000010000 1000000000010000
1000000000000000 0000000000010000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

10 5 0000000000100001 0000000000100001
0000000000000001 0000000000100000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

11 5 0000000001000010 0000000001000010
0000000000000010 0000000001000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

12 5 0000000010000100 0000000010000100
0000000000000100 0000000010000000
0000000000000000 0000000000000000
0000000000000000 0000000000000000

13 5 0000000100001000 0000000100001000
0000000000001000 0000000100000000
0000000000000000 0000000000000000

E.2 An Attack on 18-round RECTANGLE

Notations



– For r-round RECTANGLE, the subkey Ki is used in round i(i= 0,1,2,r−1), finally
a subkey XOR with Kr.

– Let X I
i , XSO

i and XO
i respectively denote the input, the intermediate value after the

application of SubColumn and the output of round i.
– A cipher state has 16 columns, as Figure 2 shows, let (Xi)Col( j) denote column j of

Xi, j = 0,1,2, · · · ,15.

Set the 14-round difference propagation at rounds 2-15, adding two rounds at the
beginning, adding two rounds and a final subkey XOR at the end. The attacker needs
to guess some subkey bits of K0,K1,K17 and K18. To get the input difference of round
2, the attacker needs to guess 28 bits of K0 and 8 bits of K1, then partially encrypts the
plaintexts. To get the output difference of round 15, the attacker needs to guess 28 bits
of K18 and 8 bits of K17, then partially decrypts the ciphertexts. For right pairs, there are
9 non-active S-boxes in round 17, thus the corresponding ciphertext difference in the
9×4 = 36 bit positions must be zero. The attack algorithm is as follows:

1. Choose a set of 228 plaintexts which have certain fixed values in all but 7 columns
2,3,4,7,8,14,15. We call this a structure, one structure can form about 228× (228−
1)≈ 255 plaintext pairs. Generate 2m structures, thus 2m+28 plaintexts, 2m+55 plain-
text pairs.

2. For each structure:
(a) Insert all the ciphertexts into a hash table indexed by the 36 non-active bits.

Choose only the pairs in the same entry, i.e., the ciphertext pairs having zero
difference in these 36 bits. The expected number of such pairs is 2m+55−36 =
2m+19.

(b) Guess the value of a part of subkey bits of K0, and do partial encryption:
i. Guess the 4 subkey bits (K0)Col(2), and encrypt the plaintext pairs to get

the difference of (XSO
0 )Col(2). Check up whether the difference in the 3 bit

positions (0,1,2) of (XSO
0 )Col(2) are zero. If no, then discard the pair. The

expected remaining pairs is 2m+16.
ii. Respectively guess the 4 subkey bits (K0)Col(i)(i = 4,7,8,14,15), and en-

crypt the remaining pairs to get the difference of (XSO
0 )Col(i). Check up

whether the difference in 3 bit positions of (XSO
0 )Col(i) are zero. If no, dis-

card the pair. The expected remaining pairs is 2m+1.
iii. Guess the 4 subkey bits (K0)Col(3), and encrypt the remaining pairs to get

the difference of (XSO
0 )Col(3). Check up whether the difference in the 2 bit

positions (0,4) of (XSO
0 )Col(3) are zero. If no, then discard the pair. The

expected remaining pairs is 2m+1−2 = 2m−1.
(c) Guess the value of a part of subkey bits of K1, and do partial encryption:

i. Guess the 4 subkey bits (K1)Col(4), and encrypt the remaining 2m−1 pairs
to get the difference of (XSO

1 )Col(4). Check up whether the difference in
(XSO

0 )Col(4) equals to 4. If no, then discard the pair. The expected remaining
pairs is 2m−5.

ii. Guess the 4 subkey bits (K0)Col(15), and encrypt the remaining 2m−5 pairs
to get the difference of (XSO

1 )Col(15). Check up whether the difference in



(XSO
0 )Col(15) equals to 2. If no, then discard the pair. The expected remain-

ing pairs is 2m−9.
(d) Guess the value of a part of subkey bits of K18, and do partial decryption:

i. Guess the 4 subkey bits (Shi f tRow−1(K18))Col(0), and decrypt the cipher-
text pairs to get the difference of (X I

17)Col(0). Check up whether the dif-
ference in the 3 bit positions (0,1,3) of (X I

17)Col(0) are zero. The expected
remaining pairs is 2m−12.

ii. Respectively guess the 4 subkey bits (Shi f tRow−1(K18))Col(i)(i= 1,4,6,9,10),
and decrypt the ciphertext pairs to get the difference of (X I

17)Col(i). Check
up whether the difference in 3 bit positions of (X I

17)Col(i) are zero. The
expected remaining pairs is 2m−27.

iii. Guess the 4 subkey bits (Shi f tRow−1(K18))Col(5), and decrypt the cipher-
text pairs to get the difference of (X I

17)Col(5). Check up whether the dif-
ference in 2 bit positions of (X I

17)Col(3) are zero. The expected remaining
pairs is 2m−29.

(e) Guess the value of a part of subkey bits of K17, and do partial decryption:
i. Guess the 4 subkey bits (Shi f tRow−1(K17))Col(4), and decrypt the pairs

to get the difference of (X I
16)Col(4). Check up whether the difference in

(X I
16)Col(4) is equal to 6. If no, then discard the pairs. The expected remain-

ing pairs is 2m−33.
ii. Guess the 4 subkey bits (Shi f tRow−1(K17))Col(9), and decrypt the pairs

to get the difference of (X I
16)Col(9). Check up whether the difference in

(X I
16)Col(9) is equal to 2. If so, add one to the corresponding counter. The

expected remaining pairs is 2m−37.
(f) If the number of the remaining pairs is larger than 1, then keep the guess of the

subkey bits as the candidates of the right subkeys.
(g) For the survived candidates of the right subkeys, compute the seed key by doing

an exhaustive search to find the unique right seed key.

Let us evaluate the time complexity of step 2.a - step 2.e first. Step 2.a requires
2m+28 memory accesses. Step 2.b.i requires about 2× 2m+19× 24 = 2m+24 one-round
encryptions, step 2.b.ii requires about 2×2m+16×28 +2×2m+13×212 +2×2m+10×
216 +2×2m+7×220 +2×2m+4×224 = 2m+25 +2m+26 +2m+27 +2m+28 +2m+29 one-
round encryptions, step 2.b.iii requires about 2× 2m+1× 228 = 2m+30 one-round en-
cryptions. Step 2.c.i requires about 2×2m−1×232 = 2m+32 one-round encryptions, step
2.c.ii requires about 2×2m−5×236 = 2m+32 one-round encryptions. Step 2.d.i requires
about 2m+32 one-round encryptions, step 2.d.ii requires about 2m+33+2m+34+2m+35+
2m+36+2m+37 one-round encryptions, step 2.d.iii requires about 238 one-round encryp-
tions. Step 2.e.i requires about 2×2m−29×268 = 240 one-round encryptions, step 2.e.i
requires about 2×2m−33×272 = 240 one-round encryptions. The overall time complex-
ity of step 2.a - step 2.e is about 2m+41.32 one-round encryptions, or 2m+37.15 18-round
encryptions.

Let m = 36. The data complexity of the attack is 264 plaintexts. The memory com-
plexity is 272 key counters. For wrong key guesses, the expected remaining pairs is



1/2. For the right key guess, the expected remaining pairs is 2m+55−28−62.83 ≈ 1.125.
By the Poisson distribution, X ∼ Poi(λ = 1/2), Prob[X >= 1] ≈ 2−1.34, thus the time
complexity of step 2.g is 280−1.34 = 278.66 for a 80-bit user-supplied key, the overall
time complexity of the attack is about 236+37.15 + 278.66 ≈ 278.69 18-round encryp-
tions. For a 128-bit user-supplied key, the overall time complexity of the attack is about
2128−1.34 = 2126.66 18-round encryptions.

By the Poisson distribution, X ∼ Poi(λ = 1.125), Prob[X >= 1] ≈ 67.5%, so the
success rate of the above attack is about 67.5%.

E.3 On 14-round Linear Distinguishers

For 14-round RECTANGLE, we also investigated the clustering of linear trails by
searching for all the linear trails with an amplitude of the correlation coefficient be-
tween 2−34 and 2−37. The results show that the best 14-round linear propagation has
an amplitude of the average correlation 2−31.62. Considering the two facts: (1). the gap
between 2−31.62 and 2−32 is very small; (2). let h1 and h2 respectively denote the bit
hamming weight of the input and output selection pattern, then the minimum value of
h1 +h2 is 7 among all the effective 14-round linear distinguishers. Compared with the
case in differential cryptanalysis, we prefer to believe that it is better to use 14-round
differential distinguisher rather than 14-round linear distinguisher with respect to the
highest number of attacked rounds.


