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Abstract: In this paper, we investigate matrices acting on finite 
commutative groups and rings. In fact, we study modules on ring of 
matrices over 푍  and also modules over the ring (퐹 ,⨁,∧); these new 
algebraic constructions are a generalization of some of the 
constructions which were previously presented by the authors of this 
paper. We present new linearized and nonlinear MDS diffusion layers, 
based on this mathematical investigation. Also, we study some types of 
nonlinear number generators over 푍  and we present a lower bound on 
the period of these new nonlinear number generators. As a 
consequence, we present nonlinear recurrent sequences over 푍  with 
periods which are multiples of the period of the corresponding     
sigma-LFSR’s. 
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1. Introduction 

    In this paper, we examine matrices acting on finite commutative groups and rings. We 
study modules on ring of matrices over 푍  and modules over the ring (퐹 ,⨁,∧). We show 
that these new algebraic constructions are a generalization of some of the constructions that 
are given in [1]. Based upon this mathematical investigation, we present new linearized and 
nonlinear MDS diffusion layers. MDS diffusion layers are used in symmetric ciphers [2-7] 
and they are studied in [1,8-14]. In [1], we presented new families of linear, linearized and 
nonlinear diffusion layers. We showed that these diffusion layers can be made randomized 
with a low implementation cost; moreover, we constructed nonlinear MDS maps of large 
sizes which are efficiently implemented in modern processors. In this paper, we generalize 
some of the concepts that have been presented in symmetric cryptographic literature, up to 
now. 

    Then, we study nonlinear number generators over the ring 푍  and we present a lower 
bound on the period of these nonlinear generators. As a result, we present nonlinear 
recurrent sequences over 푍  with periods which are multiples of the period of the 
corresponding sigma-LFSR’s. 

    In Section 2, we present preliminary notations and definitions. Section 3 is devoted to 
construction of new MDS diffusion layers; in Section 4 we investigate nonlinear number 
generators and Section 5 is the conclusion. 

 

2. Preliminary Notations and Definitions 

    In this paper, the number of elements or cardinality of a finite set A is denoted by |퐴| and 
the Cartesian product of n copies of 퐴 is denoted by 퐴 . We use the symbol ≡ for the natural 
isomorphism between algebraic structures and also for the equivalence of vectors. We 
denote the finite field with two elements by	퐹 . Any zero vector or matrix is denoted by ퟎ, 
the all-one vector by 1 and every identity matrix by 퐼. We denote the ring of integers modulo 
푁 by 푍 . 

    Let 푆 be a finite set with a distinguished element 0, and 푘, 푚 and 푛 be natural numbers 
such that 푛 = 푘푚. Suppose that 푥 ∈ 푆 ; the weight of x with respect to m-tuples is the 
number of nonzero m-tuples of x. More precisely, if 

푥 = (푥 , … , 푥 ,푥 )  

≡ (푥 , , … ,푥 , ;푥 , , … , 푥 , ; … ; 푥 , , … ,푥 , ) , 



then we have, 

푤 (푥) = |{1 ≤ 푖 ≤ 푘|푥 ≠ ퟎ}|. 

    Let 푆 be a finite set and suppose that 푓: 푆 → 푆  is a map. The map 푓 is called MDS iff 
for any two different vectors 푋,푌 ∈ 푆 , the vectors 푋,푓(푋) 	and 푌, 푓(푌)  in 푆  are 
different in at least 푘 + 1 coordinates. It’s not hard to see that we can construct 
a	(2푘, |푆| ,푘 + 1)-code over 푆 with the help of  푓, which obviously is MDS. 

    We denote the set (ring) of all 푛 × 푛  matrices with entries in a finite commutative ring 
with identity 푅 by ℳ (푅) and the set of all 푛 × 푛 binary matrices by ℬ . Suppose that n, 푘 
and 푚 are natural numbers, R is a finite commutative ring with identity, 푛 = 푘푚 and 
퐴 ∈ ℳ (푅). We can represent A (as a block-wise matrix) by 

퐴 = [퐴 , ] × 	, 		퐴 , ∈ ℳ (푅),				1 ≤ 푖, 푗 ≤ 푘.																																						(1) 

    Let 푓:퐹 → 퐹  be a function with 푛 = 푘푚. The differential branch number of  f  with 
respect to m-bit words is defined as 

min
, ∈픽

{푤 (푥⨁푦) + 푤 (푓(푥)⨁푓(푦))}, 

and the linear branch number of  f  with respect to m-bit words is defined as 

min
, ∈픽

( . ⊕ . ( ) )
( , ) ( , )

{푤 (훼) + 푤 (훽)}. 

    Here, ⊕ is the XOR operation and . is the dot product in 퐹 . The probability         

푃(훼. 푥 ⊕ 훽. 푓(푥) = 0) ≠   is equivalent to 

|{	푥 ∈ 픽 |훼.푥 ⊕ 훽. 푓(푥) = 0}| ≠ 2 . 

    A function  푓:퐹 → 퐹   is called linearized iff, for all 푥,푦휖퐹 , we have, 

푓(푥⨁푦) = 푓(푥)⨁푓(푦). 

    It’s not hard to see that for  a  linearized function  f, the differential branch number of  f  
with respect to m-bit words is equal to 



min
∈픽

{푤 (푥) + 푤 푀 푥 }, 

and the linear branch number of  f  with respect to m-bit words is equal to 

min ∈픽 {푤 (푥) + 푤 푀 푥 }; 

where, 푀  is the (bit-wise) matrix corresponding to f.  

    Let 푓:퐹 → 퐹 ,		with 푛 = 푘푚. The function  f  (or the corresponding matrix of  f, if it is 
linearized) is called MDS with respect to m-bit words iff the differential and the linear 
branch numbers of  f  are equal to k+1. It can be easily seen that MDS functions in this 
sense are special cases of MDS functions with respect to the aforementioned general 
definition on a finite set 푆. 

       For a commutative ring R with identity, the determinant of A in R is denoted by 푑 (퐴) 
and the (multiplicative) order of an element 푟 ∈ 푅 is denoted by 표(푟), if it exists. We 
denote the XOR operation by  ⨁, the AND operation by ∧, the right cyclic shift or rotation 
operation by >>> and the right shift operation by ≫. The gcd of two natural numbers 푎 
and 푏 is denoted by (푎, 푏). 

    Let 퐺 be a finite (additive) commutative group of order N. We know that 퐺  is a finite 
commutative group of order 푁  such that the order of every element in 퐺  divides 푁. We 
can construct a (left)  ℳ (푍 )-module with the scalar product (acting on 퐺 ) as 

퐴.푋 = (푔 , … ,푔 ) , 

where, 

						퐴 = 푎 , ∈ ℳ (푍 ),				푋 = (푔 , … ,푔 ) ∈ 퐺 , 

and, 

푔 = 푎 , 푔 + ⋯+ 푎 , 푔 ,									1 ≤ 푖 ≤ 푛. 

 

3. Construction of New MDS Diffusion Layers 

    In this section, we present new MDS maps over finite commutative groups and rings. In 
the proof of the following lemma, we use some concepts from [15, Chap. 13-14]. 



Lemma 3.1: Suppose that   퐺 is a finite (additive) commutative group of order 푁 (with 

identity 0) and   퐴 ∈ ℳ (푍 ) with 푑 (퐴),푁 = 1. Then,  the map 

푓:퐺 → 퐺 , 

푓(푋) = 퐴.푋, 

is a bijection. 

Proof: Suppose that the statement does not hold. Then, there are two distinct vectors 푋  

and  푋  with  퐴.푋 = 퐴.푋 ; or equivalently, there is a nonzero vector  

푋 = 푋 − 푋 = (푔 , … ,푔 )  

with 퐴.푋 = ퟎ. We know that there exists a matrix 퐴  with 퐴퐴 = 퐴 퐴 = 퐼. Multiplying the 

two sides of 퐴.푋 = ퟎ by 퐴 , we have 퐼.푋 = 0; which means that 푔 = 0, 1 ≤ 푖 ≤ 푛. This is 

a contradiction.                                                                                                  ∎ 

Theorem 3.2: Suppose that 푛 = 푚푘, 퐺 is a finite (additive) commutative group of order 푁 

and 퐴 ∈ ℳ (푍 ) is a block-wise matrix with regard to representation (1). Suppose that 

each block-wise square submatrix of 퐴 is nonsingular as a matrix over 푍 . Then, 퐴, acting 

on 퐺 , defines an MDS map. 

Proof: Similar to the proof of [1, The. 3.1] and regarding Lemma 3.1, the theorem is 

proved.                                                                   ∎ 

Corollary 3.3: Suppose that 푡 is given, 푛 = 푚푘 and 푀 = [픪 , ] ∈ ℬ  is an MDS matrix 
with respect to 푚-bit words; then the following map is a linearized MDS map with respect 
to 푚푡-bit words: 

푓:퐹 ≡ (퐹 ) → 퐹 ≡ (퐹 ) , 

푓(푋 , … ,푋 ) = (푌 , … ,푌 ), 

with 푋 = (푋 , , … ,푋 , ) and  푌 = (푌 , , … ,푌 , ), 1 ≤ 푖 ≤ 푘, and, 



푌 , =
픪( ) 	, = 1
	1 ≤ 푠 ≤ 푛

푋
	, (( )		 			 )

,									1 ≤ 푖 ≤ 푘, 1 ≤ 푗 ≤ 푚. 

 

We note that  푋 , ,푌 , ∈ 퐹 , for 	1 ≤ 푖 ≤ 푘, 1 ≤ 푗 ≤ 푚. 

Proof: In Theorem 3.2, put	퐺 ≡ (퐹 ,⨁).                           ∎ 

   We note that Theorem 5.2 of [1] is somehow a special case of Theorem 3.2 with          

퐺 ≡ (푍 , +). 

Corollary 3.4: Suppose that  푛 = 푚푘 with 푚 > 1 and  푀 = [픪 , ] ∈ ℬ  be an MDS matrix 
with respect to 푚-bit words; then the following map is a nonlinear MDS map with respect 
to 푚푡-bit words: 

푓:퐹 ≡ (퐹 ) → 퐹 ≡ (퐹 ) , 

푓(푋 , … ,푋 ) = (푌 , … ,푌 ), 

with 푋 = (푋 , , … ,푋 , ) and  푌 = (푌 , , … ,푌 , ),  1 ≤ 푖 ≤ 푘, and, 

푌 , =

⎝

⎛ 2푋 푠−1
푚 +1	,1+((푠−1)		푚표푑			푚)

+ 1 		푚표푑			2
픪( ) 	,

	 ⎠

⎞ ≫ 1, 

		1 ≤ 푖 ≤ 푘,			1 ≤ 푗 ≤ 푚. 

Proof: We know that the odd elements of 푍  construct a (multiplicative) commutative 
group of order 2 . According to Theorem 3.1, the map 푓 (without the right shift) is MDS 
with respect to 푚(푡 + 1)-bit words. On the other hand, we know that the least significant 
bits of all the inputs and outputs of 푓 (without the right shift) are one. So, after deleting 
these one bits, the resulting map would be an MDS map with respect to 푚푡-bit words.      ∎ 

Example: It’s not hard to see that the following matrix is MDS with respect to 2-bit words; 

equivalently, its linear and differential branch numbers are 3, with respect to 2-bit words: 



1 0
0 1

1 1
0 1

1 0
1 1

1 0
0 1

.																																																								(2) 

 Consider the function 

푓:퐹 ≡ (퐹 ) → 퐹 ≡ (퐹 ) , 

푓(푋 ,푋 ) = (푌 ,푌 ), 

where, 

푌 = (푌 ,푌 ),     푌 = (푌 ,푌 ),    푋 = (푋 ,푋 ),     푋 = (푋 ,푋 ), 

with 

푌 = (2푋 + 1)(2푋 + 1)(2푋 + 1)			푚표푑			2 ≫ 1, 

푌 = (2푋 + 1)(2푋 + 1)			푚표푑			2 ≫ 1, 

푌 = (2푋 + 1)(2푋 + 1)			푚표푑			2 ≫ 1, 

푌 = (2푋 + 1)(2푋 + 1)(2푋 + 1)			푚표푑			2 ≫ 1. 

 According to Theorem 3.1, 푓 is MDS with respect to 8-bit words. 

Theorem 3.5: Suppose that   푛 = 푚푘,   푀 = 픪 , ∈ ℬ , 1 ≤ 푖 ≤ 푡, are 푡 MDS matrices 
with respect to 푚-bit words and  퐴 = 푎 ,  ∈ ℳ (퐹 ) ≡ ℬ  with 

푎 , = (픪 , 	, … 	 ,픪 , ),    1 ≤ 푟, 푠 ≤ 푛. 

Then, 퐴 is an MDS matrix with respect to 푚푡-bit words. 

Proof: According to [1, The. 3.1], let 푅 be the ring (퐹 ,⨁,∧). Since the operations of XOR 

and AND are parallel bitwise operations, so the MDSness of 퐴, or equivalently, 

nonsingularity of each block-wise square submatrix of 퐴, which is equivalent to the fact 

that the determinant of every block-wise square submatrix of 퐴 is equal to 1, is a direct 



result of the MDSness of  푀 ’s, 1 ≤ 푖 ≤ 푡: we note that in (퐹 ,⨁,∧), the only invertible 

element is 1.                         ∎ 

Example: It can be verified that the linear and differential branch numbers of the following 

matrices are 3, with respect to 2-bit words: 

1 0
0 1

1 1
0 1

1 0
1 1

1 0
0 1

 ,                

1 0
0 1

1 0
0 1

1 0
0 1

1 0
1 1

. 

    So, the following matrix is MDS over the ring (퐹 ,⨁,∧); or, this matrix is MDS with 

respect to 4-bit words: 

11 00
00 11

11 10
00 11

11 00
10 11

11 00
01 11

≡
3 0
0 3

3 2
0 3

3 0
2 3

3 0
1 3

.                                   (3) 

    The defining equations for the function 푓, corresponding to the matrix (3), is 

푓:퐹 ≡ (퐹 ) → 퐹 ≡ (퐹 ) , 

푓(푋 ,푋 ) = (푌 ,푌 ), 

where, 

푌 = (푌 ,푌 ),     푌 = (푌 ,푌 ),    푋 = (푋 ,푋 ),     푋 = (푋 ,푋 ), 

with 

푌 = (3 ∧ 푋 )⨁(3 ∧ 푋 )⨁(2 ∧ 푋 ) = 푋 ⨁푋 ⨁(2 ∧ 푋 ), 

푌 = (3 ∧ 푋 )⨁(3 ∧ 푋 ) = 푋 ⨁푋 ,	 

푌 = (3 ∧ 푋 )⨁(3 ∧ 푋 ) = 푋 ⨁푋 ,		 

푌 = (2 ∧ 푋 )⨁(3 ∧ 푋 )⨁(1 ∧ 푋 )⨁(3 ∧ 푋 ) = (2 ∧ 푋 )⨁푋 ⨁(1 ∧ 푋 )⨁푋 .	 

Corollary 3.6: Suppose that 푛 = 푚푘,  푀 = [픪 , ] ∈ ℬ  is an MDS matrix with respect to 

푚-bit words and  퐴 = 푎 ,  ∈ ℳ (퐹 ) ≡ ℬ  with 



푎 , = (픪 , 	, … 	 ,픪 , ),    1 ≤ 푟, 푠 ≤ 푛. 

Then 퐴 is an MDS matrix with respect to 푚푡-bit words.         

    We note that Corollary 3.6 is somehow equivalent to Corollary 3.3. 

Lemma 3.7: Let 푟 be an odd number, 	퐴 ’s,  1 ≤ 푖 ≤ 푟, be 푟 pairwise commutable matrices 
in ℬ  such that the order of all 퐴 ’s, 1 ≤ 푖 ≤ 푟, are nonnegative powers of two. Then,                
퐴 = 퐴 ⨁…⨁퐴  is invertible in ℬ . 

Proof: Since the order of all 퐴 ’s, 1 ≤ 푖 ≤ 푟, are nonnegative powers of two, we suppose 
that the maximum of these orders is 2 . Now, from the pairwise commutability of 퐴 ’s, we 
have, 

(퐴 ⨁…⨁퐴 ) = (퐴 ) ⨁…⨁(퐴 ) = 퐼⨁…⨁퐼 = 퐼. 

And this ends the proof.                         ∎ 

Theorem 3.8: Suppose that  푛 = 푚푘,  푀 = [픪 , ] ∈ ℬ  is an MDS matrix with respect to 
푚-bit words, the number of nonzero entries of 푀 is 푟 and  퐴 ∈ ℬ ,  1 ≤ 푖 ≤ 푟. If the order 
of all 퐴 ’s, 1 ≤ 푖 ≤ 푟, are nonnegative powers of two and 퐴 ’s, 1 ≤ 푖 ≤ 푟, are pairwise 
commutable, then the matrix  ℳ = [퓂 , ] ∈ ℬ   with 

퓂 , =
퐴 ( , ) 							픪 , = 1,

ퟎ															픪 , = 0,
 

is MDS with respect to 푚푡-bit words. Here, 푓 is an arbitrary map from the set of indices 
(푖, 푗) with 픪 , = 1 to {1, … , 푟}. 

Proof: Since each block-wise submatrix of 푀 is nonsingular, so the determinant of every 
block-wise submatrix of ℳ is equal to XOR of an odd number of matrices, each of which 
is a product of matrices of order 2 , for some 푑 ’s. Since the product of any number of 
commutating matrices of order 2 , for some 푑 ’s, is a matrix of order 2 , for some 푑, so, 
using Lemma 3.7, the theorem is proved.                    ∎ 

    We note that in Theorem 3.8, 퐴 ’s can be the XOR of an odd number of (distinct) 
arbitrary nonnegative powers of a matrix  퐴 of order  2 , for some 푑. 



Example: We know that (2) is a matrix in ℬ  with linear and differential branch numbers 3 
with respect to 2-bit words. Let 푡 = 8 and 퐴 ∈ ℬ  be the corresponding matrix of the 
linearized function 

푓:퐹 → 퐹 , 

푓(푥) = 푥⨁(푥 ≫ 5); 

then, 

⎝

⎛

퐼 0
0 퐴

퐼 퐴
0 퐼

퐼 0
퐼 퐼

퐴 0
0 퐴 ⎠

⎞, 

is a matrix in ℬ  with linear and differential branch numbers 3, with respect to 16-bit 
words: we note that 퐴 = 퐼. 

Corollary 3.9: Suppose that 푡 is given,  푛 = 푚푘,  푀 = [픪 , ] ∈ ℬ  be an MDS matrix with 
respect to 푚-bit words, the number of nonzero entries in 푀 is 푟 and 푧 ’s, 1 ≤ 푠 ≤ 푟, be 푟 
arbitrary nonnegative numbers less than 2 ; then the following map is a linearized MDS 
map with respect to 푚2 -bit words: 

푓:퐹 ≡ 퐹 → 퐹 ≡ 퐹 , 

푓(푋 , … ,푋 ) = (푌 , … ,푌 ), 

with  푋 = (푋 , , … ,푋 , ) and  푌 = (푌 , , … ,푌 , ), 1 ≤ 푖 ≤ 푘, and, 

푌 , =
픪( ) 	, ≠ 0
	1 ≤ 푠 ≤ 푛

푋
	, (( )		 			 )

>>> 푧 ,							1 ≤ 푖 ≤ 푘,				1 ≤ 푗 ≤ 푚. 

 

Proof: It is easily seen that the rotation operations are pairwise commutable and the order 
of each rotation operation in 퐹  is a nonnegative power of two.              	∎ 

 

 



4. Nonlinear Number Generators 

    In this section, we study nonlinear number generators with provable lower bounds on the 
period, with the aid of matrices over finite commutative rings with identity. 

Theorem 4.1: Suppose that 푅 is a finite commutative ring with identity and  퐴 ∈ ℳ (푅). 
If  표(푑 (퐴)) = 푝, then  표(퐴) is a multiple of  푝. 

Proof: Suppose that 표(퐴) = 푡 is not a multiple of  푝. By Euclidian lemma, there exist 푞 and  
푟 < 푝 with 푡 = 푞푝 + 푟. Now, 

푑 (퐴 ) = (푑 (퐴)) = (푑 (퐴)) . 

On the other hand, we have (푑 (퐴)) = 1 which leads to (푑 (퐴)) = 1; and this is a 
contradiction.                         	∎ 

    There is a well-known fact about the (multiplicative) order of elements in  푍 : 

Theorem 4.2: In  푍 , we have  표(5) = 표(2 − 5) = 2 . 

Corollary 4.3: Suppose that 퐴 ∈ ℳ (푍 ) and 푑 (퐴) ∈ {5, 2 − 5}. Then 표(퐴) is a 

multiple of 2 . 

Lemma 4.4: Suppose that 퐴 = [푎 , ] ∈ ℳ (푍 ) and  푑(퐴) ∈ {5, 2 − 5}.  Define the 
matrix  퐴 = [픞 , ] ∈ ℬ  as 

픞 , =
1							푎 , 			푖푠					표푑푑,

0							푎 , 			푖푠			푒푣푒푛.
 

If  표(퐴 ) = 2 − 1, then 표(퐴) is a multiple of 2 (2 − 1). 

Proof: From Corollary 4.3, we know that 표(퐴) is a multiple of 2 . On the other hand, 
표(퐴) is a multiple of 2 − 1, because, the least significant bits of the entries of (퐴 ) , for 
every 푟, are equal to the corresponding entries in 퐴 . Now, 표(퐴) is a multiple of     
2 (2 − 1) because (2 , 2 − 1) = 1.                       	∎ 

    The next theorem is an obvious result of the previous discussions. 

Theorem 4.5: Suppose that 푚, 푡, 푠 and 푤 > 1 are given. Let 푀 = [픪 , ] ∈ ℬ ,            
1 ≤ 푘 ≤ 푠, 0 ≤ 푗 <. . . < 푗 < 푡, and {푆 }  with  



푆 = 푀 푆 ⨁…⨁푀 푆 ,							푖 ≥ 0, 

is the generated sequence of a primitive sigma-LFSR with a nonzero initial state 푆 . Define 
a new sequence 

푆 = 푀 푆 + ⋯+ 푀 푆 			푚표푑			2 ,							푖 ≥ 0, 

 with  푀 = [푚 , ] ∈ ℳ (푍 ) and the following property 

푚 , 			푚표푑			2 =
1							픪 , = 1,

0							픪 , = 0.
 

Then, 

a) The period of the corresponding (companion) matrix of the sequence {푆 }  is a 
multiple of 2 (2 − 1). 

b) The period of the nonlinear sequence {푆 }  is a multiple of 	2 − 1, in the case 
that all of the entries of the initial state 푆  are not even simultaneously. 

 

 

5. Conclusion 

    In this paper, we examined matrices over finite commutative groups and rings; in fact, 
we studied modules on ring of matrices over 푍  and modules over the ring (퐹 ,⨁,∧). We 
showed that these new algebraic constructions are a generalization of some of the 
constructions which were presented in [1]. We presented new linearized and nonlinear 
MDS diffusion layers, based on this mathematical investigation.  

    Then, we studied nonlinear generators over 푍  and we presented a lower bound on the 
period of these nonlinear generators. At last, we presented nonlinear recurrent sequences 
over 푍  with periods which are multiples of the period of the corresponding              
sigma-LFSR’s. 
 

References 

[1] S. M. Dehnavi, A. Mahmoodi Rishakani, M. R. Mirzaee Shamsabad, Hamidreza Maimani, 
Einollah Pasha, “Construction of New Families of MDS Diffusion Layers”, Cryptology ePrint,  
Report 2014/011, available via http://eprint.iacr.org/2014/011.pdf. 



 [2] J .  Daemen ,  V .  Rijmen ,  AES proposal :  Rijndael .  Selected as the Advanced Encryption 
Standard .  Available from http://nist.gov/aes   

 [3] B .  Schneier ,  J .  Kelsey ,  D .  Whiting ,  D .  Wagner ,  C .  Hall ,  N .  Ferguson ,  Twofish :  A 128-bit Block 
Cipher; 15 June ,  1998   

 [4] P .  Ekdahl ,  T .  Johansson ,  SNOW a new stream cipher ,  Proceedings of first NESSIE 
Workshop ,  Heverlee ,  Belgium ,  2000   

 [5] Chinese State Bureau of Cryptography Administration ,  Cryptographic algorithms SMS4 used in 
wireless LAN products ,  available at :  http://www.oscca.gov.cn/Doc/6/News-1106.htm    

 [6] Dengguo Feng ,  Xiutao Feng ,  Wentao Zhang ,  Xiubin Fan and Chuankun Wu ,  Loiss :  A Byte-
Oriented Stream Cipher ,  Available at http:/ /  www.eprint.iacr.org/2010/489.pdf   

 [7] ETSI/SAGE :  Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 
128-EIA3 Document 2 :  ZUC Specification .  Version 1.5 ,  4th January 2011 .  Tech .  rep. ,  ETSI 
(2011) ,  http://www.gsmworld.com/documents/  EEA3-EIA3-ZUC-v1-5.pdf  

[8] A. Klimov, Applications of T-functions in Cryptography, Thesis for the degree of Ph.D., 
Weizmann Institute of Science, 2005. 

 [9] F. J. MacWilliams and N.J.A. Sloane, “The Theory of Error-Correcting Codes”, North-Holland, 
Amsterdam, 1998. 

[10]  Blaum, M., Roth, R. M.: On Lowest Density MDS Codes. IEEE TRANSACTIONS ON 
INFORMATION THEORY, vol. 45(1), pp. 46-59 (January 1999)  

 [11] Daniel Augot, Matthieu Finiasz, Exhaustive Search for Small Dimension Recursive MDS 

Diffusion Layers for Block Ciphers and Hash Functions, arXiv:1305.3396v1, 15 May 2013.  

 [12] Pascal Junod ,  Statistical Cryptanalysis of Block Ciphers ,  Phd Thesis ,  Lausanne ,  EPFL ,  2005    

 [13] Mahdi Sadjadieh ,  Mohammad Dakhilalian ,  Hamid Mala ,  Pouyan Sepehrdad ,  Recursive 
Diffusion Layers for Block Ciphers and Hash Functions ,  fse2012 ,  USA ,  2012   

 [14]    Joan Daemen and Vincent Rijmen, The design of rijndael: Aes - the  advanced encryption 
standard, Springer, 2002. 

[15] Victor Shoup, “A Computational Introduction to Number Theory and Algebra” (Version 2), 
Cambridge University Press, 2008. 

  

 

 


