
A new class of system oriented PKC, K(I)SOPKC.

Masao KASAHARA ∗†

Abstract

In this paper, we present a new type of PKC, system-oriented PKC,referred to as K(I)SOPKC that can

be well adapted to a secure and a high speed communication between various systems and organizations of

the present day network society. K(I)SOPKC is constructed on the basis of K(XIV)SE(1)PKC, a modified

version of K(XII)SE(1)PKC [1], K(XIII)SE(1)PKC [2] and Kp(XIII)SE(1)PKC [2].

keyword

Code based PKC, Multivariate PKC, System oriented PKC, K(I)SOPKC.

1 Introduction

The author proposed a several classes of linear multivariate PKC’s that are constructed by many sets of

linear equations [3] ∼ [5] based on error-correcting codes. It should be noted that McEliece PKC [6], a class

of code based PKC(CB·PKC), can be regarded as a class of the linear multivariate PKC. Excellent analyses

and survey are given, for example, in Refs. [7] and [8].

Recently, we presented a new class of public key cryptosystems, by modifying K(XII)SE(1)PKC [1],

referred to as K(XIII)SE(1)PKC [2] and Kp(XIII)SE(1)PKC [2].

In 2011, Tsujii and Gotaishi presented an interesting PKC for selected communication between organi-

zations based on complementary STS-MKC [9].

In this paper, we present a new type of PKC, system oriented PKC, referred to as K(I)SOPKC that can

be well adapted to a secure and a high speed communication between various systems and organizations of

the present day network society. K(I)SOPKC is constructed on the basis of K(XIV)SE(1)PKC, a modified

version of K(XII)SE(1)PKC [1], K(XIII)SE(1)PKC [2].

Throughout this paper, when the variable vi takes on a value ṽi, we shall denote the corresponding vector

v = (v1, v2, · · · , vn) as
ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the polynomial as

v(x) = v1 + v2x+ · · ·+ vnx
n−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

∗Research Institute for Science and Engineering, Waseda University.
†Research and Development Initiative, Chuo University. kasahara@ogu.ac.jp

1

2 K(XIV)SE(1)PKC

2.1 Theoretical background of present paper

In 1970’s, the various works were made of the jointly optimization problems for realizing a high speed

and a reliable digital transmission system. The author was also much involved in the study of the jointly

optimization problems for source and channel coding, based on syndrome coding. Let us apply the idea of

syndrome coding to constructing K(I)SOPKC as shown in Fig.1.

As illustrated in Fig.1, the idea of K(XIV)SE(1)PKC is closely related to the idea of syndrome coding

proposed for a jointly optimization problem for source and channel coding.

In Feb.1986, the author presented a survey paper on cryptgraphy [10]. In Ref. [10], the author suggested

the using of McEliece PKC on noisy channel and presented a very simple scheme of joint coding for encryption

and error control coding, based on McEliece PKC.

Random data

Syndrome coding

regarding erasures

as information

symbols

Message :

� = (��, ��, ⋯ , �)

regarded as

channel errors

Syndrome

decoding

Very reliable

message �

erasure errors due

to random data

��, ��, ⋯ , ��

Fig. 1: Syndrome coding

2.2 Construction of K(XIV)SE(1)PKC

Let us define several symbols.

G(x) : generator polynomial of Reed Solomon code over F2m .

g : degree of G(x).

D : minimum distance, g + 1.

K : length of information symbols, 2m − 1− g.

K ′ : shortened length of information symbols, K ′ < K.

φ(∗) : transformation function.

Let the vector µi over F2m be defined

µi = (µi1, µi2, · · · , µiK) ; i = 1, 2, · · · , k ; µi ̸= µj for (i ̸= j). (3)

Let µi(x) be

µi(x) = ei 1⃝x 1⃝ + ei 2⃝x 2⃝ + · · ·+ ei η⃝x η⃝ ; i = 1, 2, · · · , k, (4)

where the exponent i⃝ takes on a random value such that

0 ≤ i⃝ ≤ K − 1 ; i⃝ ̸= j⃝ for i ̸= j, (5)

2

and the coeffcient ei j⃝, a random value over F2m .

Let µi(x) be transformed into

µi(x)x
g ≡ ri(x) mod G(x),

= ri1 + ri2x+ · · ·+ rigx
g−1 ; i = 1, 2, · · · , k.

(6)

The code word vi(x) generated by G(x) is

vi(x) = µi(x)x
g + ri(x) ≡ 0 mod G(x). (7)

Let the code words of {vi} be

v1 = (µ11, µ12, · · · , µ1K , r11, r12, · · · , r1g),
v2 = (µ21, µ22, · · · , µ2K , r21, r22, · · · , r2g),

...

vk = (µk1, µk2, · · · , µkK , rk1, rk2, · · · , rkg).

(8)

Let Ar be

Ar =


r11, r12, · · · , r1g
r21, r22, · · · , r2g
...

...
...

rk1, rk2, · · · , rkg

 . (9)

The matrix Ar is transformed into

Ar · PI =


u11, u12, · · · , u1g

u21, u22, · · · , u2g

...
...

...

uk1, uk2, · · · , ukg

 , (10)

where PI is a random column permutation matrix.

Let ui be defined

ui = (ui1, ui2, · · · , uig) ; i = 1, 2, · · · , k. (11)

We assume that the elements of set {ui} are ordered as u1,u2, · · · ,uk. The set {ui} will be publicized.

We shall refer to subscript ij as location j.

When Bob encrypts a message a = (a1, a2, · · · , at), Bob transforms it into :

aT (x) = a1x
[1] + a2x

[2] + · · ·+ atx
[t] ; 0 ≤ [i] ≤ g − 1, (12)

where the exponents [1], [2], · · · , [t] are randomly chosen by Bob under the condition that

1 ≤ [1] < [2] < · · · < [t− 1] < [t] ≤ g − 1. (13)

We assume that every time Bob encrypts the message a, he is required to transform a into aT over all

again. Bob then generates a random sequence α over F2m , using a transformation function φ(∗) :

φ(aT) : aT 7→ α = (α1, α2, · · · , αk). (14)

Let the word w be defined

w = α1u1 + α2u2 + · · ·+ αkuk. (15)

3

The ciphertext C is then

C = w + aT . (16)

We see that α1µ1(x) + α2µ2(x) + · · ·+ αkµk(x) results in erasure errors, referred to as E(x).

Theorem 1: Erasure error E(x) due to α is

E(x) = α1µ1(x) + α2µ2(x) + · · ·+ αkµk(x)

=
k∑

i=1

αiei 1⃝x 1⃝ +
k∑

i=1

αiei 2⃝x 2⃝ + · · ·+
k∑

i=1

αiei η⃝x η⃝.
(17)

Proof : Straightforward. 2

The following relation :

2t+ η + 1 = D, (18)

is required to hold so that the erasure error value and a may be correctly decoded.

Set of keys are :

Public key : {ui}.
Secret key : {µi}, Ar, {ri}PI .

3 System oriented PKC, K(I)SOPKC

3.1 Preliminaries

K(I)SOPKC is constructed based on K(XIV)SE(1)PKC.

In Fig.2, we show the personnel organization of Alice’s company.

1

Alice : president of a large company

D1,∙∙∙∙∙∙∙∙∙∙∙∙,Di (Director),∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙,Dd

H1,∙∙∙∙∙∙∙∙∙∙∙∙,Hi (Head),∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙,Hh

S1,∙∙∙∙∙∙∙∙∙∙∙∙∙,Si (Supervisor),∙∙∙∙∙∙∙∙∙∙∙∙,Ss

M1,∙∙∙∙∙∙∙∙∙∙∙∙,Mi (Member of Staff),

∙∙∙∙∙∙∙∙∙∙∙∙,Mm

Fig. 2: Personnel organization of Alice’s company

In Fig.3, let us show an example of system-oriented secure communication.

4

1

Alice’s public key, �� A

Order sheet OSB

submitted from

Member MB

Alice,

President of Co.A

Most pertinent

member MJ who can

well manage OSB

��, ��, ⋯ , �	
�� + ��

(
)
;

� = 1,2,⋯ ,�

J=1,2,⋯ , �

Bob,

President of Co.B

OSB
�� : Ciphertext

for key words

��~�	 :

Ciphertexts for

the text of OSB

Up-load Down-load

Fig. 3: An example of system-oriented secure communication

Referring to Figs.2 and 3, let us define several symbols :

GM (x) : decryption key over F2m sent from Alice to all members of Alice’s company, where the degreee of

GM (x) is g.

OSB : order sheet submitted from Member MB .

a0 : message that stands for the key words of OSB, (a01, a02, · · · , a0t), where any component is

assumed to be non-zero.

ai : message that stands for the text of OSB,(ai1, ai2, · · · , ait); i = 1, 2, · · · , N, where any component

of ai is assumed to be non-zero.

aiT (x) : randomly permuted version of ai, ai1x
[i1] + ai2x

[i2] + · · ·+ aitx
[it].

[ij] : exponent randomly selected by Bob.

Ci : ciphertext, (ci1, ci2, · · · , cig); i = 1, 2, · · · , N.

cij : component of Ci at location j.

When Alice uploads the public {ui}A, she performs the following :

(I)Alice, the president of Co.A, publishes the public key {ui}A, where ui is given by Eq.(11).

(II)Alice sends the following decryption key, ki to Member Mi ; i = 1, 2, · · · , I.

ki = {(i1), (i2), · · · , (iη)}; i = 1, 2, · · · , I <∼ 104;

1 ≤ (i1) < (i2) < · · · < (iη) = K.
(19)

The component (ij)’s ; j = 1, 2, · · · , η, are randomly selected by Alice and secretly sent to Member Mi.

The (ij)’s are Member Mi’s secret key for decoding erasure value.

(III)Alice calculates

xi · xg ≡ λi(x) mod GM (x)

= λi1 + λi2x+ · · ·+ λigx
g−1; i = 0, 1, · · · ,K − 1.

(20)

5

3.2 Outline of K(I)SOPKC

For an easy understanding of the present paper, let us describe an outline of K(I)SOPKC :

O1 : Alice publishes her public key {ui}A.
At the same time :

(i)she secretly sends a set of decryption key ki to Member Mi, of Co.A ; i = 1, 2, · · · , I
(ii)she sends another decryption key, GM (x), to all the members of Co.A.

O2 : Referring to {ui}A, Bob encrypts an order sheet, OSB , of the size 10 ∼ 80KB to a series of

ciphertexts, C0,C1, · · · ,CN , where C0 is the encrypted version of the key words of OSB and C1,

C2, · · · ,CN , those of the text of OSB. Bob sends them to Alice.

O3 : Alice decrypts only C0 and decodes the key words of OSB .

O4 : From the key words, Alice decides on the most suitable member, MJ ; 1 ≤ J ≤ I who manages

the order sheets.

O5 : Given Ci, Alice transforms Ci 7→ C
(J)
i = Ci + v

(J)
i ; i = 1, 2, · · · , N .

Alice provides all v
(J)
i ’s before completing the receiving of whole C1(See Fig.4).

O6 : Alice sends C
(J)
i to MJ ; i = 1, 2, · · · , N .

O7 : Given C
(J)
i , MJ decodes message ai; i = 1, 2, · · · , N , using erasures and errors decoding [11]

for Reed-Solomon code generated with GM (x).

3.3 Encryption and decryption process of K(I)SOPKC

Encryption process for a0 that represents key words.

Step 1 : Given a0 = (a01, a02, · · · , a0t), Bob randomly selects the locations of the components of

ciphertext C0, [01], [02], · · · , [0t].
Step 2 : Bob constructs a0T (x) = a01x

[01] + a02x
[02] + · · ·+ a0tx

[0t].

Step 3 : Bob generates φ(a0) = (α0,α1, · · · ,αN), where αi is αi = (αi1, αi2, · · · , αik), and

we assume that the Hamming weight of αi is η.

Step 4 : Bob calculates the word :

w0 = α01u1 + α02u2 + · · ·+ α0kuk.

Step 5 : Bob calculates the ciphertext :

C0 = w0 + a0T .

Given C0, Alice performs the followings :

Decryption process for decoding a0 and α0.

Step 1 : Recieving C0, Alice decodes w0 and a0, with erasure and error decoding [11].

Step 2 : From a0 that represents the key words of OSB , Alice selects the most suitable person

who will well manage OSB . At the same time, Alice generates

φ(a0) = α = (α0,α1, · · · ,αN), where αi = (αi1, αi2, · · · , αik).

Step 3 : Alice calculates the followings :

(i) αi1u1 + αi2u2 + · · ·+ αikuk = βi ; i = 1, 2, · · · , N .

(ii) γi1λ(J1)(x) + γi2λ(J2)(x) + · · ·+ γiηλ(Jη)(x) = t
(J)
i (x),

where γij is a randomly chosen element from F2m ,

(iii) v
(J)
i = t

(J)
i + βi ; i = 1, 2, · · · , N .

We shall see later that, all v
(J)
i ’s can be provided before completing the reception of whole C1(See Fig.4).

6

Encryption process for a1,a2, · · · ,aN by Bob :

Step 1 : Given ai, Bob calculates

wi = αi1u1 + αi2u2 + · · ·+ αikuk ; i = 1, 2, · · · , N ,

where αi = (αi1, αi2, · · · , αik) is provided in Step 3 of Encryption process for a0.

Step 2 : Bob transforms ai = (ai1, ai2, · · · , ait) into
aiT (x) = ai1x

[i1] + ai2x
[i2] + · · ·+ aitx

[it]; i = 1, 2, · · · , N .

Step 3 : Bob calculates

Ci = wi + aiT ; i = 1, 2, · · · , N.

Forwarding process for C1,C2, · · · ,CN , by Alice :

Step 1 : Given Ci, Alice simply adds v
(J)
i on Ci, yielding C

(J)
i .

Step 2 : Alice sends C
(J)
i to MJ through a public channel.

Decryption process of a1,a2, · · · ,aN by MJ :

Step 1 : Receiving C
(J)
i from Alice, MJ decodes erasure value and aiT , based on erasure and error

decoding of Reed-Solomon code [11].

Step 2 : Disregarding erasure value, MJ transforms

ait 7→ ai.

The time chart of ciphertext sequences are given in Fig.4.

1

• Selection of MJ

• Calculation of ��
(�)
~��

(�)

• � <
 holds

T
(sec)

T
(sec)

T
(sec)

T
(sec)

�
(sec)

�� �� �
 ��

��
(�)

�

(�)

��
(�)

��
(�)

�

(�)

��
(�)

∙∙∙∙∙

∙∙∙∙∙

∙∙∙∙∙

⊕⊕⊕⊕ ⊕⊕⊕⊕ ⊕⊕⊕⊕

Fig. 4: Time chart of ciphertext sequences

Remark 1 : Any form of re-encryption on Ci based on the conventional common key cryptsystem cannnot

be completed before receiving the whole Ci. As a result the delay due to the re-encryption process based on

the common key cryptosystem requires the delay of larger than T (sec). On the other hand in K(I)SOPKC,

it is possible to add v
(J)
i on Ci, only after τ(< T) sec, as shown in Fig.4.

3.4 Calculation of v
(J)
i

At the time when Alice publicizes her public key {ui}, she secretly sends decryption key ki = {(i1), (i2), · · · , (iη)}
to Member Mi. She also calculates v

(J)
i as shown below.

7

In order to calculates v
(J)
i , Alice performs the followings :

(i) Decoding of the key words a0 = (a01, a02, · · · , a0t) using Euclidean decoding algorithm [11].

(ii) Determination of the most suitable member, by referring to the key words.

(iii) Transformation of a0 into a0T .

(iv) Generation of α = (α0,α1, · · · ,αN) through the transformation φ(a0).

(v) Calculation of t
(J)
i such that

t
(J)
i = γi1λ(J1) + γi2λ(J2) + · · ·+ γiηλ(Jη); i = 1, 2, · · · , N,

where γij ’s are randomly chosen element of F2m .

The calculation of t
(J)
i requires 1 step of multiplication in a parallel processing based on

table look up method over F2m and ⌈log2 η⌉ steps of modulo 2 addition, in a parallel proccesing.

(vi) Calculation of βi such that

βi = αi1u1 + αi2u2 + · · ·+ αikuk; i = 1, 2, · · · , N.

The calculation of βi requires 1 step of multiplication, in a parallel procceing based on the table

look up mathod over F2m and ⌈log2 k⌉ steps of modulo 2 addition, in a parallel procceing.

(vii) Calculation of v
(J)
i such that

v
(J)
i = t

(J)
i + β

(J)
i ; i = 1, 2, · · · , N.

The calculation of v
(J)
i given above requires 1 step of modulo 2 addtion, in a parallel proccesing.

We see that the calculation of v
(J)
i , in all, can be performed within less than 100 steps (in a parallel

processing) of modulo 2 addition, for η = 256, k = 128 and m = 10 ∼ 16. For N <∼ 100, it would be quite

possible to caculate all v
(J)
i ’s before completing the receiving of a whole C1(See Fig.4).

3.5 Security considerations

Remark 2 : The using of Reed-Solomon codes is very attractive, particulaly for small m. Because they

are extensively used for the various storage systems such as CD, DVD, etc. However, when the degree of

the generator polynomial is less than 80, the total number of different Reed-Solomon codes is not at all

sufficiently large, compared with the Goppa codes. As the result, the using of Reed-Solomon code has been

supposed to be dangerous as the generator polynomial can be estimated without much difficulty compared

with the Goppa code, unless m takes on a large value. As we construct K(I)SOPKC over a small field such

as F210∼ F216 , we assume that G(x) is correctly given, from a conservative point of view.

In the followings, we assume that K ′ is chosen as K ′ = 500.

Attack 1: Attack on secret keys of K(XIV)SE(1)PKC.

The secret keys {µi}, {ri}, Ar, PI can be disclosed according to the following process :

Step 1 : Letting the estimated value of µi be µ̂i, we calculate

µ̂i(x)x
g ≡ r̂1 + r̂2x+ · · ·+ r̂kxk mod G(x).

Step 2 : When r̂i = uj holds for all pairs of (i, j); i, j = 1, 2, · · · , g, we conclude

that µ̂i = µi.

It is easy to see that when once µi is estimated correctly, all other secret keys are disclosed.

Let the probability that µi is estimated correctly be denoted Pc[µ̂i]. The Pc[µ̂i] is

Pc[µ̂i] =

(
K ′

η

)−1

(2m − 1)−η. (21)

8

In order to be secure against Attack 1, we recommend that Pc[µ̂i] be

Pc[µ̂i] ≤ 2−80 = 8.27× 10−25. (22)

Attack 2: Attack on Mi’s secret key ki = {(i1), (i2), · · · , (iη)}.

Because (ij)’s satisfy

1 ≤ (ij) ≤ K ′, (23)

the probability that all the elements of ki can be successfully estimated, Pc[k̂i], is

Pc[k̂i] =

(
K ′

η

)−1

. (24)

We conclude that K(XIV)SE(1)PKC can be made sufficiently secure provided that Pc[k̂i] < 2−80.

Let us consider the following attack, where efs implies an error free symbol among g components of

ciphertext.

Attack 3 : An exhaustive attack for discclosing η efs’s among the g components of a ciphertext.

The probability that the η efs’s is correctly estimated, Pc[êfs], is

Pc[êfs] =

(
g − t

η

)
(

g

η

) . (25)

Example I : m = 8, g = 128, η = 64, t = 32.

Pc[êfs] = 1.24× 10−12, not a sufficiently small value.

Example II: m = 16, g = 512, η = 96, t = 208.

Pc[êfs] = 1.18× 10−25 < 2−80

Example III: m = 16, g = 1024, η = 128, t = 464.

Pc[êfs] = 9.49× 10−36.

As we see in Example 1, for m = 8, K(XIV)SE(1)PKC is not secure against Attack 3. Throughout

this paper we reccomend that Pc[êfs] be less than 10−30. In the following attack, for easy understanding,

ciphertext Ci will be simply denoted as C.

Attack 4 : Attack on aT added on C.

Step 1 : Charles, an attacker, successfully estimates η efs’s at the locations L1, L2, · · · , Lη

of the ciphertext C

Step 2 : Charles randomly selects η ui’s that constructs n-dimensional vector space Vη.

Step 3 : From uj ∈ Vη, let ρj be defined

ρj = (ρjL1 , ρjL2 , · · · , ρjLη); j = 1, 2, · · · , η,
where ρjLl

is the symbol at the error-free location Ll of the ciphertext C.

Step 4 : Charles constructs the following equation :

w = x1ρ1 + x2ρ2 + · · ·+ xηρη

= (w1, w2, · · · , wη),

where x1, x2, · · · , xη are unknown variables.

9

Step 5 : From Eq.(27), Charles constructs the following linear simultaneous equations :

x1ρ1L1 + x2ρ2L1 + · · ·+ xηρηL1 = w1,

x1ρ1L2 + x2ρ2L2 + · · ·+ xηρηL2 = w2,
...

x1ρ1Lη
+ x2ρ2Lη

+ · · ·+ xηρηLη
= wη.

Step 6 : Charles obtains an unique solution : x1 = x̃1, x2 = x̃2, · · · , xη = x̃η,

and then discloses aiT as

ãiT = C − (x̃1ρ1 + x̃2ρ2 + · · ·+ x̃ηρη).
We conclude that K(I)SOPKC is not secure against Attack 4, when once η efs’s are correctly estimated.

In Table. 1, we show several examples of K(I)SOPKC. The size of public key, SPK , the length of

ciphertext, |Ci| and the coding rate, ρ, are

SPK = mgk(bits).

|Ci| = gm(bits).

ρ =
t

g
.

(26)

Table. 1: Examples of K(I)SOPKC (K ′ = 500, k = 128)

m g η t Pc[êfs] ρ SPK(KB)

10 512 128 192 3.46e− 32 0.375 81.9

12 600 120 240 1.45e− 31 0.40 115

14 800 160 320 7.42e− 42 0.40 179

16 1000 200 400 3.79e− 52 0.40 258

We see that the coding rate is less than 0.5. In the following sub-section we present a slightly modified

version of K(I)SOPKC, referred to as Kp(XIII)SE(1)PKC.

3.6 Improving the coding rate

In this sub-section, let us improve the coding rate. The improved version is referred to as Kp(I)SOPKC.

Let us modify K(I)SOPKC through following steps :

S1 : Let the message a = (a1, a2, · · · , at) be partitioned into :

a 7→ (aπ;aθ),

where

aπ = (a1, a2, · · · , aπ),
aθ = (aπ+1, aπ+2, · · · , aπ+θ),

π + θ = t.

S2 : Let aπ(x)be

aπ(x) = a1 + a2x+ · · ·+ aπx
π−1.

S3 : Let aπ+i, a component of aθ be randomly located at [j] by Bob, where we let

[j] > π.

The probability Pc[êfs] is

Pc[êfs] =

(
g − π − θ

η

)
(

g − π

η

) . (27)

10

The coding rate, ρp, is

ρp =
π + θ

g
. (28)

Let us show several examples in Table. 2.

Table. 2: Examples of Kp(I)SOPKC (k=128,K’=500)

m g η θ π Pc[{(ûi)θ}] ρ SPK(KB)

10 500 200 50 200 3.2e− 29 0.500 80

11 1000 200 75 650 1.9e− 34 0.725 176

12 2000 200 100 1600 4.0e− 38 0.850 384

13 4000 200 100 3600 4.0e− 38 0.925 832

14 8000 200 100 7600 4.0e− 38 0.963 1792

15 16000 200 100 15600 4.0e− 38 0.981 3840

16 32000 200 100 31600 4.0e− 38 0.991 8192

4 Conclusion

We presented a new type of PKC, system oriented PK, referred to as K(I)SOPKC. We have shown that

K(I)SOPKC can be well adapted to the various systems and organization of the present day network society.

References

[1] M. Kasahara, “A New Class of Public Key Cryptosystems Constructed Based on Reed-Solomon Codes

K(XII)SE(1)PKC.– Along with a presentation of K(XII)SE(1)PKC over F28 , the field extensively used for

various storage and transmission systems –”, Cryptology ePrint Archive, Report, 2013/363 (2013-06).

[2] M. Kasahara, “Presentation of a new class of public key cryptosystems K(XIII)SE(1)PKC along

with Kp(XIII)SE(1)PKC that realizes the coding rate of exactly 1.0, constructed by modifying

K(XII)SE(1)PKC.”, Cryptology ePrint Archive, Report, 2013/605 (2013-09).

[3] M. Kasahara “Construction of New class of Linear Multivariate Public Key Cryptosystem - Along

With a Note on the Number 9999990 and its Application”, Technical Report of IEICE, ISEC 2009-44

(2009-09).

[4] M. Kasahara “A New Class of Public Key Cryptosystems Constructed Based on Perfect Error-Correcting

Codes Realizing Coding Rate of exactly 1.0”, Cryptology ePrint Archive , Report 2010/139 (2010-03).

[5] M. Kasahara: “Public Key Cryptosystems Constructed Based on Pseudo Cyclic Codes,

K(IX)SE(1)PKC, Realizing Coding Rate of Exactly 1.0”, Cryptology ePrint Archive, Report 2011/545,

(2011-09).

[6] R. J. McEliece: “A Public-key Cryptosystem Based on Algebraic Coding Theory”, DSN Progress Re-

port, no.42-44, pp.114-116 (1978).

[7] J. C. Faugere and A. Otomoni, L. Perret, J. P. Tillich: “Algebraic Cryptanalysis of McElierce Variants

with Compact Keys”, Eurocrypt’10.

11

[8] E. M. Gabidulin: “Public-key cryptosystems based on linear codes”, Report 95-30, TU Delft (1995).

[9] S. Tsujii and M. Gotaishi, “Public Key Cryptsystems for Selected Communication between Organiza-

tions based on Complementary STS-MPKC”, 2011 SCIS, (2011-01).

[10] M. Kasahara: “On Cryptography”, Proc. of Symposium on Information and Communication Network

Security, pp.154-179 (Feb. 1986).

[11] Y. Sugiyama, M. Kasahara, S. Hirasawa and T. Namekawa: “An Erasures-and-Errors decoding Algo-

rithm for Goppa Codes”, IEEE Trans. on Inform. Theory, IT-22, 2, pp.238-241 (1976-03).

12

