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Abstract. Due to the recent emergence of resource-constrained devices, cryptographers are
facing the problem of designing dedicated lightweight ciphers. KLEIN is one of the resulting
primitives, proposed at RFIDSec in 2011 by Gong et al. This family of software-oriented block
ciphers has an innovative structure, as it combines 4-bit Sboxes with the AES MixColumn
transformation, and has woken up the attention of cryptanalysts. Several security analyses
have been published, in particular on the 64-bit key version. The best of these results could
attack up to 8 rounds out of the total number of 12. In this paper we propose a new family
of attacks that can cryptanalyze for the first time all the 12 rounds of the complete version
of KLEIN-64. Our attacks use truncated differential paths and are based both on some of the
notions developed in previous attacks and on our new ideas that allow to considerably improve
the performance. To prove the validity of our attacks, we have implemented reduced-round
versions of them. In particular we were able to reproduce a practical attack that recovers the
whole key on 10 rounds, which also corresponds to the best practical attack against KLEIN-64.

Keywords: KLEIN, lightweight block cipher, truncated differential cryptanalysis,
MixColumn, key-recovery.

1 Introduction

Design of lightweight and secure primitives has become one of the major interests of the cryp-
tographic community in order to answer the requirements of a large number of applications, like
RFID and wireless sensor networks. Through these last years an enormous amount of promising
such primitives has been proposed, like PRESENT [7], LED [12], Spongent [6], ARMADILLO [5],
PRINCE [8], PRINTcipher [14], KLEIN [11], LBlock [21] and Twine [20]. Correctly evaluating the
security of these proposals has become a primordial task that merits all the attention from the
community. This has been proved by the big number of security analyses of the previous primitives
that has appeared (to cite a few: [15, 1, 9, 16, 19, 10, 18]).

On the other hand, most of now-a-days cryptanalysis results are analyses of round-reduced
versions that do not apply to, nor break the full primitive studied. This trend could be explained
by the recent improvements made by cryptographers in the last few years - partially resulting
from competitions like AES, SHA-3 and eStream - that gave them solid bases and criteria to build
secure designs. Nevertheless, it is still crucial to make security analyses in order to filter out the
candidates that are not secure enough, and narrow down the list of available lightweight primitives
to recommend the use of the secure ones.

KLEIN [11] is a lightweight block cipher proposed at RFIDSec2011 by Gong et al. Three ver-
sions were proposed for different key sizes: 64 bits, 80 bits and 96 bits, with 12, 16 and 20 rounds
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respectively. KLEIN is combining the AES MixColumn operations with 4-bit Sboxes. Since its publi-
cation, several cryptanalysts have been interested in its analysis and some results on round-reduced
versions have been published [4, 3, 2, 22, 13]. So far, the highest number of attacked rounds was 8 in
the 64- and 80-bit version (so out of 12 and 16 respectively) and no results were given on the 96-bit
version. Recently biclique analyses ([3, 2]) appeared, but we can remark that this analyses require
to perform an exhaustive search on the whole key and that the acceleration factors are very small.

We propose here a family of attacks that successfully exploits the slow diffusion between higher
and lower nibbles in the cipher. They can be applied to the full 12-round KLEIN-64 with a time and
data complexities of 257.07 and 254.5 respectively (other trade-offs are also possible). They apply
to 13 and 14 rounds of KLEIN-80 and KLEIN-96 respectively, improving by 5 and 14 rounds the
previous attacks. We have also been able to implement some of our attacks, obtaining a practical
key-recovery for 10 rounds of KLEIN-64. We recall that previous (practical) attacks reached at
most 8 rounds. We have also been able to implement 8-round attacks with a considerably lower
data complexity than previous ones and a faster execution.

The paper is organized as follows: the next two sections introduce KLEIN family of block ciphers
(Section 2) and summarize the results of the security analyses that have been done so far and also
recall some of their key ideas that are useful for our analysis (Section 3). Section 4 gives a generic
description of our family of attacks and details the technical improvements we found to reduce the
complexity. Section 5 is dedicated to the possible time-memory-data complexity trade-offs, and gives
4 examples of it while detailing the best time complexity attack we found on the 12-round version.
Section 6 discusses and provides the results of the implementations we made to verify our attacks,
and presents the 10-round practical attack on KLEIN-64. The paper ends with a conclusion.

2 Description of KLEIN

KLEIN is a family of lightweight block ciphers presented by Gong, Nikova and Law at RFIDSec2011.
By design choice, it is implementation compact and has low-memory needs both in software and
hardware, so it is a suitable family for resource-limited devices such as RFID tags and wireless
sensors.

KLEIN encryption routine is a Substitution-Permutation Network that operates on 64-bit blocks.
Three versions are proposed, denoted KLEIN-64, KLEIN-80 and KLEIN-96 with key-sizes of 64, 80
and 96 bits and 12, 16 and 20 rounds respectively. Each round is composed of 4 layers: AddRoundKey,
SubNibbles, RotateNibbles and MixNibbles.

More precisely, the state entering a round is first xored with the round-key through AddRoundKey.
The result is then divided in 16 4-bit parts or nibbles that are all transformed by the same involutive
4× 4 Sbox represented in Table 1. KLEIN designers chose this Sbox instead of a byte-wise one to
minimize implementation costs and memory needs.

Table 1. KLEIN 4× 4 Sbox

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 7 4 a 9 1 f b 0 c 3 2 6 8 e d 5

Then, RotateNibbles rotates the state two bytes to the left and finally MixNibbles applies
Rijndael MixColumn transformation to each half of the state. Let us recall that the MixColumn step



operates on 4 bytes seen as elements of GF (28) = GF (2)/x8 + x4 + x3 + x + 1. The output is
composed of 4 bytes resulting from the multiplication with the following matrix:

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


It can be useful to remark that multiplicating x by 02 is equivalent to realizing a left shift of x

(x� 1) if the most significant bit (MSB) of x is 0, and equivalent to (x� 1)⊕ 1b otherwise. Note
that this last step is byte-wise while the others can be seen as nibble-wise. Contrary to Rijndael,
the step MixNibbles is not omitted in the last round. A final whitening key is added at the end
of the process so the encryption routine requires one more key than the number of rounds. The
round-keys are computed from the MasterKey with the KeySchedule algorithm that follows a Feistel
scheme. In the following we note Kr the round-key of round r.

The description of the KeySchedule is given in Algorithm 1 in which Nbr is the number of
rounds (12, 16 or 20 depending on the version), t is the number of bytes of the MasterKey (8, 10 or
12) and Kr

i,0 and Kr
i,1 represent respectively the higher and lower nibble of the ith byte of the key

of round r (higher nibble refers to the leftmost 4 bits of a byte and lower nibble to the 4 rightmost
ones).

Algorithm 1 KLEIN KeySchedule

KeySchedule (MasterKey MK)

K1 ←MK
for r=2 to Nbr + 1 do

for i=0 to t
2
− 1 do
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]

end for

3 Previous Cryptanalysis

Since KLEIN proposal in 2011, several cryptanalysis have been published, mostly on the KLEIN-64
version: this block cipher has been attacked with differential cryptanalysis methods up to 8 rounds
[22, 4] and an integral cryptanalysis was also proposed in [22] up to 7 rounds. All of these attacks
reached the maximal number of rounds possible using their techniques. In [13] a study of the security
of KLEIN is performed, and some ideas are proposed for trying to reach 9 rounds without success.
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Fig. 1. The KeySchedule algorithm of 64-bit key length

To the best of our knowledge, the integral cryptanalysis proposed in [22] is the first and unique
attack on round-reduced KLEIN-80. It reaches 8 rounds out of 16 and requires 277.5 encryptions
and 234.3 data. No analysis has been proposed until now on KLEIN-96. A summary of these results
and of our best new ones is done in Table 2, where their complexities, number of rounds reached
and version of the cipher are specified.

version of KLEIN Source Rounds Data Time Memory Attacks

[22] 7 234.3 245.5 232 integral
[22] 8 232 246.8 216 truncated

KLEIN-64 [4] 8 235 235 - differential
[3] 12 239 262.84 24.5 biclique

Sec. 5.1 12 254.5 257.07 216 differential

[22] 8 234.3 277.5 232 integral
KLEIN-80 Sec. 5.6 13 252 276 216 differential

[2] 16 248 279 260 biclique

KLEIN-96 Sec. 5.6 14 258.4 289.2 216 differential
[2] 20 232 295.18 260 biclique

Table 2. Previous results and some of our new results on KLEIN.

The attacks from [22, 4] pointed out the fact that all encryption layers, with the exception of
MixNibbles, are nibble-wise and do not mix higher nibbles with lower nibbles. Those two analyses
also gave an interesting property of the MixColumn structure, namely:

Proposition 1. [22, 4] If the eight nibbles entering MixColumn are of the form 0X0X0X0X, where
the wild-card X represents any 4-bit value, then the output is of the same form if and only if the
MSB of the 4 lower nibbles have all the same value. This case occurs with probability 2−3.

Indeed, the higher nibble from the output of MixColumn belonging to the ith byte depends on:
a) the 4 higher nibbles from the input and on b) the xor of the MSB of the input lower nibble
from the ith byte and the MSB of the input lower nibble from the i + 1th byte (mod 4). This



information can be expressed as three quantities of one bit computed with the MSB of the input
lower nibbles. This proposition allows to construct truncated differential paths with important
probabilities leading to efficient distinguishers and key-recovery attacks up to 8 rounds, as the ones
used in [22, 4, 13]. We can see an example of such a path in Figure 2.

Also, as the pattern of the difference in the input of MixColumn is exactly the same as the
one in the output, this truncated difference allows the attacker to build an iterative path. In the
following, we denote by iterative round a round of KLEIN that goes from a difference with only
lower nibbles active (0X0X0X0X 0X0X0X0X) to the same type of difference in the output. In [4]
it was claimed that a difference with only lower nibbles active passes through an iterative round
with probability 2−5.82, while in [22] it was computed as 2−6. We will discuss the value of this
probability in the next section.

An attentive study of the KeySchedule led to the following proposition:

Proposition 2. [22, 4, 13] In the KeySchedule algorithm, lower nibbles and higher nibbles are not
mixed: the lower nibbles of any round-key can be computed directly from the lower nibbles of the
master key. The same property holds for higher nibbles.

Note that in KLEIN-64 case, since each round key is as long as the master key, the lower nibbles
of any round-key can be computed directly from the lower nibbles of any other round-key.

This proposition means that the keySchedule can be seen as two independent and parallel
subroutines involving each half of the key bits.

Propositions 1 and 2 are the two main ideas used in [22, 4, 13], that we recycle and improve in
our attacks.

4 Generic Description of Our Attacks

The best previous cryptanalysis of KLEIN basically exploited the iterative truncated differential
path over R rounds for building attacks on R + 1 rounds. As we can see in the example from
Figure 2, no condition was imposed in the last round, making the whole output active.

Despite this, if we are given two ciphertexts (C,C ′) with a certain difference ∆out, we can easily
check if they verify the difference conditions at the output of round R (i.e., if they form a pair of
values that might satisfy the differential path) without needing to guess any key-bits: we just have
to apply to the output difference the linear transformation MixNibbles−1, and check if the higher
nibbles obtained are null, which will occur with a probability of 2−32.

In previous cryptanalysis, since the number of rounds considered was relatively small, this big
sieving of probability 2−32 appearing in the last round was sufficient to select only the pairs that
conform the differential path. The set of possible key-bits involved in the differential path of the
last round was then reduced to the ones that verify the conditions of round R, by only keeping the
keys that generated higher nibble inputs with zero difference on each MixColumn from round R.
Since this imposes 3+3 = 6 bit-conditions as seen in Proposition 1, the number of possible key-bits
involved is basically reduced by 2−6.

In previous attacks several conforming pairs were produced (for example 6 in the 7-round attack)
in order to iterate the filtering step of 2−6 and then recover the involved round-key bits. Contrary
to those attacks which require to keep only the pairs that follow the differential path in the first
step, we allow ourselves to conserve pairs that do not follow the differential path after the first
filtering step. The pairs that verify the 32-bit conditions at round R + 1 but do not satisfy the



differential path are called false alarms. The idea is then to consider separately each candidate set
made of one of these pairs and an associated possible part of the key (only the lower nibbles), i.e.
a candidate triplet (C,C ′, klow), and apply to it several filters to decide if the set is valid, that is if
the pair is conforming the differential path while the considered part of the key is the correct one.
Those several filters consist in using not only the conditions from the MixNibbles of round R but
also the ones from the other rounds. Our sieves will then consist in checking the conformity of the
candidates’ differences going through all the successive MixNibbles operations, starting from the
ciphertexts and inverting each round or starting from the plaintexts and considering the rounds
in the forward direction. As we show in Section 4.3, reaching the next sieve requires to make a
guess of 6 information bits. Since the sieve is of 2−6 in the case of iterative rounds, the number
of remaining candidates is unchanged after the iterative filters, i.e., on average, for each candidate
triplet (C,C ′, klow), only one candidate pair (S, S′)r can be associated per iterative round. We will
show how we can reduce the number of candidate triplets by first choosing a differential path with
specific non-iterative first rounds, that provide a more powerfull filter, and second by comparing
the informations obtained from the plaintexts/ciphertexts and from the filtering process.

The step for recovering the remaining key-bits is usually much cheaper.

In the following, we will explain in detail this attack in a generic way, including some technical
improvements that have allowed us to reduce the complexities of the attack, and provide a result
on the whole 12 rounds of KLEIN-64, the 64-bit key version, as well as much improved results on
the other versions. We will start by studying in detail the properties and equations derived from
MixNibble, showing how to correctly compute the probabilities of the path, the cost of inverting
each round and of guessing the necessary key-bits. We will also provide the generic attack procedure
with the corresponding complexities. Further, in Section 5, we present different possible trade-offs
of this attack and the concrete results on the KLEIN ciphers, with one detailed example on the full
64-bit version that will also help the comprehension of the attacks.

4.1 MixNibbles properties and detailed equations

Let us denote the binary decomposition of the byte a by (a0, a1, a2, a3, a4, a5, a6, a7), where a0 is
the MSB and a7 the LSB.

Proposition 3. The values of the lower nibbles outputting MixColumn depend on the values of
the lower nibbles at the input and on 3 quantities computed from the higher nibbles that we will
call 3 information bits. More precisely, to compute the lower nibbles resulting of the operation
MixColumn(a,b,c,d), the 3 information bits are:a0 + b0

b0 + c0
c0 + d0

In particular, a0 + b0 is needed for computing the lower nibble at the first position, b0 + c0 the
one in the second, c0 + d0 the one in the third and d0 + a0, which is the sum of the three of them,
is needed for computing the lower nibble in the fourth position.

When considering MixColumn−1(a,b,c,d), a similar property holds for the computation of the
output lower nibbles, which requires the following 3 information bits in addition to the input lower
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Fig. 2. Truncated differential path proposed in [4]

nibbles: 
a1 + a2 + b2 + c0 + c1 + c2 + d0 + d2

a1 + b0 + b1 + c1 + d0 + d1

a0 + a1 + a2 + b0 + b2 + c1 + c2 + d2

Similarly and consequently with Proposition 1, the values of the higher nibbles outputting MixColumn

depend on the values of the higher nibbles at the input and on 3 quantities computed from the lower
nibbles that we will call 3 information bits. More precisely, to compute the higher nibbles resulting
of the operation MixColumn(a,b,c,d), the 3 information bits are:a4 + b4

b4 + c4
c4 + d4



When considering MixColumn−1(a,b,c,d), a similar property holds for the computation of the
output higher nibbles, which requires the following 3 information bits in addition to the input higher
nibbles: 

a5 + a6 + b6 + c4 + c5 + c6 + d4 + d6

a5 + b4 + b5 + c5 + d4 + d5

a4 + a5 + a6 + b4 + b6 + c5 + c6 + d6

(1)

The proof can be found in Appendix A. This proposition implies that an attacker that knows
the values of the input lower (respectively higher) nibbles, has to guess 6 bits only to compute
MixNibbles (or MixNibbles−1) in its lower (respectively higher) nibbles. Since MixColumn is linear,
Proposition 3 applies both to values and to differences. This proposition will be used in our attacks
for two different things: computing the correct probabilities of each round, as well as showing how
to invert the rounds.

4.2 Probability of one iterative round and other initial rounds

As previously said, the probability of one iterative round was correctly pointed out in [22] as 2−6.
In [4] the given probability was 2−5.82. In fact, if no condition is imposed on the input of one
iterative round, the probability of verifying it is indeed 2−6. We have been able to implement and
verify this: we have found a probability extremely close to 2−6 per iterative round with no special
condition on the input. As 2−6 can be seen as a close lower bound, we will consider this probability
for the iterative rounds without conditions as it is the worst scenario for the attacker.

The difference in the probability computation can be introduced when, because of a specific
form of the differential path and the branch number of MixColumn from previous rounds, some
input nibbles are active or inactive for sure. This will change the probability due to the Sbox: as
already pointed out in [4], when a nibble is active with probability one, its probability of outputting
a pair of values with a difference having its MSB to 0 is 7/15, but the probability of having its
MSB to 1 is 8/15. We have correctly taken this into account and conducted new computations and
experiments. All the configurations that we will use in our analysis are represented in Figure 4, so
we use this figure as reference. We have obtained the following results for the rounds 1,2,3 and 4
represented in the figure:

– For round 1, as pointed out in [22], there exists only one possible difference with the 4 active
lower nibbles that outputs after MixColumn a difference with only one lower nibble active and
no difference in the higher nibbles: (0d0b0e09). The probability of this round is then 2−16, as
we want to obtain a fixed difference after SubNibbles.

– For round 2 we know for sure that we have only one active MixColumn, and in its input, we have
only one active nibble, that will be active with probability one. This means that the probability
of verifying this round is ( 7

15 ) = 2−1.1.
– For round 3 we have both MixColumn active, each with exactly two active nibbles in its input.

The probability for this round is ( 7
15 )4 = 2−4.4, as the MSB of all the 4 active nibbles need to

be 0.
– For round 4 the track of the influence of the branch number starts to be hard to follow. We have

then performed experiments, and we could verify that the probability of this step is extremely
close to 2−6. Though a bit higher, for the sake of simplicity and for considering the worst case
for the attacker, we consider it to be 2−6 (so the same case as iterative rounds).



4.3 Cost of inverting one round

By inverting one iterative round we consider the situation where a pair of values for the lower
nibbles of the output is given and we want to obtain the possible pairs of values for the lower nibble
inputs of that round. The lower nibbles of the corresponding round-key are supposed known.

To invert round r we are given a candidate (C,C ′, klow), and its associated candidate pair at
round r: (S, S′)r. At the end, we obtain (S, S′)r−1. As the lower nibbles of the key are known, we
will omit AddRoundKey from the explanation, as we only work on the lower nibbles of the state and
it can consequently be seen as transparent. The cost of inverting one round by using the naive way
of guessing the 6 additional information bits (3 for each MixColumn−1 as explained in Proposition 3)
all at once, and next discarding the ones that do not verify the conditions of the previous round is
of 26. We propose here a procedure for inverting one round with a cost of 24 instead of 26.

Improved cost of inverting one round. We first consider the case of inverting one iterative round.
We will later see what happens when the round is not iterative. First, we make the 3-bit guess from
the right part of Figure 3 to compute MixColumn−1, RotateNibbles−1 and SubNibbles−1 from
steps 1,2 and 3 on half of the known state of (S, S′)r. Then we have obtained the pair of values of
the two most-left and of the two most-right lower nibbles from (S, S′)r−1, and with them we can
compute the nibble differences a, b, c′, d′ at the output of MixColumn from step 4 in the figure. With
the notations from Section 4.1, for each of the 23 values of the information bits that we have tried,
we compute the following six bits in this exact order: (a5 + a6 + b6, a5 + b4 + b5, a4 + a5 + a6 +
b4 + b6, c

′
4 + c′5 + c′6 + d′4 + d′6, c

′
5 + d′4 + d′5, c

′
5 + c′6 + d′6). It is easy to verify that these quantities

correspond each to one half of the last three equations from Proposition 3, equations that need to
be verified in order to have the higher nibbles inactive in the input of MixColumn. The first three
quantities correspond to the part of the equations associated to the left MixColumn from Figure 3,
and the next three, to the right one.

4 MN

3 SN

2 RN

1 MN 23 23

a b c d a’ b’ c’ d’

(S, S′)r

(S, S′)r−1

Fig. 3. Detail of inverting one round.

We can store all of these 6-bit values in a list of size 23. Next, we perform a guess of the 3 bits
needed for inverting the other half of (S, S′)r, and we can compute the nibble differences a′, b′, c, d
from the figure. For each one of the 23 values that we try, we compute the following 6 bits, in this
order: (c4 + c5 + c6 +d4 +d6, c5 +d4 +d5, c5 + c6 +d6, a

′
5 +a′6 + b′6, a

′
5 + b′4 + b′5, a

′
4 +a′5 +a′6 + b′4 + b′6)

and check if there is a match in the precomputed list, as we know that, for any MixColumn−1 with
no higher nibbles active in the input nor the output, the three expressions from equation (1) must



be equal to 0. The associated values of the match will represent a value for a pair candidate at
round r− 1, where ∆(S, S′)r−1 = (a, b, c, d, a′, b′, c′, d′). A match occurs with probability of 2−6, as
we want to collide on 6 bits. As we have 23 × 23 pairs, on average we can expect only one value
to stay, so only one value on average for (S, S′)r−1 per candidate triplet as previously announced,
so inverting one iterative round does not increase the number of kept candidates. The cost of this
step, given by applying the instant matching algorithm from [17] is about 23 + 23 = 24.

If the round we want to invert is not iterative, there usually exist more difference conditions to
be verified on the input, as in addition to the previous six bit conditions, some more differences
might have been fixed, like for example non-active lower input Sboxes (in the non-iterative rounds
we have considered in our study, this is always the case). The cost of inverting is exactly the same
(24), but since there are more equations to verify, the probability that a candidate pass will be
smaller than 2−6: fewer candidates will be kept. The number of candidates kept is even smaller
when we invert the last round since we have to match both differences and values of the computed
half-states.

4.4 Guessing the necessary key-bits

To perform the attack, we consider the pairs of ciphertexts (C,C ′) that verify the last round
condition on 32 bits and we need to guess the values of the lower nibbles of the key (klow) that
verify as well the first round conditions. Then, we are able to compute the values and differences
before the first MixNibbles, place where we will stop inverting and where we will do the match
of values and differences recovered in the other direction. Proposition 2 shows us that a |k|/2 bit
guess (where |k| is the length of the key) of the lower nibbles of the key is sufficient to obtain all
the lower nibbles of all the round-keys.

We use a divide-and-conquer approach to guess the bits from klow and we are then able to build
the candidates (C,C ′, klow). This technique is similar to the one proposed for inverting one round.
Instead of guessing all the lower nibbles of one key at the same time, we can perform this guess in
an ingenious way that allows to reduce the computational cost.

We consider the first round of the path (as conditions before MixNibbles can be tested here
without needing to guess any extra bits). From the plaintexts (from which we obtained the cipher-
texts C,C ′) we first consider 4 lower nibbles that will be the inputs to the same MixColumn, and we
guess the sixteen bits from klow that are xored to this 4 nibbles in the first round. We next compute
the inputs of the corresponding MixColumn and we only keep the keys that fulfill the needed condi-
tions to verify round 1. These conditions will depend on the specific path considered. For example,
in Figure 4, the conditions of the right MixColumn from the first round are verified with probability
2−16, as only one difference can verify them (as explained previously), which means that among
the 216 keybits tried for this half, only one value will verify this part of the path. We repeat the
procedure with the other 4 input lower nibbles and the other 16 key-bits. We combine both partial
solutions and we obtain all the 232+p1 possible candidate triplets derived from (C,C ′), where 2p1

is the probability of verifying the first round of the path.

The cost in number of encryptions of recovering the candidate triplets for each pair of ciphertexts
considered is then 216 + 216 + 232+p1 × 2|klow|−32, as in the first round only 32 bits from the lower
nibbles intervene, and for realizing the whole attack we have to guess the remaining ones (for
KLEIN-64 the last factor is 1 as |klow| = 32).



4.5 Generic description of the attack procedure and complexity

First, we choose a truncated differential path over the desired number of rounds: several choices are
possible, varying with the considered differences in the first three rounds of the path and leading
to different time-memory-data trade-offs, as we will see in Section 5. Note that the size of the
truncated difference entering the first round determines the size of the structures that we can build
with the input plaintexts: if the size is ∆in bits, we can build about 22∆in−1 pairs with 2∆in inputs.
In the following 2p represents the probability of the whole path, R is the number of rounds of the
differential path and R+ 1 is the number of rounds that we will attack. We denote by 2p1 , 2p2 and
2p3 the probabilities of the first 3 rounds respectively, p1, p2, p3 ≤ 0. Since one iterative round has
a probability of 2−6 of being verified and because of the forms of the considered paths, we have
p = p1 + p2 + p3 − 6× (R− 3).

1. Obtaining enough data: With the use of structures, we generate a certain number of ciphertexts
such that we obtain enough pairs to be ensured to get one that verify our differential path: to

obtain the required 2−p pairs, we encrypt 2−p

22∆in−1 2∆in plaintexts so we perform 2−p

22∆in−1 2∆in

encryptions.

2. Last-round filter: At this point, we can discard some pairs that for sure do not verify the differ-
ential path. As detailed in [4, 22], by inverting the output difference through the last MixColumn
we can observe the value of the difference entering this transformation and then discard the
ones that do not have the higher nibbles inactive. In practice, we construct a sorted list of
all the higher nibbles values obtained by inverting MixColumn from the ciphertexts of a same
structure (without considering the key addition) and look for collisions. Such a collision occurs
with probability 2−32 so there are 2−p−32 remaining pairs of plaintexts.

3. Guess the involved key-bits: For each pair of plaintexts and their associated ciphertexts that
collide at the previous step, we make two 16-bit guesses as explained in Section 4.4 and obtain
possible values of the first 8 lower nibbles of the key. Since the conformity with round 1 is of
probability 2p1 it gives us 2−p−32+32+p1 candidates formed by a pair of plaintexts and the 8
first lower nibbles of the master key. If the version attacked is KLEIN-64, the 8 lower nibbles
correspond to the lower nibbles of the whole key but for KLEIN-80 and KLEIN-96, we have to
make additional guesses to obtain all the possible lower nibble values. For KLEIN-64, KLEIN-
80 and KLEIN-96 we obtain respectively 2−p−32+32+p1 , 2−p−32+32+p1+8 and 2−p−32+32+p1+16

possible candidates (C,C ′, klow). This step requires 2× 1
12 × 216 encryptions, and allows us to

compute the associated pair of half-states (associated to each candidate) at the input of the
first MixNibbles that already satisfies the conditions from round 1. We will denote this pair of
half-states by (S, S′)∗1.

4. Inverting the rounds: At this point we start inverting the rounds from the candidates that
we have obtained, generating possible pairs (S, S′)r for r from R to 1. That step requires 24

round encryptions per inversion and per triplet, as detailed in Section 4.3. During the iterative
rounds, the number of possible triplets stays the same, contrary to what happens during the
non-iterative rounds where the number of candidates is reduced (see Section 4.3). The attack
is performed one triplet at a time. Once we have computed (S, S′)1, we have to guess the 6 bits
needed to invert the first MixNibbles, and next we have to match values and active differences
with the already computed values (S, S′)∗1.



In the differential paths that we will consider, like the one represented in Figure 4, if we denote
by 2q the filtering probability obtained when inverting rounds 2,3 and 4 (in some cases round 4
or even 3 adds just a filter of 2−6, but to be general we include it in the special case), the total
number of remaining candidates in the end is 2−p−32+32+p1+6×4+q, 2−p−32+32+p1+8+6×4+q and
2−p−32+32+p1+16+6×4+q respectively for KLEIN-64, KLEIN-80 and KLEIN-96. If the number of
remaining candidates is smaller than 2|klow|, as there is one possible value for klow per candidate,
the cost of recovering the key is smaller than the one of exhaustive search. In practice, after
inverting all the rounds, the number of remaining candidates is currently very small.
The cost of this step is given by the initial candidate triplets 2−p−32+32+p1 multiplied by 24

(cost of inverting), multiplied by the number of inverted rounds and by the relative cost to one
encryption of each inverted round. In the next section we will see an illustrative and detailed
example of this computation.

5. Recovering the whole key: Finally, we have to recover the higher nibbles of the key, which can be
done by an exhaustive search or better (as it is explained in Section 4.6), and we have recovered
the whole key.

4.6 Higher Nibbles recovery

To recover the complete key, we can perform a more efficient attack than the exhaustive search for
the remaining key-bits, by deducing information from the 6-bit guesses associated to the candidates
that remain after the sieving process. One more time, each candidate that passes the sieving process
will be studied separately; we make the hypothesis that the candidate is valid so the 6-bit guesses
give us the values that must take certain combinations of intermediate states.

For instance, at the first round, we know the value that must be taken by the sum of the MSB of
the higher nibbles of the state entering the two first MixColumn. For each possible value of the higher
nibbles of the key, we will compute that state from the plaintext and check this 6-bit condition. The
keys that pass the test will undergo the second sieve resulting from the second round information
bits and so on.

To limit the number of encryptions required to complete this step, we can one more time use the
independences between the 2 half-states during the MixNibbles operation. We first make a guess
on the 16 higher nibbles of the master key that are added to the 32 middle bits of the state at
the first round and that impact the value of the 32 bits at the output of the left MixColumn. We
then check the 3 corresponding information bits and realise the same operations for the 16 key bits
required to compute the right MixColumn. Since 216 half-state encryptions are required for each
half, the first round filter requires 216 × 1

2 × 2 round encryptions.
Next, as previously said, each round gives a 6-bit filter for the higher nibbles of the key. For

example, for KLEIN-64 the total complexity of the higher nibbles recovery is of (216 + 226 + 220 +
214 + 28 + 22) × 1

12 = 222.4 complete encryptions. This procedure needs to be repeated for each
candidate recovered during the klow search.

5 Different Time-Memory-Data Trade-Offs

Various differential truncated paths are possible, each one leading to different time-memory-data
trade-offs. We have studied many different possibilities and we present here the 4 cases that have
provided better results. The only difference between them is the shape of the wanted differences



in the first three rounds of the path. We will explain one of them applied to the full 12 rounds
of KLEIN-64 in a detailed way as an illustration of the attacks, and next present the other cases
considered, also with results given on the 64-bit key version. In the next section we will provide the
results obtained with some considered cases in all the versions of the cipher, for several number of
rounds up to the highest number that could be reached (which is 12, 13 and 14 for the 64-, 80-,
and 96-bit versions respectively).

We recall here that the probability values that we will use are well detailed and explained in
Section 4.2.

5.1 Case I

In this case, we consider a truncated differential path that corresponds to the one in [22]. This path
is depicted in Figure 4, including the details of our attack. This is the application that will provide
us the best time complexity attack on the full 12 rounds of KLEIN-64.

1. Obtaining enough data: Using Figure 4 it is easy to verify that the differential path has a prob-
ability of p = 2−16−1.1−4.4−6×8 = 2−69.5 and that ∆in = 16. Here, the probabilities correspond
to the ones discussed in Section 4.2. We need to generate pairs such that we can expect with a
good probability that one among them will verify the whole path. Since one structure allows us

to build 216 plaintexts, which lead to 216×(216−1)
2 ≈ 231 pairs, we have to build 269.5−31 = 238.5

structures to have among all the pairs one verifying the whole path. This step then requires
238.5 × 216 = 254.5 full encryptions, which correspond to the data complexity of the attack. As
it is smaller than 264, the whole codebook, we can obtain such an amount of plaintexts. Since
the true conforming pair is necessarily composed of 2 plaintexts from the same structure, one
structure can be treated after the other so the required memory is of 216 plaintexts.

2. Last-round filter: we compare the values obtained when inverting the last MixNibbles on each
ciphertext and keep the pairs that have a difference with inactive higher nibbles at this point.
There remain 269.5−32 = 237.5 candidate pairs of plaintext. The cost of this step is negligible.

3. Guess the involved key-bits: At this point, we perform the optimized guess of the lower nibbles
of the key, klow, as seen in Section 4.4, so we obtain 232−16×237.5 = 253.5 candidates (C,C ′, klow)
with (216× 1

2× 1
12 )×2 encryptions. So far, we have 216 possible keys klow for each candidate pair

(C,C ′). For each candidate set, we know the values and differences at the input of MixNibbles
of the first round, (S, S′)∗1, and these values already verify the conditions imposed through the
first MixNibbles.

4. Inverting the rounds: Each time that we obtain one of the 253.5 candidates, we start inverting
rounds and generating the candidate pairs from (S, S′)11 to (S, S′)4 (so we invert 8 rounds).
We can see in Figure 4 that for all of these rounds, the amount of bits guessed compensates the
probability of verifying the path, and we expect to obtain one pair candidate per round and per
candidate set. As we can see in the figure, the remaining probabilities for inverting rounds 4, 3,
2 and the MixNibbles transform from round 1 (so to arrive to the previously computed values
(S, S′)∗1) is 2q = 2−20−13−36 = 2−69. Indeed, the filter probability at the end of round 3 is of
2−(4×4)−4 = 2−20, since we need to have 4 lower nibbles inactive and two MSB of the 4 active
lower nibbles to 0 and the input of MixNibbles as depicted in Figure 4. The probability of the
filter at the end of round two is of 2−13 = 2−(3×4)−1 because of the three inactive lower nibbles
at the input of the active MixColumn and the MSB of the active one, and the filter probability
at the end of the first round is of 2−36 = 2−32−4 as we have to collide with the previously
forward computed 32 bits of values and 4 bits of differences.
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Fig. 4. Attack on 12 rounds of KLEIN-64 using case I



If we apply the formula from Section 4.5, we can compute the number of remaining candidate
triplets as 269.5−32+32−16+6×4−69 = 28.5, meaning also that we recover only 28.5 possibilities for
the 32 bits in klow. The term 26×4 comes from the fact that we have to guess the 6 bits for
inverting 4 rounds, namely rounds 4, 3, 2 and also 1, as we want to match the values in (S, S′)∗1.
The cost of this step is 269.5−32+32−16 × 2 × 1

2 × 8
12 × (23 + 23) ' 256.9 encryptions for the

inversion of the first 8 rounds. And for inverting the remaining 4 rounds, we have a complexity
of 253.5 × 1

12 × (23 + 23) + 253.5+6−20 × 1
12 × (23 + 23) + 239.5+6−13 × 1

12 × (23 + 23) + 232.5+6 ×
1
12 × (23 + 23) ' 253.9.
This part of the attack will be the bottleneck of the total time complexity: 256.9 +253.9 = 257.07.

5. Recovering the whole key: Finally, we recover the higher nibbles with the process explained in
Section 4.6. The cost of this step is 28.5 × 222.4, so the bottleneck in terms of time complexity
for recovering the whole key is the one of the previous step.

This version requires a total of 257.07 encryptions, 254.5 data and 216 memory.

5.2 Case II

We use a truncated differential path associated to the path given in [4] (the value of the input
difference is not fixed). As there is only one active nibble at the beginning of the path, the structures
will be the smallest ones that we will use (size of ∆in = 4), and the memory will be very small,
while the data complexity will be bigger than in other cases.

For the case of 12 rounds of KLEIN-64, we have a probability for the path of 2−1.1−4.4−6×9 =
2−59.5. The amount of data needed is 259.5−7+4 = 256.5, and the memory needed is 24. The bottleneck
in the time complexity is given by 259.5−32+32−1.1 × 2× 1

2 × 9
12 × (23 + 23) ' 261.98. The number of

remaining candidates is 258.39+6−16−4+6−12−1+6−4−32 = 27.39. The time for recovering the remaining
bits of the key is 27.39 × 222.4 = 229.79.

5.3 Case III

This attack uses a path with an iterative round at every round, and ∆in is consequently 32. This
attack has low data complexity, but the highest memory, and not very good time complexity in the
case of an attack on 12-round KLEIN-64.

For the scenario on 12 rounds of KLEIN-64, the time complexity is very close to the one of
the exhaustive search. We have a probability for the path of 2−6×11 = 2−66. The amount of data
needed is 23+32 = 235, and the memory needed is 232. The cost of the time bottleneck is given by
266−32+32−6×2× 1

2 × 11
12 × (23 +23) = 263.87. The number of remaining candidates is 260+6−64 = 22.

The time for recovering the remaining bits of the key is 22 × 222.4 = 224.4.

5.4 Case IV

In this case, we use a truncated path that starts with a difference of the form (0X0X000000000X0X),
when represented as 16 nibbles. this one has the same time complexity than the second one, better
data and worse memory.

For the case of 12 rounds of KLEIN-64, we have a probability for the path of 2−3−4−6×9 = 2−61.
The amount of data needed is 216+30 = 246, and the memory needed is 216. The bottleneck in



the time complexity is given by 261−32+32−3 × 2 × 1
2 × 9

12 × (23 + 23) = 261.57. The number of
remaining candidates is 261−3+6×3−20−48 = 28. The time for recovering the remaining bits of the
key is 28 × 222.4 = 230.4.

5.5 Results on KLEIN-64

The complexity of the 4 different trade-offs presented here are summarized in Table 3 and depicted
on Figure 5. Table 4 provides the results obtained on KLEIN-64 using case I for different numbers
of rounds.
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Fig. 5. Beginnings of the truncated differential paths of our 4 trade-offs

Case p1 p2 p3 Data Time Memory

I -16 -1.1 -4.4 254.5 257 216

II -1.1 -4.4 -6 256.5 262 24

III -6 -6 -6 235 263.9 232

IV -3 -4 -6 246 261.6 216

Table 3. Summary of the probabilities and complexities of our 4 trade-offs



Rounds Data Time Memory

8 230.5 231.7 216

9 236.5 238 216

10 242.5 244.4 216

11 248.5 250.6 216

12 254.5 257.07 216

Table 4. Best time complexities for recovering the whole key for several round-reduced variants of KLEIN-
64

5.6 Results on KLEIN-80 and KLEIN-96

For KLEIN-80 and 96 we provide in Table 5 the obtained results for several numbers of rounds
using different cases. Case I does not reach a lot of rounds, as the data complexity exceeds 264,
which is the maximal amount of data available, after 13 rounds.

Version Case Rounds Data Time Memory

80 I 12 254.5 265 216

80 I 13 260.5 271.1 216

80 II 13 262.5 276 24

80 III 13 241 278 232

80 IV 13 252 276 216

96 III 14 247 292 232

96 IV 14 258.4 289.2 216

Table 5. Best complexities for recovering the whole key for several round-reduced variants of KLEIN-80
and -96

6 Implementation and verification

We have experimentally verified the efficiency of the proposed attacks by implementing some
variants in C language. We wrote our own implementation of KLEIN-64 with look-up tables for
MixColumn and its inverse and we verified it with the test vectors given in KLEIN specifications [11].

We then implemented the attack exactly as described in Section 5: the complete key is recovered
in 2 steps with first the search for the lower nibbles with a truncated differential and then the search
for the higher nibbles with an improved exhaustive search.

In particular, we have been able to implement the first successful practical attack on KLEIN-64
up to 10 rounds. For this, we have considered case I, the one having the smallest time complexity
and average data and memory needs. We used several speed-optimization flags and a computer with
an Intel(R) Xeon(R) CPU W3670 at 3.20GHz (12MB cache), and with 8GB of RAM. Our program
shows that the proposed attack works and recovers the correct key.

Below we report some outputs of our program for the attack on 9 and 10 rounds. The field
structure refers to the randomly chosen values at the beginning, i.e. the 12 nibbles common to



all the plaintexts so that the differences between 2 plaintexts are only in the first and last 2 lower
nibbles. Plaintext 1 and Plaintext 2 form the conforming pair found that enabled us to determine
the lower nibbles of the key. Once the lower nibbles are found, the higher ones are recovered in a
few seconds.

The following result concerns 10 rounds:

NB rounds: 10

MasterKeyToFind: 66 a2 fa 17 23 19 39 bd

structure: c0 70 03 39 de 72 30 e0

Plaintext 1: c3 79 03 39 de 72 34 e4

Plaintext 2: c2 77 03 39 de 72 30 e1

lower nibbles found: 06 02 0a 07 03 09 09 0d

Complete Key: 66 a2 fa 17 23 19 39 bd

number of pltxt: 624712959124 ie: 2^39.184403

number of false alarms: 4764629 ie: 2^22.183932

number of structures: 9532364

time elapsed: 1254407.310000 sec

We checked manually that the 2 returned plaintexts conform the differential path and compared
our theoretical results with the practical ones. First, we notice that this result required by chance
little less data than theoretically predicted (242.5) and second we notice that the ratio of false
alarms meets the theory: since we encrypted 239.184 plaintexts, we were able to create 254.184 pairs
so we expected a total of 254.184−32 = 222.184 pairs to pass the first test which is really close to the
observed number of false alarms. This experiment takes near to 15 days.

The experiments on 9-round versions took us an average of 2 days to recover the complete
key. One is reported below. Since that experiments were quicker, we were able to do several ones to
compute average values. As for the previous result, some experiments needed less data than expected
theoretically (by chance) but in average on 4 tests 236,483 plaintexts were encrypted (which is really
close to the 236.5 expected), 219,483 false alarms appeared and 47 hours were required.

NB rounds: 9

MasterKeyToFind: b4 83 d4 f2 2a 61 20 b8

structure: 30 70 da 10 8c 53 f0 00

Plaintext 1: 3e 7e da 10 8c 53 f4 0d

Plaintext 2: 3c 73 da 10 8c 53 f8 09

lower nibbles found: 04 03 04 02 0a 01 00 08

Complete Key: b4 83 d4 f2 2a 61 20 b8

number of pltxt: 70445946095 ie: 2^36.035798

number of false alarms: 536892 ie: 2^19.034272

number of structures: 1074920

time elapsed: 123340.140000 sec

Some more results are given in appendix B.

7 Conclusion

In this paper we propose the first attack on the full version of KLEIN-64. It improves the previous
results from 8 to 12 rounds. For the 80-bit and 96-bit key versions we have provided several attacks



on 13 and 14 rounds respectively. We have implemented round-reduced versions of our attacks, and
have been able to verify the theoretical complexities that we have predicted and to validate our
assumptions. In particular, we have successfully implemented an attack on 10 rounds of KLEIN-64.
This is the practical attack realized on the highest number of rounds, as previous results could not
reach more than 8 rounds.

The main weakness of the cipher might be the fact that the MixColumn transformation does not
correctly mix higher and lower nibbles, as it is the only transform that does so. Maybe considering
other matrices instead could lead to a more solid construction. Also, the fact that the KeySchedule
does not mix higher and lower nibbles helps the cryptanalyst to perform a reduced partial key
search, so a stronger KeySchedule could help to prevent the attacks.

We believe that the family of attacks presented, though clearly dedicated to the cryptanalysis
of KLEIN, might apply to other ciphers with big independences between two parts of the state.
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4. Jean-Philippe Aumasson, Maŕıa Naya-Plasencia, and Markku-Juhani O. Saarinen. Practical attack on
8 rounds of the lightweight block cipher KLEIN. In INDOCRYPT, volume 7107 of Lecture Notes in
Computer Science, pages 134–145. Springer, 2011.
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A Proof of Proposition 3

Proof. This proposition follows from the development of MixColumn multiplication:
e
f
g
h

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

 ×

a
b
c
d


If we focus on the lower nibble of e we obtain:

e4 = a0 + a5 + b0 + b4 + b5 + c4 + d4
e5 = a6 + b5 + b6 + c5 + d5
e6 = a0 + a7 + b0 + b6 + b7 + c6 + d6
e7 = a0 + b0 + b7 + c7 + d7

Since the values of the lower nibbles of a, b, c and d are known, the only unknown quantity
here is a0 + b0. The same reasoning leads to the fact that b0 + c0 is necessary to compute the lower
nibbles of f , c0 + d0 for g and d0 + a0 for h. Since this last one is the sum of the first 3, we only
need 3 bits of information to compute the lower nibbles values of a 4-byte word after MixColumn,
given the lower nibbles values in input.

The result for MixColumn−1(a, b, c, d) is obtained in the same way. ut



B Additional successful implemented attacks

NB rounds: 9
MasterKeyToFind: de 10 f3 21 a9 72 98 88

structure: 70 50 2e 6a b3 84 70 b0
Plaintext 1: 7a 56 2e 6a b3 84 70 bc
Plaintext 2: 7b 5a 2e 6a b3 84 7c ba
lower nibbles found: 0e 00 03 01 09 02 08 08
Complete Key: de 10 f3 21 a9 72 98 88
number of pltxt: 134223216747 ie: 2^36.965843
number of false alarms: 1024726 ie: 2^19.966807
number of structures: 2048084
time elapsed: 238265.570000 sec

NB rounds: 8
MasterKeyToFind: ab 41 d7 c8 11 3b af 45

structure: 80 00 92 3f 5d 5e 60 00
Plaintext 1: 82 0f 92 3f 5d 5e 68 0e
Plaintext 2: 85 00 92 3f 5d 5e 61 0b
lower nibbles found: 0b 01 07 08 01 0b 0f 05
Complete Key: ab 41 d7 c8 11 3b af 45
number of pltxt: 852420851 ie: 2^29.666991
number of false alarms: 6749 ie: 2^12.720458
number of structures: 13007
time elapsed: 1235.460000 sec


