
Faster Bootstrapping with Polynomial Error

Jacob Alperin-Sheriff∗ Chris Peikert†

June 13, 2014

Abstract

Bootstrapping is a technique, originally due to Gentry (STOC 2009), for “refreshing” ciphertexts of a
somewhat homomorphic encryption scheme so that they can support further homomorphic operations. To
date, bootstrapping remains the only known way of obtaining fully homomorphic encryption for arbitrary
unbounded computations.

Over the past few years, several works have dramatically improved the efficiency of bootstrapping and
the hardness assumptions needed to implement it. Recently, Brakerski and Vaikuntanathan (ITCS 2014)
reached the major milestone of a bootstrapping algorithm based on Learning With Errors for polynomial
approximation factors. Their method uses the Gentry-Sahai-Waters (GSW) cryptosystem (CRYPTO 2013)
in conjunction with Barrington’s “circuit sequentialization” theorem (STOC 1986). This approach,
however, results in very large polynomial runtimes and approximation factors. (The approximation factors
can be improved, but at even greater costs in runtime and space.)

In this work we give a new bootstrapping algorithm whose runtime and associated approximation
factor are both small polynomials. Unlike most previous methods, ours implements an elementary and
efficient arithmetic procedure, thereby avoiding the inefficiencies inherent to the use of boolean circuits
and Barrington’s Theorem. For 2λ security under conventional lattice assumptions, our method requires
only a quasi-linear Õ(λ) number of homomorphic operations on GSW ciphertexts, which is optimal
(up to polylogarithmic factors) for schemes that encrypt just one bit per ciphertext. As a contribution of
independent interest, we also give a technically simpler variant of the GSW system and a tighter error
analysis for its homomorphic operations.

∗School of Computer Science, College of Computing, Georgia Institute of Technology. Email: jmas6@cc.gatech.edu
†School of Computer Science, Georgia Institute of Technology. Email: cpeikert@cc.gatech.edu. This material is based

upon work supported by the National Science Foundation under CAREER Award CCF-1054495, by the Alfred P. Sloan Foundation,
and by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under Contract
No. FA8750-11-C-0098. The views expressed are those of the authors and do not necessarily reflect the official policy or position of
the National Science Foundation, the Sloan Foundation, DARPA or the U.S. Government.

1 Introduction

Gentry’s bootstrapping paradigm [Gen09b, Gen09a] allows for converting a “somewhat homomorphic”
encryption scheme (which supports only a bounded number of homomorphic operations) into a fully
homomorphic encryption one (which has no such bound). The bounded nature of all known somewhat-
homomorphic schemes is an artifact of “error” terms in their ciphertexts, which are necessary for security.
The error grows as a result of performing homomorphic operations, and if it grows too large, the ciphertext
will no longer decrypt correctly.

Bootstrapping “refreshes” a ciphertext—i.e., reduces its error—so that it can support more homomorphic
operations. This is accomplished by homomorphically evaluating the decryption function on the ciphertext.
The result is a ciphertext that still encrypts the original encrypted message, and moreover, as long as the error
incurred in the homomorphic evaluation is smaller than the error in the original ciphertext, the ciphertext is
“refreshed.” To date, the bootstrapping paradigm is the only known way of obtaining an unbounded FHE
scheme, i.e., one that can homomorphically evaluate any efficient function using keys and ciphertexts of a
fixed size. (By contrast, leveled FHE schemes can evaluate functions of any a priori bounded depth, and can
be constructed without resorting to bootstrapping [BGV12].)

Bootstrapping has received intensive study, with progress often going hand-in-hand with innovations in the
design of homomorphic encryption schemes, e.g., [GH11, BV11, BGV12, GHS12b, GHS12a, AP13, GSW13,
BV14]. Of particular interest is a recent major milestone due to Brakerski and Vaikuntanathan (BV) [BV14],
who gave a bootstrapping method that incurs only polynomial error in the security parameter λ. This allows
security to be based on the learning with errors (LWE) problem [Reg05] with inverse-polynomial error
rates, and hence on worst-case lattice problems with polynomial approximation factors (via the reductions
of [Reg05, Pei09, BLP+13]). The BV method is centered around two main components:

1. the recent homomorphic cryptosystem of Gentry, Sahai, and Waters (GSW) [GSW13], specifically, the
“quasi-additive” nature of its error growth under homomorphic multiplication; and

2. the “circuit sequentialization” property of Barrington’s Theorem [Bar86], which converts any depth-d
circuit (of NAND gates) into a length-4d “branching program,” which is essentially a fixed sequence of
conditional multiplications.

Since decryption in homomorphic cryptosystems can be implemented in circuit depth O(log λ), Barrington’s
Theorem yields an equivalent branching program of length 4d = poly(λ). Moreover, the quasi-additive error
growth of GSW multiplication means that homomorphic evaluation of the branching program incurs only
poly(λ) error, as demonstrated in [BV14].

The polynomial error growth of the BV bootstrapping algorithm is a terrific feature, but the method
also has two significant drawbacks: it comes at a high price in efficiency, and the error growth is a large
polynomial. Both issues arise from the fact that in this context, Barrington’s Theorem yields a branching
program of large polynomial length. Existing analyses (e.g., [BV11, Lemma 4.5]) of decryption circuits (for
cryptosystems with 2λ security) yield depths of c log λ for some unspecified but moderately large constant
c ≥ 3, which translates to a branching program of length at least λ2c ≥ λ6. (Even if the depth were to be
improved, there is a fundamental barrier of c ≥ 1, which yields length Ω(λ2).) The branching program
length is of course a lower bound on the number of homomorphic operations required to bootstrap, and it
also largely determines the associated error growth and final lattice approximation factors.

Separately, Brakerski and Vaikuntanathan also show how to obtain better lattice approximation factors
through a kind of “dimension leveraging” technique, but this comes at an even higher price in efficiency: if
the original error growth was λc for some constant c, then the technique involves running the bootstrapping

1

procedure with GSW ciphertexts of dimension n ≈ λc/ε, where the choice of ε ∈ (0, 1) yields a final
approximation factor of Õ(n3/2+ε). The high cost of dimension leveraging underscores the importance of
obtaining smaller error growth and approximation factors via other means.

1.1 Our Results

Our main result is a new bootstrapping method having substantially smaller runtime and (polynomial) error
growth than the recent one from [BV14]. The improvements come as a result of treating decryption as an
arithmetic function, in contrast to most earlier works which treated decryption as a boolean circuit. This
avoids the circuitous and inefficient path of constructing a shallow circuit and then transforming it via
Barrington’s Theorem into a branching program of (large) polynomial length. Instead, we show how to
directly evaluate the decryption function in an elementary and efficient arithmetic form, using just basic facts
about cyclic groups. See the next subsection for a detailed overview.

Our method requires only a quasi-linear Õ(λ) number of homomorphic operations on GSW ciphertexts,
to bootstrap essentially any LWE-based encryption scheme with 2λ security under conventional assumptions.
This performance is quasi-optimal (i.e., ignoring polylogarithmic factors) for a system with bitwise encryption
(like GSW), because the decryption function must depend on at least λ secret key bits. When instantiated
with a GSW scheme based on ring-LWE [LPR10], in which the cost of each homomorphic operation is
only Õ(λ) bit operations, the total runtime of our algorithm is a respectable Õ(λ2) bit operations.1

Regarding error growth, the security of our basic scheme can be based on LWE with error rates as large
as 1/Õ(λ · n), where n = Ω̃(λ) is the LWE dimension used in the GSW scheme. Taking n = Õ(λ) to be
asymptotically minimal, this translates to lattice approximation factors of Õ(n3), which is quite close to
the Õ(n3/2) factors that plain public-key encryption can be based upon (and quite a bit smaller than for
many other applications of LWE!). We emphasize that these small factors are obtained directly from our
construction with small LWE dimensions. To further improve the assumptions at a (high) cost in efficiency,
we can let n = λ1/ε to directly yield Õ(n2+ε) factors for any ε ∈ (0, 1), or we can use the successive
dimension/modulus-reduction technique from [BV14] to obtain Õ(n3/2+ε) factors.

Simpler GSW variant. As a contribution of independent interest, we also give a variant of the GSW
cryptosystem that we believe is technically simpler, along with a tighter analysis of error terms under its
homomorphic operations (see Section 3). The entire scheme, security proof, and error analysis fit into just
a few lines of standard linear algebra notation, and our variant enjoys additional useful properties like full
“re-randomization” of error terms as a natural side effect. The error analysis is also very clean and tight, due
to the use of subgaussian random variables instead of coarser measures like the `2 or `∞ norms. One nice
consequence of this approach is that the error in a homomorphic product of d ciphertexts grows with

√
d,

rather than linearly as in prior analyses. This is important for establishing the small error growth of our
bootstrapping method.

1.2 Technical Overview

Here we give an overview of the main ideas behind our new bootstrapping method. We start by recalling
in more detail the main ideas behind the work of Brakerski and Vaikuntanathan [BV14], which uses the
Gentry-Sahai-Waters (GSW) [GSW13] homomorphic encryption scheme to obtain FHE from LWE with
inverse-polynomial error rates, and hence from lattice problems with polynomial approximation factors.

1Homomorphic operations in standard-LWE-based GSW are quite a bit more expensive, due to matrix multiplications of
dimensions exceeding λ.

2

The starting point is a simple observation about the GSW encryption scheme: for encryptions C1,C2 of
messages µ1, µ2 ∈ Z, the error in the homomorphic product C1 d C2 of µ1 · µ2 is “quasi-additive” and
asymmetric in the ciphertexts’ respective errors e1, e2, namely, it is e1 · poly(n) + µ1 · e2, where n is the
dimension of the ciphertexts. (The error in the homomorphic sum C1 ‘ C2 is simply the sum e1 + e2 of
the individual errors.) This property has a number of interesting consequences. For example, Brakerski and
Vaikuntanathan use it to show that the homomorphic product of many freshly encrypted 0-1 messages, if
evaluated sequentially in a right-associative manner, has error that grows at most linearly in the number of
ciphertexts. More generally, the homomorphic product of many encrypted permutation matrices—i.e., 0-1
matrices in which each row and column has exactly one nonzero entry—has similarly small error growth.

The next main idea from [BV14] is to use Barrington’s Theorem to express the boolean decryption
circuit of depth d = O(log λ) as a branching program of length 4d = poly(λ) over the symmetric group S5,
or equivalently, the multiplicative group of 5-by-5 permutations matrices. Their bootstrapping algorithm
homomorphically (and sequentially) multiplies appropriate encrypted permutation matrices to evaluate this
branching program on a given input ciphertext, thereby homomorphically decrypting it. Since evaluation is
just a homomorphic product of poly(λ) permutation matrices, the error in the final output ciphertext is only
polynomial, and the LWE parameters can be set to yield security assuming the hardness of lattice problems
for polynomial approximation factors.

1.2.1 Our Approach

Our bootstrapping method retains the use of symmetric groups and permutation matrices, but it works without
the “magic” of Barrington’s Theorem, by treating decryption more directly and efficiently as an arithmetic
function, not a boolean circuit. In more detail, the decryption function for essentially every LWE-based
cryptosystem can without loss of generality (via standard bit-decomposition techniques) be written as a
“rounded inner product” between the secret key s ∈ Zdq and a binary ciphertext c ∈ {0, 1}d, as

Dec(s, c) = b〈s, c〉e2 ∈ {0, 1}.

Here the modular rounding function b·e2 : Zq → {0, 1} indicates whether its argument is “far from” or “close
to” 0 (modulo q), and the dimension d and modulus q can both be made as small as quasi-linear Õ(λ) in the
security parameter via dimension/modulus reduction [BV11], while still providing provable 2λ security under
conventional lattice assumptions. Note that the inner product itself is just a subset-sum of the Zq-entries of s
indicated by c, and uses only the additive group structure of Zq.

Embedding Zq into Sq. As a warm up, we first observe that the additive group Zq embeds (i.e., has an
injective homomorphism) into the symmetric group Sq, the multiplicative group of q-by-q permutation
matrices. (This is just a special case of Cayley’s Theorem, which says that any finite group G embeds
into S|G|.) The embedding is very simple: x ∈ Zq maps to the permutation that cyclically rotates by x
positions. Moreover, any such permutation can be represented by an indicator vector in {0, 1}q with its 1 in
the position specified by x, and its permutation matrix is obtained from the cyclic rotations of this vector. In
this representation, a sum x+ y can be computed in O(q2) bit operations by expanding x’s indicator vector
into its associated permutation matrix, and then multiplying by y’s indicator vector. This representation also
makes the rounding function b·e2 : Zq → {0, 1} trivial to evaluate: one just sums the entries of the indicator
vector corresponding to those values in Zq that round to 1.

These ideas already yield a new and simple bootstrapping algorithm that appears to have better runtime
and error growth than can be obtained using Barrington’s Theorem. The bootstrapping key is an encryption

3

of each coordinate of the secret key s ∈ Zdq , represented as a dimension-q indicator vector, for a total of
d · q = Õ(λ2) GSW ciphertexts. To bootstrap a ciphertext c ∈ {0, 1}d, the inner product 〈s, c〉 ∈ Zq is
computed homomorphically as a subset-sum using the addition method described above, inO(d ·q2) = Õ(λ3)
homomorphic operations. The rounding function is then applied homomorphically, using just O(q) = Õ(λ)
additions.

Embedding Zq into smaller symmetric groups. While the above method yields some improvements over
prior work, it is still far from optimal. Our second main idea is an efficient way of embedding Zq into a
much smaller symmetric group Sr for some r = Õ(1), such that the rounding function can still be efficiently
evaluated (homomorphically). We do so by letting the modulus q =

∏
i ri be the product of many small prime

powers ri of distinct primes. (We can use such a q by modulus switching, as long as it remains sufficiently
large to preserve correctness of decryption.) Using known bounds on the distribution of primes, it suffices to
let the ri be maximal prime powers bounded by O(log λ), of which there are at most O(log λ/ log log λ).

By the Chinese Remainder Theorem, the additive group Zq is isomorphic (via the natural homomorphism)
to the product group

∏
i Zri , which then embeds into

∏
i Sri as discussed above. Therefore, we can represent

any x ∈ Zq as a tuple of O(log λ) indicator vectors of length ri = O(log λ) representing x (mod ri), and
can perform addition by operating on the indicator vectors as described above. In this representation, the
rounding function is no longer just a sum, but it can still be expressed relatively simply as

bxe2 =
∑

v∈Zq s.t. bve2=1

[x = v],

where each equality test [x = v] returns 0 for false and 1 for true.2 In turn, each equality test [x = v] is
equivalent to the product of equality tests [x = v (mod ri)], each of which can be implemented trivially
in our representation by selecting the appropriate entry of the indicator vector for x (mod ri). All of
these operations have natural homomorphic counterparts in our representation, so we get a corresponding
bootstrapping algorithm.

As a brief analysis, each coordinate of the secret key s ∈ Zdq is encrypted as
∑

i ri = Õ(1) GSW
ciphertexts, for a total of Õ(d) = Õ(λ) ciphertexts in the bootstrapping key. Similarly, each addition or
equality test over Zq takes Õ(1) homomorphic operations, for a total of Õ(d + q) = Õ(λ). Both of these
measures are quasi-optimal when relying on a scheme that encrypts one bit per ciphertext (like GSW). By
contrast, bootstrapping using Barrington’s Theorem requires at least 4c log λ = λ2c homomorphic operations
to evaluate the branching program, where c log λ is the depth of the decryption circuit using NAND gates
(of fan-in 2). To our knowledge, upper bounds on the constant c have not been optimized or even calculated
explicitly, but existing analyses like [BV11, Lemma 4.5] yield c� 3, and the necessary dependence on λ
inputs bits for 2λ security yields a fundamental barrier of c ≥ 1.

1.2.2 Related Work on Branching Programs

Several works have extended and improved Barrington’s Theorem for the simulation of general circuits
and formulas via branching programs, e.g., [CL89, Cle91]. Of particular interest here is the thesis of
Sinha [Sin95], which gave quasi-linear-size, log-width branching programs for threshold functions (i.e., those
which output 1 if at least some k of the n inputs are 1) and “mod” functions (i.e., those which output 1 if the

2Note that we are not using any special property of the rounding function here; any boolean function f : Zq → {0, 1} can be
expressed similarly by summing over f−1(1).

4

number of 1s in the input is zero modulo some d). Similarly to our techniques, Sinha’s construction uses the
Chinese Remainder Theorem over many small primes in an essential way.

Because decryption in LWE-based cryptosystems involves modular addition, and can be implemented in
constant depth (and polynomial size) by threshold gates, it might be possible to bootstrap in a quasi-linear
number of homomorphic operations by using Sinha’s results in place of Barrington’s Theorem. However, we
have not seen a way to make this work concretely.

Organization. The rest of the paper is organized as follows. In Section 2 we recall some mathematical
preliminaries on subgaussian random variables and symmetric groups. In Section 3 we present our simplified
GSW variant and analysis. In Section 4 we extend this to a homomorphic encryption scheme for symmetric
groups. In Section 5 we describe and analyze our new bootstrapping algorithm.

Acknowledgments. We thank the anonymous CRYPTO reviewers for their helpful comments, and for
pointers to the additional works on branching programs.

2 Preliminaries

For a nonnegative integer n, we let [n] = {1, . . . , n}. For an integer modulus q, we let Zq = Z/qZ denote
the quotient ring of integers modulo q, and (Zq,+) its additive group.

2.1 Subgaussian Random Variables

In our constructions it is very convenient to analyze the behavior of “error” terms using the standard notion
of subgaussian random variables. (For further details and full proofs, see [Ver12].) A real random variable X
(or its distribution) is subgaussian with parameter r > 0 if for all t ∈ R, its (scaled) moment-generating
function satisfies E[exp(2πtX)] ≤ exp(πr2t2). By a Markov argument, X has Gaussian tails, i.e., for all
t ≥ 0, we have

Pr[|X| ≥ t] ≤ 2 exp(−πt2/r2). (2.1)

(If E[X] = 0, then Gaussian tails also imply subgaussianity.) Any B-bounded centered random variable X
(i.e., E[X] = 0 and |X| ≤ B always) is subgaussian with parameter B

√
2π.

Subgaussianity is homogeneous, i.e., X is subgaussian with parameter r, then cX is subgaussian with
parameter c · r for any constant c ≥ 0. Subgaussians also satisfy Pythagorean additivity: if X1 is subgaussian
with parameter r1, and X2 is subgaussian with parameter r2 conditioned on any value of X1 (e.g., if X1

and X2 are independent), then X1 +X2 is subgaussian with parameter
√
r2

1 + r2
2. By induction this extends

to the sum of any finite number of variables, each of which is subgaussian conditioned on any values of the
previous ones.

We extend the notion of subgaussianity to vectors: a random real vector x is subgaussian with parameter r
if for all fixed real unit vectors u, the marginal 〈u,x〉 ∈ R is subgaussian with parameter r. In particular, it
follows directly from the definition that the concatenation of variables or vectors, each of which is subgaussian
with common parameter r conditioned on any values of the prior ones, is also subgaussian with parameter r.
Homogeneity and Pythagorean additivity clearly extend to subgaussian vectors as well, by linearity.

The next claim follows directly from the material in [Ver12, Section 5.2.4 and Proposition 5.16].

Lemma 2.1. Let x ∈ Rn be a random vector with independent coordinates that are subgaussian with
parameter r. Then for some universal constant C > 0, we have Pr[‖x‖2 > C · r

√
N] ≤ 2−Ω(N).

5

2.2 Symmetric Groups and Zq-Embeddings

Here we recall some basic facts about symmetric groups, which can be found in most abstract algebra
textbooks, e.g., [Jac12]. Let Sr denote the symmetric group of order r, i.e., the group of permutations
(bijections) π : {1, . . . , r} → {1, . . . , r} with function composition as the group operation. The group Sr is
isomorphic to the multiplicative group of r-by-r permutation matrices (i.e., 0-1 matrices with exactly one
nonzero element in each row and each column), via the map that associates π ∈ Sr with the permutation
matrix Pπ = [eπ(1) eπ(2) · · · eπ(r)], where ei ∈ {0, 1}r is the ith standard basis vector. For the remainder
of this work we identify permutations with their associated permutation matrices.

The additive cyclic group (Zr,+) embeds into the symmetric group Sr via the injective homomorphism
that sends the generator 1 ∈ Zr to the “cyclic shift” permutation π ∈ Sr, defined as π(i) = i + 1 for
1 ≤ i < r and π(r) = 1.3 Clearly, this embedding and its inverse can be computed efficiently. Notice also
that the permutation matrices in the image of this embedding can be represented more compactly by just their
first column, because the remaining columns are just the successive cyclic shifts of this column. Similarly,
such permutation matrices can be multiplied in only O(r2) operations, since we only need to multiply one
matrix by the first column of the other.

For our efficient bootstrapping algorithm, we need to efficiently embed a group (Zq,+), for some
sufficiently large q of our choice, into a symmetric group of order much smaller than q (e.g., polylogarithmic
in q). This can be done as follows: suppose that q = r1r2 · · · rt, where the ri are pairwise coprime. Then by
the Chinese Remainder Theorem, the ring Zq is isomorphic to the direct product of rings Zr1×Zr2×· · ·×Zrt ,
and hence their additive groups are isomorphic as well. Combining this with the group embeddings of (Zri ,+)
into Sri , we have an (efficient) group embedding from (Zq,+) into Sr1 × Sr2 × · · · × Srt .4

Importantly for our purposes, q can be exponentially large in terms of maxi ri above. This can be shown
using lower bounds on the second Chebyshev function

ψ(x) :=
∑
pk≤x

log p = log
(∏
p≤x

pblogp xc
)
,

where the first summation is over all prime powers pk ≤ x, and the second is over all primes p ≤ x; note that
pblogp xc is the largest power of p not exceeding x. Therefore, the product q of all maximal prime powers
ri = pblogp xc ≤ x is exp(ψ(x)). Asymptotically, it is known that ψ(x) = x ± O(x/ log x), and we also
have the nonasymptotic bound ψ(x) ≥ 3x/4 for all x ≥ 7 [Sch76, Theorem 11]. In summary:

Lemma 2.2. For all x ≥ 7, the product of all maximal prime powers ri ≤ x is at least exp(3x/4).

For any given lower bound q0 ≥ 191 > exp(21/4), we can therefore efficiently find a q ≥ q0 whose maximal
prime-power divisors are all at most x = 4

3 log q0 ≥ 7.

3 GSW Cryptosystem

Here we present a variant of the Gentry-Sahai-Waters homomorphic encryption scheme [GSW13] (hereafter
called GSW), which we believe is simpler to understand at a technical level. We also give a tighter analysis
of its error growth under homomorphic operations.

3This is just a special case of Cayley’s theorem, which says that any group G embeds into the symmetric group S|G|.
4The latter group can be seen as a subgroup of Sr for r =

∑
i ri, but it will be more efficient to retain the product structure.

6

3.1 Background

We first recall some standard background (see, e.g., [MP12] for further details). For a modulus q, let
` = dlog2 qe and define the “gadget” (column) vector g = (1, 2, 4, . . . , 2`−1) ∈ Z`q. Note that the penultimate
entry 2`−2 of g is in the interval [q/4, q/2) mod q. It will be convenient to use the following randomized
“decomposition” function.

Claim 3.1 (Adapted from [MP12]). There is a randomized, efficiently computable function g−1 : Zq → Z`
such that x← g−1(a) is subgaussian with parameter O(1), and always satisfies 〈g,x〉 = a.

Briefly, the algorithm described in the claim works as follows (though for our application it is not necessary
to understand its internals): let S ∈ Z`×` be the basis of the lattice Λ⊥(gt) = {z ∈ Z` : 〈g, z〉 = 0 ∈ Zq}
as constructed in [MP12], whose Gram-Schmidt vectors all have Euclidean norm O(1). Given a ∈ Zq,
run a randomized version of the nearest-plane algorithm [Bab85] with basis S to sample from the coset
Λ⊥a (gt) = {x : 〈g,x〉 = a}, where in each iteration of the algorithm we choose the coefficient of the ith
basis vector to have expectation zero over {ci − 1, ci} for an appropriate ci ∈ 1

qZ ∩ [0, 1). In particular, the
coefficient is subgaussian with parameter

√
2π given any fixed values of the previous coefficients. The final

output x is the linear combination of the (orthogonal) Gram-Schmidt vectors of S with these coefficients, and
is therefore subgaussian with parameter O(1).

For vectors and matrices over Zq, define the randomized function G−1 : Zn×mq → Zn`×m by apply-
ing g−1 independently to each entry. Notice that for any A ∈ Zn×mq , if X ← G−1(A) then X has
subgaussian parameter O(1) and

G ·X = A, where G = gt ⊗ In = diag(gt, . . . ,gt) ∈ Zn×n`q (3.1)

is the block matrix with n copies of gt as diagonal blocks, and zeros elsewhere.

3.2 Cryptosystem and Homomorphic Operations

The GSW scheme is parameterized by a dimension n, a modulus q with ` = dlog2 qe, and some error
distribution χ over Z which we assume to be subgaussian. Formally, the message space is the ring of
integers Z, though for bootstrapping we only work with ciphertexts encrypting messages in {0, 1} ⊂ Z. The
ciphertext space is C = Zn×n`q . For simplicity we present just a symmetric-key scheme, which is sufficient for
our purposes (it can be converted to a public-key or even attribute-based scheme, as described in [GSW13]).

Our GSW variant differs from the original scheme described in [GSW13] in two main ways:

1. In [GSW13], a ciphertext is a square binary matrix C ∈ {0, 1}n`, a secret key is a “structured” mod-q
vector s ∈ Zn`q (having large entries), and s is an “approximate mod-q eigenvector” of C, in the sense
that stC ≈ µst (mod q), where µ ∈ Z is the message.

In our variant, a ciphertext is a rectangular mod-q matrix C ∈ Zn×n`q , a secret key is some (unstructured,
short) integer vector s ∈ Zn, and stC ≈ µ · stG (mod q), i.e., s and Gts are corresponding left- and
right- “approximate singular vectors” of C.

The difference between these two variants turns out to be purely syntactic, in that we can efficiently
and “losslessly” switch between them (without needing the secret key). However, we believe that our
variant leads to simpler notation and easier-to-understand operations and analysis.

7

2. The second difference is more substantial: our homomorphic multiplication procedure uses the
randomized G−1(·) operation from Claim 3.1. This yields a few important advantages, such as a very
tight and simple error analysis using subgaussianity (see Lemma 3.5), and the ability to completely
re-randomize the error in a ciphertext (see Corollary 3.6).

We now describe the scheme formally.

GSW.Gen(): choose s̄← χn−1 and output secret key s = (s̄, 1) ∈ Zn.

GSW.Enc((s̄, 1), µ ∈ Z): choose C̄ ← Z(n−1)×n`
q and e ← χm, let bt = et − s̄tC̄ (mod q), and output

the ciphertext

C =

(
C̄
bt

)
+ µG ∈ C,

where G is as defined in Equation (3.1). Notice that stC = et + µ · stG (mod q).

GSW.Dec(s,C ∈ C): let c be the penultimate column of C, and output µ = b〈s, c〉e2, where b·e2 : Zq →
{0, 1} indicates whether its argument is closer modulo q to 0 or to 2`−2 (the penultimate entry of g).5

Homomorphic addition is defined as C1 ‘ C2 = C1 + C2.

Homomorphic multiplication is defined as C1 d C2 ← C1 ·G−1(C2), and is right associative. Notice
that this is a randomized procedure, because G−1 is randomized.

The IND-CPA security of the scheme follows immediately from the assumed hardness of LWEn−1,q,χ,
where the entries of the secret are drawn from the error distribution χ (which is no easier than for a uniformly
random secret; see [ACPS09, Lemma 2]). This is because a fresh ciphertext is just µG plus a matrix of n`
independent LWE samples under secret s̄, which are pseudorandom by assumption and hence hide µG.

3.3 Analysis

Here we analyze the scheme’s correctness and homomorphic operations.

Definition 3.2. We say that a ciphertext C is designed to encrypt message µ ∈ Z (under a secret key s) if it
is a fresh encryption of µ, or if C = C1 ‘ C2 where C1,C2 are respectively designed to encrypt µ1, µ2 ∈ Z
and µ = µ1 + µ2, or similarly for homomorphic multiplication.

Definition 3.3. We say that a ciphertext C that is designed to encrypt µ ∈ Z (under s) has error vector
et ∈ Zn` if stC− µ · stG = et (mod q).

For convenience later on, we also say the matrix µG is designed to encrypt µ, and has error 0. (This is
essentially implied by the above definitions, since µG is indeed a fresh encryption of µ, assuming that zero is
in the support of χ.) The next claim on the correctness of decryption follows immediately from the fact that
s = (s̄, 1) and the penultimate column of G is (0, . . . , 0, 2`−2), where 2`−2 ∈ [q/4, q/2) mod q.

Claim 3.4. If C is designed to encrypt some µ ∈ {0, 1} ⊂ Z, and has error vector et whose penultimate
coordinate has magnitude less than q/8, then GSW.Dec(s,C) correctly outputs µ.

We now analyze the behavior of the error terms under homomorphic operations.
5Note that we can decrypt messages in Z ∩ [− q

2
, q
2
), or any other canonical set of representatives of Zq , by “decoding” stC to

the nearest multiple of stG. The above decryption algorithm will be sufficient for our purposes.

8

Lemma 3.5. Suppose C1,C2 are respectively designed to encrypt µ1, µ2 ∈ Z and have error vectors et1, e
t
2.

Then C1 ‘ C2 has error vector et1 + et2, and C1 d C2 has error vector et1X + µ1e
t
2, where X← G−1(C2)

is the matrix used in the evaluation of d. In particular, for any values of Ci, ei, µi, the latter error vector is
of the form et + µ1e

t
2, where the entries of e are independent and subgaussian with parameter O(‖e1‖).

Importantly, the error in C1 d C2 is quasi-additive and asymmetric with respect to the errors in C1,C2:
while the first error vector et1 is multiplied by a short (subgaussian) matrix X, the second error vector et2 is
only multiplied by the (scalar) message µ1, which we will ensure remains in {0, 1}.

Proof. The first claim is immediate, by linearity. For the second claim, because G ·X = C2 we have

st(C1 d C2) = stC1 ·X
= (et1 + µ1 · stG)X

= et1X + µ1(et2 + µ2 · stG)

= (et1X + µ1e
t
2) + µ1µ2 · stG.

As observed in [BV14], the asymmetric noise growth allows for performing a long chain of homomorphic
multiplications while only incurring a polynomial-factor error growth, because d is defined to be right
associative. For convenience of analysis, in such a chain we always include the fixed ciphertext G, which
is designed to encrypt µ = 1 and has zero error, as the rightmost ciphertext in the chain. This ensures that
the error vector of the output ciphertext is subgaussian and essentially independent of the errors in the input
ciphertexts (apart from their lengths), which leads to a simpler and tighter analysis. (In [BV14] a weaker
independence guarantee was achieved by a separate “partial re-randomization” procedure, which requires
additional public key material.)

Corollary 3.6. Suppose that Ci for i ∈ [k] are respectively designed to encrypt µi ∈ {0,±1} and have
error vectors eti. Then for any fixed values of these variables,

C←
ô

i∈[k]

Ci d G = C1 d (C2 d (· · · (Ck d G) · · ·))

has an error vector whose entries are mutually independent and subgaussian with parameter O(‖e‖), where
et = (et1, . . . , e

t
k) ∈ Zkn` is the concatenation of the individual error vectors.

Proof. By Lemma 3.5, the error vector in C is
∑

i e
t
iXi, where each etiXi is a fresh independent vector that

has mutually independent coordinates and is subgaussian with parameter O(‖ei‖). The claim then follows by
Pythagorean additivity.

4 Homomomorphic Encryption for Symmetric Groups

Brakerski and Vaikuntanathan [BV14] showed how to use the GSW encryption scheme to homomorphically
compose permutations of five elements (i.e., to homomorphically compute the group operation in the
symmetric group S5) with small additive noise growth; the use of S5 comes from its essential role in
Barrington’s theorem [Bar86]. In [BV14], the homomorphic composition of permutations is intertwined with
the evaluation of a branching program given by Barrington’s theorem. Here we give, as a “first-class object,”
a homomorphic cryptosystem for any symmetric group Sr. The ability to use several different small values
of r, along with a homomorphic equality test that we design, will be central to our bootstrapping algorithm.

9

4.1 Encryption Scheme

We now describe our (symmetric-key) homomorphic encryption scheme for symmetric groups, called
HEPerm. Let C denote the ciphertext space for an appropriate instantiation of the GSW scheme, which we
treat as a “black box.” A secret key sk for HEPerm is simply a secret key for the GSW scheme.

• HEPerm.Enc(sk, π ∈ Sr): let P = (pi,j) ∈ {0, 1}r×r be the permutation matrix associated with π.
Output an entry-wise encryption of P, i.e., the ciphertext

C = (ci,j) ∈ Cr×r, where ci,j ← Enc(sk, pi,j).

(Decryption follows in the obvious manner.) As with the GSW system, we say that a ciphertext C ∈ Cr×r
is designed to encrypt a permutation π ∈ Sr (or its permutation matrix Pπ) if its C-entries are designed
to encrypt the corresponding entries of Pπ. For convenience, we let J ∈ Cr×r denote the ciphertext that
encrypts the identity permutation with zero noise, which is built in the expected way from the fixed zero-error
GSW ciphertexts that encrypt 0 and 1.

We now show how to homomorphically compute two operations: the standard composition operation for
permutations, and an equality test.

Homomorphic composition Cπ e Cσ: on ciphertexts Cπ = (cπi,j),C
σ = (cσi,j) ∈ Cr×r encrypting permu-

tations π, σ ∈ Sr respectively, we compute one encrypting the permutation π ◦ σ by homomorphically
evaluating the naı̈ve matrix-multiplication algorithm.6That is, output C = (ci,j) ∈ Cr×r where

ci,j ←
ð

`∈[r]

(cπi,` d cσ`,j) ∈ C. (4.1)

Just like d, we define e to be right associative.

Homomorphic equality test Eq?(Cπ = (cπi,j), σ ∈ Sr): given a ciphertext encrypting some permutation
π ∈ Sr and a permutation σ ∈ Sr (in the clear), output a ciphertext c ∈ C encrypting 1 if π = σ and 0
otherwise, as

c←
ô

i∈[r]

cπσ(i),i d g,

where g ∈ C denotes the fixed zero-error encryption of 1. (Recall that d is right associative.)

Observe that for the above two operations, the GSW ciphertext(s) in the output are designed to encrypt
the appropriate {0, 1}-message. For Compose this is simply by correctness of the matrix-multiplication
algorithm. For Eq? this is because the output ciphertext is designed to encrypt 1 if and only if every cσ(i),i is
designed to encrypt 1, which is the case if and only if Cπ is in fact designed to encrypt σ. All that remains is
to analyze the behavior of the error terms, which we do next.

6Note that asymptotically faster algorithms (e.g., Strassen’s) do not appear suitable here, because the intermediate steps of these
algorithms can result in values having magnitude greater than one, which can cause the error in the ciphertexts to grow much faster.
In any case, this will not matter much in our application, since r will be small.

10

4.2 Analysis

Recalling that the GSW scheme is parameterized by n and q, denote its space of error vectors by E = Zm
where m = ndlog2 qe. The Euclidean norm on Er = Zmr is defined in the expected way. In what follows it
is often convenient to consider vectors and matrices over E , i.e., each entry is itself a (row) vector in E = Zm,
and we switch between Eh×w and Zh×wm as is convenient.

The following lemma describes the behavior of errors under the homomorphic composition operation e.
Note that working with vectors and matrices over E lets us write a statement that is syntactically very similar
to the one from Lemma 3.5, with a very similar proof.

Lemma 4.1. Let Cπ,Cσ ∈ Cr×r respectively be designed to encrypt permutation matrices Pπ,Pσ ∈
{0, 1}r×r with error matrices Eπ,Eσ ∈ Er×r. Then for any fixed values of these variables, Cπ e Cσ has
error matrix E + Pπ ·Eσ ∈ Er×r, where the Z-entries of E are mutually independent, and those in its ith
row are subgaussian with parameter O(‖eπi ‖), where eπi is the ith row of Eπ.

Proof. Let C← Cπ e Cσ. It suffices to show that for all i, j, its (i, j)th entry ci,j ∈ C has error

ei,j + eσπ−1(i),j ∈ E = Zm,

where all the Z-entries of all the ei,j ∈ Zm are mutually independent and subgaussian with parameter
O(‖eπi ‖), and eσ`,j is the (`, j)th entry of Eσ. This follows directly from Equation (4.1) and Lemma 3.5:
the error in each ciphertext cπi,` d cσ`,j is pπi,` · eσ`,j plus a fresh vector whose entries are independent and
subgaussian with parameter O(‖eπi,`‖). Since pπi,` = 1 for ` = π−1(i) and 0 otherwise, the claim follows by
Pythagorean additivity of independent subgaussians.

Similarly to a multiplication chain of GSW ciphertexts, we can perform a (right-associative) chain of
compositions while incurring only small error growth. For convenience of analysis, we always include the
fixed zero-error ciphertext J ∈ Cr×r (which encrypts the identity permutation) as the rightmost ciphertext
in the chain. The following corollary follows directly from Lemma 4.1 in the same way that Corollary 3.6
follows from Lemma 3.5.

Corollary 4.2. Suppose that Ci ∈ Cr×r for i ∈ [k] are respectively designed to encrypt permutation matrices
Pi ∈ {0, 1}r×r and have error matrices Ei ∈ Er×r. Then for any fixed values of these variables,

C←
õ

i∈[k]

Ci e J = C1 e (C2 e (· · · (Ck e J) · · ·))

has an error matrix whose Z-entries are mutually independent, and those in its ith row are subgaussian with
parameter O(‖ei‖), where eti ∈ Ekr is the ith row of the concatenated error matrices [E1 | · · · | Ek].

Finally, since the Eq? procedure simply performs a chain of (right-associative) multiplications of GSW
ciphertexts, Corollary 3.6 applies.

4.3 Optimizations and Generalizations

Optimized Zr embeddings. For bootstrapping, we use the above scheme only to encrypt elements in the
cyclic subgroup Cr ⊆ Sr that embeds the additive group (Zr,+). As described in the preliminaries, an
element π ∈ Cr can be represented more compactly as an indicator (column) vector p ∈ {0, 1}r (rather than
a matrix in {0, 1}r×r), and its associated permutation matrix Pπ is made up of the r cyclic rotations of p. In

11

addition, the composition of two permutations represented in this way as p,q is given by the matrix-vector
product Pπ · q, which may be computed in O(r2) operations, rather than O(r3) as in the general case. All
of this translates directly to encrypted permutations in the expected way, i.e., ciphertexts are entry-wise
encryptions in Cr of indicator vectors, etc.

Similarly, the equality test Eq? can be performed more efficiently when we restrict to the subgroup Cr:
given r ciphertexts encrypting the entries of an indicator vector in {0, 1}r and an s ∈ Zr, just output the
ciphertext in the position corresponding to s.

Since our bootstrapping scheme uses Zr embeddings only for r = O(log λ), these optimizations lead to
polylogarithmic factor improvements in runtime and error, but no more.

Signed and generalized permutations. We can also use the GSW scheme to obtain a homomorphic
encryption scheme for the group of signed permutations (also known as the signed symmetric group or
hyperoctahedral group), by encrypting signed permutation matrices. (A signed permutation matrix is one in
which every row and column has exactly one nonzero entry, which may be +1 or −1.) Even more generally,
when using a ring-LWE-based GSW scheme over the mth cyclotomic ring, we can get homomorphic
encryption for the generalized symmetric group Zm o Sr, by encrypting generalized permutation matrices
whose nonzero entries are mth roots of unity. All our analysis goes through essentially unchanged for these
cases, since we only rely on the fact that the nonzero entries of the encrypted matrices have magnitude one.

Generalized symmetric groups contain somewhat larger cyclic groups than symmetric groups do, so they
can be used as an optimization by letting us use slightly smaller orders r. However, the overall difference
does not appear to be too significant.

5 Bootstrapping

We now describe our bootstrapping procedure.

5.1 Specification and Usage

We start by specifying the abstract preconditions and output guarantees of our bootstrapping algorithm,
and describe how to use it (with some additional pre- and post-processing) to bootstrap known LWE-based
encryption schemes.

The scheme to be bootstrapped must have binary ciphertexts in {0, 1}d and secret keys in Zdq for some
dimension d and modulus q that should be made as small as possible (q, d = Õ(λ) are possible), and a
decryption function of the form Decs(c) = f(〈s, c〉) ∈ {0, 1} for some arbitrary function f : Zq → {0, 1}.
We rely on an appropriate instantiation of the GSW cryptosystem, as described in further detail in Section 5.2
below.

BootGen(s ∈ Zdq , sk) takes as input a secret key vector s ∈ Zdq from the scheme to be bootstrapped, and a
secret key sk for GSW. It outputs a bootstrapping key bk, which appropriately encrypts s under sk.

Bootstrap(bk, c ∈ {0, 1}d) takes as input the bootstrapping key bk and a ciphertext vector c ∈ {0, 1}d
(which decrypts under the secret key s). It outputs a GSW ciphertext which decrypts (under sk) to the
same bit as c does (under s), but with less error.

12

Pre- and post-processing. We can bootstrap all known LWE-based bit-encryption schemes using the above
algorithms as follows. In all LWE-based encryption schemes, decryption can be expressed as a “rounded
inner product” b〈s, c〉e2 for some appropriate rounding function b·e2 : Zq → {0, 1}, as required. Note that
a GSW ciphertext can trivially be put in this form by just taking its penultimate column (see GSW.Dec
in Section 3.2). As for the other conditions we need (binary ciphertexts and small d, q), LWE encryption
schemes are not always presented in a way that fulfills them, but fortunately there are standard transformations
that do so, as we now describe. (See [BV11, BLP+13] for further details.)

First, since we do not need to perform any further homomorphic operations on the ciphertext, we can use
dimension- and modulus-reduction [BV11] to get a ciphertext c̄ (over Zq) of dimension Õ(λ) and modulus
q = Õ(λ), while preserving correct decryption. These steps can be implemented with 2λ security under
conventional lattice assumptions.7 Then, we can obtain a binary ciphertext c using “bit decomposition:” let
G be as defined in Section 3.1, and for the ciphertext c̄ over Zq under secret key s̄, let c be a {0, 1}-vector
such that Gc = c̄, and let s = Gts̄ so that 〈s, c〉 = 〈s̄, c̄〉 ∈ Zq. (The secret key s is therefore the one we
need to provide to BootGen.)

After bootstrapping, the output is a GSW ciphertext C encrypted under sk (which is just an integer
vector). If desired, we can convert this ciphertext back to one for the original LWE cryptosystem, simply by
taking the penultimate column of C. We can also key-switch from sk back to the original secret key s. (As
usual in bootstrapping, going “full circle” in this way requires an appropriate circular security assumption.)

5.2 Procedures

Our algorithms rely on instantiations of GSW and HEPerm with parameters n,Q, χ. Importantly, the
ciphertext modulus Q is not the modulus q of the scheme we are bootstrapping, but rather some Q� q that
is sufficiently larger than the error in Bootstrap’s output ciphertext. Let C denote the GSW ciphertext space.

Our procedures need q to be of the form q =
∏
i∈[t] ri where the ri are small and powers of distinct

primes (and hence pairwise coprime). Specifically, using Lemma 2.2 we can choose q = Õ(λ) to be large
enough by letting it be the product of all maximal prime-powers ri that are bounded by O(log λ), of which
there are t = O(log λ/ log log λ). Let φ be the group embedding of (Zq,+) ∼= (Zr1 × · · · × Zrt ,+) into
S = Sr1 × · · · × Srt described in Section 2.2, and let φi denote the ith component of this embedding, i.e.,
the one from Zq into Sri .

BootGen(s ∈ Zdq , sk): given secret key s ∈ Zdq for the scheme to be bootstrapped and a secret key sk
for HEPerm, embed each coordinate sj ∈ Zq of s as φ(sj) ∈ S and encrypt the components under
HEPerm. That is, generate and output the bootstrapping key

bk = {Ci,j ← HEPerm.Enc(sk, φi(sj)) : i ∈ [t], j ∈ [d]}.

Recalling that we are working with embeddings of Zri , each Ci,j ∈ Cri can be represented as a tuple
of ri GSW ciphertexts encrypting an indicator vector (see Section 4.3). Because t, ri = O(log λ) and
d = Õ(λ), the bootstrapping key consists of Õ(λ) GSW ciphertexts.

Bootstrap(bk, c ∈ {0, 1}d): given a binary ciphertext c ∈ {0, 1}d, do the following:

Inner Product: Homomorphically compute an encryption of

v = 〈s, c〉 =
∑

j : cj=1

sj ∈ Zq

7To make the modulus quasi-linear, we need to use randomized (subgaussian) rounding in the modulus-reduction step.

13

using the encryptions of the sj ∈ Zq as embedded into the permutation group S, via a chain of
compositions. Formally, for each i ∈ [t] compute (recalling that e is right associative, and J is
the fixed HEPerm encryption of the identity permutation)

Ci ←
õ

j s.t. cj=1

Ci,j e J. (5.1)

Again, because we are working with embeddings of Zri , each Ci ∈ Cri .
Round: Homomorphically map v ∈ Zq to f(v) ∈ Z2 = {0, 1}: for each x ∈ Zq such that f(x) = 1,

homomorphically test whether v ?
= x by homomorphically multiplying the GSW ciphertexts

resulting from all the equality tests v ?
= x (mod ri). Then homomorphically sum the results of

all the v ?
= x tests.

Formally, compute and output the GSW ciphertext (recalling that d is right associative, and G is
the fixed GSW encryption of 1)

C←
ð

x∈Zq s.t. f(x)=1

(
ô

i∈[t]

Eq?(Ci, φi(x)) d G
)
. (5.2)

Note that since we are working with embeddings of Zri , each Eq?(Ci, φi(x)) is just some GSW
ciphertext component of Ci ∈ Cri (see Section 4.3).

Because t, ri = O(log λ) and d = Õ(λ) and by Equations (5.1) and (5.2), Bootstrap performs Õ(λ)
homomorphic multiplications and additions on GSW ciphertexts.

5.3 Analysis

The following is our main theorem.

Theorem 5.1. The above bootstrapping scheme can be instantiated to be correct (with overwhelming
probability) and secure assuming that the decisional Shortest Vector Problem (GapSVP) and Shortest
Independent Vectors Problem (SIVP) are (quantumly) hard to approximate in the worst case to within Õ(n2λ)
factors on n-dimensional lattices.

Because all known (quantum) algorithms for poly(n)-factor approximations to GapSVP and SIVP on
n-dimensional lattices take 2Ω(n) time, for 2λ hardness we can take n = Θ(λ), yielding a final approximation
factor of Õ(n3). This comes quite close to the O(n3/2+ε) factors obtained in [BV14], but without any
expensive “dimension leveraging:” we use GSW ciphertexts of dimension only n = O(λ), rather than some
large polynomial in λ. Alternatively, at the cost of a larger dimension n = λ1/ε, but without using the
successive dimension-reduction procedure from [BV14], we can obtain factors as small as Õ(n2+ε) for any
constant ε > 0.

The remainder of this subsection is devoted to proving the above theorem.

Security. If the HEPerm key sk is generated independently of s, then IND-CPA security of the bootstrap-
ping key follows immediately from the security of HEPerm, hence from LWE with parameters n− 1, Q, χ,
and finally from worst-case lattice problems. (We instantiate these parameters below to obtain the claimed
approximation factors.) As usual, if the keys are not independent, then we need to make an appropriate
circular security assumption. (To date, such an assumption is the only known way to obtain unbounded FHE.)

14

Correctness and error analysis. For correctness, we first show that the ciphertext C output by Bootstrap
is designed to encrypt the appropriate bit. Then we quantify the error in C and instantiate the parameters so
that it indeed decrypts to the intended bit.

Lemma 5.2 (Correctness). For bk ← BootGen(s, sk), the GSW ciphertext C ← Bootstrap(bk, c) is
designed to encrypt Decs(c) = f(〈s, c〉) ∈ {0, 1}.

Proof. First, by construction the HEPerm ciphertext Ci,j is designed to encrypt φi(sj). Therefore, because
φi : Zq → Sri is a group homomorphism, the ciphertext Ci as defined in Equation (5.1) is designed to encrypt
φi(
∑

j : cj=1 sj) = φi(〈s, c〉) = φi(v). By correctness of Eq? and the isomorphism Zq ∼= Zr1 × · · · × Zrt
given by Chinese Remainder Theorem, the homomorphic product

Ô

i∈[t] Eq?(Ci, φi(x)) d G is designed to
encrypt 1 if and only if v = x. Finally, because the homomorphic sum is taken over every x ∈ Zq such that
f(x) = 1, it is designed to encrypt 1 if and only if f(v) = 1.

We now quantify the error in the ciphertext output by Bootstrap. Recall that GSW and HEPerm are
parameterized by a dimension n, a modulus Q with ` = dlog2Qe, and an error distribution χ over Z that is
subgaussian with parameter s, where typically s = Θ(

√
n). Let r =

∑
i∈[t] ri be the sum of the maximal

prime-power divisors ri of q, and recall that each ri = O(log λ).

Lemma 5.3. For any c ∈ {0, 1}d, the error vector in the refreshed ciphertext C ← Bootstrap(bk, c) has
independent subgaussian entries with parameter O(sn`

√
rdq) = Õ(sn`λ), except with probability 2−Ω(n`)

over the random choices of bk and Bootstrap.

By Claim 3.4, the ciphertext C therefore decrypts correctly (except with negl(λ) probability) as long as
the modulus Q of the GSW system is at least sn`

√
rdq · ω(

√
log λ).

Proof. Recall that the GSW ciphertext and error spaces are respectively C = Zn×n`Q and E = Zn`, and the
HEPerm ciphertext and error spaces for the embedding of Zri into the symmetric group Sri are Cri and Eri ,
respectively. To perform homomorphic composition, we take cyclic rotations to get ciphertexts and error
matrices in Cri×ri and Eri×ri .

We analyze the error in the various ciphertexts Ci,j ,Ci,C produced by BootGen and Bootstrap. Essen-
tially, this proceeds by a couple of invocations of Lemma 2.1 (which bounds the `2 norm of a vector having
independent subgaussian entries) and Corollaries 3.6 and 4.2 (which guarantee fresh subgaussian errors in a
homomorphic chain of multiplications/compositions). Specifically:

• The error vector in a fresh GSW ciphertext has independent subgaussian entries with parameter s, so by
Lemma 2.1, its `2 norm is O(s

√
n`), except with probability 2−Ω(n`). Therefore, in the concatenation

of the rotation-expanded error matrices of Ci,j over any subset of j ∈ [d], every row has `2 norm
O(s
√
rin`d).

• By Corollary 4.2, all the Z-entries in all the error matrices Ei ∈ Eri for Ci (see Equation (5.1)) are
mutually independent, and are subgaussian with parameter O(s

√
rin`d). By Lemma 2.1, it follows

that any single E-entry of Ei has `2 norm O(sn`
√
rid) except with probability 2−Ω(n`), and hence

their concatenation over all i ∈ [t] has `2 norm O(sn`
√
rd).

• By the above and Corollary 3.6, each GSW ciphertext produced inside the parenthesized expres-
sion of Equation (5.2) has a fresh error vector with independent subgaussian entries with parameter
O(sn`

√
rd). Finally, by Pythagorean additivity of independent subgaussians, the error vector of C has

independent subgaussian entries with parameter O(sn`
√
rdq), as claimed.

15

Instantiating the parameters. We now instantiate all the parameters to finish the proof of Theorem 5.1.
To rely on the (quantum) worst-case hardness of LWE [Reg05], we take s = 3

√
n = Θ(

√
n). Then by

Lemma 5.3, we simply need to take a sufficiently large Q = Ω̃(n3/2λ logQ); some Q = Õ(n3/2λ) suffices.
The LWE inverse error rate is therefore Q/s = Õ(nλ), yielding an approximation factor of Õ(n2λ) for
worst-case lattice problems in dimension n. Slightly worse factors can be obtained by relying on classical
reductions for the hardness of LWE [Pei09, BLP+13].

References

[ACPS09] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In CRYPTO, pages 595–618. 2009.

[AP13] J. Alperin-Sheriff and C. Peikert. Practical bootstrapping in quasilinear time. In CRYPTO, pages
1–20. 2013.

[Bab85] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,
6(1):1–13, 1986. Preliminary version in STACS 1985.

[Bar86] D. A. M. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC1. In STOC, pages 1–5. 1986.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS, pages 309–325. 2012.

[BLP+13] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning
with errors. In STOC, pages 575–584. 2013.

[BV11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, pages 97–106. 2011.

[BV14] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS, pages 1–??
2014.

[CL89] J.-Y. Cai and R. Lipton. Subquadratic simulations of circuits by branching programs. 2013
IEEE 54th Annual Symposium on Foundations of Computer Science, 0:568–573, 1989. doi:
http://doi.ieeecomputersociety.org/10.1109/SFCS.1989.63536.

[Cle91] R. Cleve. Towards optimal simulations of formulas by bounded-width programs. Computational
Complexity, 1(1):91–105, 1991.

[Gen09a] C. Gentry. A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University, 2009.
http://crypto.stanford.edu/craig.

[Gen09b] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178. 2009.

[GH11] C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using depth-3
arithmetic circuits. In FOCS, pages 107–109. 2011.

[GHS12a] C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic encryption. In
Public Key Cryptography, pages 1–16. 2012.

16

http://crypto.stanford.edu/craig

[GHS12b] C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with polylog overhead. In
EUROCRYPT, pages 465–482. 2012.

[GSW13] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–92. 2013.

[Jac12] N. Jacobson. Basic Algebra I. Dover Publications, 2012.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with errors over
rings. Journal of the ACM, 60(6):43:1–43:35, November 2013. Preliminary version in EURO-
CRYPT ’10.

[MP12] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, pages 700–718. 2012.

[Pei09] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In STOC,
pages 333–342. 2009.

[Reg05] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005.

[Sch76] L. Schoenfeld. Sharper bounds for the Chebyshev functions θ(x) and ψ(x). ii. Mathematics of
Computation, 30(134):pp. 337–360, 1976. ISSN 00255718.

[Sin95] R. K. Sinha. Some topics in parallel computation and branching programs. Ph.D. thesis,
University of Washington, 1995.

[Ver12] R. Vershynin. Compressed Sensing, Theory and Applications, chapter 5, pages 210–268.
Cambridge University Press, 2012. Available at http://www-personal.umich.edu/
˜romanv/papers/non-asymptotic-rmt-plain.pdf.

17

http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf
http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf

	Introduction
	Our Results
	Technical Overview
	Our Approach
	Related Work on Branching Programs

	Preliminaries
	Subgaussian Random Variables
	Symmetric Groups and Zq-Embeddings

	GSW Cryptosystem
	Background
	Cryptosystem and Homomorphic Operations
	Analysis

	Homomomorphic Encryption for Symmetric Groups
	Encryption Scheme
	Analysis
	Optimizations and Generalizations

	Bootstrapping
	Specification and Usage
	Procedures
	Analysis

