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Abstract

Protecting individuals’ privacy in online communications has become a challenge of paramount
importance. To this end, anonymous communication (AC) protocols such as the widely used
Tor network have been designed to provide anonymity to their participating users. While AC
protocols have been the subject of several security and anonymity analyses in the last years, there
still does not exist a framework for analyzing complex systems such as Tor and their different
anonymity properties in a unified manner.

In this work we present AnoA: a generic framework for defining, analyzing, and quantifying
anonymity properties for AC protocols. AnoA relies on a novel relaxation of the notion of
(computational) differential privacy, and thereby enables a unified quantitative analysis of well-
established anonymity properties, such as sender anonymity, sender unlinkability, and relationship
anonymity. While an anonymity analysis in AnoA can be conducted in a purely information
theoretical manner, we show that the protocol’s anonymity properties established in AnoA
carry over to secure cryptographic instantiations of the protocol. We exemplify the applicability
of AnoA for analyzing real-life systems by conducting a thorough analysis of the anonymity
properties provided by the Tor network against passive adversarys. Our analysis significantly
improves on known anonymity results from the literature.

Note on this version Compared to the CSF version [BKM+13], this version enhances the AnoA framework

by making the anonymity definitions as well as the corresponding privacy games adaptive. It also introduces the

concept of adversary classes for restricting the capabilities of adversaries to model realistic attack scenarios.
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1 Introduction

Protecting individuals’ privacy in online communications has become a challenge of paramount
importance. A wide variety of privacy enhancing technologies, comprising many different approaches,
have been proposed to solve this problem. Privacy enhancing technologies, such as anonymous
communication (AC) protocols, seek to protect users’ privacy by anonymizing their communication
over the Internet. Employing AC protocols has become increasingly popular over the last decade.
This popularity is exemplified by the success of the Tor network [Tor03].

There has been a substantial amount of previous work [STRL00, DSCP02, SD02, Shm04,
MVdV04, HO05, SW06, D0́6, FJS07a, FJS07b, GTD+08, APSVR11, FJS12] on analyzing the
anonymity provided by various AC protocols such as dining cryptographers network (DC-net) [Cha88],
Crowds [RR98], mix network (Mixnet) [Cha81], and onion routing (e.g., Tor) [RSG98]. However,
most of the previous works only consider a single anonymity property for a particular AC protocol
under a specific adversary scenario. Previous frameworks such as [HS04] only guarantee anonymity
for a symbolic abstraction of the AC, not for its cryptographic realization. Moreover, while some
existing works like [FJS12] consider an adversary with access to a priori probabilities for the behavior
of users, there is still no work that is capable of dealing with an adversary that has arbitrary auxiliary
information about user behavior.

Prior to this work, there is no framework that is both expressive enough to unify and compare
relevant anonymity notions (such as sender anonymity, sender unlinkability, and relationship
anonymity), and that is also well suited for analyzing complex cryptographic protocols.

1.1 Contributions

In this work, we make four contributions to the field of anonymity analysis.
As a first contribution, we present the novel anonymity analysis framework AnoA. In AnoA

we define and analyze anonymity properties of AC protocols. Our anonymity definition is based
on a novel generalization of differential privacy, a notion for privacy preserving computation that
has been introduced by Dwork et al. [Dwo06, DMNS06]. The strength of differential privacy
resides in a strong adversary that has maximal control over two adjacent settings that it has
to distinguish. However, applying differential privacy to AC protocols seems impossible. While
differential privacy does not allow for leakage of (potentially private) data, AC protocols inherently
leak to the recipient the data that a sender sends to this recipient. We overcome this contradiction
by generalizing the adjacency of settings between which an adversary has to distinguish. We
introduce an explicit adjacency function α that characterizes whether two settings are considered
adjacent or not. In contrast to previous work on anonymity properties, this generalization of
differential privacy, which we name α-IND-CDP, is based on IND-CDP [MPRV09] and allows
the formulation of anonymity properties in which the adversary can choose the messages—which
results in a strong adversary—as long as the adjacent challenge inputs carry the same messages.
Moreover, AnoA is compatible with simulation-based composability frameworks, such as UC [Can01],
IITM [KT13], or RSIM [BPW07]. In particular, for all protocols that are securely abstracted by
an ideal functionality [Wik04, CL05, DG09, KG10, BGKM12], our definitions allow an analysis of
these protocols in a purely information theoretical manner.

As a second contribution, we formalize the well-established notions of sender anonymity, (sender)
unlinkability, and relationship anonymity in our framework, by introducing appropriate adjacency
functions. We discuss why our anonymity definitions accurately capture these notions, and show for
sender anonymity and (sender) unlinkability that our definition is equivalent to the definitions from
the literature. For relationship anonymity, we argue that previous formalizations captured recipient
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anonymity rather than relationship anonymity, and we discuss the accuracy of our formalization.
Moreover, we show relations between our formalizations of sender anonymity, (sender) unlinkability,
and relationship anonymity: sender anonymity implies both (sender) unlinkability and relationship
anonymity, but is not implied by either of them.

As a third contribution, we extend our definitions by strengthening the adversary and improving
the flexibility of our framework. We strengthen the adversary by introducing an adaptive challenger
and adaptive anonymity notions for our privacy games. In many real-world scenarios an adversary
has less control over individual protocol participants. We improve the flexibility of AnoA by
introducing so-called adversary classes that allow such a fine-grained specification of the influence
that the adversary has on a scenario. Even though, in general, adversary classes are not sequentially
composable for adaptive adversaries, we identify a property that suffices for proving sequential
composability.

Finally, as a fourth contribution, we apply our framework to the most successful AC protocol—
Tor. We leverage previous results that securely abstract Tor as an ideal functionality (in the UC
framework) [BGKM12]. Then, we illustrate that proving sender anonymity, sender unlinkability,
and relationship anonymity against passive adversaries boils down to a combinatoric analysis, purely
based on the number of corrupted nodes in the network. We further leverage our framework and
analyze the effect of a known countermeasure for Tor’s high sensitivity to compromised nodes: the
entry guards mechanism. We discuss that, depending on the scenario, using entry guards can have
positive or negative effect.

Outline of the Paper. In Section 2 we introduce the notation used throughout the paper.
Section 3 presents our anonymity analysis framework AnoA and introduces the formalizations of
sender anonymity, unlinkability, and relationship anonymity notions in the framework. Section 4
compares our anonymity notions with those from the literature as well as with each other. In
Section 5 we extend the definitions with adaptively chosen inputs and with adversary classes. In
Section 6, we demonstrate compatibility of AnoA with a simulation-based composability framework
(in particular, the UC framework), and, in Section 7, we leverage our framework for proving of the
anonymity guarantees the Tor network. In Section 8, we discuss and compare related work with our
framework. Finally, we conclude and discuss some further interesting directions in Section 9.

2 Notation

Before we present AnoA, we briefly introduce some of the notation used throughout the paper. We
differentiate between two different kinds of assignments: a := b denotes a being assigned the value b,
and a← β denotes that a value is drawn from the distribution β and a is assigned the outcome. In

a similar fashion i
R←I denotes that i is drawn uniformly at random from the set I.

Probabilities are given over a probability space which is explicitly stated unless it is clear from

context. For example Pr[b = 1 : b
R←{0, 1}] denotes the probability of the event b = 1 in the

probability space where b is chosen uniformly at random from the set {0, 1}.
Our security notion is based on interacting Turing Machines (TM). We use an oracle-notation for

describing the interaction between an adversary and a challenger: AB denotes the interaction of TM
A with TM B where A has oracle access to B. Whenever A activates B again, B will continue its
computation on the new input, using its previously stored state. A can then again activate B with
another input value, and B will continue its computation with the new input, using its previously
stored state. This interaction continues until A returns an output, which is considered the output
of AB.
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In this paper we focus on computational security, i.e. all machines are computationally bounded.
More formally, we consider probabilistic, polynomial time (PPT) TMs, which we denote with PPT
whenever required.

3 The AnoA Framework

In this section, we present the AnoA framework and our formulations of sender anonymity, sender
unlinkability, and relationship anonymity (Section 3.3). These formulations are based on a novel
generalization of differential privacy that we describe in Section 3.2. Before we introduce this notion,
we first describe the underlying protocol model. Using our protocol model, AC protocols are closely
related to mechanisms that process databases, a fact that enables us to apply a more flexible form
of differential privacy.

3.1 Protocol model

Anonymous communication (AC) protocols are distributed protocols that enable multiple users to
anonymously communicate with multiple recipients. Formally, an AC protocol is an interactive
Turing machine.1 We associate a protocol with a user space U , a recipient space R and an auxiliary
information space Aux. Users’ actions are modeled as an input to the protocol and represented
in the form of an ordered input table. Each row in the input table contains a user u ∈ U that
performs some action, combined with a list of possible recipients ri ∈ R together with some auxiliary
information aux. The meaning of aux depends on the nature of the AC protocol. Based on the AC
protocol, auxiliary information can specify the content of a message that is sent to a recipient or
may contain a symbolic description of user behavior. We can think of the rows in the input table as
a list of successive input to the protocol.

Definition 1 (Input tables). An input table D of size t over a user space U , a recipient space
R and an auxiliary information space Aux is an ordered table D = (d1, d2, . . . , dt) of tuples dj =
(uj , (rj i, auxj i)

`
i=1), where uj ∈ U , rj i ∈ R and auxj i ∈ Aux.

A typical adversary in an AC protocol can compromise a certain number of parties. We model
such an adversary capability as static corruption: before the protocol execution starts A may decide
which parties to compromise.

Our protocol model is generic enough to capture multi-party protocols in classical simulation-
based composability frameworks, such as the UC [Can01], the IITM [KT13] or the RSIM [BPW07]
framework. In particular, our protocol model comprises ideal functionalities, trusted machines that
are used in simulation-based composability frameworks to define security. It is straightforward to
construct a wrapper for such an ideal functionality of an AC protocol that translates input tables to
the expected input of the functionality. We present such a wrapper for Tor in Section 7.

3.2 Generalized computational differential privacy

For privacy preserving computations the notion of differential privacy (DP) [Dwo06, DMNS06] is a
standard for quantifying privacy. Informally, differential privacy of a mechanism guarantees that
the mechanism does not leak any information about a single user–even to an adversary that has
auxiliary information about the rest of the user base. It has also been generalized to protocols against

1We stress that using standard methods, a distributed protocol with several parties can be represented by one
interactive Turing machine.
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computationally bounded adversaries, which has led to the notion of computational differential
privacy (CDP) [MPRV09]. In computational differential privacy two input tables are compared that
are adjacent in the sense that they only differ in one row, called the challenge row. The definition
basically states that no PPT adversary should be able to determine which of the two input tables
was used.

For anonymity properties of AC protocols, such a notion of adjacency is too strong. One of
the main objectives of an AC protocol is communication: delivering the sender’s message to the
recipient. However, if these messages carry information about the sender, a curious recipient can
determine the sender (see the following example).

Example 1: Privacy. Consider an adversary A against the “computational differential privacy”
game with an AC protocol. Assume the adversary owns a recipient evilserver.com, that forwards all
messages it receives to A. Initially, A sends input tables D0, D1 to the IND-CDP challenger that are
equal in all rows but one: In this distinguishing row of D0 the party Alice sends the message “I am
Alice!” to evilserver.com and in D1, the party Bob sends the message “I am Bob!” to evilserver.com.
The tables are adjacent in the sense of computational differential privacy (they differ in exactly
one row). However, no matter how well the identities of recipients are hidden by the protocol, the
adversary can recognize them by their messages and thus will win the game with probability 1. �

Our generalization of CDP allows more fine-grained notions of adjacency; e.g., adjacency for
sender anonymity means that the two tables only differ in one row, and in this row only the user
that sends the messages is different. In general, we say that an adjacency function α is a randomized
function that expects two input tables (D0, D1) and either outputs two input tables (D′0, D

′
1) or a

distinguished error symbol ⊥. Allowing the adjacency function α to also modify the input tables is
useful for shuffling rows, which we need for defining relationship anonymity (see Definition 6).

CDP, like the original notion of differential privacy, only considers trusted mechanisms. In
contrast to those incorruptible, monolithic mechanisms we consider arbitrary protocols, and thus
even further generalize and strengthen CDP: we grant the adversary the possibility of compromising
parties in the mechanism in order to accurately model the adversary.

For analyzing a protocol P, we define a challenger Ch(P, α, b) that expects two input tables
D0, D1 from a PPT adversary A. The challenger Ch calls the adjacency function α on (D0, D1). If
α returns ⊥ the challenger halts. Otherwise, upon receiving two (possibly modified) tables D′0, D

′
1,

Ch chooses D′b, depending on its input bit b, and successively feeds one row after the other to
the protocol P.2 We assume that the protocol upon an input (u, (ri, auxi)

`
i=1), sends (ri, auxi)

`
i=1

as input to party u. In detail, upon a message (input, D0, D1) sent by A, Ch(P, α, b) computes
(D′0, D

′
1) ← α(D0, D1). If (D′0, D

′
1) 6= ⊥, Ch runs P with the input table D′b and forwards all

messages that are sent from P to A and all messages that are sent from A to P. At any point, the
adversary may output his decision b∗.

Our definition depends on two parameters: ε and δ. As in the definition of differential privacy, ε
quantifies the degree of anonymity (see Example 3). The anonymity of commonly employed AC
protocols also break down if certain distinguishing events happen, e.g., when an entry guard of a
Tor user is compromised. Similar to CDP, the probability that such a distinguishing event happens
is quantified by the parameter δ. However, in contrast to CDP, this δ is typically non-negligible
and depends on the degree of corruption in the AC network. As a next step, we formally define
(ε, δ)-α-IND-CDP.

2In contrast to IND-CDP, we only consider PPT-computable tables.
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Upon message(input, D0, D1) (only once)

compute (D′0, D
′
1)←α(D0, D1)

if (D′0, D
′
1) 6= ⊥ then

run P on the input table D′b and forward all messages that are sent by P to the adversary
A and send all messages by the adversary to P.

Figure 1: The challenger Ch(P, α, b) for the adjacency function α

Definition 2 ((ε, δ)-α-IND-CDP). Let Ch be the challenger from Figure 1. The protocol P is
(ε, δ)-α-IND-CDP for α, where ε ≥ 0 and 0 ≤ δ ≤ 1, if for all PPT-adversaries A:

Pr[b = 0 : b←ACh(P,α,0)]

≤ eε · Pr[b = 0 : b←ACh(P,α,1)] + δ

A note on the adversary model. While our adversary initially constructs the two input tables
in their entirety, our model does not allow the adversary to adaptively react to the information
that it observes by changing the behaviors of users. This is in line with previous work, which also
assumes that the user behavior is fixed before the protocol is executed [FJS07a, FJS12].

As a next step towards defining our anonymity properties, we formally introduce the notion of
challenge rows. Recall that challenge rows are the rows that differ in the two input tables.

Definition 3 (Challenge rows). Given two input tables A = (a1, a2, . . . , at) and B = (b1, b2, . . . , bt)
of the same size, we refer to all rows ai 6= bi with i ∈ {1, . . . , t} as challenge rows. If the input tables
are of different sizes, there are no challenge rows. We denote the challenge rows of D as CR(D).

3.3 Anonymity properties

In this section, we present our (ε, δ)-α-IND-CDP based anonymity definitions in which the adversary
is allowed to choose the entire communication except for the challenge rows, for which he can specify
two possibilities. First, we define sender anonymity, which states that a malicious recipient cannot
decide, for two candidates, to whom he is talking even in the presence of virtually arbitrary auxiliary
information. Second, we define user unlinkability, which states that a malicious recipient cannot
decide whether it is communicating with one user or with two different users, in particular even if
he chooses the two possible rows. Third, we define relationship anonymity, which states that an
adversary (that potentially controls some protocol parties) cannot relate sender and recipient in a
communication.

Our definitions are parametrized by ε and δ. We stress that all our definitions are necessarily
quantitative. Due to the adversary’s capability to compromise parts of the communication network
and the protocol parties, achieving overwhelming anonymity guarantees (i.e., for a negligible δ) for
non-trivial (and useful) AC protocols is infeasible.

3.3.1 Sender anonymity

Sender anonymity requires that the identity of the sender is hidden among the set of all possible
users. In contrast to other notions from the literature, we require that the adversary is not able to
decide which of two self-chosen users have been communicating. Our notion is stronger than the
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αSA(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, R)) ∧ CR(D1) = ((u1, R)) then
output (D0, D1)

else
output ⊥

Figure 2: The adjacency function αSA for sender anonymity.

αUL(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, Ru), (u0, Rv)) =: (c0,u, c0,v)
∧CR(D1) = ((u1, Ru), (u1, Rv)) =: (c1,u, c1,v)

then
x

R← {0, 1}, y R← {u, v}
Replace cx,y with c(1−x),y in Dx

output (Dx, D1−x)
else

output ⊥

Figure 3: The adjacency function αUL for sender unlinkability.

usual notion, and in Section 4 we exactly quantify the gap between our notion and the notion from
the literature. Moreover, we show that the Tor network satisfies this strong notion, as long as the
user in question did not choose a compromised path (see Section 7).

We formalize our notion of sender anonymity with the definition of an adjacency function αSA as
depicted in Figure 2. Basically, αSA merely checks whether in the challenge rows everything except
for the user is the same.

Definition 4 (Sender anonymity). A protocol P provides (ε, δ)-sender anonymity if it is (ε, δ)-
α-IND-CDP for αSA as defined in Figure 2.

Example 2: Sender anonymity. The adversary A decides that he wants to use users Alice and Bob
in the sender anonymity game. It sends input tables D0, D1 such that in the challenge row of D0

Alice sends a message m∗ of A’s choice to a (probably corrupted) recipient, e.g. evilserver.com, and
in D1, instead of Alice, Bob sends the same message m∗ to the same recipient evilserver.com. The
adjacency function αSA makes sure that only one challenge row exists and that the messages and
the recipients are equal. If so, it outputs D0, D1 and if not it outputs ⊥. �

Notice that analogously recipient anonymity (αRA) can be defined: the adjacency function then
checks that the challenge rows only differ in one recipient.
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αRel(D0, D1)

if ||D0|| 6= ||D1|| then
output ⊥

if CR(D0) = ((u0, Ru)) ∧ CR(D1) = ((u1, Rv)) then

x
R← {0, 1}, y R← {0, 1}

if x=1 then
Set CR(D0) to ((u1, Rv))

if y=1 then
Set CR(D1) to ((u0, Rv))

else
Set CR(D1) to ((u1, Ru))

output (D0, D1)
else

output ⊥

Figure 4: The adjacency function αRel for relationship anonymity.

3.3.2 The value of ε

In Section 7, we analyze the widely used AC protocol Tor. We show that if every node is uniformly
selected then Tor satisfies sender anonymity with ε = 0. If the nodes are selected using preferences,
e.g., in order to improve throughput and latency, ε and δ may increase.3

Recall that the value δ describes the probability of a distinguishing event, and if this distinguishing
event occurs, anonymity is broken. In the sender anonymity game for Tor this event occurs if the
entry guard of the user’s circuit is compromised. If a user has a preference for the first node, the
adversary can compromise the most likely node. Thus, a preference for the first node in a circuit
increases the probability for the distinguishing event (δ). However, if there is a preference for the
second node in a circuit, corrupting this node does not lead to the distinguishing event but can still
increase the adversary’s success probability by increasing ε. Consider the following example.

Example 3: The value of ε. Assume that the probability that Alice chooses a specific node N as

second node is 1
40 and the probability that Bob uses N as second node is 3

40 . Further assume that for
all other nodes and users the probabilities are uniformly distributed. Suppose the adversary A corrupts
N . If A observes communication over the node N , the probability that this communication originates
from Bob is 3 times the probability that it originates from Alice. Thus, with such preferences Tor
only satisfies sender anonymity with ε = ln 3. �

3.3.3 Sender unlinkability

A protocol satisfies sender unlinkability, if for any two actions, the adversary cannot determine
whether these actions are executed by the same user [PH10]. We require that the adversary does not
know whether two challenge messages come from the same user or from different users. We formalize
this intuition by letting the adversary send two input tables with two challenge rows, respectively.
Each input table Dx carries challenge rows in which a user ux sends a message to two recipients
Ru, Rv. We use the shuffling abilities of the adjacency function αUL as defined in Figure 3, which

3Previous work discusses the influence of node selection preferences on Tor’s anonymity guarantees, e.g., [AYM12].
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makes sure that D′0 will contain the same user in both challenge rows, whereas D′1 will contain both
users. As before, we say a protocol P fulfills sender unlinkability, if no adversary A can sufficiently
distinguish Ch(P, αUL, 0) and Ch(P, αUL, 1). This leads to the following concise definition.

Definition 5 (Sender unlinkability). A protocol P provides (ε, δ)-sender unlinkability if it is (ε, δ)-
α-IND-CDP for αUL as defined in Figure 3.

Example 4: Sender unlinkability. The adversary A decides that he wants to use users Alice and
Bob in the unlinkability game. He sends input tables D0, D1 such that in the challenge rows of
D0 Alice sends two messages to two recipients and in D1, Bob sends the same two messages to the
same recipients. Although initially “the same user sends the messages” would be true for both input
tables, the adjacency function αUL changes the challenge rows in the two input tables D0, D1. In the
transformed input tables D′0, D

′
1, only one of the users (either Alice or Bob) will send both messages

in D′0 , whereas one message will be sent by Alice and the other by Bob in D′1. �

3.3.4 Relationship anonymity

P satisfies relationship anonymity, if for any action, the adversary cannot determine sender and
recipient of this action at the same time [PH10]. We model this property by letting the adjacency
αRel check whether it received an input of two input tables with a single challenge row. We let
the adjacency function αRel shuffle the recipients and sender such that we obtain the four possible
combinations of user and recipient. If the initial challenge rows are (u0, R0) and (u1, R1), αRel will
make sure that in D′0 one of those initial rows is used, where in D′1 one of the rows (u0, R1) or
(u1, R0) is used.

We say that P fulfills relationship anonymity, if no adversary can sufficiently distinguish
Ch(P, αRel, 0) and Ch(P, αRel, 1).

Definition 6 (relationship anonymity). A protocol P provides (ε, δ)-relationship anonymity if it is
(ε, δ)-α-IND-CDP for αRel as defined in Figure 4.

Example 5: Relationship anonymity. The adversary A decides that he wants to use users Alice and
Bob and the recipients Charly and Eve in the relationship anonymity game. He wins the game if he
can distinguish between the scenario “0” where Alice sends m1 to Charly or Bob sends m2 to Eve
and the scenario “1” where Alice sends m2 to Eve or Bob sends m1 to Charly. Only one of those
four possible input lines will be fed to the protocol.
A sends input tables D0, D1 such that in the challenge row of D0 Alice sends m1 to Charly and

in D1, Bob sends m2 to Eve. Although initially ‘scenario 0” would be true for both input tables, the
adjacency function αRel changes the challenge rows in the two input tables D0, D1 such that in D′0
one of the two possible inputs for scenario “0” will be present (either Alice talks to Charly or Bob
talks to Eve) and in D′1 one of the two possible inputs for scenario “1” will be present (either Bob
talks to Charly or Alice talks to Eve). �

4 Studying our Anonymity Definitions

In this section, we show that our anonymity definitions indeed capture the anonymity notions
from the literature. We compare our notions to definitions that are directly derived from informal
descriptions in the seminal work by Pfitzmann and Hansen [PH10]. Lastly, we investigate the
relation between our own anonymity definitions.
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Upon message (input, D) (only once)

if ∃! challenge row in D then
Place user u in the challenge row of D
run P on the input table D and forward all messages to A

Figure 5: The challenger SACh(P, u)

4.1 Sender anonymity

The notion of sender anonymity is introduced in [PH10] as follows:

Anonymity of a subject from an adversary’s perspective means that the adversary cannot
sufficiently identify the subject within a set of subjects, the anonymity set.

From this description, we formalize their notion of sender anonymity. For any message m and
adversary A, any user in the user space is equally likely to be the sender of m.

Definition 7 (δ-sender anonymity). A protocol P with user space U of size N has δ-sender
anonymity if for all PPT-adversaries A

Pr
[
u∗ = u : u∗←ASACh(P,u), u

R←U
]
≤ 1

N
+ δ,

where the challenger SACh as defined as in Figure 5.

Note that SACh slightly differs from the challenger Ch(P, α, b) in Figure 1: It does not require
two, but just one input table in which a single row misses its sender. We call this row the challenge
row.

This definition is quite different from our interpretation with adjacency functions. While αSA

requires A to simply distinguish between two possible outcomes, Definition 7 requires A to correctly
guess the right user. Naturally, αSA is stronger than the definition above. Indeed, we can quantify
the gap between the definitions: Lemma 8 states that an AC protocol satisfies (0, δ)-αSA implies that
this AC also has δ-sender anonymity. The proofs for these lemmas can be found in Appendix A.2.In
this section, we only present the proof outlines.

Lemma 8 (sender anonymity). For all protocols P over a (finite) user space U of size N it holds
that if P has (0, δ)-α-IND-CDP for αSA, P also has δ-sender anonymity as in Definition 7.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks sender
anonymity, can be used to break α-IND-CDP for αSA. We construct an adversary B against
α-IND-CDP for αSA by choosing the senders of the challenge rows at random, running A on the
resulting game, and outputting the same as A. For A the resulting view is the same as in the sender
anonymity game; hence, B has the same success probability in the α-IND-CDP game as A in the
sender anonymity game.

In the converse direction, we lose a factor of 1
N in the reduction, where N is the size of the user

space. If an AC protocol P provides δ-sender anonymity, we only get (0, δ ·N)-αSA for P.

Lemma 9. For all protocols P over a (finite) user space U of size N it holds that if P has δ-sender
anonymity as in Definition 7, P also has (0, δ ·N)-α-IND-CDP for αSA.
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Upon message (input, D) (only once)

if exactly 2 rows in D are missing the user then

u0
R←U , u1

R←U \ {u0}
if b = 0 then

Place u0 in both rows.
else

Place u0 in the first and u1 in the second row.
run P on input table D and forward all messages to A

Figure 6: The challenger ULCh(P, b)

Proof outline. We show the contraposition of the lemma: an adversary A that breaks α-IND-CDP
for αSA, can be used to break sender anonymity. We construct an adversary B against sender
anonymity by running A on the sender anonymity game and outputting the same as A. If the wishes
of A for the challenge senders coincide with the sender that the challenger chose at random, the
resulting view is the same as in the α-IND-CDP game for αSA; hence, B has a success probability
of δ/N in the sender anonymity game if A has a success probability of δ in the α-IND-CDP game
for αSA.

4.2 Unlinkability

The notion of unlinkability is defined in [PH10] as follows:

Unlinkability of two or more items of interest (IOIs, e.g., subjects, messages, actions, ...)
from an adversary’s perspective means that within the system (comprising these and
possibly other items), the adversary cannot sufficiently distinguish whether these IOIs
are related or not.

Again, we formalize this in our model. We leave the choice of potential other items in the system
completely under adversary control. Also, the adversary controls the “items of interest” (IOI) by
choosing when and for which recipient/messages he wants to try to link the IOIs. Formally, we
define a game between a challenger ULCh and an adversary A as follows: First, A chooses a input
table D, but leaves the place for the users in two rows blank. The challenger then either places
one (random) user in both rows or two different (random) users in each and then runs the protocol
and forwards all output to A. The adversary wins the game if he is able to distinguish whether the
same user was placed in the rows (i.e. the IOIs are linked) or not.

Definition 10 (δ-sender unlinkability). A protocol P with user space U has δ-sender unlinkability
if for all PPT-adversaries A∣∣Pr [b = 0 : b←AULCh(P,0)

]
− Pr

[
b = 0 : b←AULCh(P,1)

] ∣∣ ≤ δ
where the challenger ULCh is as defined in Figure 6.

We show that our notion of sender unlinkability using the adjacency function αUL is much
stronger than the δ-sender unlinkability Definition 10: (0, δ)-αUL for an AC protocol directly implies
δ-sender unlinkability; we do not lose any anonymity.
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Lemma 11 (sender unlinkability). For all protocols P over a user space U it holds that if P has
(0, δ)-α-IND-CDP for αUL, P also has δ-sender unlinkability as in Definition 10.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks sender
unlinkability, can be used to break α-IND-CDP for αUL. We construct an adversary B against
α-IND-CDP for αUL by choosing the senders of the challenge rows at random, running A on the
resulting game, and outputting the same as A. For A the resulting view is the same as in the sender
unlinkability game; hence, B has the same success probability in the α-IND-CDP game for αUL as
A in the sender unlinkability game.

For the converse direction, however, we lose a factor of roughly N2 for our δ. Similar to
above, proving that a protocol provides δ-sender unlinkability only implies that the protocol is
(0, δ ·N(N − 1))-α-IND-CDP for αUL.

Lemma 12 (sender unlinkability). For all protocols P over a user space U of size N it holds that if
P has δ-sender unlinkability as in Definition 10, P also has (0, δ ·N(N − 1))-α-IND-CDP for αUL.

Proof outline. We show the contraposition of the lemma: an adversary A that breaks α-IND-CDP
for αUL, can be used to break sender unlinkability. We construct an adversary B against sender
unlinkability by running A on the sender unlinkability game and outputting the same as A. If
the senders from the challenge from of A coincide with the senders that the challenger chose at
random, the resulting view is the same as in the α-IND-CDP game for αUL; hence, B has a success
probability of δ/N(N − 1) in the sender unlinkability game if A has a success probability of δ in the
α-IND-CDP game for αUL.

Again, proofs can be found in Appendix A.2.

4.3 Relationship anonymity

While for sender anonymity and sender unlinkability our notions coincide with the definitions used
in the literature, we find that for relationship anonymity, many of the interpretations from the
literature are not accurate. In their Mixnet analysis, Shmatikov and Wang [SW06] define relationship
anonymity as ‘hiding the fact that party A is communicating with party B’. Feigenbaum et al.
[FJS07b] also take the same position in their analysis of the Tor network. However, in the presence
of such a powerful adversary, as considered in this work, these previous notions collapse to recipient
anonymity since they assume knowledge of the potential senders of some message.

We consider the notion of relationship anonymity as defined in [PH10]: the anonymity set for a
message m comprises the tuples of possible senders and recipients; the adversary wins by determining
which tuple belongs to m. However, adopting this notion directly is not possible: an adversary
that gains partial information (e.g. if he breaks sender anonymity), also breaks the relationship
anonymity game, all sender-recipient pairs are no longer equally likely. Therefore we think that
approach via the adjacency function gives a better definition of relationship anonymity because the
adversary needs to uncover both sender and recipient in order to break anonymity.

4.4 Relations between anonymity notions

Having justified the accuracy of our anonymity notions, we proceed by presenting the relations
between our notions of anonymity. AnoA allows us to formally argue about these relations. Figure 7
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αSAαUL αRel

Figure 7: The relations between our anonymity definitions

illustrates the implications we get based on our definitions using adjacency functions. In this section,
we discuss these relations. The proofs can be found in Appendix A.2.

Lemma 13 (Sender anonymity implies relationship anonymity.). If a protocol P has (0, δ)-
α-IND-CDP for αSA, is also has (0, δ)-α-IND-CDP for αRel.

Proof outline. Relationship anonymity requires an adversary to acquire information about both
sender and recipient. If a protocol has sender anonymity, this is not possible. Hence, sender
anonymity implies relationship anonymity.

Similarly, recipient anonymity implies relationship anonymity.

Lemma 14 (Sender anonymity implies sender unlinkability). If a protocol P has (0, δ)-α-IND-CDP
for αSA, P also has (0, δ)-α-IND-CDP for αUL.

Proof outline. Our strong adversary can determine the behavior of all users; in other words, the
adversary can choose the scenario in which it wants to deanonymize the parties in question. Thus,
the adversary can choose the payload messages that are not in the challenge row such that these
payload messages leak the identity of their sender. Hence, if an adversary can link the message in
the challenge row to another message, it can determine the sender. Thus, sender anonymity implies
sender unlinkability.

A protocol could leak the sender of a single message. Such a message does not necessarily help
an adversary in figuring out whether another message has been sent by the same sender, but breaks
sender anonymity.

Lemma 15 (Sender unlinkability does not imply sender anonymity). If a protocol P has (0, δ)-
α-IND-CDP for αUL, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.

Proof outline. We consider a protocol Π that satisfies sender anonymity. We, moreover, consider
the modified protocol Π′ that leaks the sender of a single message. Since by Lemma 14 Π satisfies
unlinkability, we conclude that the modified protocol Π′ satisfies sender unlinkability: a single
message does not help the adversary in breaking sender unlinkability. However, Π′ leaks in one
message the identity of the sender in plain, hence does not satisfy sender anonymity.

Relationship anonymity does not imply sender anonymity in general: for example, a protocol
may reveal information about senders of the messages, but not about recipients or message contents.

Lemma 16 (Relationship anonymity does not imply sender anonymity). If a protocol P has (0, δ)-
α-IND-CDP for αRel, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.
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Proof outline. We consider a protocol Π that satisfies sender anonymity. We, moreover, consider
the modified protocol Π′ that for each message leaks the sender. Since by Lemma 13 Π satisfies
unlinkability, we conclude that the modified protocol Π′ satisfies relationship anonymity: the sender
alone does not help the adversary in breaking relationship anonymity. However, Π′ leaks the identity
of the sender in plain, hence does not satisfy sender anonymity.

This concludes the formal definition of our framework.

5 Adaptive AnoA

The definitions presented so far force the adversary to fix all inputs at the beginning, i.e., they
only allow static inputs. In this section, we generalize AnoA for adaptive inputs and adjust the
anonymity games accordingly. To model fine-grained interactions, we allow the adversary to send
individual messages (instead of sessions), such that messages within one session can depend on the
observations of the adversary. Since many AC protocols (such as Tor) guarantee anonymity on a
session basis (cf. Section 7.2), we present both anonymity notions for individual messages and for
whole sessions.

We improve the flexibility of the framework by formalizing classes of adversaries that only have
limited influence on the inputs of the users. It turns out that for technical reasons such adversary
classes are in general not sequentially composable. In Section 5.3, we characterize under which
conditions an adversary class is sequentially composable.

5.1 Defining adaptive adversaries

The AnoA challenger from Definition 2 requires the adversary to initially decide on all inputs for
all users, i.e., the challenger enforces static inputs. Against an adversary that controls all servers
interactive scenarios, such as a chatting user or transactions between two users, can be expressed
with static inputs.4 However, as soon as we consider adversaries that do not control all servers,
static-input adversaries do not allow to model arbitrary interactive scenarios because all responses
have to be fixed in the initial input table.

We present an extension of AnoA that allows the adversary to adaptively choose its inputs. The
adversary can, for every message, choose sender, message and recipient. The adjacency functions are
not applied to input tables anymore, but to individual challenges, which correspond to the challenge
rows from the previously used input tables. In contrast to our previous definition, these generalized
adjacency functions allow us to additionally formulate settings with streams of messages that consist
of more (or less) than one circuit. More precisely, we modify the challenger from Section 3.2 as
follows.

Instead of databases, the challenger now receives single user actions r = (S,R,m), corresponding
to individual rows, that are processed by the protocol in having a user S send the message m to a
recipient R and challenge actions (r0, r1) that correspond to challenge rows. The single user actions
are forwarded to the environment immediately, whereas the adjacency function is invoked on the
challenge actions and the resulting action r∗←α(r0, r1, b) is sent to the environment (unless the
adjacency function outputs an error symbol ⊥).

To model more complex anonymity notions, such as anonymity for a session, the adjacency
function is allowed to keep state for each challenge. To simplify the notation of our adjacency

4The adversary would internally simulate the communication and replay it by composing the input table and
choosing the server responses accordingly.
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functions, they get the bit b from the challenger as an additional input. Consequently, the adjacency
functions can model the anonymity challenges on their own and simply output a row r∗ that is sent
to the challenger. The adaptive challenger for AnoA (for n challenges) follows these simple rules:

• Run the protocol on all messages (input,m) from the adversary without altering them.

• Only allow for n challenges. This is done by restricting the set of possible challenge tags Ψ,
which are used by the adversary to distinguish the challenges.5

• For every challenge that is not in the state over, apply the adjacency function with its correct
state – fresh for newly started challenges, some other state stΨ if the challenge is already
active – and simulate the protocol on the output of the adjacency function.

• Make sure that the sessions that are used for challenges are not accessible via the challenger.
This is done by choosing and storing session IDs sidreal for every challenge separately as follows.
Whenever a message with a new session ID S is to be sent to the protocol, randomly pick a
fresh session ID sidreal that is sent instead, and store sidreal together with S and the challenge
tag Ψ (if it is a challenge) or zero (if it is not a challenge).

The full description of the session challenger is available in Figure 8. By definition, the sessions
created by challenge messages are isolated from sessions created by input messages. Thus, an
adversary cannot use the challenger to highjack sessions. The interface of the adaptive adjacency
functions now is

α(r0 = (S0,R0,m0, S0), r1 = (S1,R1,m1, S1), b)

We define adaptive α-IND-CDP as follows, where n is the number of challenges that an adversary
is allowed to start.

Definition 17 ((n, ε, δ)-α-IND-CDP). A protocol P is (n, ε, δ)-α-IND-CDP for a class of adversaries
A, with ε ≥ 0 and 0 ≤ δ ≤ 1, if for all PPT machines A,

Pr [0 = 〈A(A(n))||Ch(P, α, n, 0)〉] ≤enε Pr [0 = 〈A(A(n))||Ch(P, α, n, 1)〉] + enεnδ

where the challenger Ch is defined in Figure 8.

For the adaptive notions the structure of the rows is slightly different. In Section 3.2, every
row consists of a sequence of user inputs that is processed by the protocol, e.g., our Tor interface
translates each row to a stream of messages that use one circuit. In an adaptive game the adversary,
depending on its observations, might want to modify the messages within one session. Thus, every
user action only consists of one single message that is sent to a single recipient, so messages within
one session can depend on the observations of the adversary.

We explicitly allow to analyze the difference between anonymity for individual messages and
anonymity on a session level. To this end we formulate new variants of the anonymity notions both
with and without sessions.

5Several challenges that are within different stages might interleave at the same time; e.g., the adversary might
first start an unlinkability challenge (with tag Ψ1). Before this challenge is over, the adversary might start another
challenge (with another tag Ψ2) or continue the first one (with Ψ1).
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Adaptive AnoA Challenger Ch(P, α, n, b)
Upon message (input, r = (S,R,m, S))

RunProtocol(r, 0)

Upon message (challenge, r0, r1,Ψ)

if Ψ /∈ {1, . . . , n} then
Abort.

else
if Ψ ∈ T then

Retrieve st := stΨ

if st = over then
Abort.

else
st := fresh
Add Ψ to T

Compute (r∗, stΨ)←α(st , r0, r1, b,Ψ)
RunProtocol(r,Ψ)

RunProtocol(r = (S,R,m, S),Ψ)

if ¬∃y such that (S, y,Ψ) ∈ S then
Let sidreal←{0, 1}k
Store (S, sidreal,Ψ) in S.

else
sidreal := y

Run P on r = (S,R,m, sidreal) and forward all messages that are sent by P to the adversary
A and send all messages by the adversary to P.

Figure 8: Adaptive AnoA Challenger

5.1.1 Adaptive anonymity notions

The anonymity notions we describe here are almost identical to their non-adaptive counterparts
from Section 3.3. However, an adaptive adversary is able to adapt its strategy in constructing
user input depending on the protocol output. However, we model sessions explicitly. Usually, such
sessions are started by and linked to individual senders, but not to recipients. Thus, we model the
anonymity notions in a way that allows the adversary to use different messages and recipients for
each individual challenge message, but not to exchange the senders (within one challenge). If a
protocol creates sessions for recipients, the respective anonymity notions can easily be derived by
following our examples in this section.

Session sender anonymity. For session sender anonymity, we make sure that all messages that
belong to the same challenge have both the same sender and the same session ID. We do not restrict
the number of messages per challenge (but the protocol might restrict the number of messages per
session).

αSSA(st , r0 = (S0,R0,m0, ), r1 = (S1, , , ), b)

if st = fresh ∨ st = (S0,S1) then
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output ((Sb,R0,m0, 1), st := (S0,S1))

Session relationship anonymity. Relationship anonymity describes the anonymity of a relation
between a user and the recipients, i.e., an adversary cannot find out both the sender of a message
and the recipient.

αSRel(st , r0 = (S0,R0,m0, ), r1 = (S1,R1, , ), b)

if st = fresh then
a←{0, 1}

else if ∃x. st = (S0,S1, x) then
a := x

if b=0 then
output ((Sa,Ra,m0, 1), st := (S0,S1, a))

else
output ((Sa,R1−a,m0, 1), st := (S0,S1, a))

Session sender unlinkability. Our notion of session sender unlinkability allows the adversary (for
every challenge) to first run arbitrarily many messages in one session (stage 1) and then arbitrarily
many messages in another session (stage 2). In each session there is only one sender used for the
whole session (that is chosen at random when the first challenge message for this challenge is sent),
but depending on b, either the same or the other user is used for the second session.

αUL(st , r0 = (S0,R0,m0;S0), r1 = (S1, ,m1, ), b)

if m1 = stage 1 then
t := stage 1

else
t := stage 2

if st = fresh then
a←{0, 1}
output ((Sa,R0,m0, 1), (t, a))

else if ∃x. st = (stage 1, x) then
a := x
output ((Sa,R0,m0, 1), (t, a))

else if ∃x. st = (stage 2, x) then
a := x
if b = 0 then

output ((Sa,R0,m0, 2), (stage 2, a))
else

output ((S1−a,R0,m0, 2), (stage 2, a))

5.2 Adversary classes

For restricting the adversary we propose to formally introduce classes of adversaries: an adversary
class is a PPT wrapper that restricts the adversary A in its possible output behavior, and thus, in
its knowledge about the world. The following example shows a scenario in which an (unrestricted)
adaptive adversary might be too strong.

Example 6: Tor with entry guards. Consider the AC protocol Tor with so-called entry guards. Every
user selects a small set of entry nodes (his guards) from which he chooses the entry node of every
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circuit. New guards are chosen only after several months. As a compromised entry node is fatal for
the security guarantees that Tor can provide, the concept of entry guards helps in reducing the risk
of choosing a malicious node. However, if such an entry guard is compromised the impact is more
severe since an entry guard is used for a large number of circuits.

An adaptive adversary can choose its targets adaptively and thus perform the following attack. It
(statically) corrupts some nodes and then sends (polynomially) many messages (input, r = (S, , , ))
for different users S, until one of them, say Alice, chooses a compromised node as its entry guard.
Then A proceeds by using Alice and some other user in a challenge. As Alice will quite likely use
the compromised entry guard again, the adversary wins with a very high probability (that depends on
the number of guards per user). �

Although this extremely successful attack is not unrealistic (it models the fact that some users
that happen to use compromised entry guards will be deanonymized), it might not depict the attack
scenario that we are interested in. Thus, we define an adversary class that makes sure that the
adversary cannot choose its targets. Whenever the adversary starts a new challenge for (session)
sender anonymity, the adversary class draws two users at random and places them into the challenge
messages of this challenge.

Definition 18. An adversary class is defined by a PPT machine A(·) that encapsulates the adversary
A. It may filter and modify all outputs of A to the challenger in an arbitrary way, withhold them or
generate its own messages for the challenger. Moreover it may communicate with the adversary.

We say that a protocol is secure against an adversary class A(·), if it is secure against all
machines A(A), where A is an arbitrary PPT machine.

5.3 Sequentially composable adversary classes

In this section we show that adaptive α-IND-CDP against adversaries that only use one challenge
immediately implies adaptive α-IND-CDP against adversaries that use more than one challenge. The
quantitative guarantees naturally depend on the number of challenges. We present a composability
theorem that is applicable for all adversary classes that are composable for the adjacency function
in use. Before we present the theorem, we define and discuss this property.

5.3.1 Requirements for composability

Composability is relatively straightforward for the non-adaptive AnoA, as well as for adaptive
adversaries that are not restricted by an adversary class. However, by restricting the adversary, the
number of challenges that this adversary sends might make a qualitative difference instead of a
quantitative one.

Example 7: Non-composable adversary class. Consider the following adversary class Anc. The
adversary class relays all input messages to the challenger and replaces the messages of the first
challenge by (say) random strings or error symbols. The adversary class simply relays all messages
except the ones belonging to the first challenge to the challenger.

Every protocol, even if completely insecure, will be α-IND-CDP secure for one challenge for the
class Anc (as the adversary cannot gain any information about the bit b of the challenger), but it
might not necessarily be secure against more than one challenge. �

We proceed by defining when an adversary class A is composable. First, we introduce notation
for games in which some of the queries are simulated. This simulatability is a necessary condition
for the composability of an adversary class.
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Figure 9: The two games from Construction 1

Construction 1. Consider the two scenarios defined in Figure 9:

ACReal(b, n): A communicates with A and A communicates with Ch(b, n) (as protocol). The bit
of the challenger is b and the adversary may send challenge tags in {1, . . . , n}.

ACSimMz(b, n): A communicates with Mz(b) that in turn communicates with A and A communicates
with Ch(b, n) (as protocol).The bit of the challenger is b and the adversary may send challenge
tags in {1, . . . , n}.

Definition 19 (Consistent simulator index). A simulator index (for n challenges) is a bitstring
z = [(z1, b1), . . . , (zn, bn)] ∈ {0, 1}2n. A pair of simulator indices z, z′ ∈ {0, 1}2n (for n challenges)
is consistent w.r.t. b if

∀i ∈ {1, . . . , n} s.t. zi 6= z′i.(zi = sim⇒ bi = b) ∧ (z′i = sim⇒ b′i = b).

Consider an adversary class A and an adjacency function α. The anonymity guarantee defined
by α for a protocol against all adversaries A(·) is composable, if additional challenges do not allow
an adversary to perform qualitatively new attacks; i.e., the adversary does not gain any conceptually
new power. This can be ensured by requiring the following three conditions from an adversary class
A with respect to α. It must not initiate challenges on its own (reliability), it must not behave
differently depending on the challenge tag that is used for a challenge (alpha-renaming) and all its
challenges have to be simulatable by the adversary (simulatability).

We define the third condition, simulatability, by requiring the existence of a simulator M for the
adjacency function. Intuitively, the simulator withholds challenge messages from the adversary class.
Instead M precomputes the adjacency function (for a bit b′) on those challenge messages and sends
the resulting rows as input messages. More precisely, M makes sure that neither the adversary, nor
the protocol (not even both in collaboration) can distinguish, whether the adversary’s challenge
messages are received by the adversary class and processed by the challenger, or whether M mimics
the challenge messages with input messages before. The simulation only has to be indistinguishable,
if the simulator uses the correct bit b of the challenger for simulating a challenge.

Definition 20 (Condition for adversary class). An adversary class A is composable for an anonymity
function α, if the following conditions hold:

1. Reliability: A(A) never sends a message (challenge, , ,Ψ) to the challenger before receiving
a message (challenge, , ,Ψ) from A with the same challenge tag Ψ.

2. Alpha-renaming: A does not behave differently depending on the challenge tags Ψ that are
sent by A except for using it in its own messages (challenge, , ,Ψ) to the challenger and in
the (otherwise empty) message (answer for, ,Ψ) to A.
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3. Simulatability: For every n ∈ N and every list z = [(z1, b1), . . . , (zn, bn)] ∈ {0, 1}2n there
exists a machine Mz such that:

(a) For every i ∈ {1, . . . , n}. If zi = sim then Mz never sends a message (challenge, , , i) to
A.

(b) The games ACReal(b, n) and ACSimMzdontsim
(b, n) (cf. Construction 1) are computa-

tionally indistinguishable, where zdontsim = [(dontsim, ), . . . , (dontsim, )] ∈ {0, 1}2n for
Mz and A.

(c) for all simulator indices z, z′ ∈ {0, 1}2n that are consistent w.r.t. b (see Definition 19)
ACSimMz(b, n) and ACSimMz′ (b, n) are indistinguishable.

5.3.2 Sequential composability theorem for adversary classes

We finally present our composability theorem. For all adversary classes that are composable (for
an anonymity notion α) it suffices to show anonymity against single challenges. The theorem then
allows for deriving guarantees for more than one challenge.

Theorem 21. For every protocol P, every anonymity function α, every n ∈ N and every adversary
class A that is composable. Whenever P is (1, ε, δ)-α-IND-CDP for A, with ε ≥ 0 and 0 ≤ δ ≤ 1,
then P is (n, n · ε, n · enε · δ)-α-IND-CDP for A.

Proof outline. We show the composability theorem by induction over n. We assume the theorem
holds for n and compute the anonymity loss between the games ACReal(0, n + 1), where we
have b = 0 and ACReal(1, n + 1), where we have b = 1 via a transition of indistinguishable, or
differentially private games.

We start with ACReal(0, n+ 1) and introduce a simulator that simulates one of the challenges
for the correct bit b = 0. We apply the induction hypothesis for the remaining n challenges (this
introduces an anonymity loss of (n · ε, n · enε · δ)). The simulator still simulates one challenge for
b = 0, but the bit of the challenger is now b = 1. We then simulate all remaining n challenges for
b = 1 and thus introduce a game in which all challenges are simulated. As the bit of the challenger
is never used in the game, we can switch it back to b = 0 again and remove the simulation of the
first challenge. We can apply the induction hypothesis again (we loose (ε, δ)) and switch the bit of
the challenger to b = 1 again. In this game, we have one real challenge (for b = 1) and n simulated
challenges (also for b = 1). Finally, we remove the simulator again and yield ACReal(1, n+ 1).

We refer to Appendix A.4 for the full proof.

Why do we need the condition from Definition 20? The adversary class must not allow for
behavior, where the security of a protocol is broken depending on, e.g., the number of messages that
are sent. Imagine a protocol P that leaks all secrets as soon as the second user sends a message to
any recipient. Now imagine an adversary class A that only forwards challenges to the challenger
and blocks all input messages. The protocol is clearly not composable.

Downward composability. The adversary classes that we define here are downwards composable
for all protocols. More precisely, if a protocol P is α secure for an adversary class A1(·) and if A2 is
an arbitrary adversary class, then P is also α secure for an adversary class A1(A2(·)).

This observation follows directly from the fact that within the adversary classes, arbitrary PPT
Turing machines are allowed, which includes wrapped machines A2(·).
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5.3.3 Examples for adversary classes

Adversaries that may not choose their target. In the previous definitions, the adversary
can choose which users it wants to deanonymize. As a consequence, in the sender anonymity game
the adversary can, adaptively, choose which user(s) it wants to target. This worst-case assumption
models a very strong adversary and is for many scenarios unrealistic. In these scenarios it might be
more accurate to analyze the anonymity of the average user, which means that an adversary has to
deanonymize a randomly chosen user to break the anonymity property. We model such a scenario
by an adversary class Ar that, for every (new) challenge with tag Ψ chooses two different users at
random and puts them into the challenge messages for this tag.

Non adaptive adversaries. In combination with adversary classes, the adaptive variant of
AnoA is a generalization of AnoA and, among many new and interesting scenarios, still allows for
modeling the (non adaptive) basic variant of AnoA. Non-adaptive adversaries can be defined by an
adversary class Anon−adaptive that first waits for the adversary to specify all inputs and challenges
(or rather: one challenge) and only then outputs them, one by one, to the challenger.

User profiles. In [JWJ+13], realistic, but relatively simple user profiles are defined that determine
the behavior of users. We can model such profiles by defining a specific adversary class. The adversary
class initiates profiles such as the typical users (they use, e.g., Gmail, Google Calendar, Facebook and
perform web search at certain points in time) or BitTorrent users (they use Tor for downloading files
on other times) as machines and measures time internally. If the adversary sends an input message,
the adversary class initiates a profile. The adversary class might also initiate more profiles for random
users at the beginning, which corresponds to “noise”. If the adversary sends a challenge message,
the adversary class initiates profiles for two different users (or two different profiles, depending on
the anonymity notion).

On its own, the adversary class machine runs a loop that activates the profiles and increases
a value t for time every now and then, until the adversary decides to halt with its guess b∗ of the
challenge bit b. Although the adversary class activates the profiles in a random order, it makes sure
that all profiles have been activated before it proceeds to the next point in time. It additionally
tells the activated profiles the point in time, such that they can decide whether or not they want to
output a valid user action r or an error symbol ⊥. The adversary class then sends input messages
or challenge messages, depending on how the profiles have been initialized.

6 Leveraging UC realizability

Our adversary model in AnoA is strong enough to capture well-known simulation-based composabil-
ity frameworks (e.g., UC [Can01], IITM [KT13] or RSIM [BPW07]). In Section 7 we apply AnoA
to a model in the simulation-based universal composability (UC) framework.

In this section, we briefly introduce the UC framework and then prove that α-IND-CDP is
preserved under realization. Moreover, we discuss how this preservation allows for an elegant
crypto-free anonymity proof for cryptographic AC protocols.

6.1 The UC framework

The UC framework allows for a modular analysis of security protocols. In the framework, the
security of a protocol is defined by comparing it with a setting in which all parties have a direct
and private connection to a trusted machine that provides the desired functionality. As an example
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consider an authenticated channel between two parties Alice and Bob. In the real world Alice calls
a protocol that signs the message m to be communicated. She then sends the signed message over
the network and Bob verifies the signature. In the setting with a trusted machine T , however, we do
not need any cryptographic primitives: Alice sends the message m directly to T 6. T in turn sends
m to Bob, who trusts T and can be sure that the message is authentic. The trusted machine T is
called the ideal functionality.

Security in the UC framework is defined as follows: A protocol is secure if an execution of this
protocol is indistinguishable from an execution of the corresponding ideal functionality.

More formally, the notion of indistinguishability is captured in UC in terms of realization: A
protocol π UC-realizes an ideal functionality F if for all PPT adversaries A there is a PPT simulator
S such that no PPT machine can distinguish an interaction with π and A from an interaction with
F and S. The distinguisher is connected to the protocol and the adversary (or the simulator). A
full definition can be found in Appendix A.3.

6.2 Preservation of α-IND-CDP

We prove that α-IND-CDP is preserved by UC realization. This result is motivated by the ideas
presented in the result of integrity property conservation by simulation-based indistinguishability
shown by Backes and Jacobi [BJ03, Thm. 1].

As a consequence of this lemma, it suffices to apply AnoA to ideal functionalities: transferring
the results to the real protocol weakens the anonymity guarantees only by a negligible amount.

Lemma 22 (Preservation lemma). Let P be (ε, δ)-α-IND-CDP and Π be a protocol. If Π UC-
realizes P then Π is (ε,∆)-α-IND-CDP with ∆ = δ + δ′ for some negligible value δ′.

Proof outline. The proof of the preservation lemma is straightforward: If the success probability of
an adversary in the real world differs in more than a negligible value from the ideal world, we can
use this adversary to distinguish the real from the ideal game.

The full proof can be found in Appendix A.3. This preservation lemma, in combination with
an ideal functionality for an AC protocol, is useful for analyzing the AC protocol with respect to
our strong anonymity definitions. In the next section, we exemplify approach by using an ideal
functionality for Tor [BGKM12] and showing that the anonymity analysis of Tor boils down to a
purely combinatorical analysis.

7 Analyzing Tor Anonymity

The onion routing (OR) [RSG98] network Tor [Tor03] is the most successful anonymity technology
to date: hundreds of thousands individuals all over the world use it today to protect their privacy
over the Internet. Naturally, Tor is our first choice for applying our AnoA framework.

We start our discussion by briefly describing the Tor protocol [DMS04] and its UC defini-
tion [BGKM12]. We then formally prove (ε, δ)-α-IND-CDP for Tor’s UC definition and quantify
anonymity provided by the Tor network in terms of the anonymity properties defined in Section 3.
Finally, we consider a selection of system-level attacks (e.g., traffic analysis) and adaptations (e.g.,
entry guards) for Tor, and analyze their effects on Tor’s anonymity guarantees.

6Recall that T and Alice are directly connected, as well as T and Bob.
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Upon input (r,m, S)

if lastsession = (S, C) then
send message (send, C, (r,m)) to Pu

else
P ← RandomParties(Pu)
send message (createcircuit,P) to Pu
wait for response (created, C)
lastsession := (S, C)
send message (send, C, (r,m)) to Pu

RandomParties(Pu):

l
R←{1, . . . , n}
N := {1, . . . , n}
for j = 1 to l do

ij
R←N

N := N \ {ij}
return (Pu, Pi1 , . . . , Pil)

Figure 10: Wrapper module Envu for onion proxy Pu

7.1 Tor — the OR network

An OR network such as Tor [DMS04] consists of a set of OR nodes (or proxies) that relay traffic, a
large set of users and a directory service that maintains and provides cryptographic and routing
information about the OR nodes. Users utilize the Tor network by selecting a sequence of OR
nodes and creating a path, called a circuit, over this set. This circuit is then used to forward the
users’ traffic and obscure the users’ relationship with their destinations. It is important that an OR
node cannot determine the circuit nodes other than its immediate predecessor and successor. In
the OR protocol, this is achieved by wrapping every message in multiple layers of symmetric-key
encryption. Symmetric keys are agreed upon between each OR node in the circuit and the user
during the circuit construction phase.

Tor was designed to guarantee anonymity against partially global adversarys, i.e., adversarys
that do not only control some OR nodes but also a portion of the network. However, an accurate
anonymity quantification is not possible without formally modeling the OR protocol and its adversary.
In an earlier work, a formal UC definition (an ideal functionality For) for the OR network was
presented, and a practical cryptographic instantiation was proposed [BGKM12]. We employ this
ideal functionality For for instantiating the AnoA framework.

7.2 Anonymity analysis

We start our Tor analysis with a brief overview of the For functionality and refer the readers to
[BGKM12] for more details. An excerpt of relevant details can also be found in Appendix B. For

presents the OR definition in the message-based state transitions form, and defines sub-machines
for all OR nodes in the ideal functionality. These sub-machines share a memory space in the
functionality for communicating with each other. For assumes an adversary who might possibly
control all communication links and destination servers, but cannot view or modify messages between
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Upon message m from Fnet or For

send m to the challenger
reflect the message m back to sender

Figure 11: Dummy-adversary in For

uncompromised parties due to the presence of secure and authenticated channels between the parties.
In For these secure channels are realized by having each party store their messages in the shared
memory, and create and send corresponding handles 〈P, Pnext , h〉 through the network. Here, P
and Pnext are the sender and the recipient of a message respectively and h is a handle, or pointer,
for the message in the shared memory. Only messages that are visible to compromised parties are
forwarded to A.

We consider a partially global, passive adversary for our analysis using AnoA, i.e., A decides on
a subset of nodes before the execution, which are then compromised. The adversary A then only
reads intercepted messages, but does not react to them.

Tor sets a time limit (of ten minutes) for each established circuit. However, the UC framework
does not provide a notion of time. For models such a time limit by only allowing a circuit C to
transport at most a constant number (say ttlC ) of messages.

In the context of onion routing, we interpret an input message (input, r = (S,R,m, sid)) as a
message that is transmitted through the OR-network, where m is the message sent from the user S
to the recipient R in session that corresponds to the session with ID sid .The number of messages
per session is bounded by ttlC .

In order to make For compatible with our α-IND-CDP definition, we require an additional
wrapper functionality, which processes the input rows forwarded from the challenger Ch. This
functionality is defined in Figure 10. Envu receives a row, which had u as its user, as its input. It
then initiates the circuit construction for the new session and sends all messages in the row through
this circuit.

Messages intercepted by compromised nodes are sent to a network adversary Fnet described in
Fig. 11. Fnet forwards all intercepted messages to the challenger, who in turn forwards them to A.

We show that the Tor analysis can be based on a distinguishing event D, which has already been
identified in the first onion routing anonymity analysis by Syverson et al. [STRL00, Fig. 1]. The
key observation is that the adversary can only learn about the sender or recipient of some message
if he manages to compromise the entry- or exit-node of the circuit used to transmit this message.
We define the distinguishing event Dα for each of the anonymity notions defined in section 3.

(Session) Sender Anonymity (αSSA). Let DαSSA be the event that the entry-node of the chal-
lenge session is compromised by A. This allows A to determine the sender of the challenge
session and therefore break sender anonymity.

(Session) Sender Unlinkability (αSUL). Let DαSUL be the event that A successfully compro-
mises the entry nodes for both challenge sessions in the unlinkability game. This allows A to
determine whether the sessions are linked or not, and hence break the unlinkability game.

(Session) Relationship Anonymity (αSRel). Let DαSRel
be the event that A successfully com-

promises entry- and exit-node of the challenge session. This allows him to link both sender
and recipient of the session.
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We first prove Lemma 23. It captures anonymity provided by For in case D does not happen.
We then use Lemma 23 to prove (ε, δ)-α-IND-CDP for For in general.

We introduce random strings rA and rCh as additional input to the adversary and the challenger
respectively. This allows us to handle them as deterministic machines and simplifies the proof for
Lemma 23. Accordingly, all subsequent probabilities are taken over those random strings. In the
following, we present a proof outline here.

The full proof is available in Appendix C.1.

Lemma 23. Given an adjacency function α ∈ {αSSA, αSUL, αSRel}, the following two probabilities
are equal:

Pr[ACh(For,α,0,1,rCh)(rA) = 0 | ¬Dα(rCh, rA); rA, rCh
R←{0, 1}p(η)]

= Pr[ACh(For,α,1,1,rCh)(rA) = 0 | ¬Dα(rCh, rA); rA, rCh
R←{0, 1}p(η)]

Proof outline. We fix the random strings rA and rCh of the adversary and the challenger. This in
turn fixes both the inputs created by the adversary and the circuits drawn by For for each session.
As circuits are drawn independently from the transmitted messages, For draws the set of circuits
independently of the bit b.

We assume the event ¬Dα. For αSSA the messages intercepted by A do not carry critical
information and look the same, regardless of the bit b of the challenger. Since we also fixed rA, A
returns the same value after processing the set of intercepted messages in either case.

For αSUL and αSRel, A might learn partial information, e.g., the sender of one of the sessions.
However, as we did not fix the randomness of the adjacency function, those observations are equally
likely for both possible bits b. Hence we get

Pr[ACh(For,α,0,1,rCh)(rA) = 0 | ¬D(rCh, rA), rCh
R←{0, 1}p(η)]

= Pr[ACh(For,α,1,1,rCh)(rA) = 0 | ¬D(rCh, rA), rCh
R←{0, 1}p(η)]

and from this

Pr[ACh(For,α,0,1,rCh)(rA) = 0 | ¬D(rCh, rA); rA, rCh
R←{0, 1}p(η)]

= Pr[ACh(For,α,1,1,rCh)(rA) = 0 | ¬D(rCh, rA); rA, rCh
R←{0, 1}p(η)]

as required.

With this result we obtain (ε, δ)- α-IND-CDP for For by simple manipulation of equations.

Theorem 24. For is (0, δ) - α-IND-CDP for α ∈ {αSSA, αSUL, αSRel}, i.e

Pr[ACh(For,α,0,1,rCh)(rA) = 0]

≤Pr[ACh(For,α,1,1,rCh)(rA) = 0]) + δ

with δ = Pr[Dα(rCh, rA)].

Here δ is exactly the probability for the event Dα that allows A to distinguish between both
scenarios. Interestingly, we get the parameter value ε = 0. This implies that as long as Dα does not
happen, For provides perfect anonymity for its users.
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7.3 Anonymity quantification

We now evaluate the guarantees provided by Theorem 24 and consider further results we can derive
from it for the special case of sender anonymity.

7.3.1 Distinguishing events

We measure the probability of the distinguishing event D using combinatorial observations. For an
OR network of n OR nodes such that k of those are compromised, probabilities associated with the
various anonymity notions are as follows:

Sender Anonymity (αSSA). The probability that DαSSA happens and sender anonymity is broken,
is

Pr[DαSSA ] = 1−
(
n−1
k

)(
n
k

) =
k

n

Sender Unlinkability (αSUL). The probability that DαSUL happens and sender unlinkability is
broken, is

Pr[DαSUL ] =

(
k

n

)2

Relationship Anonymity (αSRel). The probability thatDαSRel
happens and relationship anonymity

is broken, is

Pr[DαSRel
] =

(
n−2
k−2

)(
n
k

) =
k(k − 1)

n(n− 1)

Figure 12 illustrates these results. The graph shows the probability of the distinguishing events
depending on the fraction k

n of corrupted OR nodes. We assume a system with 3000 OR nodes,
which is consistent with current numbers in the real world Tor network [Tor]. We observe that
the success probability of event DαSSA always remains above the success probabilities of events
DαSUL and DαSRel

. Therefore, sender anonymity is indeed a stronger notion than both relationship
anonymity and sender unlinkability, and correspondingly more difficult to achieve.

Note that the above analysis and the underlying model assume all OR nodes to be identical, and
can perform all roles. Respecting OR node operators’ legal boundaries, the real-world Tor network
allows OR nodes to function in specific roles. To some extent, this simplifies A’s task of identifying
entry- or exit-nodes for circuits.

Multiple Challenges. In this section we considered the number of allowed challenges to be set
to n = 1. However, scenarios in which the adversary can use more than one challenge can directly
be derived by application of Theorem 21.

Adversary classes. The analysis of Tor conducted in this section does not explicitly mention
adversary classes (cf. Definition 18). However, since a PPT adversary class A(·) applied to a PPT
adversary is again a PPT adversary, naturally, the analysis holds for arbitrary adversary classes.

7.4 System-level attacks and adaptations

Next, we consider attacks that are not directly covered by our model and explore how the strong
adversary we employ helps to deal with them. We then analyze the entry guard mechanism, a
feature of the Tor protocol, and its influence on sender anonymity.
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Figure 12: Probability of D for the different anonymity notions, depending on the corruption k
n for

3000 OR nodes

7.4.1 Traffic analysis attacks

Many of the known attacks on Tor nowadays depend on so called side-channel information, i.e.
throughput and timing information an adversary might gather while watching traffic routed through
the Tor network. Since the UC framework does not allow time-sensitive attacks, traffic analysis is
outside of the scope of this work. However, due to the strong adversary we deploy, we can still cover
all known attacks by making suitable assumptions. In the following we look at two well known
traffic analysis attacks and how we can cover them in our model.

Traffic correlation. These forms of traffic analysis attacks observe traffic going out from the sender
and into the receiver and try to correlate them based on different features like volume, direction or
inter-packet delay [OB09, WRW02]. We model these attacks by over-approximating the adversary.
We allow adversaries that only send a single challenge. If the adversary controls the links or nodes
that are needed for a traffic correlation attack, i.e., the entry and exit node or the link from the user
to the entry node and the link from the exit node to the server, then the adversary can correlate
the traffic.

Website fingerprinting. Fingerprinting attacks try to classify user traffic based on a catalog of
fingerprints derived for a large set of web pages beforehand and matching the observed traffic to those
fingerprints [PNZE11, CZJJ12, DCRS12]. This kind of attack can be modeled by assuming that it
is enough for the adversary to compromise the entry node (i.e. we define a new distinguishing event
DWF that captures this) to find the recipient, as he will then be able to launch the fingerprinting
attack. The δ in Theorem 24 then changes to

δ = Pr[DWF ] · Pr[S]

where S is the event that the website fingerprinting attack successfully classifies the traffic.

7.4.2 Entry guards

When regarding adversaries that may use many challenges, it is interesting to analyze the concept of
entry guards [WALS03, ØS06], which are used in the current implementation of Tor. Entry guards
are a small subset of the whole set of onion routers that are chosen by a user before the initiation of
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a Tor communication. They are then used as entry nodes for any subsequent communication. As
we discussed in Section 5, entry guards can be problematic if an adversary may choose adaptively
which users it targets. Such an adversary can initiate many messages from (fresh) users until a
user chooses a corrupted node as its entry guard. Then the adversary starts a challenge with this
user and some other user and wins the sender anonymity game with a very high probability (as it
has corrupted an entry guard of one of the users). The situation is vastly different if we consider
adversaries that may not adaptively choose their targets, although they can adaptively choose their
messages and thus still utilize their adaptivity. This can be formalized by the adversary class Ar as
discussed in Section 5.3.3.

Consider a single, random user u who communicates using Tor over a long period of time,
initiating a total of d new sessions. Without entry guards, the probability that A de-anonymizes u
is bounded by

1−
(
n−d
k

)(
n
k

)
which converges to 1 the bigger d gets. If we do use a set of m entry guards on the other hand, the
probability for de-anonymizing u will stay constant at

1−
(
n−m
k

)(
n
k

) .

In order to prevent loss of performance, entry guards are also replaced at regular intervals. Let
l be the maximum number of sessions possible per entry-guard-interval. The probability for
de-anonymization can then be bounded by

1−
(n−d d

l
em

k

)(
n
k

)
which is smaller than the original value, but still converges to 1 at some point. Note that these upper
bounds only make sense if the sessions initiated per entry-guard-interval also use each entry-guard
at least once. Dropping this assumption requires a more fine-grained analysis.

The problem with entry guards is the following: while the probability for de-anonymization is
smaller, u will effectively stay de-anonymized as soon as A manages to find u’s entry guards (for as
long as these entry guards are used). Also, while the above value attains its minimum for m = 1,
choosing a small value for m will realistically also incur loss in performance for the whole system.
The exact analysis is unfortunately out-of-scope for our approach, but further elaboration on the
parameters and their influence on anonymity and performance using simulation can be found in
Elahi et al. [EBA+12].

7.5 Link corruption

So far we have only been concerned with an adversary A that compromises nodes in the onion
routing network in order to learn about the transmitted messages. But our model also supports an
adversary that compromises links between nodes and learns about messages transmitted through
these links.

Thus, the event DαSSA alone is not enough to capture all bad events. For sender anonymity, we
also lose if the adversary manages to compromise the link between the user and the entry node
of the circuit used to transmit the challenge row. Let LαSSA be the event that this entry link is
compromised and let q be the number of compromised links. Naturally, it is in the best interest of
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the adversary to not compromise links between user/server and already compromised nodes, as he
will not learn anything new that way. Hence we have that

Pr[LαSSA ] ≤ q

n− k
In order to extend our δ by the event LαSSA , we can now consider the “bad event” BαSSA depending
on DαSSA :

Pr[BαSSA ] = Pr[BαSSA |DαSSA ] · Pr[DαSSA ]

+ Pr[BαSSA |¬D] · Pr[¬DαSSA ]

= Pr[DαSSA ] + Pr[LαSSA ] · Pr[¬DαSSA ]

≤ k

n
+

q

n− k
n− k
n

=
k + q

n

For more than one challenge session this can be extended in a similar way as before, by just adjusting
the event for successful link corruption. Let L∗αSSA

be the event that in one of the challenge sessions,
an entry-link was successfully compromised. Doing a similar analysis as for the node corruption, we
get the following upper bound, which is tight if the user for all challenge sessions is the same.

Pr[L∗αSSA
] ≤ 1− (1− q

n− k )d (1)

The full derivation of Inequality 1 can be found in Appendix C.2.
This concludes the formal analysis of the Tor network with the AnoA framework. We illustrated

how AnoA can be used by using it on For. We showed that For is (0, δ)-α-IND-CDP for the
different anonymity notion we defined in Section 3 and also explored further aspects of OR anonymity
accessible through the AnoA framework. Still, we barely scratched the surface with our analysis and
see many different directions for future work in the Tor analysis with AnoA. We further elaborate
on these directions in Section 9.

Note that, although we only considered the ideal functionality For in our analysis, Theorem 22
allows us to lift our results to any (cryptographic) protocol that realizes For.

8 Related Work

Pfitzmann and Hansen [PH10] develop a consistent terminology for various relevant anonymity
notions; however, their definitions lack formalism. Nevertheless, these informal definitions form the
basis of almost all recent anonymity analysis, and we also adopt their terminology and definitions in
our AnoA framework.

Our relaxation of differential privacy is not the first variation of differential privacy. Gehrke
et al. recently introduced the stronger notion of zero-knowledge privacy [GLP11] and the relaxed
notion of crowd-blending privacy [GHLP12]. Similar to differential privacy, these notions are not
well suited for the analysis of AC protocols. However, extending the crowd-blending privacy notion
with corruptible distributed mechanisms and flexible adjacency functions would allow capturing
the notion of k-anonymity for AC protocols. We could imagine applying the resulting concept to
Mixnets, in which each mix waits for a certain amount of time: if at least k messages arrived, these
messages are then processed, otherwise they are discarded; however, discarding messages in such a
way may not be acceptable in a real world application.
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Efforts to formally analyze anonymity properties have already been made using communicating
sequential processes (CSP) [SS96], epistemic logic [SS99, HO05], Kripke structures [HS04], and
probabilistic automata [APSVR11]. However, these formalisms have only being applied to simple
protocols such DC-net. Since it’s not clear if these frameworks can capture an adversary with
auxiliary information, it seems difficult to model complex protocols such as onion routing and its
traffic analysis attacks. It still presents an interesting challenge to relate the probabilistic notions
among those mentioned above (e.g. [HO05, APSVR11]) to our anonymity framework.

There have been analyses which focus on a particular AC protocol, such as [SD02, D0́6, SW06,
GTD+08] for Mixnet, [BP05, APSVR11] for DC-net, [DSCP02, Shm04] for Crowds, and [STRL00,
MVdV04, FJS07a, FJS07b, FJS12] for onion routing. Most of these study a particular anonymity
property in a particular scenario and are not flexible enough to cover the emerging system-level
attacks on the various AC protocols. (We refer the readers to [FJS12, Sec. 5] for a detailed survey.)
The most recent result [FJS12] among these by Feigenbaum, Johnson and Syverson models the OR
protocol in a simplified black-box abstraction, and studies a notion of relationship anonymity notion
which is slightly different from ours: here the adversary wishes to identify the destination of a user’s
message. As we discussed in Section 4.3, this relationship anonymity notion is slightly weaker than
ours. Moreover, their model is not flexible enough to extend to other system-level scenarios such
fingerprinting attacks [PNZE11, CZJJ12, DCRS12].

Hevia and Micciancio [HM08] introduce an indistinguishability based framework for the analysis
of AC protocols. While they take a similar approach as in AnoA, there are some notable differences:
The first difference is that their anonymity definition does not consider compromised parties; as
a consequence, they only define qualitative anonymity guarantees. While the authors discuss
corruption as a possible extension, for most real world AC protocols they would have to adjust their
notion to a quantitative anonymity notion as in AnoA. The second difference is the strength of
the adversary: we consider a stronger adversary which determine the order in which messages are
sent through the network, whereas Hevia and Micciancio only allow the adversary to specify which
party sends which messages to whom. Building on the work of Hevia and Micciancio, Gelernter
and Herzberg published, concurrently with this work, an expressive framework that extends the
work of Hevia and Micciancio with active adversaries that adaptively send inputs [GH13]. They
apply their methodology to obtain a strong impossibility result for a strong combination of sender
anonymity and unobservability, which they coin “ultimate anonymity”. However, as the work of
Hevia and Micciancio, they only consider qualitative anonymity notions (i.e., protocols that only
allow a negligible chance of de-anonymizing users), which does not allow them to quantify the
anonymity loss in low-latency anonymous communication networks, such as Tor. Moreover, they do
not provide a mechanism, such as adversary classes, to flexibly relax the strength of the adversary.

9 Conclusion and Future Directions

In this paper we have presented our generic framework AnoA. We have defined new, strong variants
of anonymity properties like sender anonymity, sender unlinkability and relationship anonymity
based on a novel relaxation of computational differential privacy, and presented how to concisely
formulate them in AnoA. We have shown that our definitions of the anonymity guarantees accurately
model prominent notions in the literature. Moreover, we have generalized those definitions to allow
for adaptive adversaries that may be restricted in a controlled and modular manner. We have also
applied AnoA to the UC framework and shown that the results shown for ideal functionalities carry
over to their secure cryptographic protocols.

Additionally, we have conducted an extensive analysis of the Tor network. We have validated
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the inherent imperfection of the current Tor standard in the presence of a significant fraction of
compromised nodes, and we have given quantitative measures of the different forms of anonymity
against passive adversaries that statically corrupt nodes.

Future directions. In our analysis of Tor we did not consider the impact of user preferences for
path selection. If certain nodes are more likely for a given user (e.g. for efficiency reasons), anonymity
can (and will) decrease. As illustrated in Example 3, when analyzing Tor with preferences, the value
for ε can be larger than zero (depending on the preferences). We plan to analyze the influence of
Tor’s node selection preferences [DM09] on Tor’s anonymity guarantees and to investigate active
attacks on Tor such as elective DoS attacks [BDMT07].

The next step is to analyze anonymity guarantees in scenarios where the adversary may not
choose the user behavior, e.g., in cases where the behavior is defined by profiles. Moreover, we will
apply AnoA to other AC protocols such as Mixnets [Cha81] and the DISSENT system [CGF10].

On the framework level we will investigate other anonymity notions such as unobservability and
undetectability [PH10], and their relation to the notions we already defined in this paper.
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A Framework

In this section we provide the proofs for the claims made in section 4.

A.1 Expressivity

We first recall the definition of δ-sender anonymity derived from the literature.

Definition 7. [sender anonymity]A protocol P with user space U of size N has δ-sender anonymity
if for all ppt-adversaries A

Pr
[
u∗ = u : u∗←ASAChu(P), u

R←U
]
≤ 1

N
+ δ

where the challenger SACh is as defined in Figure 5.

Our definition with the adjacency function αSA implies definition 7.

Lemma 8. [sender anonymity] For all protocols P over a (finite) user space U of size N it holds
that if P has (0, δ)-α-IND-CDP for αSA, P also has δ-sender anonymity as in Definition 7.

Proof. We proof this by contradiction: given an adversary A∗ that breaks δ-sender anonymity, we
construct an adversary A that breaks (0, δ) − α-IND-CDP for αSA. Let A∗ be a ppt-adversary
that wins against Chb(P, αSA) with probability more than 1

N + δ. Let A be defined as follows:

A with oracle access to Chb(P, αSA)

Call A∗ and receive a input table D
if ∃! challenge line in D then

u0
R←U , u1

R←U \ {u0}
Let D0 be D with u0 in the challenge line.
Let D1 be D with u1 in the challenge line.
Send (input, D0, D1) to the oracle Chb(P, αSA)
Send every message from Ch to A∗.
Receive u∗ ← A∗
if u∗ =∈ {u0, u1} then

Output b∗

else
output c

R←{0, 1}
else

Halt.

Note that independent of the bit of our challenger Chb, we simulate a perfect challenger SACh for
sender anonymity. The choice for u1 is completely ignored by Ch0 and the choice for u0 is ignored
by Ch1 as the adjacency function αSA for sender anonymity does not modify its inputs.

We calculate the success probability for our adversary A. Since the probability of success is
independent of the bit b, we will show the calculation parametric in b. For readability we will use
the following notation:

• Ab(ub) := AChb(P,αSA) the adversary A with oracle access to Chb(P, αSA) that chooses the

value ub
R←U respectively.
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• A∗ub := A∗Ab(ub), The adversary A∗ that has oracle access to the simulated challenger

SAChub(P) as simulated by A, where ub
R←U is chosen by A.

Pr [b←Ab(ub)]
=Pr

[
b←Ab(ub)|u∗ = ub;u

∗←A∗ub
]
· Pr

[
u∗ = ub;u

∗←A∗ub
]

+Pr
[
b←Ab(ub)|u∗ 6= ub;u

∗←A∗ub
]
· Pr

[
u∗ 6= ub;u

∗←A∗ub
]

(1)
=1 · Pr

[
u∗ = ub;u

∗←A∗ub
]

+

(
1

2
· N − 2

N − 1

)
· Pr

[
u∗ 6= ub;u

∗←A∗ub
]

=Pr
[
u∗ = ub;u

∗←A∗ub
]

+

(
1

2
· N − 2

N − 1

)
·
(
1− Pr

[
u∗ = ub;u

∗←A∗ub
])

=Pr
[
u∗ = ub;u

∗←A∗ub
]
·
(

1− 1

2
· N − 2

N − 1

)
+

(
1

2
· N − 2

N − 1

)
(2)
>

(
1

N
+ δ

)
·
(

1− 1

2
· N − 2

N − 1

)
+

(
1

2
· N − 2

N − 1

)
=

(
1

N
+ δ

)
·
(

1− 1

2
·
(

1− 1

N − 1

))
+

(
1

2
·
(

1− 1

N − 1

))
=

(
1

N
+ δ

)
·
(

1

2
+

1

2
· 1

N − 1

)
+

(
1

2
− 1

2
· 1

N − 1

)
=

1

2

((
1

N
+ δ

)
·
(

1 +
1

N − 1

)
+

(
1− 1

N − 1

))
=

1

2

(
1

N
+

1

N(N − 1)
+ δ +

δ

N − 1
+ 1− 1

N − 1

)

=
1

2

(
N − 1

N(N − 1)
+

1

N(N − 1)
+ δ +

δ

N − 1
+ 1− N

N(N − 1)

)
=

1

2

(
δ +

δ

N − 1
+ 1

)
=

1

2
+

1

2
δ +

δ

2(N − 1)

≥1

2
+

1

2
δ

Equation (1) holds true since:

• If A∗ guesses the correct u∗ = ub, A will always output the correct b.

• If A∗ guesses a wrong u∗, A will output the correct b only if the coin toss c
R←{0, 1} matched b

(which happens with probability 1
2) and if additionally A∗ did not guess u∗ = u1−b by chance

(which happens with probability N−2
N−1 independently of the behavior of A∗, since u1−b is drawn

uniformly at random, but is discarded by Chb(P, αSA) and thus never actually used).
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For equation (2) we make use of our assumption that A∗ indeed wins against an honest challenger
SAChu(P) with probability more than 1

N + δ.
Finally we can compute the difference:

Pr
[
b = 0 : b←ACh0(1η ,P,α)(1η)

]
−Pr

[
b = 0 : b←ACh1(1η ,P,α)(1η)

]
=Pr [0←A0(u0)]− Pr [0←A1(u1)]

=Pr [0←A0(u0)]− (1− Pr [1←A1(u1)])

=Pr [0←A0(u0)] + Pr [1←A1(u1)]− 1

>
1

2
+

1

2
δ +

1

2
+

1

2
δ − 1 = δ,

Thus, A is a ppt-adversary that breaks (0, δ)-α-IND-CDP for αSA for P.

The otehr direction also holds, i.e. sender anonymity implies α-IND-CDP for αSA, but only with a
changed parameter

Lemma 9. For all protocols P over a (finite) userspace U of size N it holds that if P has δ
N -sender

anonymity as in Definition 7 P also has (0, δ)-α-IND-CDP for αSA.

Proof. Given an adversary A∗ that breaks (0, δ)-α-IND-CDP for αSA, we construct an adversary
against δ

N -sender anonymity as follows:

A with oracle access to SAChu(P)

Call A∗ and receive two input tables D0, D1

if αSA(D0, D1) 6= ⊥ then
Let u0, u1 be the users in the challenge-rows of D0, D1.
Send (input, D′) to the oracle SAChu(P), where D′ is D0 without u0 in the challenge-row.
Send every message from the oracle to A∗.
Receive b∗ ← A∗
Output ub∗

else
Halt.

If by chance one of the users u0, u1 has been picked by SACh, A∗ has an advantage. Otherwise,
ub∗ will hit the correct uniformly drawn user with probability 1

N−2 .
We now compute the success probability of A. For readability we use the following notation:

• Aub := AA∗b (ub), The adversary A that has oracle access to the challenger SAChub(P) where

ub
R←U is chosen by this challenger.

• A∗b(ub) := A∗Chb(P,αSA) the adversary A∗ with oracle access to the simulated challenger

Chb(P, αSA) that chooses the value ub
R←U respectively.
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Pr [u←A(u)]

=Pr [u←A(u)|u = u0] · Pr [u = u0]

+Pr [u←A(u)|u = u1] · Pr [u = u1]

+Pr [u←A(u)|u /∈ {u0, u1}] · Pr [u /∈ {u0, u1}]
=Pr [0←A∗0(u0)] · Pr [u = u0] + Pr [1←A∗1(u1)] · Pr [u = u1]

+Pr [u←A(u)|u /∈ {u0, u1}] · Pr [u /∈ {u0, u1}]
=Pr [0←A∗0(u0)] · Pr [u = u0]

+Pr [1←A∗1(u1)] · Pr [u = u1] + 0

=Pr [0←A∗0(u0)] · Pr [u = u0]

+(1− Pr [0←A∗1(u1)]) · Pr [u = u1]

=
1

N
· (Pr [0←A∗0(u0)]− Pr [0←A∗1(u1)] + 1)

>
1

N
· δ +

1

N

We recall the definition of δ-sender unlinkability

Definition 10. [δ-sender unlinkability] A protocol P with user space U has δ-sender unlinkability
if for all ppt-adversaries A∣∣∣Pr [b = 0 : b←AULCh0(P)

]
− Pr

[
b = 0 : b←AULCh1(P)

]∣∣∣ ≤ δ
where the challenger ULCh is as defined in Figure 6.

Lemma 11. [sender unlinkability] For all protocols P over a user space U it holds that if P has
(0, δ)-α-IND-CDP for αUL, P also has δ-sender unlinkability as in Definition 10.

Proof. We proof the lemma by contradiction. Given an adversary A∗ that breaks δ-unlinkability, we
will construct an adversary A that breaks (0, δ)−α-IND-CDP for αUL. Let A∗ be a ppt-adversary
that wins against ULCh with probability more than δ. We define A as follows:

A with oracle access to Chb(P, αUL)

Call A∗ and receive a input table D
if in exactly 2 rows i and j in x the user is missing then

u0
R←U , u1

R←U \ {u0}
Let D0 be D with u0 put in rows i and j.
Let D1 be D with u1 put in rows i and j.
Send (input, D0, D1) to oracle Chb(P, αUL).
Send every message from the oracle to A∗.
Upon receiving b∗←A∗, output b∗.

else
Halt.

The adjacency function αUL changes the data sets such that D0 contains only one of the users
u0, u1, while in D1 both will be present. Together with the challenger Chb(P, αUL) we simulate a
challenger ULCh perfectly.
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Whenever b∗ is the correct answer for the (simulated) challenger ULCh, it also is the correct
answer for Chb(P, αUL).

Since by assumption A∗ breaks δ-sender unlinkability with probability more than δ, A breaks
(0, δ)-α-IND-CDP.

Lemma 12. For all protocols P over user space U of size N it holds that if P has 1
N(N−1)δ-sender

unlinkability as in Definition 10, P also has (0, δ)-α-IND-CDP for αUL.

Proof. Assume P provides δ
N(N−1) -sender unlinkability and assume we have an adversary A∗ which

breaks (0, δ)-α-IND-CDP. We construct an adversary A for δ
N(N−1) -sender unlinkability.

A with oracle access to ULChb(P, αUL)

Call A∗ and receive two input tables D0, D1

if αUL(D0, D1) 6= ⊥ then
Let u0, u1 be the users in the challenge-rows of D0, D1.
Send (input, D′) to oracle,where D′ is D0 with no users in the challenge rows.
Send every message from the oracle to A∗.
Receive b∗ ← A∗
Output b∗

else
Halt.

We directly compute the difference |Pr[AULCh0 = 0] − Pr[AULCh1 = 0]|. Let u and u′ be the
users chosen by ULCh. The first part then computes to

Pr[AULCh0 = 0]

=Pr[AULCh0 = 0|u ∈ {u0, u1}] · Pr[u ∈ {u0, u1}]
+ Pr[AULCh0 = 0|u /∈ {u0, u1}] · Pr[u /∈ {u0, u1}]

=Pr[A∗Ch0(αUL) = 0] · 2

N

+ Pr[A∗ULCh0 = 0|u /∈ {u0, u1}] · (1−
2

N
)

and Pr[AULCh1 = 0] computes to

Pr[AULCh1 = 0]

=Pr[AULCh1 = 0|{u, u′} = {u0, u1}]
· Pr[{u, u′} = {u0, u1}]
+ Pr[AULCh1 = 0|{u, u′} 6= {u0, u1}]
· Pr[{u, u′} 6= {u0, u1}]

=Pr[A∗Ch1(αUL) = 0] · 2

N(N − 1)

+ Pr[A∗ULCh1 = 0|{u, u′} 6= {u0, u1}] · (1−
2

N(N − 1)
)

For readability we use following place holders for the different events

• M0 : A∗Ch0(αUL) = 0
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• M1 : A∗Ch1(αUL) = 0

• L0 : A∗ULCh0 = 0 | u 6= {u0, u1}

• L1 : A∗ULCh1 = 0 | {u, u′} 6= {u0, u1}

With this we get by suitably adding 0 several times

|Pr[AULCh0 = 0]− Pr[AULCh1 = 0]|

=| 2

N(N − 1)
(Pr[M0]− Pr[M1])

+ (
2

N
− 2

N(N − 1)
)Pr[M0]

− (
2

N
− 2

N(N − 1)
)Pr[L0]

+ (1− 2

N(N − 1)
)(Pr[L0]− Pr[L1])|

Here we make following assumptions

• Pr[M0] ≥ Pr[L0]: As A∗ is an adversary especially constructed for Chb(αUL) we can assume
that he also works better against this adversary. Otherwise we can construct an even better
adversary A∗′ which makes the same decisions as A∗ with oracle ULChb and use him instead
of A∗.

• − 1
N(N−1) ≤ Pr[L0]− Pr[L1] ≤ 1

N(N−1) , as otherwise A∗ already is an adversary which breaks
δ-unlinkability, which is a contradiction.

Together with our initial assumption, that A∗ breaks (ε, δ)- α-IND-CDP for αUL, we get

| 2

N(N − 1)
(Pr[M0]− Pr[M1])

+ (
2

N
− 2

N(N − 1)
)Pr[M0]

− (
2

N
− 2

N(N − 1)
)Pr[L0]

+ (1− 2

N(N − 1)
)(Pr[L0]− Pr[L1])|

>
2

N(N − 1)
δ − (1− 2

N(N − 1)
)

δ

N(N − 1)

>
δ

N(N − 1)

as required.

A.2 Relations among the various notions

In this section we explore the relations among our notions of sender anonymity, sender unlinkability
and relationship anonymity.

Below follow the lemmas and their proofs for the various relations between the anonymity
notions, as visualized in Fig. 7.
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Lemma 13. [Sender anonymity implies relationship anonymity.] If a protocol P has (0, δ)-
α-IND-CDP for αSA, is also has (0, δ)-α-IND-CDP for αRel.

Proof. Given an adversary A∗ against (0, δ)-α-IND-CDP for αRel, we construct an adversary
against (0, δ)-α-IND-CDP for αSA as follows: A with oracle access to Chb(P, αSA)

Call A∗ and receive input tables D0, D1.

Let b
R←{0, 1}.

Replace Rc = (r, aux)k in the challenge-row of Db by Rc in D1−b.
Send (input, D0, D1) to oracle.
Send every message from the oracle to A∗.
Upon receiving b∗ from A∗, output b∗.

The adversary A perfectly simulates a challenger against relationship anonymity. However, since he
chooses Rc to be the same before sending the input tables to its oracle, it also fits the requirements
for sender anonymity. Whenever A∗ wins the relationship anonymity game, A wins the sender
anonymity game.

Lemma 14. [Sender anonymity implies sender unlinkability] If a protocol P has (0, δ)-α-IND-CDP
for αSA, P also has (0, δ)-α-IND-CDP for αUL.

Proof. Given an adversary A∗ against (0, δ)-α-IND-CDP for αUL, we construct an adversary against
(0, δ)-α-IND-CDP for αSA as follows: A with oracle access to Chb(P, αSA)

Call A∗ and receive input tables D0, D1.
Let (D′0, D

′
1)←αUL.

Send (input, D′0, D
′
1) to oracle.

Send every message from the oracle to A∗.
Upon receiving b∗ from A∗, output b∗.

The adversary A perfectly simulates a challenger against sender unlinkability (αSA does not change
the input tables). However, since exactly one challenge row exists in (D′0, D

′
1) it also fits the

requirements for sender anonymity. Whenever A∗ wins the relationship anonymity game, A wins
the sender anonymity game.

Lemma 15. [Sender unlinkability does not imply sender anonymity] If a protocol P has (0, δ)-
α-IND-CDP for αUL, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.

Proof. Consider the following counterexample protocol P. It processes the input table row by row,
perfectly hiding all information about the user and broadcasting the message. At any point, an
adversary might ask it to reveal the user of a given message, but only once. Obviously this protocol
does not have sender anonymity, as the adversary can deanonymize any user. For unlinkability,
however, deanonymizing the user of one single message does not suffice.

Lemma 16. [relationship anonymity does not imply sender anonymity] If a protocol P has (0, δ)-
α-IND-CDP for αRel, P does not necessarily have (0, δ′)-α-IND-CDP for αSA for any δ′ < 1.

Proof. Consider the following counterexample protocol P. It processes the input table row by row,
perfectly hiding all information about the message and possible recipients, but leaking the users that
send messages. An adversary can easily distinguish input tables, where e.g. a user only is present in
D1 but not in D0, but for breaking relationship anonymity, information about the messages and/or
recipients has to be present.
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A.3 Leveraging UC

In this section we derive the proof for Lemma 22. We first give the required definitions from the
UC-framework and then give the proof.

Definition 25 (Indistinguishability [Can01]). Two binary distribution ensembles X and Y are
indistinguishable, denoted X ≈ Y , if for every c ∈ N there is a η0 ∈ N such that for all η > η0 and
all x we have that

|Pr[X(η, x)] = 1− Pr[Y (η, x)] = 1| < δ′ = η−c

The real world. For the process in the real world we introduce the random variable
RealΠ,A,D(η, x) which captures the interaction of a protocol Π with an adversary A, observed
by a distinguisher D.RealΠ,A,D will denote the ensemble of all those distributions.

The ideal world. Similarly, we introduce the random variable IdealF ,S,D(η, x) which captures the
interaction of an ideal functionality F , a simulator S and the distinguisher. IdealF ,S,D will again
denote the ensemble of such random variables.

Definition 26 (Realization in UC). A protocol Π UC-realizes an ideal functionality F if for every
PPT adversary A of Π there exists a PPT simulator S such that for every PPT distinguisher D it
holds that

RealΠ,A,D ≈ IdealF ,S,D
In order to stay consistent with the notation used in the main body of the paper, but still catch

all technical details of UC, we adopt following notation: The adversary we used in AnoA in order to
define α-IND-CDP is now part of the environment Env. We capture the interaction of adversary –
as denoted above, and protocol by taking both as arguments into the challenger Ch, i.e. we write
Chb(Π,A, α, n) instead of just Chb(Π, α, n).

Given the realization of a (ε, δ)-differentially-private ideal functionality by a protocol Π, we get
differential privacy for Π.

Lemma 22. Let F be (ε, δ)-α-IND-CDP and Π be a protocol. If Π UC-realizes F then Π is
(ε,∆)-α-IND-CDP with ∆ = δ + δ′ for some negligible value δ′.

Proof. Given an (ε, δ)-α-IND-CDP functionality F , assume Π UC-realizes F , but Π is not (ε,∆)-
α-IND-CDP, i.e. there exist an adversary A s.t.

Pr[b = 0 : b←EnvCh0(Π,A,α,1)]

> eεPr[b = 0 : b←EnvCh1(Π,A,α,1)] + ∆

where ∆ ≥ δ + δ′ for a non negligible value δ′.We construct the following PPT distinguisher D that
uses A in order to separate Π from F :

1. choose b
R← {0, 1} uniformly at random

2. Simulate the challenger Ch on b

3. depending on the output b∗ of the environment:

(a) if the environment returns b∗ = b, decide that you observed (Π,A) and output 1
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(b) otherwise decide that you observed (F , S) and output 0

We now bound the probabilities Pr[RealΠ,A,D(η) = 1] and Pr[IdealF ,S,D(η) = 1] as required for
Lemma 22. Using the assumption that Π is not (ε,∆)-differentially private, the first expression
computes to

Pr[RealΠ,A,D(η) = 1]

= Pr[b = b∗ : b←EnvChb∗ (Π,A,α,1)]

= Pr[b = 1 : b←EnvCh1(Π,A,α,1)] · Pr[b = 1 : b
R←{0, 1}]

+ Pr[b = 0 : b←EnvCh0(Π,A,α,1)] · Pr[b = 0 : b
R←{0, 1}]

=
1

2

(
Pr[b = 1 : b←EnvCh1(Π,A,α,1)]

+ Pr[b = 0 : b←EnvCh0(Π,A,α,1)]
)

>
1

2

(
Pr[b = 1 : b←EnvCh1(Π,A,α,1)]

+eε Pr[b = 0 : b←EnvCh1(Π,A,α)] + ∆
)

=
1

2

(
1− Pr[b = 0 : b←EnvCh1(Π,A,α,1)]

+eε Pr[b = 0 : b←EnvCh1(Π,A,α)] + ∆
)

=
1

2

(
(eε − 1) Pr[b = 0 : b←EnvCh1(Π,A,α,1)] + ∆ + 1

)

(2)

Using the (ε, δ)-differential privacy of F , the second expression can be bound as follows

Pr[IdealF ,S,D(η) = 1]

= Pr[b = b∗ : b←EnvChb∗ (F ,S,α,1)]

= Pr[b = 1 : b←EnvCh1(F ,S,α,1)] · Pr[b = 1 : b
R←{0, 1}]

+ Pr[b = 0 : b←EnvCh0(F ,S,α,1)] · Pr[b = 0 : b
R←{0, 1}]

=
1

2

(
Pr[b = 1 : b←EnvCh1(F ,S,α,1)]

+ Pr[b = 0 : b←EnvCh0(F ,S,α,1)]
)

≤1

2

(
Pr[b = 1 : b←EnvCh1(F ,S,α,1)]

+ eε Pr[b = 0 : b←EnvCh1(F ,S,α,1)] + δ
)

=
1

2

(
1− Pr[b = 0 : b←EnvCh1(F ,S,α,1)]

+eε Pr[b = 0 : b←EnvCh1(F ,S,α,1)] + δ
)

=
1

2

(
1 + (eε − 1) Pr[b = 0 : b←EnvCh1(F ,S,α,1)] + δ

)

(3)
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Putting Equations 2 and 3 together, we get

Pr[RealΠ,A,D(η) = 1]

− Pr[IdealF ,S,D(η) = 1]

>
1

2

(
(eε − 1)(Pr[b = 0 : b←ACh1(Π,α,1)]

−Pr[b = 0 : b←SCh1(F ,α,1)]) + ∆− δ
)

=
1

2

(
(eε − 1)(Pr[b = 0 : b←ACh1(Π,α,1)]

−Pr[b = 0 : b←SCh1(F ,α,1)]) + δ′
)

(4)

By assumption, Π UC-realizes F . Hence Pr[b = 0 : b←ACh1(Π,α,1)]− Pr[b = 0 : b←SCh1(F ,α,1)]
is negligible. As δ′ is not negligible, the difference 4 stays non-negligible, and positive. Hence we get
that

|Pr[RealΠ,A,D(η, (x0, x1)) = 1]

− Pr[IdealF ,S,D(η, (x0, x1)) = 1]|
> δ′′

for some non negligible value δ′′, contradicting the UC-realization of F by Π (Def. 26). Therefore
our initial assumption is wrong and Π is (ε,∆)-α-IND-CDP.

A.4 Composability theorem

In this section, we present the full proof for our composability theorem: for all adversary classes that
are composable (for an anonymity notion α) it suffices to show anonymity against single challenges.
The theorem then allows for deriving guarantees for more than one challenge

Theorem 21. For every protocol P, every anonymity function α, every n ∈ N and every adversary
class A that is composable. Whenever P is (1, ε, δ)-α-IND-CDP for A, with ε ≥ 0 and 0 ≤ δ ≤ 1,
then P is (n, n · ε, n · enε · δ)-α-IND-CDP for A.

Proof. We will show this theorem inductively. Assume that P is (i, i · ε, eiε · i · δ)-α-IND-CDP. We
show that P is also (i+ 1, (i+ 1) · ε, e(i+1)·ε(i+ 1) · δ)-α-IND-CDP.

Let A be an adversary that sends at most i+ 1 challenges. To do so, we construct several games:

• Game: G0 is the normal game ACReal(0, i+ 1) with up to i+ 1 challenges where b = 0.

• Game: G1 is an intermediate game ACSimMzdontsim
(0, i+ 1). Here every message from A to

A (and otherwise) goes through the simulator Mzdontsim
. However, this simulator does not need

to simulate anything, as there are still up to i+ 1 challenges and b = 0.

Claim: G0 and G1 are computationally indistinguishable.

Proof: By item 3b Definition 20 the simulator Mzdontsim
exists and the games are indistinguish-

able.

• Game: G2 is an intermediate (hybrid) game ACSimMz(0, i+ 1) with b = 0 and fixed input
messages instead of the challenge with tag i+ 1 (so there are at most i challenges left). This
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is done by using the simulator Mz for z = [(dontsim, ), . . . , (dontsim, ), (sim, 0)] ∈ {0, 1}i+1,
i.e., the simulator simulates the i+ 1st challenge for b = 0.

Claim: G1 and G2 are computationally indistinguishable.

Proof: By item 3 of Definition 20, we know that the simulator Mz exists. Since the simulator
Mz from G2 uses the correct bit bi+1 = 0 for the simulated challenge, Item 3c of Definition 20
implies that the games are indistinguishable.

• Game: G3 is the intermediate (hybrid) game ACSimMz(1, i+ 1) where the simulator stays
Mz but the challenger changes to b = 1.

Claim: G2 and G3 are (iε, eiεiδ)-indistinguishable.

Proof: The adversary Mz(A) makes at most i queries with challenge tags in {1, . . . , i}. From
the reliability property of the adversary class (item 1 of Definition 20) we know that thus
A(Mz(A)) uses at most i challenge tags in {1, . . . , i}. The claim immediately follows from the
induction hypothesis: P is (i, i · ε, i · δ)-α-IND-CDP.

• Game: G4 is a game ACSimMz′ (1, i+1) where the simulator Mz′ with z′ = [(sim, 1), . . . , (sim, 1), (sim, 0)]
simulates all challenges from A. For the challenge tags 1 to i, Mz′ simulates the challenges for
b1 = . . . = bi = 1, whereas for the tag i+ 1 it still simulates it for bi+1 = 0. The challenger
uses b = 1.

Claim: G3 and G4 are computationally indistinguishable.

Proof: Since the simulator Mz′ from G4 uses the correct bit b1 = . . . = bi = 1 for the
challenges that are not simulated in Mz, Item 3c of Definition 20 implies that the games are
indistinguishable.

• Game: G5 is the game ACSimMz′ (0, i+ 1) where we use the same simulator Mz′ but we have
b = 0 again.

Claim: G4 and G5 are computationally indistinguishable.

Proof: Since there are no challenge messages (everything is simulated, as by item 3a Mz′

does not send any messages (challenge, , ,Ψ)), changing the bit b of the challenger does not
have any effect. Hence, the games are indistinguishable.

• Game: G6 is the game ACSimMz′′ (0, i + 1) where we use the simulator Mz′′ with z′′ =
[(sim, 1), . . . , (sim, 1), (dontsim, )]. In other words, we do not simulate the challenge for i+ 1
with bi+1 = 0, but we use the challenger again (also with b = 0).

Claim: G5 and G6 are computationally indistinguishable.

Proof: Since the simulator Mz′ from G5 uses the correct bit bi+1 = 0 for the simulated
challenge (which the simulator Mz′′ does not simulate), Item 3c of Definition 20 implies that
the games are indistinguishable.

• Game: G7 is ACSimtranslator(Mz′′ )
(0, i+ 1) where we build around the simulator Mz′′ we an

interface translator(·) that translates the challenge tag from i+ 1 to 1 and vice versa in all
messages (challenge, , ,Ψ) from Mz′′ to A and in all messages (answer for, ,Ψ) from A to
Mz′′ ..

Claim: G6 and G7 are information theoretically indistinguishable.

Proof: Item 2 of Definition 20 requires that the renaming of challenge tags does not influence
the behavior of A. It also does not influence the behavior of the challenger (by definition) or
the protocol (that never sees challenge tags). Thus, the games are indistinguishable.
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• Game: G8 is the game ACSimtranslator(Mz′′ )
(1, i+ 1) where the simulator is defined as in G7

but b = 1.

Claim: G7 and G8 are (ε, δ) indistinguishable.

Proof: By assumption of the theorem, the protocol P is (1, ε, δ)-α-IND-CDP for A. Moreover,
by definition of z′′ and by item 3a, the adversary translator(Mz′′(A)) only uses at most one
challenge tag, namely the tag 1. From the reliability property of the adversary class (item 1 of
Definition 20) we know that thus A(translator(Mz′′(A))) uses only the challenge tag 1. Thus,
G7 and G8 are (ε, δ) indistinguishable.

• Game: G9 is ACSimMz′′ (1, i+ 1) where we remove the translation interface again.

Claim: G8 and G9 are information theoretically indistinguishable.

Proof: As before, Item 2 of Definition 20 requires that the renaming of challenge tags
does not influence the behavior of A. It also does not influence the behavior of the chal-
lenger (by definition) or the protocol (that never sees challenge tags). Thus, the games are
indistinguishable.

• Game: G10 is the normal game ACReal(1, i+ 1) where b = 1.

Claim: G9 and G10 are computationally indistinguishable.

Proof: Since Mz′′ uses the correct bit b1 = . . . = bi = 1 for all simulations, we can replace it
with Mzdontsim

, that, in turn, is indistinguishable from ACReal(1, i+ 1).

We slightly abuse notation in writing Pr [0 = A(G0)] for Pr [0 = 〈A(A(n))||Ch(P, α, n, 0)〉],
Pr [0 = A(G1)] for Pr [0 = 〈A(Mz(b,A(n)))||Ch(P, α, n, 0)〉], etc..

Pr [0 = A(G0)]

≤ Pr [0 = A(G1)] + µ1

≤ Pr [0 = A(G2)] + µ2 + µ1

≤ eiε Pr [0 = A(G3)] + eiεiδ + µ2 + µ1

≤ eiε Pr [0 = A(G4)] + eiε(µ3 + iδ) + µ2 + µ1

≤ eiε Pr [0 = A(G5)] + eiε(µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε Pr [0 = A(G6)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= eiε Pr [0 = A(G7)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε(eε Pr [0 = A(G8)] + δ) + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= e(i+1)ε Pr [0 = A(G8)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

= e(i+1)ε Pr [0 = A(G9)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)ε Pr [0 = A(G10)] + e(i+1)εµ6 + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)ε Pr [0 = A(G10)] + e(i+1)ε(i+ 1)δ

B Abstracting Tor in UC

We cite the the description of the ideal functionality For. Sections B.1 and B.2 are taken from
[BGKM12].
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B.1 System and adversary model

We consider a fully connected network of n+m parties N = {P1, . . . , Pn, . . . , Pn+1, . . . , Pn+m}. We
consider the parties P1, . . . , Pn to be OR nodes, and the parties Pn+1, . . . , Pn+m to only be users.
We furthermore assume that the set of OR nodes is publicly known. The onion routers can be
compromised by the adversary by sending compromise messages. The users, however, can in our
model not be compromised, since the adversary can just act as a user of the OR network. Formally,
Pn+1, . . . , Pn+m, consequently, do not react towards compromise messages.

Tor has not been designed to resist against global adversarys. Such an adversary is too strong for
many practical purposes as it can simply break the anonymity of an OR protocol by holding back
all but one onion and tracing that one onion though the network. However, in contrast to previous
work, we do not only consider local adversarys, which do not control more than the compromised
OR routers, but also partially global adversarys that control a certain portion of the network.
Analogous to the network functionality Fsyn proposed by Canetti [Can01], we model the network as
an ideal functionality Fnet , which bounds the number of adversary-controlled links to q ∈ [0,

(
n
2

)
].

For adversary-controlled links the messages are forwarded to the adversary; otherwise, they are
directly delivered.

Let S represent all possible destination servers {S1, . . . , S∆} which reside in the network abstracted
by a network functionality Fnetq .

We stress that the UC framework does not provide a notion of time; hence, the analysis of timing
attacks, such as traffic analysis, is not in the scope of this work.

Adaptive Corruptions. Forward secrecy [DvOW92] is an important property for onion routing.
In order to analyze this property, we allow adaptive corruptions of nodes by the adversary A. Such
an adaptive corruption is formalized by a message compromise, which is sent to the respective
party. Upon such a compromise message the internal state of that party is deleted and a long-term
secret key sk for the node is revealed to the adversary. A can then impersonate the node in the
future; however, A cannot obtain the information about its ongoing sessions. We note that this
restriction arises due to the currently available security proof techniques and the well-known selective
opening problem with symmetric encryptions [Hof11], and the restriction is not specific to our
constructions [BMP00, GL01]. We could also restrict ourselves to a static adversary as in previous
work [CL05]; however, that would make an analysis of forward secrecy impossible.

B.2 Ideal functionality

The presentation of the ideal functionality For is along the lines of the description OR protocol
Πor from Section [BGKM12, Section 2.4]. We continue to use the message-based state transitions
from Πor, and consider sub-machines for all n nodes in the ideal functionality. To communicate
with each other through messages and data structures, these sub-machines share a memory space
in the functionality. The sub-machine pseudocode for the ideal functionality appears in Figure 13
and three subroutines are defined in Figure 14. As the similarity between pseudocodes for the OR
protocol and the ideal functionality is obvious, rather than explaining the OR message flows again,
we concentrate on the differences.

The only major difference between Πor and For is that cryptographic primitives such as message
wrapping, unwrapping, and key exchange are absent in the ideal world; we do not have any keys in
For, and the OR messages WrOn and UnwrOn as well as the 1W-AKE messages Initiate, Respond ,
and ComputeKey are absent.

The ideal functionality also abstracts the directory server and expects on the input/output
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upon an input (setup):

draw a fresh handle h; a set registered flag← true
store lookup(h)← (dir, registered,N )
send (h, register, P ) to A
wait for a msg (dir, registered,N ) via a handle
output (ready, (Pj)nj=1) = (ready,N )

upon an input (createcircuit,P = 〈P, P1, . . . , P`〉):
store P and C ← 〈P 〉; ExtendCircuit(P, C)

upon an input (send, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`〉,m):

if Used(cid1) < ttlC then
Used(cid1)++; SendMessage(P1, cid1, relay, 〈data,m〉)

else
DestroyCircuit(C, cid1); output (destroyed, C,m)

upon receiving a handle 〈P, Pnext , h〉 from Fnet :

send (msg)← lookup(h) to a receiving submachine Pnext

upon receiving a msg (Pi, cid , create) through a handle:

store C ← 〈Pi
cid⇐⇒ P 〉; SendMessage(Pi, cid , created)

upon receiving a msg (Pi, cid , created) through a handle:

if prev(cid) = (P ′, cid ′) then
SendMessage(P ′, cid ′, relay, extended)

else if prev(cid) = ⊥ then
ExtendCircuit(P, C)

upon receiving a msg (Pi, cid , relay, O) through a handle:

if prev(cid) = ⊥ then
if next(cid) = ⊥ then

get (type,m) from O
else {P ′, cid ′} ← next(cid)

else
(P ′, cid ′)← prev(cid)

switch (type)
case extend:

get Pnext from m; cidnext←{0, 1}κ

update C ← 〈Pi
cid⇐⇒ P

cidnext⇐⇒ Pnext 〉
SendMessage(Pnext , cidnext , create)

case extended:
update C with Pex; ExtendCircuit(P, C)

case data:
if (P = OP) then output (received, C,m)
else if m = (S,m′)

generate or lookup the unique sid for cid
send (P, S, sid ,m′) to Fnetq

case corrupted : /*corrupted onion*/
DestroyCircuit(C, cid)

case default: /*encrypted forward/backward onion*/
SendMessage(P ′, cid ′, relay, O)

upon receiving a msg (sid ,m) from Fnet :

obtain C = 〈P ′ cid⇐⇒ P 〉 for sid
SendMessage(P ′, cid , relay, 〈data,m〉)

upon receiving a msg (Pi, cid , destroy) through a handle:

DestroyCircuit(C, cid)

upon receiving a msg (Pi, P, h, [corrupt, T (·)])from A:

(message)← lookup(h)
if corrupt = true then

message ← T (msg); set corrupted(message)← true
process message as if the receiving submachine was P

upon receiving a msg (compromise, P ) from A:

set compromised(P )← true
delete all local information at P

Figure 13: The ideal functionality FNor (short For) for Party P [BGKM12, Fig.5]
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ExtendCircuit(P = (Pj)
`
j=1, C = 〈P cid1⇐⇒ P1 ⇐⇒ · · ·P`′〉):

determine the next node P`′+1 from P and C
if P`′+1 = ⊥ then

output (created, C)
else

if P`′+1 = P1 then
cid1←{0, 1}κ; SendMessage(P1, cid1, create)

else
SendMessage(P1, cid1, relay, {extend, P`′+1})

DestroyCircuit(C, cid):

if next(cid) = (Pnext , cidnext) then
SendMessage(Pnext , cidnext , destroy)

else if prev(cid) = (Pprev , cidprev ) then
SendMessage(Pprev , cidprev , destroy)

discard C and all streams

SendMessage(Pnext , cidnext , cmd, [relay-type], [data]):

create a msg for Pnext from the input
draw a fresh handle h and set lookup(h)← msg
if compromised(Pnext) = true then

let Plast be the last node in the continguous compromised path starting in Pnext

if (Plast = OP ) or Plast is the exit node then
send the entire msg to A

else
send 〈P, Pnext , . . . , Plast , cidnext , cmd, h〉 to A

else
send 〈P, Pnext , h〉 to Fnetq

Figure 14: Subroutines of For for Party P [BGKM12, Fig.6]

interface of FNreg (from the setting with Πor) an initial message with the list 〈Pi〉ni=1 of valid
nodes. This initial message corresponds to the list of onion routers that have been approved by
an administrator. We call the part of For that abstracts the directory servers dir. For the sake of
brevity, we do not present the pseudocode of dir. Upon an initial message with a list 〈Pi〉ni=1 of
valid nodes, dir waits for all nodes Pi (i ∈ {1, . . . , n}) for a message (register, Pi). Once all nodes
registered, dir sends a message (registered, 〈Pi〉ni=1) with a list of valid and registered nodes to every
party that registered, and to every party that sends a retrieve message to dir.

Messages from A and Fnet. In Figure 13 and Figure 15, we present the pseudocode for the
adversary messages and the network functionality, respectively. For our basic analysis, we model an
adversary that can control all communication links and servers in Fnet , but cannot view or modify
messages between parties due to the presence of the secure and authenticated channel. Therefore,
sub-machines in the functionality store their messages in the shared memory, and create and send
handles 〈P, Pnext , h〉 for these messages in Fnet . The message length does not need to be leaked as
we assume a fixed message size (for all M(κ)). Here, P is the sender, Pnext is the receiver and h is a
handle or a pointer to the message in the shared memory of the ideal functionality. In our analysis,
all Fnet messages flow to A, which may choose to return these handles back to For through Fnet

at its own discretion. However, Fnet also maintains a mechanism through observedLink flags for
the non-global adversary A. The adversary may also corrupt or replay the corresponding messages;
however, these active attacks are always detected by the receiver due to the presence of a secure
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upon receiving a msg (observe, P, Pnext) from A:

set observedLink(P, Pnext)← true

upon receiving a msg (compromise, S) from A:

set compromised(S)← true; send A all existing sid

upon receiving a msg (P, Pnext/S,m) from For:

if Pnext/S is a For node then
if observedLink(P, Pnext) = true then

forward the msg (P, Pnext ,m) to A
else

reflect the msg (P, Pnext ,m) to For

else if Pnext/S is a Fnet server then
if compromised(S) = true then

forward the msg (P, S,m) to A
else

output (P, S,m)

upon receiving a msg (P/S, Pnext ,m) from A:

forward the msg (P/S, Pnext ,m) to For

Figure 15: The Network Functionality Fnet [BGKM12, Fig.7]: A/B denotes that as a variable
name either A or B is used.

and authenticated channel between any two communicating parties and we need not model these
corruptions.

The adversary can compromise a party P or server S by sending a compromise message to
respectively For and Fnet . For party P or server S, the respective functionality then sets the
compromised tag to true. Furthermore, all input or network messages that are supposed to be
visible to the compromised entity are forwarded to the adversary. In principle, the adversary runs
that entity for the rest of the protocol and can send messages from that entity. In that case, it
can also propagate corrupted messages which in Πor can only be detected during UnwrOn calls at
OP or the exit node. We model these corruptions using corrupted(msg) = {true, false} status flags,
where corrupted(msg) status of messages is maintained across nodes until they reach end nodes.
Furthermore, for every corrupted message, the adversary also provides a modification function T (·)
as the end nodes run by the adversary may continue execution even after observing a corrupted flag.
In that case, T (·) captures the exact modificaiton made by the adversary.

We stress that For does not need to reflect reroutings and circuit establishments initiated by the
adversary, because the adversary learns, loosely speaking, no new information by rerouting onions.7

Similar to the previous work [CL05], a message is directly given to the adversary if all remaining
nodes in a communication path are under adversary control.

C Tor

In this section we show the proofs for the claims from the Tor-Analysis section 7.

7More formally, the simulator can compute all responses for rerouting or such circuit establishments without
requesting information from For because the simulator knows all long-term and session keys. The only information
that the simulator does not have is the routing information, which the simulator gets in case of rerouting or circuit
establishment.
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C.1 Formal Analysis

We prove that For is (0, δ)-α-IND-CDP. For this, we first prove Lemma 23, which we then use in
order to proof Theorem 24.

Lemma 23. Let rA, rCh
R←{0, 1}p(η). For α ∈ {αSSA, αSUL, αSRel}, it holds that

Pr[ACh0(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

= Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

Proof. We fix the random string rCh. This in turn fixes the circuits drawn by For for each row. As
circuits are drawn independently from the messages transmitted, For draws the same set of circuits
to transmit either input table.

The adversary A only observes messages of the form m = (h, P1, P2[, P3, . . . , Pk,m
′]) that only

contain the following information:

a) which party P in For the message m comes from,

b) which party P ′ in For the message m is sent to,

c) which circuit was used by the curcuit-ID (cid),

d) if the following nodes are compromised: P3, . . . , Pk

e) if the exit node node or the link from the exit node to the server is compromised: the message
that is sent.

Observer that the message m′ is the same in both scenarios and the handles h are freshly chosen
and, hence, do not leak any information about the path or the sender.

For α ∈ {αSSA, αSUL}, we know that by ¬Dα the adversary does not compromise the entry
node, or the link from the user to the entry node. Let R ⊆ {0, 1}p(η) be the subset of all random
strings rA, for which ACh0(For,α,rCh)(rA) = 0. As AChb(For,α,rCh)(rA) is a deterministic machine, also
ACh1(For,α,rCh)(rA) = 0 exactly for every rA ∈ R, as both Ch0 and Ch1 forward the same messages
to A.

If α = αSRel, A might learn partial information by compromising either entry- or exit-node. But
this only allows him to reduce the set of possible input tables to two, each of which could have been
selected by only one of the challengers. By the same argument as above, if we fix rA, A returns the
same value, regardless of which challenger he interacts with.

Hence A does not learn about the challenger’s decision, and we get for any random string rCh

Pr[ACh0(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

= Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]
(5)

As the probabilities are the same for any random string rCh, we then get

Pr[ACh0(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

=
1

2p(η)
·

∑
rF∈{0,1}p(η)

Pr[ACh0(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

(5)
=

1

2p(η)
·

∑
rCh∈{0,1}p(η)

Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA), rCh]

= Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]
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Using Lemma 23, we now prove the main theorem.

Theorem 24. For is (0, δ) - α-IND-CDP for α, i.e

Pr[ACh0(For,α,1,rCh)(rA) = 0]

≤Pr[ACh1(For,α,1,rCh)(rA) = 0] + δ

with δ = Pr[Dα(rCh, rA)].

Proof.

Pr[ACh0(For,α,1,rCh)(rA) = 0]

= Pr[ACh0(For,α,1,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA))]

+ Pr[ACh0(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

C.1
= Pr[ACh0(For,α,1,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA)]

+ Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

≤Pr[Dα(rCh, rA))]

+ Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

≤Pr[Dα(rCh, rA)]

+ Pr[ACh1(For,α,1,rCh)(rA) = 0 | ¬Dα(rCh, rA)]

· Pr[¬Dα(rCh, rA)]

+ Pr[ACh1(For,α,1,rCh)(rA) = 0 | Dα(rCh, rA)]

· Pr[Dα(rCh, rA)]

= Pr[Dα(rCh, rA)] + Pr[ACh1(For,α,1,rCh)(rA) = 0]

C.2 Link Corruption

We extend link corruption for more than one challenge session. Let L∗αSSA
be the event that in one

of the challenge sessions, an entry-link is successfully compromised. Let ij , 1 ≤ j ≤ d denote the
number of possible entry links compromised by A for the user of the jth challenge-row. We then get

Pr[¬L∗αSSA
] =

(
n−k−i1

1

)(
n−k

1

) (
n−k−i2

1

)(
n−k

1

) · · · (n−k−id1

)(
n−k

1

)
=

(n− k − i1)(n− k − i2)− . . .− (n− k − id)
(n− k)d
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The probability Pr[L∗] is maximal if the ij are maximal. This happens when the users for all
challenge sessions are the same and the adversary can invest all link corruptions for this single user.
We then get

Pr[LαSSA ] ≤ 1− Pr[¬LαSSA ]

= 1− (
n− k − q
n− k )d

= 1− (1− q

n− k )d
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