
Tight Security Bounds for Multiple Encryption

Yuanxi Dai1 and John Steinberger1⋆

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing.
shustdc@gmail.com, jpsteinb@gmail.com

Abstract. Multiple encryption—the practice of composing a blockcipher several times with itself under
independent keys—has received considerable attention of late from the standpoint of provable security.
Despite these efforts proving definitive security bounds (i.e., with matching attacks) has remained
elusive even for the special case of triple encryption. In this paper we close the gap by improving both
the best known attacks and best known provable security, so that both bounds match. Our results
apply for arbitrary number of rounds and show that the security of ℓ-round multiple encryption is
precisely exp(κ+min{κ(ℓ′ − 2)/2), n(ℓ′ − 2)/ℓ′}) where exp(t) = 2t and where ℓ′ = 2⌈ℓ/2⌉ is the even
integer closest to ℓ and greater than or equal to ℓ, for all ℓ ≥ 1. Our technique is based on Patarin’s
H-coefficient method and reuses a combinatorial result of Chen and Steinberger originally required in
the context of key-alternating ciphers.

1 Introduction

Let E : {0, 1}κ ×{0, 1}n → {0, 1}n be a blockcipher with key space {0, 1}κ and message/ciphertext
space {0, 1}n. The ℓ-cascade of E, denoted E(ℓ), is the blockcipher of key space {0, 1}ℓκ and of
message space {0, 1}n obtained by composing E ℓ times with itself under independent keys. Thus

E
(ℓ)
k (x) = Ekℓ(Ekℓ−1

(. . . (Ek1(x)) . . .)) (1)

where k = k1‖ . . . ‖kℓ ∈ {0, 1}ℓκ. (The inverse of E(ℓ) is computed the obvious way.) In particular
E(1) = E.

Since E(ℓ) has longer keys than E for ℓ ≥ 2, the ℓ-cascade can be viewed as a natural mechanism
for increasing the key space of a blockcipher and, hence, potentially, enhancing the security level.
Security does not necessarily increase linearly with the key length, however. For example there
exist meet-in-the-middle (key-recovery) attacks against cascades of length 2 that cost no more1

than generic (key-recovery) attacks against cascades of length 1 [9]. Indeed, when a variant of DES
with longer keys was needed, designers eschewed double encryption (cascades of length 2) in favor
of triple encryption [9,25]. The standard which eventually resulted, so-called Triple DES [2,13,28],
is still widely deployed.

Even while generic attacks have guided the considerations of designers since the beginning,
finding nontrivial provable security results for multiple encryption in idealized models remained
an open problem for a very long time. In the ideal model which we and most previous authors
envisage [1, 4, 14, 15, 20] the security of the ℓ-cascade is quantified by the information-theoretic
indistinguishability of two worlds, “real” and “ideal”. In the “real” world the adversary A is given
oracle access to an ideal2 cipher E, to its inverse E−1, and to a randomly keyed ℓ-cascade instance

⋆ Supported by National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, the National
Natural Science Foundation of China Grant 61033001, 61361136003, and by the China Ministry of Education
grant number 20121088050.

1 This should be qualified: the memory costs are much larger and the query complexity is slightly greater [1].
2 I.e., E(k, ·) : {0, 1}n → {0, 1}n is a random permutation for each key k ∈ {0, 1}κ.

E
(ℓ)
k of E (for hidden k) as well as to the inverse (E

(ℓ)
k)−1 of the ℓ-cascade; in the “ideal” world the

ℓ-cascade instance E
(ℓ)
k is replaced by a random independent permutation π and its inverse π−1. We

emphasize that A has no computational restrictions and that A knows the value of ℓ in question.

We note this experiment already makes sense for ℓ = 1. The case ℓ = 1, while quite simple,

is already instructive to analyze. In that case the adversary must distinguish between E
(1)
k = Ek

and a random permutation π, while being given oracle access to E. Since E is ideal, it is easy to
argue that the adversary has no advantage as long as it has not queried its oracle E on key k. With
k being uniform at random, and with other queries to E/π/Ek giving no clue as to the value of
k, the adversary’s distinguishing advantage is thus upper bounded by—and in fact basically equal
to—q/2κ, where q is the number of queries made. (We note this bound holds even if n is very small
compared to κ, e.g., n = 1, 2. For the sake of completeness, we formalize the argument just sketched
in Appendix C.) An easy reduction3 argument, moreover, shows that E(ℓ) is at least as secure as
E(r) for all r ≤ ℓ. Hence E(ℓ) achieves at least κ bits of security for all ℓ ≥ 1, and the basic question
is to determine how security grows with ℓ.

The first nontrivial results obtained pertaining to this question were by Aiello et al. [1] who

show that E
(2)
k is slightly harder to distinguish from a random π than E

(1)
k = Ek. More precisely,

Aiello et al. show that A’s distinguishing advantage for E(2) is upper bounded by an expression of
the form q2/22κ, as opposed to q/2κ for E(1), where q is the number of queries made by A. In either
event, thus, E(1) and E(2) both essentially offer κ bits of security, given the meet-in-the-middle
attack for length two cascades of cost q = 2κ [9]. (See also Appendix C, where we revisit Aiello et
al.’s result.)

Subsequently we will write exp(κ) for 2κ, somewhat in line with the computer science convention
of writing log(t) for log2(t). We thus say, e.g., that E(1) and E(2) “achieve security exp(κ)”, in the
sense that it requires about exp(κ) = 2κ queries to achieve constant distinguishing advantage
between the real and ideal worlds for those cascade lengths.

After Aiello et al., substantial progress had to wait for Bellare and Rogaway [4], who showed
that E(3) achieves security (up to lower-order terms, which we disregard to the remainder of the
introduction)

exp(κ+min{κ/2, n/2}). (2)

Bellare and Rogaway did not present matching attacks, but Lucks [22] had previously presented a
key-recovery attack on E(3) of cost exp(κ+ n/2), indicating that (2) is at least tight for n ≤ κ.

Further progress was made by Gaži and Maurer [15] who, besides finding and correcting some
mistakes in the proof of [4], generalized the approach to ℓ rounds. They prove that E(ℓ) achieves
security at least

exp(κ+min{κ(ℓ′ − 2)/ℓ′, n/2}) (3)

where ℓ′ (here and later) is the smallest even integer greater than or equal to ℓ. We note this bound
also makes sense for ℓ = 1, 2 and is equivalent to (2) for ℓ = 3. We also note that (3) approaches

exp(κ+min{κ, n/2})
3 Since the adversaries considered are information-theoretic, we note that we don’t even have to consider the reduc-
tion’s running time lossiness.

2

as ℓ grows large. In some sense, thus, Gaži and Maurer could claim to have shown that security
increases with the number of rounds ℓ. (At least, say, for κ ≤ n/2.) On the other hand, Gaži and
Maurer never proved matching upper bounds; thus the security they proved for, say, 15 rounds,
might already be achieved (but without proof) at 3 rounds! (And potentially, by the same token, the
“true” security for 3 rounds is never exceeded by using a higher number of rounds.) This criticism
of the Gaži-Maurer bound (or, more precisely, of the conclusions one might derive therefrom) is
partly justified in the sense, and as we will see in this paper, that security

exp(κ+min{κ, n/2})

is indeed already achieved at ℓ = 3 rounds.
We note that while Lucks’s attack caps the security of E(3) at exp(κ+ n/2) nothing precludes,

a priori, E(ℓ) from reaching larger security than this (and hence larger security than (2), (3)) for
larger values of ℓ. Indeed, Lee [20], using coupling techniques, provided a partial answer to this
question by showing that E(ℓ) achieves security at least

exp(κ+min{κ, n} − 8n/ℓ). (4)

We note this bound is void for ℓ ≤ 8 and that it consistently beats Gaži and Maurer’s bound (i.e.,
for all values of κ) only for ℓ > 16. Qualitatively, however, Lee’s bound shows that security can
approach

exp(κ+min{κ, n})
for large numbers of rounds. Lee does not prove any new upper bounds on the security of E(ℓ) but
makes the basic observation that security cannot exceed

exp(κ+ n)

since with that many queries A can completely learn E, at which point a few queries to E
(ℓ)
k suffice

for the information-theoretic A to recover the key k (a key-recovery attack obviously implies a
distinguishing attack).

Shortly thereafter Gaži [14] presented attacks on ℓ-cascades of cost

exp(κ+ n(ℓ′ − 2)/ℓ′). (5)

Plugging in ℓ = 1, 2, 3 one recovers the cost of the previous best-known attacks for those cascade
lengths. Indeed, Gaži’s attacks are both a generalization of the meet-in-the-middle attack for length
two cascades and of Lucks’s attack for length three cascades (in fact Gaži is the first to rigorously
analyze Luck’s attack).

These results constitute the current state-of-the-art for cascade encryption in the idealized
information-theoretic model we have described. In a nutshell, (3) and (4) constitute the best-
known lower bounds, while (5) is the best-known upper bound. These bounds, however, still leave
much room for wiggle. For example, the exact security of E(3) in the regime κ ≤ n is still an open
question, as all we know is that E(3)’s security lies somewhere in the interval

[exp(κ+min{κ/2, n/2}), exp(κ+ n/2)]

by (3) and (5).

3

Our results. In this paper we close all remaining gaps between upper and lower bounds, up to
customary lower-order terms. More precisely, we show that E(ℓ) has security

exp(κ+min{κ(ℓ′ − 2)/2, n(ℓ′ − 2)/ℓ′}) (6)

by exhibiting matching attacks and security proofs, for all ℓ ≥ 1. (Note by the form of (6) that
new attacks are only needed when κ(ℓ′ − 2)/2 < n(ℓ′ − 2)/ℓ′; otherwise the attacks of Gaži, cf.
(5), suffice.) One can observe from (6) that ℓ = 2r rounds buy the same amount of security as
ℓ = 2r − 1 rounds. In fact, we expect the curve describing the adversary’s advantage to be slightly
more advantageous for 2r− 1 rounds than for 2r rounds, as observed by Aiello et al. for r = 1, but
our analysis is not fine-grained enough to verify this.

Techniques. Tightening the security bounds for triple encryption is already an interesting problem
in itself. Besides devising a new rather easy attack of cost exp(2κ), it turns out that the bound
directly follows from tightening a key combinatorial lemma in Bellare and Rogaway’s original proof
(Lemma 10 in [5]). Improving the lemma is not particularly difficult. Hence, the fact that triple
encryption has gone without a tight security analysis all this time seems, in retrospect, something
of an oversight.

We found the case of larger number of rounds (in particular, ℓ ≥ 5) to be more challenging.
While we copied the basic approach of Bellare and Rogaway [4] and of Gaži and Maurer [15]
some major structural changes were required in order to achieve tightness. In particular, we had
to rebundle a key two-step game transition from [15] into a single-step transition. Moreover we
found that the best way to handle this (now rather delicate) single-step transition was by Patarin’s
H-coefficient technique [30]. Here we drew inspiration from Chen and Steinberger [8] and, indeed,
reused the key combinatorial lemma of that paper. Roughly speaking, this lemma gives an explicit
expression for the probability that

(Pℓ ◦ · · · ◦ P1)(a) = b

where each Pi is a partially defined random permutation of {0, 1}n, where ◦ denotes function
composition, where a, b ∈ {0, 1}n are two values such that P1(a) and P−1

ℓ (b) are undefined. Here
the probability is expressed (in particular, lower-bounded) as a function of the number of edges4

already defined in the Pi’s as well as of the number of “chains” of various lengths5 formed by
those edges in the composition P1 ◦ · · · ◦ Pℓ. (In our case Pi = Eki where k = k1‖ . . . ‖kℓ is the
secret key.) It is noteworthy that the security proofs for three different classes of composed ciphers
(key-alternating ciphers [8], cascade ciphers (this paper), and XOR-cascade ciphers [8,14,16]) now
rely on this lemma, and in each case tight bounds are achieved.

In order to successfully apply the H-coefficient technique and Chen and Steinberger’s lemma a
crucial step is to upper bound the probability of the adversary obtaining (too many) long chains
in Pℓ ◦ · · · ◦ P1 = Ekℓ ◦ · · · ◦ Ek1 . Like Bellare and Rogaway [4] and like Gaži and Maurer [15]
before us, we do this by upper bounding the total number of query chains of a given length formed
by all of the adversary’s queries to E, regardless of the underlying key, and then by applying a
Markov inequality—but in our case tight bounds on the total number of query chains are needed. At

4 If x ∈ {0, 1}n is a value such that y = Pi(x) is defined, then the pair (x, y) is also called an edge of Pi, equating Pi

with a bipartite graph (more precisely, a partial matching) from {0, 1}n to {0, 1}n. The composition Pℓ ◦ · · · ◦ P1

is visualized by “gluing” these bipartite graphs sequentially next to one another.
5 See the previous footnote.

4

first glance the combinatorial question is nonobvious (especially given the presence of an adaptive
adversary) but we observe that on any path of queries at least half the queries are “backwards”
(meaning contrary to the path’s direction, in this instance) for at least one of the two possible ways

of orienting the path (as a given path can be traversed right-to-left or left-to-right). Together with
some classical balls-in-bins occupancy results, this simple symmetry-breaking observation gives an
easy means of upper bounding the total number of query chains formed, and the bounds we find
are also tight. We refer to Proposition 1 for more details.

Other related work.We have already briefly mentioned related work on key-alternating ciphers
[7,8,12,19,34] as well as on XOR cascades [14,16,20], to which the beautiful work of Rogaway and
Kilian on DESX (a special case of an XOR-cascade) should be added [17].

Coming back to cascade ciphers Merkle and Hellman [25] show an attack on two-key triple
encryption, which attack is revisited by Oorschot and Wiener [27]. (See also [26].) Even and Gol-
dreich [11] present a medley of observations on multiple encryption in various models, including
some conclusions which are disputed by Maurer and Massey [24]. Finally, the best paper award at
CRYPTO 2012, by Dinur et al. [10], concerns, in large part, non-information-theoretic key-recovery
attacks on cascade ciphers.

Open questions. As will be seen, our results actually hold even if the adversary is always allowed

to make 2n queries to its permutation oracle (which is E
(ℓ)
k or π) for free, i.e., to entirely learn

its permutation oracle for free. It would be interesting to know if better bounds can be achieved
by restricting the number of permutation queries. This is all the more relevant given that many
applications will impose limitations on the number of encryptions/decryptions available to the
adversary.

2 Definitions

Blockciphers and Cascades. A blockcipher is a function E : {0, 1}κ × {0, 1}n → {0, 1}n such
that E(k, ·) : {0, 1}n → {0, 1}n is a permutation for each key k ∈ {0, 1}κ. We also write Ek(x) for
E(k, x). By the “inverse” E−1 of E we mean the blockcipher E−1 : {0, 1}κ×{0, 1}n → {0, 1}n such
that E−1

k is the inverse permutation of Ek for each k ∈ {0, 1}κ. We note that {0, 1}κ is also called
the key space of the blockcipher whereas {0, 1}n is both the message space and ciphertext space.

For a blockcipher E and an integer ℓ ≥ 1 we define the ℓ-cascade of E, written E(ℓ), by equation
(1). We note that E(ℓ) is a blockcipher of key space {0, 1}ℓκ and of message space {0, 1}n.
Ideal Ciphers. A blockcipher E : {0, 1}κ × {0, 1}n → {0, 1}n which is sampled uniformly at
random from the space of all blockciphers of key space {0, 1}κ and of message space {0, 1}n is
called an ideal cipher. In this case Ek is a random independent permutation of {0, 1}n for each
k ∈ {0, 1}κ.
Security Game. Let ℓ, κ and n be given. Let A be an information-theoretic adversary (or “dis-
tinguisher”) with oracle access to, among others, an ideal cipher E : {0, 1}κ × {0, 1}n → {0, 1}n,
which we write AE but by which we mean that A can query both E and E−1. (Along the same
lines writing Aπ indicates that A has access to both π and π−1 when π is a permutation.) Then
A’s distinguishing advantage against ℓ-cascades, written Advcasc

ℓ,κ,n(A) is defined as

Advcasc
ℓ,κ,n(A) = Pr[k = k∗1‖ . . . ‖k∗ℓ

$← {0, 1}ℓκ;AE,E
(ℓ)
k∗ = 1]− Pr[π

$← P;AE,π = 1]

5

where the notation

k∗ = k∗1‖ . . . ‖k∗ℓ
$← {0, 1}ℓκ;AE,E

(ℓ)
k = 1

indicates the event that A outputs 1 after interacting with oracles E/E−1 and E
(ℓ)
k /(E

(ℓ)
k)−1 where

k is sampled uniformly at random from the key space of E(ℓ), and hidden from A; whereas the
notation

π
$← P;AE,π = 1

indicates the event that A outputs 1 after interacting with oracles E/E−1 and π/π−1 where π is
a permutation of {0, 1}n sampled uniformly at random from the set of all permutations of {0, 1}n,
here denoted P; and where in either case the sampling of the ideal cipher E at the start of the
experiment is kept implicit for the sake of succinctness.

We write

Advcasc
ℓ,κ,n(q)

for the supremum of Advcasc
ℓ,κ,n(A) taken over all q-query information-theoretic adversaries A. (The

notation Advcasc
ℓ,κ,n is thus overloaded.)

What Constitutes Security? For our purposes, and following a long tradition of ideal model
analyses (such as [1,6,14,15,17,20] and dozens more) the “security” of E(ℓ) is the value of q at which
Advcasc

ℓ,κ,n(q) reaches Ω(1) or, to be more concrete, the smallest value q0 such thatAdvcasc
ℓ,κ,n(q0) ≥ 0.5.

This single-number measure has revealed itself of practical significance because the adversary’s
advantage usually falls to zero very quickly as the number of queries q falls beneath q0. Typically,
for example, the advantage is upper bounded by (q/q0)

c for some c > 0, plus a small constant. The
value of c roughly determines the quality of the “security curve”: the larger the c, the sharper the
security threshold (i.e., the faster the drop in the adversary’s advantage as q falls below q0). E.g.,
single encryption has c = 1 whereas double encryption achieves c = 2, by Aiello et al. [1]. Our own
security exponents are constants between 0 and 1 and which depend on ℓ, as we discuss in more
detail in the next section.

We will refer to c as the security exponent, when it can be identified. A security exponent thus
gives further qualitative information about a security bound, with higher security exponents being
better. Unfortunately, comparing the quality of our bounds with previous multiple-round result
such as Gaži and Maurer [15] and Lee [20] is made more difficult by the fact that those authors do
not explicitly identify their security exponents (which are sometimes, indeed, hard to extract from
the midst of complicated security bounds).

3 Statement of Results

Lower bounds. Our paper’s main result is the following theorem (as always, ℓ′ = 2⌈ℓ/2⌉; we also
write (ℓ+ 1)′ for 2⌈(ℓ + 1)/2⌉, etc):

Theorem 1. (a) If q ≥ 2n then

Advcasc
ℓ (q) ≤ ℓ2

2κ+1
+

4

2n
+ α(ℓ/2 + 2)ℓ1/2

(

8q

2κ+n(ℓ′−2)/ℓ′

)ℓ′/(ℓ+3)′

where α = ℓ22ℓ(7n)ℓ
′/2. Furthermore if q ≥ n2n we can improve α to α′ = ℓ22ℓ14ℓ

′/2 ≤ ℓ28ℓ
′
.

6

(b) If q ≤ 2n and 2ℓ(3n+ 2)ℓ
′/2 ≤ 2n then

Advcasc
ℓ (q) ≤ ℓ2

2κ+1
+

4

2n
+ β(ℓ/2 + 2)

(

ℓ3ℓ
′
q2

2κℓ
′/2+n

)2/(ℓ+3)′

+
qβ

ℓ2κℓ
′/2

where β = ℓ22ℓ(3 log q + 2)ℓ
′/2. Moreover these results also hold if the adversary is allowed to ask,

for free, all possible 2n queries to its second oracle.

We note the constraint 2ℓ(3n+ 2)ℓ
′/2 ≤ 2n that appears in the second part of Theorem 1 is almost

always satisfied by practical parameters and is always asymptotically verified as n →∞. (Indeed,
we imagine ℓ as fixed whereas n, κ→∞ according to some fixed ratio.)

We actually prove something a bit stronger and more general, given by Theorem 3 in Appendix
A, but the statement of this more general result is also less digestible. Appendix A discusses how
Theorem 1 can be obtained as a corollary of Theorem 3.

It directly follows from Theorem 1 that Advcasc
ℓ,κ,n(q) is small if

q ≪ exp(κ+min{κ(ℓ′ − 2)/2, n(ℓ′ − 2)/ℓ′})

(note κ+ κ(ℓ′ − 2)/2 = κℓ′/2 and q2/2κℓ
′/2+n ≤ q/2κℓ

′/2 when q ≤ 2n) or, a little more precisely, if

q ≪ (2−ℓ/2(7n)−ℓ′/4ℓ−2)(ℓ+3)′ · exp(κ+min{κ(ℓ′ − 2)/2− 2ℓ, n(ℓ′ − 2)/ℓ′ − 3}). (7)

We emphasize that the above threshold is a coarse estimate, which takes into account the factors
of all three non-negligible expressions in theorem 1. (Note that log q ≤ n in the second part of
Theorem 1, so β ≤ α.) Indeed, if q is a factor r smaller than the expression on the right of (7),
then it is easy to see from Theorem 1 that the adversary’s advantage is upper bounded by either
rℓ

′/(ℓ+3)′ or r4/(ℓ+3)′ + r, disregarding the negligible terms ℓ2/2κ+1 and 4/2n.
Moreover if the above inequality holds when q = nN then the adversary needs more than nN

queries. In that case we can replace α with α′ and the threshold becomes

q ≪ (8−1ℓ−4/ℓ′)(ℓ+3)′ · exp(κ+ n(ℓ′ − 2)/ℓ′ − 3)

which differs from the upper bound (best attack) only by a constant factor, i.e., by a factor inde-
pendent of n and κ.

Our security exponents are thus “ℓ′/(ℓ + 3)′ if q ≥ 2n, 4/(ℓ + 3)′ or 1 if q ≤ 2n” but this is
not very informative since what is really of interest is the security exponent that governs near the

threshold. Here one can note that

κ(ℓ′ − 2)/2 ≥ n(ℓ′ − 2)/ℓ′ ⇐⇒ κ/2 ≥ n/ℓ′

which leads us to examine the cases κ/2 ≥ n/ℓ′ and κ/2 ≤ n/ℓ′ separately. If κ/2 ≥ n/ℓ′ then

κ+ n(ℓ′ − 2)/ℓ′ ≥ 2n/ℓ′ + n(ℓ′ − 2)/ℓ′ = n

so that security is given by the first part of Theorem 1 for q’s near the security threshold (which,
in this case, is exp(κ+ n(ℓ′− 2)/ℓ′)), and the security exponent is ℓ′/(ℓ+3)′. On the other hand if
κ/2 ≤ n/ℓ′ then

κℓ′/2 ≤ n

7

so that security is given by the second part of Theorem 1 for all q’s beneath the security threshold
(which is now exp(κℓ′/2)). Since the second part of Theorem 1 is dominated by the last term for
κℓ′/2 < n, the security exponent is 1 if κℓ′/2 < n, which is the generic case, and is 4/(ℓ+3)′ in the
corner case κℓ′/2 = n.

By means of comparison we point out that Gaži and Maurer, whose security threshold is at
q0 = exp(κ+min{κ(ℓ′ − 2)/ℓ′, n/2}), roughly achieve security exponent

c =

{

2/3 if q0 = exp(κ+ n/2)

ℓ′/2 if q0 = exp(κ+ κ(ℓ′ − 2)/ℓ′).

For ℓ = 3, for example, their security exponents of 2/3 and 2 for respectively q0 = exp(κ+n/2) and
q0 = exp(3κ/2) (these are also achieved by Bellare and Rogaway for ℓ = 2). The former security
exponent of 2/3 for security threshold q0 = exp(κ+n/2) matches our own security exponent for this
threshold. The latter security exponent of 2 cannot be compared with any of our security exponents,
since it belongs to a different (suboptimal) security threshold. Along the same lines, it doesn’t make
sense to compare our security exponents for ℓ > 4 with those of Gaži and Maurer, since these belong
to different security thresholds6. (Lee’s security bound [20] has a rather complicated form, and we
did not attempt to identify a security exponent.)

Upper bounds. In Section 4 we present a simple attack of query complexity

9 · exp(κℓ′/2)

that succeeds in distinguishing (E,E
(ℓ)
k) from (E, π) with overwhelming advantage. This comple-

ments the previously quoted attack by Gaži, of query complexity

ℓ · exp(κ+ n(ℓ′ − 2)/ℓ′)

and which also succeeds with overwhelming advantage. Hence the gap left between lower and upper
bounds is essentially the gap left between

min{9 · exp(κℓ′/2), ℓ · exp(κ+ n(ℓ′ − 2)/ℓ′)}

and the right-hand side of (7).

4 An attack of cost exp(κℓ′/2)

In this section we describe a new “start-in-the-middle-attack” on E(ℓ) of complexity exp(κℓ′/2),
which complements Gaži’s attack of query complexity exp(κ+ n(ℓ′− 2)/ℓ′). A precise statement is
given in the following theorem.

Theorem 2. For any n ≥ 2 and any ℓ, κ there exists an adversary A making at most 6 exp(κℓ′/2)

queries to E and at most 3 exp(κ(ℓ− ℓ′/2)) queries to E
(ℓ)
k /π, such that

Advcasc
ℓ (A) ≥ 1− 2κℓ

2n(2n − 1)(2n − 2)
.

6 For ℓ = 4 and q0 = exp(κ + n/2), the Gaži-Maurer exponent of 2/3 “momentarily” beats our own exponent of
ℓ′/(ℓ+3)′ = 4/8 = 1/2 for the same q0. Since security for ℓ = 3 transfers (via lossless reduction) to ℓ = 4, however,
one could equally well argue a security exponent of 2/3 based on our own bounds.

8

Comments. Note that κℓ′/2 ≤ n(ℓ′ − 2)/ℓ′ implies κℓ ≤ 2n, so that 2κℓ/23n is indeed negligible for
κℓ′/2 ≤ n(ℓ′ − 2)/ℓ′. We also note that

ℓ− ℓ′/2 =

{

ℓ′/2 if ℓ is even,

ℓ′/2− 1 if ℓ is odd.

In particular ℓ− ℓ′/2 ≤ ℓ′/2.

K ← {0, 1}ℓκ

R← 3
for r = 0 to R− 1 do

for i = 0 to ℓ let Si ← ∅
h← ℓ− ℓ′/2
Sh ← {1

r0n−r}
for i = h to ℓ− 1

forall x ∈ Si do

forall k ∈ {0, 1}κ do

query ek(x) := E(k, x)
let Si+1 ← Si+1 ∪ {ek(x)}

end for // (for i = h to ℓ− 1)
for i = h to 1

forall x ∈ Si do

forall k ∈ {0, 1}κ do

query e−1
k (x) := E−1(k, x)

let Si−1 ← Si−1 ∪ {e
−1
k (x)}

end for // (for i = h to 1)
forall x ∈ S0, k1‖ . . . ‖kℓ ∈ K do

if (ekℓ
(· · · ek1

(x) · · ·) is known and not equal to P (x)) then
K ← K\{k1‖ . . . ‖kℓ}

end for // (for r = 0 to R − 1)
If K = ∅ then return 0
return 1

Fig. 1. The adversary A for Theorem 2.

Proof. The adversary A, which implements a “start-in-the-middle” attack, is given by the pseu-
docode of Figure 4. A iterates a main loop R = 3 times. In each loop it tries to discard potential
candidates for the secret key k. If no candidate keys remain after the final loop it outputs 0,
otherwise 1.

A’s second oracle, which is either E
(ℓ)
k or π depending on the world, is written P . We also adopt

the convention, not reflected in the pseudocode, that A avoids redundant queries to P .

It is easy to see that A makes at most exp(κℓ′/2) + exp(κ(ℓ − ℓ′/2)) ≤ 2 exp(κℓ′/2) queries to
E at each iteration of the main loop. The fact that A makes at most exp(κ(ℓ− ℓ′/2)) queries to P
at each iteration of the main loop can be seen from the fact that |S0| ≤ (2κ)ℓ−ℓ′/2 at each iteration,
and by the convention that A never makes redundant queries to P .

A obviously outputs 1 in the real world, since the real key always remains in K. To upper bound
the probability that A outputs 1 in the ideal world we consider the probability that a given value
k = k1‖ . . . ‖kℓ survives all three iterations. Since P = π is a random permutation, this probability

9

is easily7 seen to be (2−n)(2n − 1)−1(2n − 2)−1. The theorem statement then follows by a union
bound over all keys, and by definition of Advcasc

ℓ,κ,n(A). ⊓⊔

5 Preliminary reductions and proof overview

In this section we lay some basic groundwork for the proof of Theorem 3, stated in Appendix A. This
“groundwork” partly consists of some innocuous transformations made to the adversary and/or to
the security game, and partly of a quick introduction to the H-coefficient technique, which we will
use.

Modifications of Bellare and Rogaway [4]. We start by modifying the game in the following
way. At the very start of the experiment we send a symbol ⋆ ∈ {⊥,⊤} to the adversary. In the
ideal world we send ⋆ = ⊤, and in the real world we also send ⋆ = ⊤ unless k∗ℓ = k∗i for some i < ℓ,
where k∗ = k∗1‖ . . . ‖k∗ℓ is the secret key, in which case we send ⋆ = ⊥. Since the adversary is free
to disregard ⋆, this modification is without loss of generality.

Next, we make a second modification, namely that if ⋆ = ⊥ then we forbid the adversary from
making any queries. Since ⋆ can only be ⊥ in the real world this is without loss of generality either
(as the adversary already knows which world it is in anyway).

Now we make yet another modification to the real world, by generating a random permutation

π like in the ideal world at the beginning of the experiment. If ⋆ = ⊤ we answer queries to E
(ℓ)
k∗ by

π instead and, to compensate, we define Ek∗ℓ
= π ◦E−1

k∗1
◦ · · · ◦E−1

k∗ℓ−1
(thus “overwriting” Ek∗ℓ

). Since

this simply trades the randomness of Ek∗ℓ
for the randomness in π, it is easy to see that this is an

equivalent way of defining the real world.

Note that both worlds now involve an independent8 random permutation π. For each fixed
permutation S one can also consider the distinguishing experiment where π is set to S in each
world. A simple averaging argument over π (see, e.g., Appendix A of [8] for something very similar)
shows, moreover, that there must exist some S for which the adversary’s distinguishing advantage
is at least as great when π is fixed to S as when π is random. We can thus assume without loss
of generality that π is not sampled at random, but set to the same fixed permutation S in both
worlds. Since S is fixed, now, and since we are quantifying over all information-theoretic adversaries
A, we can assume that A knows S and, hence, makes no queries to its second oracle9.

To summarize, modifications so far amount to this: in the real world, we abort the experiment
if k∗ℓ = k∗i for some i < ℓ, whereas in the contrary (generic) case there is some fixed permutation
S, known to the adversary, such that Ek∗ℓ

= S ◦E−1
k∗1
◦ · · · ◦ E−1

k∗ℓ−1
. The ideal world never aborts.

Further Normalizations. Since A is information-theoretic we can assume without loss of gen-
erality that A is deterministic.

7 If this causes confusion, it should be noted that “extraneous” queries to P—those made in the process of checking
keys that are not equal to k∗—do not affect this probability. And if this causes doubt, one should consider that
all such “extraneous” queries can be made after the queries which are relevant to k∗ are made, without changing
the probability that k∗ survives. One should also note that Ek1

◦ · · · ◦Ekh
is a permutation.

8 The real world now has three “random tapes”: one for k∗, one for π, and one for the ideal cipher E. Every query
made by the adversary is deterministically answered as a function of these three random tapes, and these random
tapes are independently sampled. This is the sense in which π is “independent” from other randomness in the real
world.

9 It is this modification which allows the proof to support 2n second oracle queries since, in the end, we “give” the
second oracle to A anyway.

10

As customary, we also assume that A never makes a query to which it already knows the answer.
such as querying E(k, x), obtaining answer y, and later querying E−1(k, y). For the remainder of
the proof we assume the presence of a fixed adversary A confirming to these conventions.

As in [8] we will also modify the experiment by giving the secret key to A after it has finished

making all its queries. More precisely, in the real world we give the “real” key k∗ used to key the

second oracle E
(ℓ)
k∗ whereas in the ideal world (where no such key exists) we sample a “dummy”

key k∗ ∈ {0, 1}κℓ uniformly at random and give this dummy key to A. Since A is free to disregard
this extra information this is also without loss of generality. For consistency, we also give this key
in the real world if the real world aborts.

For linguistic convenience we will also view the strings ⋆ and k∗ which A learns as being the
result of “queries” made by A to its “oracles” (as, indeed, would be easy to formalize).

Transcripts. The interaction of A with its oracles is encoded by a transcript which, basically, a
list of questions asked and answers received, together also with the key value received at the end
of the experiment.

More precisely, a transcript can be encoded by a triple of the form (⋆,QE , k
∗) where ⋆ ∈ {⊥,⊤},

where k∗ ∈ {0, 1}κℓ is the final key value received, and where QE is an unordered set of triples of
the form (k, x, y) ∈ {0, 1}κ × {0, 1}n × {0, 1}n with each such tuple indicating that either E(k, x)
was queried with answer y or that E−1(k, y) was queried with answer x. Indeed, A’s interaction
with its oracles can be unambiguously reconstructed from such an “unordered and undirected” set
QE by using the fact that A is deterministic, cf. [8].

We write T for the set of all possible transcripts.

Probability space of Oracles. Let P be the set of all permutations from {0, 1}n to {0, 1}n.
Then a blockcipher of key space {0, 1}κ and message space {0, 1}n can be viewed as an element of
Pexp(κ) (2κ-fold direct product). Thus, an ordered pair

(E′, k∗) ∈ Pexp(κ) × {0, 1}κℓ

uniquely determines a real-world environment for A. More precisely, unless ⋆ = ⊥ in which case A
receives no further information except for k∗, A’s ideal cipher oracle E is defined by

Ek =

{

E′
k if k 6= k∗ℓ

S ◦ E′−1
k∗1
◦ · · · ◦E′−1

k∗ℓ−1
if k = k∗ℓ

where k∗ = k∗1‖ . . . ‖k∗ℓ . We thus identify elements of

ΩX := Pexp(κ) × {0, 1}κℓ

with real-world oracles. We view ΩX as a probability space with uniform measure (indeed, the
definition of the real-world experiment induces uniform measure on ΩX).

We similarly define

ΩY := Pexp(κ) × {0, 1}κℓ

to be identified with the set of all ideal-world oracles, and which we also view as a probability
space with uniform measure. Here the last coordinate corresponds to the “dummy key” given to
the adversary at the end of the experiment. We emphasize that, for (E, k∗) ∈ ΩY , the ideal cipher
oracle to which A has access is precisely E, i.e., with no key being overwritten as a function of k∗

11

and S; this is precisely the difference between the real and ideal worlds in the (generic) case when
k∗ℓ /∈ {k∗1 , . . . , k∗ℓ−1}.

We can view the transcript produced by A in the real world as a random variable defined over
ΩX . Formally, let X : ΩX → T be the function defined by letting X(ω) be the transcript obtained
by running A on oracle ω. Thus X is a random variable of range T , and the distribution of X is
exactly the distribution of transcripts in the real world. We similarly define Y : ΩY → T , so that
Y is the transcript distribution in the ideal world.

The H-coefficient technique [29, 30], in its simplest form, states that if we can divide T into a
set of (so-called) “good” transcripts T1 and (so-called) “bad” transcripts T2, such that10

Pr[X = τ]

Pr[Y = τ]
≥ 1− ε1 (8)

for some ε1 > 0 and for all τ ∈ T1, then the adversary’s distinguishing advantage is upper bounded
by

Pr[Y ∈ T2] + ε1.

I.e., the distinguishing advantage is upper bounded by the probability of obtaining a bad transcript
in the ideal world, plus

max
τ∈T1

(1− Pr[X = τ]/Pr[Y = τ]).

We refer to [8] for more details. (One could reverse the roles of the real and ideal worlds, since the
method is completely general, but Pr[Y ∈ T2] is typically much easier to compute than Pr[X ∈ T2]
due to the ideal world’s nice structure.)

Computing transcript probabilities. Another key insight of the H-coefficient technique is
that the probability of obtaining a transcript in either world can be computed via the formulas

Pr[X = τ] =
|compX(τ)|
|ΩX |

, Pr[Y = τ] =
|compY (τ)|
|ΩY |

(9)

as long as Pr[Y = τ] > 0, and where compX(τ) ⊆ ΩX (resp. compY (τ) ⊆ ΩY) is the set of real-
world (resp. ideal-world) oracles that are compatible with a transcript τ , where “compatibility” is
defined the obvious11 way: an oracle ω is compatible with a transcript τ if each individual query
in τ is compatible with ω, i.e., if asking that query to ω would result in the answer seen in τ
(in particular τ ’s key value should match ω’s, since the key appears in the transcript). We note
that query order and query direction (E versus E−1) have no bearing on which transcripts are
compatible with which oracles (even should the transcript contain such information). See [8] and
Appendix D for further discussion of these identities.

Terminology: Chains. Let τ = (⋆,QE , k
∗) be a transcript, where k∗ = k∗1‖ . . . ‖k∗ℓ . Loosely

following [15], a tuple (h, xh, kh+1, xh+1, kh+2, . . . , kh+r, xh+r) where 0 ≤ h ≤ ℓ − 1 is an integer,
where 1 ≤ r ≤ ℓ, and where

{

(ki, xi−1, xi) ∈ QE if i− 1 6= ℓ

(ki, S
−1(xi−1), xi) ∈ QE if i− 1 = ℓ

10 By convention, the ratio Pr[X = τ]/Pr[Y = τ] is considered to be ∞ if Pr[Y = τ] = 0.
11 Slightly more formally—but less intuitively—an oracle (or “environment”) ω is compatible with a transcript τ if

there exists some (wlog, deterministic) adversary A′ that produces τ as transcript when given ω as oracle.

12

for h + 1 ≤ i ≤ h + r (in particular, xi ∈ {0, 1}n and ki ∈ {0, 1}κ for each xi, ki) is called an
r-chain of τ starting at index h or simply an r-chain of τ . Moreover, an r-chain is said to fit τ if
kh+i = k∗h+i for 1 ≤ i ≤ r, indices taken mod ℓ and in the range {1, . . . , ℓ}. We sometimes commit
a slight abuse of language by saying that a chain “fits k∗” instead of “fits τ” when it is clear which
transcript τ is intended.

By means of emphasis, a chain which doesn’t (necessarily) fit the key of τ is said to be generic;
thus all r-chains of τ are by definition generic.

The rest of the proof in a nutshell. Broadly, our “bad transcripts” are transcripts that
either have a bad key (i.e., k∗i = k∗j for some i 6= j) or transcripts with too many (long) fitting
chains, where “too many” depends geometrically on the chain length r, as might be expected. When
there are not too many long chains that fit the transcript’s key, indeed, we are in a position to
apply the lemma of Chen and Steinberger [8] to show that the probability of obtaining the given
transcript in the real world is not far off from the probability of obtaining the same transcript in
the ideal world, as required by (8).

The main technical challenge that arises is that of upper bounding the probability of obtaining
too many length r chains that fit the key. Here one must emphasize that this probability (which is
the probability of obtaining a “bad” transcript) is being computed in the ideal world. In the ideal
world, the key value k∗ ∈ {0, 1}κℓ is chosen at random after all queries are completed. Hence, by a
Markov bound, it suffices to show that, with high probability, not too many generic r-chains are
created by the adversary’s queries. While [4, 15] are up against the same challenge, we deliver a
tight bound on the number of generic chains by using a fairly simple argument, as already discussed
in the paper’s introduction (see in particular Proposition 1 in Section 6).

The details of all this are implemented in Section 6.

6 Proof of Theorem 3

For the remainder of the proof of Theorem 3 we will assume that n ≥ 2 and also, if q ≥ 2n, that

4Cq ≤ 2κ+n and C2n
(q

2κ+n

)ℓ′/2
< 1. (10)

These assumptions are without loss of generality because the first part of Theorem 3 is void other-
wise, as can easily be checked. We also let N = 2n.

We start by making a few more definitions that will be useful for the definition of bad transcripts
and thereafter. Firstly, for a transcript τ = (⋆,QE , k

∗) we let Q+
E, Q

−
E be the sets of queries in QE

obtained respectively by forward and backward queries to E by the adversary. (To wit, a query
to E is forward, a query to E−1 is backward.) We note that while QE does not explicitly encode
forward/backward information by design, such information can be uniquely reconstructed from
QE given the fact that A is deterministic; hence, this information is implicitly contained in QE .
Moreover, we note that Q+

E ∩Q−
E = ∅ by the fact that A never makes redundant queries, so QE is

the disjoint union of Q+
E and Q−

E.
The maximum forward query occupancy of τ , denoted fwd(τ), is given by

fwd(τ) := max
y0∈{0,1}n

|{(k, x, y) ∈ Q+
E : y = y0}| (11)

and bwd(τ), the maximum backward query occupancy, is similarly given by

bwd(τ) = max
x0∈{0,1}n

|{(k, x, y) ∈ Q−
E : x = x0}|.

13

We also define

fitkey(τ, r, h)

as the number of r-chains in τ that fit k∗ and that start at position h.

Note that back-of-the-envelope computations suggest that fwd(τ), bwd(τ) should be around
q/N for q ≥ N = 2n and should be around log(q) ≤ n for q ≤ N . This motivates the definition of
the following threshold ζ(q):

ζ(q) :=











3 log(q) + 2 if q ≤ N,

7nq/N if N ≤ q ≤ nN,

14q/N if nN ≤ q.

For now, the factors 3 log(q)+ 2, 7n and 14 that appear in the definition of ζ(q) should be more or
less ignored; these coefficients are necessary to make bad transcripts, as defined next, unlikely. (We
distinguish between the cases N ≤ q ≤ nN and nN ≤ q only so that we can give a slightly sharper
bound in the latter case. Also we allow cases to overlap for the sake of typographical and conceptual
convenience.) In fact, we find it convenient to factor ζ(q) into “essential” an “non-essential” parts
ζ ′(q) and ζ ′′(q):

ζ ′′(q) =











3 log(q) + 2 if q ≤ N,

7n if N ≤ q ≤ nN,

14 if nN ≤ q.

ζ ′(q) =

{

1 if q ≤ N,

q/N if q ≥ N.
(12)

Thus ζ(q) = ζ ′′(q)ζ ′(q). Note also that ζ(q) ≤ 2κ by the wlog assumptions made in (10).

Bad transcripts. We say that a transcript τ = (⋆,QE , k
∗) is bad if either (i) k∗i = k∗j for some

i 6= j, or (ii) fwd(τ) ≥ ζ(q) or bwd(τ) ≥ ζ(q), or (iii) there exists some h, 0 ≤ h ≤ ℓ− 1 such that

fitkey(τ, ℓ, h) ≥ 1,

or (iv) there exists some r, 1 ≤ r ≤ ℓ and some h, 0 ≤ h ≤ ℓ− 1 such that

fitkey(τ, r, h) ≥ Czr.

where

zr := min{q,N} ·
(

ζ ′(q)

2κ

)⌈r/2⌉

. (13)

We let T2 be the set of bad transcripts, and let T1 = T \T2. One can note that every transcript with
⋆ = ⊥ is a bad transcript, since in that case k∗ℓ = k∗i for some i 6= ℓ.

Bounding the probability of bad transcripts. Here we attach ourselves to upper bounding
Pr[Y ∈ T2], as required by the H-coefficient technique. This is the probability of obtaining a bad
transcript in the ideal world.

The probability that two subkeys of k∗ are equal is obvioulsy at most
(

ℓ
2

)

2−κ ≤ ℓ2/2κ+1. For
the other two events we need the help of the following lemmas:

14

Lemma 1. One has

Pr
τ∼Y

[fwd(τ) ≥ ζ(q)] ≤ 2

N
and Pr

τ∼Y
[bwd(τ) ≥ ζ(q)] ≤ 2

N

for all q, n.

(Here Prτ∼Y indicates that τ is sampled according to the ideal world distribution on transcripts.
The same probabilities could equivalently be written Pr[fwd(Y) ≥ ζ(q)], Pr[bwd(Y) ≥ ζ(q)].)

Lemma 2. One has

Pr
τ∼Y

[fitkey(τ, ℓ, h) ≥ 1 ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2ℓζ ′′(q)⌈ℓ/2⌉zℓ

for each 0 ≤ h ≤ ℓ− 1, and

Pr
τ∼Y

[fitkey(τ, r, h) ≥ Czr ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2rζ ′′(q)⌈r/2⌉

C

for each 1 ≤ r ≤ ℓ, 0 ≤ h ≤ ℓ− 1 with zr as defined in (13).

We can combine lemmas 1 and 2 by a union bound. When q ≥ N , we observe that condition (iii)
is contained in condition (iv) since

Czℓ = CN ·
(q

2κ+n

)ℓ′/2

is less than 1 by (10). In this case we don’t need to incorporate the first part of lemma 2 into the
union bound. Using the inequality r ≤ ℓ, we obtain

Pr[Y ∈ T2] ≤







ℓ2

2κ+1 + 4
N + ℓ22ℓζ′′(q)⌈ℓ/2⌉

C if q ≥ N,

ℓ2

2κ+1 + 4
N + ℓ2ℓζ ′′(q)⌈ℓ/2⌉(zℓ + ℓ/C) if q ≤ N

(14)

since there are ℓ choices for h and ℓ2 choices for the pair (r, h).

The proof of Lemma 1 is found in Appendix B. Even while the proof of this lemma ultimately
relies on basic balls-in-bins statistics, we note that subtleties arise due to the fact that A is querying
permutations on keys of its choice, and that a permutation of {0, 1}n “loses randomness” after ≈ 2n

queries. In particular, the proof of Lemma 2 requires the “super-query” technique developed for
beyond-block-length-security [3,18,21] and, to achieve something fully formal, some combinatorial
results related to partitions (see Appendix B).

The proof of Lemma 2 is, despite appearances, significantly simpler than the proof of Lemma
1. The main component is the following proposition (which happens to be a key part of our proof
and which significantly sharpens similar bounds found in [4, 15]):

Proposition 1. Assume τ = (⋆,QE , k
∗) is a q-query transcript such that fwd(τ) ≤ ζ(q), bwd(τ) ≤

ζ(q). Then the total number of r-chains of τ starting at position h is at most

2r ·min{q,N} · ζ(q)⌈r/2⌉2κ⌊r/2⌋.

15

Proof. Let ν = (h, xh, kh+1, xh+1, . . . , kh+r, xh+r) be an r-chain of τ . Thus either (ki, xi−1, xi) ∈ Q+
E

or (ki, xi−1, xi) ∈ Q−
E for h + 1 ≤ i ≤ h + r. Let ν’s signature be the string sigν ∈ {+,−}r such

that (ki, xi−1, xi) ∈ Q
sigνi
E for h+ 1 ≤ i ≤ h+ r.

We start by fixing a signature sig0 ∈ {+,−}r and by upper bounding the number of r-chains
ν of τ starting at position h such that sigν = sig0. We can assume without loss of generality that
sig0 contains at least as many −’s as +’s, i.e., that the number of −’s is at least ⌈r/2⌉.

If ν = (h, xh, kh+1, xh+1, . . . , kh+r, xh+r) is a ν-chain with signature sig0 then there are, firstly,
at most

min{q,N}
choices for xh given that (kh+1, xh, xh+1) ∈ QE. Then, presuming xh fixed, there are at most 2κ

choices for xh+1 if sig01 = + and at most ζ(q) choices for xh+1 if sig01 = −, given that τ is a
transcript such that bwd(τ) ≤ ζ(q). Similarly, each subsequent step introduces a factor of either 2κ

or ζ(q) depending on the sign of that step in sig0. Hence (and since 2κ ≥ ζ(q)) the total number
of choices for xh, kh+1, . . . , xh+r is at most

min{q,N} · ζ(q)⌈r/2⌉2κ⌊r/2⌋.

Multiplying by 2r to account for all possible signatures concludes the proof. ⊓⊔

Since Pr[A ∧B] ≤ Pr[A|B] we have

Pr
τ∼Y

[fitkey(r, τ) ≥ T ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)]

≤ Pr
τ∼Y

[fitkey(r, τ) ≥ T | fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)]

where T ∈ {Czr, 1} is the bound we want to prove. When we condition on fwd(τ) ≤ ζ(q)∧bwd(τ) ≤
ζ(q), however, k∗ is still independent uniformly at random (being entirely independent from QE in
the ideal world), and so the expected number of r-chains that fit τ at position h is upper bounded
by

2r ·min{q,N} · ζ(q)⌈r/2⌉2κ⌊r/2⌋ 1

2κr
(15)

by Proposition 1. (Each r-chain of QE, indeed, has probability of exactly 1/2κr of being “hit” by
k∗.) Since r − ⌊r/2⌋ = ⌈r/2⌉, (15) can be written

2rζ ′′(q)⌈r/2⌉ min{q,N}
(

ζ ′(q)

2κ

)⌈r/2⌉

= 2rζ ′′(q)⌈r/2⌉zr

with zr as defined in (13). It thus follows by Markov’s inequality that

Pr
τ∼Y

[fitkey(τ, ℓ, h) ≥ 1 ∧ fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2rζ ′′(q)⌈r/2⌉zr

and

Pr
τ∼Y

[fitkey(r, τ) ≥ Czr | fwd(τ) ≤ ζ(q) ∧ bwd(τ) ≤ ζ(q)] ≤ 2rζ ′′(q)⌈r/2⌉

C

which proves Lemma 2 and inequality (14).

16

Good transcripts. The rest of the proof consists in lower-bounding the ratio

Pr[X = τ]

Pr[Y = τ]

for all τ ∈ T1 such that Pr[Y = τ] > 0. We recall this is equivalent to lower bounding the ratio

|compX(τ)|
|ΩX |

/ |compY (τ)|
|ΩY |

(16)

by (9).
Fix τ = (⋆,QE , k

∗) ∈ T1 such that Pr[Y = τ] > 0. (Note ⋆ = ⊤ because τ ∈ T1.) Our approach
for lower-bounding (16) is very similar to that of [8].

Let comp′X(τ) ⊆ ΩX be the set of real-world oracles that are compatible with τ on everything
except for the queries in QE with key k∗ℓ . (In more detail, ω = (E′′, k′′) ∈ ΩX is in comp′X(τ) if
and only if k′′ = k∗ and if E′′

k(x) = y for all (k, x, y) ∈ QE such that k 6= k∗ℓ .) We similarly define
comp′Y (τ) to be the set of all ideal-world oracles that are compatible with τ on everything except
for the queries to E with key k∗ℓ . It is easy to see that

|comp′X(τ)|
|ΩX |

=
|comp′Y (τ)|
|ΩY |

from the fact that k∗ and the set of random permutations {Ek : k 6= k∗ℓ } are independent in
both the real and ideal worlds. (Alternatively, one can show by direct counting that |comp′X(τ)| =
|comp′Y (τ)|. Also note that |ΩX | = |ΩY |.) It thus suffices to lower bound

|compX(τ)|
|comp′X(τ)|

/ |compY (τ)|
|comp′Y (τ)|

(17)

in order to lower bound (16).
Let qℓ = |pℓ| be the number of queries with key k∗ℓ that appear in QE. For the ideal world, it is

easy to see that

|compY (τ)|
|comp′Y (τ)|

=

qℓ−1
∏

i=0

1

2n − i
. (18)

For the real world the situation is more complicated, but the basic idea is to view

|compX(τ)|
|comp′X(τ)| (19)

as the probability that when a random ω ∈ comp′X(τ) is sampled, this ω happens to also be
compatible with the qℓ queries in τ of key k∗ℓ . (This probability is to be compared with (18).) Note
that sampling ω ∈ comp′X(τ) can be viewed as randomly extending a set of already partially-defined
random permutations {Ek : k 6= k∗ℓ} (partially defined, that is, by the queries that appear in QE).
Note moreover that whether such a random extension is “successful” in the sense of producing an
oracle compatible with τ depends only on the extension of the permutations {Ek∗i

: 1 ≤ i ≤ ℓ− 1},
since queries with key k∗ℓ are (in the real world) answered as a function of those permutations.
Details follow.

17

Graph view. To enable us to reason combinatorially we introduce a “graph view” of the problem.
For 1 ≤ i ≤ ℓ let pi be the set of queries in QE with key k∗i ; more precisely, pi = {(x, y) :

(k∗i , x, y) ∈ QE}. We associate a bipartite graph Gi to pi, where Gi has shores {0, 1}n and {0, 1}n;
an edge connects u ∈ {0, 1}n to v ∈ {0, 1}n in Gi if and only if (u, v) ∈ pi. (Thus Gi is a partial
matching from {0, 1}n to {0, 1}n, by the permutation structure of Ek∗i

.) Moreover, define

p̃ℓ = {(S−1(y), x) : (x, y) ∈ pℓ}.

Thus |p̃ℓ| = |pℓ| = qℓ.
We introduce a new graph G(τ) that, essentially, “glues” the graphs G1, . . . , Gℓ−1 together.

G(τ) has 2nℓ vertices grouped into ℓ “shores”, which each shore being identified with {0, 1}n. We
number the ℓ shores as 0, 1, . . ., ℓ − 1. We place a copy of Gi between shores i − 1 and i for
1 ≤ i ≤ ℓ − 1; more precisely, vertices x in shore i − 1 and y in shore i are joined if and only if
(x, y) ∈ pi. We moreover equate Gi with its “copy” in G(τ) for 1 ≤ i ≤ ℓ− 1.

A path from shore i to shore j in G(τ), 0 ≤ i < j ≤ ℓ− 1, is just what it sounds like: a sequence
of vertices (xi, xi+1, . . . , xj) such that xi is in shore i and xj is in shore j and such that (xh, xh+1)
is an edge of G(τ) for i ≤ h ≤ j − 1. (This automatically implies that xh is in shore h.) The length

of the path is j − i. We emphasize that we do not require a path to be maximal, i.e., one path can
be a subset of another, longer path.

Let (x̃1, ỹ1), . . . , (x̃qℓ , ỹqℓ) be the qℓ elements of p̃ℓ. We view each x̃i as a vertex in shore 0 of
G(τ) and each ỹi as a vertex in shore ℓ − 1 of G(τ). We emphasize that we do not place an edge
between x̃i and ỹi. Also let R(x̃i) be the rightmost vertex in G(τ) reachable by a path of edges
from x̃i in G(τ) (shores with higher indices being “to the right” of shores with lower indices), and,
similarly, let L(ỹi) be the leftmost vertex in G(τ) reachable from ỹi. For example, R(x̃i) = x̃i if x̃i
isn’t adjacent to any edges in G(τ). Finally, let Sh(u) ∈ {0, 1, . . . , ℓ− 1} be the index of the shore
of a vertex u in G(τ).

Note that every path of length r in G(τ) corresponds to a distinct r-chain in τ that fits k∗.
Moreover, for each 1 ≤ i ≤ qℓ, there corresponds a distinct r-chain of length

Sh(R(x̃i)) + ℓ− Sh(L(ỹi))

that fits k∗ as well.
Since τ is a good transcript, according to condition (iii) in the definition of bad transcripts there

are no r-chains of length12 ℓ that fit τ . In particular G(τ) contains no paths of length ℓ and, also,

Sh(R(x̃i)) + ℓ− Sh(L(ỹi)) ≤ ℓ− 1

for each 1 ≤ i ≤ qℓ, i.e.,
Sh(L(ỹi))− Sh(R(x̃i)) ≥ 1

for 1 ≤ i ≤ qℓ.
More definitions: a vertex in shore i of G(τ) is left-free if it is not adjacent to a vertex in shore

i− 1. It is right-free if it is not adjacent to a vertex in shore i+ 1.
We can evaluate (19) via the following experiment in qℓ stages. Each stage modifies the graph

G(τ), and we write G(τ)i for the graph as it stands after the i-th stage, with G(τ)0 = G(τ). At the

12 In the extreme case ℓ = 1 one can observe thatG(τ) has only one shore, that qℓ = 0 and that |compX(τ)|/|comp
′
X(τ)|

= |compY (τ)|/|comp
′
Y (τ)| = 1. The adversary’s advantage is then upper bounded by (14). Of course, tighter

analyses can be made for the special case ℓ = 1.

18

i-th stage, we randomly extend the path ending at R(x̃i) by choosing a vertex uniformly at random
among the left-free vertices of shore Sh(R(x̃i)) + 1, and connecting this vertex to R(x̃i); this new
edge changes the value of R(x̃i), and we repeat this step until Sh(R(x̃i)) ≥ Sh(L(ỹi)); this defines
the graph G(τ)i from G(τ)i−1; if x̃i and ỹi are connected by a path (i.e., R(x̃i) = ỹi, L(ỹi) = x̃i) in
G(τ)i then we proceed to stage i+ 1; if not, we abort the experiment and declare failure.

We write
G(τ)i ↓ p̃ℓ

for the event that stages 1 through i complete successfully in the above experiment, where 0 ≤ i ≤ qℓ,
and we write

Pr[G(τ)i+1 ↓ p̃ℓ |G(τ)i ↓ p̃ℓ]
for the probability that the (i+1)-th stage of the experiment succeeds, given that the first i stages
have succeeded. It is easy to see that

|compX(τ)|
|comp′X(τ)| = Pr[G(τ)qℓ ↓ p̃ℓ]

and, thus,

|compX(τ)|
|comp′X(τ)| =

qℓ−1
∏

i=0

Pr[G(τ)i+1 ↓ p̃ℓ |G(τ)i ↓ p̃ℓ].

Also note that R(x̃i+1), L(ỹi+1) remain unchanged for stages 0 through i as long as G(τ)i ↓ p̃ℓ.
In fact, assuming G(τ)i ↓ p̃ℓ, the first i successfully completed paths constitute “dead weight” in
G(τ)i in the sense that these paths can be entirely removed from G(τ)i without affecting future
probabilities of path completions. It will indeed prove convenient to remove successfully completed
paths as we go along, which means that G(τ)i (still assuming G(τ)i ↓ p̃ℓ) becomes a graph with
N − i vertices in each shore. Moreover, this means there remains an injective correspondence from
the set of paths of length r and starting in shore h of G(τ)i to the set of r-chains of τ fitting k∗

and starting at position h, since we have removed from G(τ)i all edges added during previous path
completions.

With these explanations in place we can state Chen and Steinberger’s lemma [8], based on an
inclusion-exclusion principle:

Lemma 3. (Chen and Steinberger [8]) One has

Pr[G(τ)j+1 ↓ p̃ℓ |G(τ)j ↓ p̃ℓ] =
1

N − j
− 1

N − j

∑

σ

(−1)|σ|
|σ|
∏

h=1

|Uihih−1
|

N − j − |Eih |
(20)

where the sum is taken over all sequences σ = (i0, . . . , is) with R(x̃j+1) = i0 < i1 < . . . < is =
L(ỹj+1), where |σ| = s, where Uuv denotes the set of paths in G(τ)j from shore u to shore v that

start at a left-free vertex in shore u and where Ei is the set of edges of G(τ)j from shore i − 1 to

shore i of G(τ)j .

Computations. The object, now, is to upper bound the sum which appears in (20), in order to
lower bound (20). As a preliminary, note that

|Uij | ≤ Czj−i = Cmin{q,N}
(

ζ ′(q)

2κ

)⌈(j−i)/2⌉

19

with zr as defined in (13) because |Uij | is at most the number of paths of length j − i in G(τ)
starting in shore i, and because τ is a good transcript. Moreover

|Ei| ≤ Cz1 = Cmin{q,N}ζ
′(q)

2κ
=

Cq

2κ
≤ N/4

by (10) for q ≥ N and by the assumption Cq ≤ 2κ+n−2 (explicit in Theorem 3) for q ≤ N . Let
Odd : Z→ {0, 1} be the indicator function for odd integers: Odd(x) = (x mod 2). Fixing a value of
j, 0 ≤ j ≤ qℓ − 1 and letting t = L(ỹj+1)− R(x̃j+1) then, with notations as in Lemma 3, and since
also qℓ ≤ Cq/2κ ≤ N/4,

∑

σ

(−1)|σ|
|σ|
∏

h=1

|Uihih−1
|

N − j − |Eih |

≤
∑

σ

|σ|
∏

h=1

|Uihih−1
|

N −N/4 −N/4

≤
∑

σ

|σ|
∏

h=1

Cmin{q,N} (ζ ′(q)/2κ)⌈(ih−ih−1)/2⌉

N/2

=
∑

σ

(

2Cmin{q,N}
N

)|σ| |σ|
∏

h=1

(

ζ ′(q)

2κ

)(ih−ih−1)/2+Odd(ih−ih−1)/2

=
∑

σ

(

2Cmin{q,N}
N

)|σ|(ζ ′(q)

2κ

)t/2+
∑|σ|

h=1 Odd(ih−ih−1)/2

If |σ| ≥ ⌈t/2⌉ then there are at least 2|σ|− t different indices h such that ih− ih−1 = 1; in this case,
therefore, and because ζ ′(q)/2κ ≤ 1,

(

2Cmin{q,N}
N

)|σ|(ζ ′(q)

2κ

)t/2+
∑|σ|

h=1 Odd(ih−ih−1)/2

≤
(

2Cmin{q,N}
N

)|σ|(ζ ′(q)

2κ

)t/2+(2|σ|−t)/2

=

(

2Cmin{q,N}ζ ′(q)
2κN

)|σ|

=

(

2Cq

2κN

)|σ|

≤
(

2Cq

2κN

)⌈t/2⌉

. (21)

On the other hand if |σ| ≤ ⌊t/2⌋ then there exists an h such that ih − ih−1 is odd if t is odd; thus

(

2Cmin{q,N}
N

)|σ|(ζ ′(q)

2κ

)t/2+
∑|σ|

h=1 Odd(ih−ih−1)/2

≤
(

2Cmin{q,N}
N

)|σ|(ζ ′(q)

2κ

)⌈t/2⌉

20

≤ min{q,N}
N

(2C)|σ|
(

ζ ′(q)

2κ

)⌈t/2⌉

≤ min{q,N}
N

(2C)⌊t/2⌋
(

ζ ′(q)

2κ

)⌈t/2⌉

≤ min{q,N}
N

(

2Cζ ′(q)

2κ

)⌈t/2⌉

. (22)

If q ≥ N then (22) equals (2Cq/2κN)⌈t/2⌉, which yields

∑

σ

(−1)|σ|
|σ|
∏

h=1

|Uihih−1
|

N − j − |Eih |
≤
∑

σ

(

2Cq

2κN

)⌈t/2⌉

≤ 2t
(

2Cq

2κN

)⌈t/2⌉

.

On the other hand if q ≤ N then (21), (22) are both upper bounded by (q/N)(2C/2κ)⌈t/2⌉ which
gives us

∑

σ

(−1)|σ|
|σ|
∏

h=1

|Uihih−1
|

N − j − |Eih |
≤
∑

σ

q

N

(

2C

2κ

)⌈t/2⌉

≤ 2tq

N

(

2C

2κ

)⌈t/2⌉

. (23)

Let Lt ⊆ {1, . . . , qℓ} be the set of indices j such that L(ỹj) − R(x̃j) = t, 1 ≤ t ≤ ℓ − 1. Note that
because τ is good,

|Lt| ≤ ℓCzℓ−t = ℓCmin{q,N}
(

ζ ′(q)

2κ

)⌈(ℓ−t)/2⌉

.

Also write Cj for the set of sequences σ over which summation takes place in Lemma 3, and similarly

let U j
uv, E

j
i stand for Uuv, Ei in G(τ)j . Then for q ≥ N we find

|compX(τ)|
|comp′X(τ)|

/ |compY (τ)|
|comp′Y (τ)|

=

∏qℓ−1
j=0 Pr[G(τ)j+1 ↓ p̃ℓ |G(τ)j ↓ p̃ℓ]

∏qℓ−1
j=0 1/(N − j)

=

qℓ−1
∏

j=0



1−
∑

σ∈Cj

(−1)|σ|
|σ|
∏

h=1

|U j
ihih−1

|
N − j − |Ej

ih
|





=

ℓ−1
∏

t=1

∏

j∈Lt



1−
∑

σ∈Cj

(−1)|σ|
|σ|
∏

h=1

|U j
ihih−1

|
N − j − |Ej

ih
|





≥
ℓ−1
∏

t=1

∏

j∈Lt

(

1− 2t
(

2Cq

2κN

)⌈t/2⌉
)

=
ℓ−1
∏

t=1

(

1− 2t
(

2Cq

2κN

)⌈t/2⌉
)ℓCN(q

2κN)
⌈(ℓ−t)/2⌉

≥ 1−
ℓ−1
∑

t=1

2tℓCN(2C)⌈t/2⌉
(q

2κN

)⌈t/2⌉+⌈(ℓ−t)/2⌉

≥ 1−
ℓ−1
∑

t=1

2t+⌈t/2⌉ℓCNC⌈(ℓ−1)/2⌉
(q

2κN

)⌈ℓ/2⌉

21

≥ 1− 2ℓ+⌈(ℓ−1)/2⌉ℓC⌈(ℓ+1)/2⌉N
(q

2κN

)⌈ℓ/2⌉

≥ 1− ℓC⌈(ℓ+1)/2⌉N

(

8q

2κ+n

)⌈ℓ/2⌉

Which, since ⌈ℓ/2⌉ = ℓ′/2, and in conjunction with the upper bound (14) on the probability of a
bad transcript, gives us the first part of Theorem 3.

On the other hand if q ≤ N then

|Lt| ≤ ℓCmin{q,N}
(

ζ ′(q)

2κ

)⌈(ℓ−t)/2⌉

≤ ℓCq

(

1

2κ

)⌈(ℓ−t)/2⌉

using (23) which gives us

|compX(τ)|
|comp′X(τ)|

/ |compY (τ)|
|comp′Y (τ)|

=

ℓ−1
∏

t=1

∏

j∈Lt



1−
∑

σ∈Cj+1

(−1)|σ|
|σ|
∏

h=1

|Uihih−1
|

N − j − |Eih |





≥
ℓ−1
∏

t=1

(

1− 2tq

N

(

2C

2κ

)⌈t/2⌉
)|Lt|

≥
ℓ−1
∏

t=1

(

1− 2tq

N

(

2C

2κ

)⌈t/2⌉
)ℓCq(1

2κ)
⌈(ℓ−t)/2⌉

≥ 1− q

N

ℓ−1
∑

t=1

2tℓCq (2C)⌈t/2⌉
(

1

2κ

)⌈t/2⌉+⌈(ℓ−t)/2⌉

≥ 1− q2

N

ℓ−1
∑

t=1

2t+⌈t/2⌉ℓC1+⌈(ℓ−1)/2⌉

(

1

2κ

)⌈ℓ/2⌉

≥ 1− q2ℓ

N
2ℓ+⌈(ℓ−1)/2⌉C⌈(ℓ+1)/2⌉

(

1

2κ

)⌈ℓ/2⌉

≥ 1− q2ℓ

N
C⌈(ℓ+1)/2⌉

(

8

2κ

)⌈ℓ/2⌉

which gives us the second part of Theorem 3, together with (14).

References

1. William Aiello, Mihir Bellare, Giovanni Di Crescenzo, and Ramarathnam Venkatesan. Security amplification by
composition: the case of doubly-iterated, ideal ciphers, CRYPTO 1998, LNCS 1462, pp. 390–407.

2. ANSI X9.52: Triple Data Encryption Algorithm Modes of Operation (withdrawn), 1998.
3. Frederik Armknecht, Ewan Fleischmann, Matthias Krause, Jooyoung Lee, Martijn Stam and John Steinberger,

The preimage security of double-block length compression functions. Asiacrypt 2011, LNCS 7073, Springer, 233–
251.

4. Mihir Bellare and Phillip Rogaway, The security of triple encryption and a framework for code-based game-playing
proofs. Eurocrypt 2006, LNCS 4004 pp409–426.

5. Mihir Bellare and Phillip Rogaway, Code-based game-playing proofs and the security of triple encryption. IACR
eprint report. eprint.iacr.org/2004/331

22

6. John Black, Phillip Rogaway, Thomas Shrimpton, Black-Box Analysis of the Block Cipher-Based Hash-Function
Constructions from PGV. CRYPTO 2002, LNCS XXXX, pages 320–335.

7. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert, John Steinberger and Elmar
Tischhauser, Key-Alternating Ciphers in a Provable Setting: Encryption Using a Small Number of Public Per-
mutations. EUROCRYPT 2012, LNCS 7237, pp. , Springer-Verlag, 2012.

8. Shan Chen and John Steinberger, Tight security bounds for key-alternating ciphers, IACR Cryptology ePrint
Archive, 2013/222, http://eprint.iacr.org/2013/222.pdf.

9. Whitfield Diffie and Martin Hellman, Exhaustive cryptanalysis of the NBS data encryption standard. Computer
10 (6), 74–84, 1997.

10. Itai Dinur, Orr Dunkelman, Nathan Keller and Adi Shamir, Efficient Dissection of Composite Problems, with
Applications to Cryptanalysis, Knapsacks, and Combinatorial Search Problems. CRYPTO 2012, LNCS 7417, pp.
719–740.

11. Shimon Even and Oded Goldreich, On the power of cascade ciphers. ACM Transactions on Computer Systems,
vol. 3, no. 2, pp. 108–116, 1985.

12. Shimon Even and Yishay Mansour, A Construction of a Cipher From a Single Pseudorandom Permutation.
ASIACRYPT 1991, LNCS 739, pp. 210–224, Springer-Verlag, 1993.

13. FIPS46-3: Data Encryption Standard. National Institute of Standards and Technology (withdrawn), 1999.

14. Peter Gaži, Plain versus Randomized Cascading-Based Key-Length Extension for Block Ciphers, CRYPTO 2013,
LNCS 8042, pp551–570.

15. Peter Gaži and Ueli Maurer, Cascade encryption revisited, Asiacrypt 2009, LNCS 5912, pp37–51.

16. Peter Gaži and Stefano Tessaro, Efficient and Optimally Secure Key-Length Extension for Block Ciphers via
Randomized Cascading. Eurocrypt 2012, LNCS 7237, pp. 63–80, Springer, Heidelberg (2012).

17. Joe Kilian and Phillip Rogaway, How to protect DES against exhaustive key search (an analysis of DESX).
Journal of Cryptology 14 (1), 17-35 (2001).

18. Matthias Krause, Frederik Armknecht and Ewan Fleischmann, Preimage resistance beyond the birthday bound:
Double-length hashing revisited. IACR eprint report, http://eprint.iacr.org/2010/519.pdf.

19. Rudolphe Lampe, Jacques Patarin and Yannick Seurin, An Asymptotically Tight Security Analysis of the Iterated
Even-Mansour Cipher, Asiacrypt 2012, Lecture Notes in Computer Science Volume 7658, pp 278-295, 2012.

20. Jooyoung Lee, Towards Key-Length Extension with Optimal Security: Cascade Encryption and Xor-cascade
Encryption, Eurocrypt 2013, LNCS 7881, pp405–425.

21. Jooyoung Lee, John Steinberger and Martijn Stam, The preimage security of double-block-length compression
functions. IACR eprint report, http://eprint.iacr.org/2011/210.pdf.

22. Stefan Lucks, Attacking triple encryption. Fast Software Encryption 1998, LNCS 1372, pp. 239–253.

23. Ueli Maurer, Indistinguishability of Random Systems, Eurocrypt 2002, LNCS 2332, pp. 110-132.

24. Ueli Maurer and James L. Massey, Cascade ciphers: The importance of being first. Journal of Cryptology 6(1),
pp. 55–61, 1993.

25. Ralph Merkle and Martin Hellman, On the Security of Multiple Encryption, Communications of the ACM, vol.
24, no. 7, pp. 465–467, ,July 1981. See also: Communicutionr of the ACM, vol. 24, no. 11, p. 776, November 1981.

26. Paul C. van Oorschot and Michael Wiener, Improving implementable meet-in-the-middle attacks by orders of
magnitude, CRYPTO 1996, LNCS 1109 pp. 229–236.

27. Paul C. van Oorschot and Michael Wiener, A Known-Plaintext Attack on Two-Key Triple Encryption, Eurocrypt
1990, LNCS 473 pp. 318–325.

28. NIST SP 800-67, Revision 1: Recommendation for the Triple Data Encryption Algorithm (TDEA) Block Cipher.
National Institute of Standards and Technology, 2012.

29. Jacques Patarin, Etude de Génerateurs de Permutations Bases sur les Schemas du DES. In Ph.D. Thesis. Inria,
Domaine de Voluceau, France, 1991.

30. Jacques Patarin, The “Coefficients H” Technique, Selected Areas in Cryptography, LNCS 5381, 2009, pp. 328-345.

31. Martin Raab and Angelika Steger, “Balls into Bins”-A Simple and Tight Analysis, RANDOM 1998, LNCS 1528,
pp159–170.

32. Richard P. Stanley, Enumerative Combinatorics. Wadsworth & Brooks/Cole, 1986.

33. John Steinberger, The collision intractability of MDC-2 in the ideal-cipher model. Eurocrypt 2007, LNCS 4515,
pp. 34–51.

34. John Steinberger, Improved Security Bounds for Key-Alternating Ciphers via Hellinger Distance,
http://eprint.iacr.org/2012/481.pdf.

23

A Main Theorem Statement

Our main theorem is as follows:

Theorem 3. (a) If q ≥ 2n then, for every real number C ≥ 1,

Advcasc
ℓ (q) ≤ ℓ2

2κ+1
+

4

2n
+

α

C
+ 2nℓC(ℓ+1)′/2

(

8q

2κ+n

)ℓ′/2

where α = ℓ22ℓ(7n)ℓ
′/2. Furthermore if q ≥ n2n we can improve α to α′ = ℓ22ℓ14ℓ

′/2 ≤ ℓ28ℓ
′
.

(b) If q ≤ 2n then, for every C ≥ 1 such that Cq < 2κ+n−2,

Advcasc
ℓ (q) ≤ ℓ2

2κ+1
+

4

2n
+

β

C
+

q2ℓ

2n
C(ℓ+1)′/2

(

8

2κ

)ℓ′/2

+
qβ

ℓ2κℓ′/2

where β = ℓ22ℓ(3 log q + 2)ℓ
′/2. Moreover these results also hold if the adversary is allowed to ask,

for free, all possible 2n queries to its second oracle.

The presence of the adjustable constant C is typical of security proof that involve a “bad event”
whose definition is based on an adjustable threshold (this threshold being, namely, controlled by
C). We note that for every value of q, κ, n and ℓ there is an optimal C, i.e., a C which gives the
best upper bound on Advcasc

ℓ,κ,n(q) in either part of Theorem 3. (The constraint C ≥ 1 is included
mostly for readability, since the bounds are vacuously true anyway for 0 < C < 1.)

Theorem 1 is obtained, essentially, by finding the optimum C for q ≥ 2n and q ≤ 2n and by
substituting this value into the bounds of Theorem 3. Details follow.

In the first part of Theorem 3 the terms containing C are

α

C
+ ℓC2n

(

8Cq

2κ+n

)ℓ′/2

.

This expression has the form

αC−1 + CγB (24)

for

B = ℓ2n
(

8q

2κ+n

)ℓ′/2

and

γ = (ℓ+ 1)′/2.

Differentiating (24) with respect to C, setting to 0, and solving, we find

−αC−2 + γCγ−1B = 0

⇐⇒ γCγ−1B = αC−2

⇐⇒ Cγ+1 = α/γB

⇐⇒ C = (α/γB)1/(γ+1) .

24

Substituting this expression for C back into (24), we find

α(α/γB)−1/(γ+1) + (α/γB)γ/(γ+1)B

= αγ/(γ+1)B1/(γ+1)(γ1/(γ+1) + γ−γ/(γ+1))

≤ αγ/(γ+1)B1/(γ+1)(γ1/(γ+1) + 1)

≤ α(γ + 1)B1/(γ+1)

using γ ≥ 1, αγ/(γ+1) ≤ α, γ1/(γ+1) ≤ γ.
One can observe that

2n

(

2κ+n(ℓ′−2)/ℓ′

2κ+n

)ℓ′/2

= 2n
(

2n[(ℓ
′−2)/ℓ′−ℓ′/ℓ′]

)ℓ′/2
= 1

and
1/(γ + 1) = 2/(ℓ+ 3)′

since γ + 1 = (ℓ+ 3)′/2, so that if we let

q = r2κ+n(ℓ′−2)/ℓ′

then

B1/(γ+1) =

(

ℓ2n
(

8q

2κ+n

)ℓ′/2
)2/(ℓ+3)′

=



ℓ2n

(

8r2κ+n(ℓ′−2)/ℓ′

2κ+n

)ℓ′/2




2/(ℓ+3)′

=



(8r)ℓ
′/2ℓ2n

(

2κ+n(ℓ′−2)/ℓ′

2κ+n

)ℓ′/2




2/(ℓ+3)′

= (8r)ℓ
′/(ℓ+3)′ℓ2/(ℓ+3)′

=

(

8q

2κ+n(ℓ′−2)/ℓ′

)ℓ′/(ℓ+3)′

ℓ2/(ℓ+3)′

≤ ℓ1/2
(

8q

2κ+n(ℓ′−2)/ℓ′

)ℓ′/(ℓ+3)′

and, altogether,

α(γ + 1)B1/(γ+1) = α((ℓ+ 3)′/2)ℓ1/2
(

8q

2κ+n(ℓ′−2)/ℓ′

)ℓ′/(ℓ+3)′

wherefrom the first part of Theorem 1, given that (ℓ+ 3)′/2 ≤ (ℓ+ 4)/2 = ℓ/2 + 2.
For the second part of Theorem 1 we apply a similar minimization to the second part of Theorem

3; this time the expression containing C is of the form

βC−1 + CγB (25)

25

with

B =
q2ℓ

2n

(

8

2κ

)ℓ′/2

and

γ = (ℓ+ 1)′/2

again. The value C which minimizes (25) is

C = (β/γB)1/(γ+1)

=

(

2n+1β

(ℓ+ 1)′q2ℓ

(

2κ

8

)ℓ′/2
)2/(ℓ+3)′

=

(

2n+1β

(ℓ+ 1)′q2ℓ

)2/(ℓ+3)′ (
2κ

8

)ℓ′/(ℓ+3)′

so that

Cq =

(

2n+1βq(ℓ+3)′/2

(ℓ+ 1)′q2ℓ

)2/(ℓ+3)′
(

2κ

8

)ℓ′/(ℓ+3)′

≤ 2
(

2n2ℓ(3 log q + 2)ℓ
′/2q(ℓ−1)′/2

)2/(ℓ+3)′
(

2κ

8

)

≤
(

2n(ℓ+1)′/22ℓ(3n + 2)ℓ
′/2
)2/(ℓ+3)′

2κ−2

which is at most 2κ+n−2 if 2ℓ(3n+ 2)ℓ
′/2 ≤ 2n, as is assumed in the second part of Theorem 1. We

can therefore use this C in the second part of Theorem 3 and, as found above, the optimal value
of (25) using this C is

βC−1 + CγB ≤ β(γ + 1)B1/(γ+1) = β((ℓ+ 3)′/2)

(

ℓ8ℓ
′/2q2

2κℓ
′/2+n

)2/(ℓ+3)′

.

Moreover, 8ℓ
′/2 ≤ 3ℓ

′
and (ℓ+3)′/2 ≤ ℓ/2+2. This completes the proof of Theorem 1 from Theorem

3.

B Proof of Lemma 1

To prove Lemma 1 we can focus on fwd(τ). Adopting the “super-query” technique of [3] we imagine
the following modified game: when the adversary has already made N/2 queries to E(k, ·) under
the same key k, we give the remaining N/2 queries to E under that key to A for free. In this case
we say that a “super query” occurs, and the N/2 free queries are said to be part of that super
query. We can keep the assumption that A never makes redundant queries in this modified game.
We note that QE can reach length 2q in this modified game, since A can obtain half its queries
(but no more) for free. We emphasize that this modified game is a “mental experiment” that we
consider only for the purpose of proving Lemma 1, and which otherwise bears no connection to the

26

proof of Theorem 3. In particular, the set of queries QE which we obtain as part of the modified
experiment is not the same as the original set of queries QE in the real transcript τ . In fact we will
eschew mention of τ , to avoid confusion, and focus instead on

fwd(Q+
E) := max

y0∈{0,1}n
|{(k, x, y) ∈ Q+

E : y = y0}| (26)

where Q+
E is (for the purpose of this section) the set of forward queries made by A plus the set

of queries obtained as part of super queries, i.e., plus the set of freely obtained queries. (Though
making backward queries has no obvious benefit, the adversary is still allowed to make backward
queries in the modified game.)

Write Q+N

E , Q+S

E for the queries in Q+
E that A obtains via normal queries and via super queries

respectively. Then Q+
E is the disjoint union of Q+N

E and Q+S

E , and

fwd(QE) ≤ fwd(Q+N

E) + fwd(Q+S

E) (27)

with fwd(Q+N

E), fwd(Q+S

E) defined by analogy with (26). Moreover

fwd(Q+S

E) ≤ q

N/2
=

2q

N
≤
{

qn
N if q ≥ N,

2 if q ≤ N
(28)

because each super-query consists of N/2 queries with distinct y coordinates (by the fact that
Ek(·) is a permutation) so that each super-query can only contribute 1 to fwd(Q+S

E); moreover,
there are at most q/(N/2) super-queries; and n ≥ 2 follows from the observations initially made at
the beginning of Section 6.

It thus remains to upper bound fwd(Q+N

E). The intuition, here, is that each forward query made
by the adversary (thus, not obtained for free as part of a super query) is answered at random from
a set of size at least N/2. Thus we expect that fwd(Q+N

E) will be governed by the balls-in-bins
statistics of q balls thrown independently at random into N/2 bins, which are well understood. Of
course, a subtlety occurs because the adversary has (some) control over which N/2 bins the next
ball will appear in. While this extra power quite intuitively gives no advantage in increasing the size
of the maximally occupied bin, providing a formal proof of this intuitive fact can reveal itself an
annoying and even nontrivial task. Hence, we give such a proof for completeness (and also, partly,
for the sake of amusement).

Formally, let BinGame(q, p, α) be the following game: an adversary A has an infinite set of bins,
initially empty, that we identify with the natural numbers N; A has q rounds to play; at the i-th
round A selects a set S ⊆ N such that |S| ≥ p, and a “ball” is thrown uniformly at random into
one of the bins in S; the adversary wins if, at the end of the game after the q-th round, there is
at least one bin with α or more balls. For example, if α > q then BinGame(q, p, α) is impossible to
win.

Let B denote the “dumbest” adversary for this game: at each round, B selects S = {1, . . . , p}
regardless of prior history. Then we can prove:

Lemma 4. Let A be an arbitrary adversary for BinGame(q, p, α) and let B be the nonadaptive

adversary just sketched. Then B has chance at least as great as A of winning BinGame(q, p, α).

Proof. We will couple the executions of A and B such that B wins whenever A wins. As the game
proceeds we need to argue that B is always doing at least as well as A in a sense explained below.

27

Let aℓi be the number of balls in A’s i-th bin right before the ℓ-th ball is thrown, and define
bℓi likewise for B. We can assume wlog that bins are rearranged after each ball is thrown so that
aℓ1 ≥ aℓ2 ≥ aℓ3 ≥ . . . and bℓ1 ≥ bℓ2 ≥ bℓ3 ≥ For B this causes no change, and A can obviously adopt
its strategy to accomodate for such bin rearrangement. We note that

∞
∑

i=1

aℓi =

∞
∑

i=1

bℓi = ℓ− 1.

Thus (aℓi)
∞
i=1 and (bℓi)

∞
i=1 are partitions of ℓ− 1, in the parlance of algebraic combinatorics [32]. Put

aℓ = (aℓi)
∞
i=1 and bℓ = (bℓi)

∞
i=1 for 1 ≤ ℓ ≤ q + 1, with aq+1, bq+1 being the final ball distributions.

Let SℓA be the set of bins selected by A for the ℓ-th round of the game, 1 ≤ ℓ ≤ q. We note that
SℓA is a random variable. We also write SℓB for {1, . . . , p}, which is a constant set.

When the ℓ-th ball is thrown, we couple the randomness for A and B as follows. Let x be a
number uniformly at random in [0, 1). For A, we place the ℓ-th ball in the i-th bin of SℓA if

i− 1

|SℓA|
≤ x <

i

|SℓA|

and we place the ℓ-th ball in the j-th bin of SℓB = {1, . . . , p} if

j − 1

p
≤ x <

j

p
.

Obviously, then, A and B are both playing fair versions of BinGame(q, p, α), albeit with correlated
randomness.

Note that

Pr[aq+1
1 ≥ α] and Pr[bq+1

1 ≥ α]

are respectively the probability that A and B win BinGame(q, p, α). It will thus suffice if we can
show that bq+1

1 ≥ aq+1
1 at the end of every execution. In fact we will show something stronger,

namely that
m
∑

i=1

bℓi ≥
m
∑

i=1

aℓi

for all m ∈ N and all 1 ≤ ℓ ≤ q + 1. In other words, the partition bℓ dominates the partition aℓ,
traditionally written bℓ � aℓ, for all ℓ.

We show that bℓ � aℓ by induction on ℓ. For this, let λ = (λi)
∞
i=1, (µ)

∞
i=1 be two partitions13

such that λ � µ; let iλ ≤ iµ be positive indices; and let λ′, µ′ be obtained by increasing each of
λiλ , µiµ by 1 and by rearranging coordinates of λ, µ to keep the sequences in nonincreasing order.
It’s enough to show that λ′ � µ′, since, obviously, the index of the bin which receives a ball in A’s
game is always at least as large as the index of the bin which receives a ball in B’s game.

To prove λ′ � µ′, let i∗µ ≤ iµ be the smallest index i ≥ 1 such that µi = µiµ and likewise let
i∗λ ≤ iλ be the smallest index i ≥ 1 such that λi = λiλ . Then note that λ′, µ′ can be directly obtained
from λ, µ by adding 1 to λi∗λ

, µi∗µ , respectively, without further rearrangement of coordinates. If
i∗λ ≤ i∗µ then λ′ � µ′ obviously follows from λ � µ, so we can assume i∗µ < i∗λ.

13 Technically, λ = (λi)
∞
i=1 is a partition if λ1 ≥ λ2 ≥ . . ., if the λi’s are nonnegative integers, and if

∑
i λi <∞.

28

Now to show λ′ � µ′ it is sufficient and necessary to show that

∑

j≤i

λj ≥ 1 +
∑

j≤i

µj

for all i such that i∗µ ≤ i ≤ i∗λ − 1. Arguing by contradiction, say that

∑

j≤i0

λj ≤
∑

j≤i0

µj.

for some i0 such that i∗µ ≤ i0 ≤ i∗λ − 1. Then: (i) λi0 ≤ µi0 because λ � µ, (ii) µj cannot decrease
for i0 ≤ j ≤ iµ by definition of i∗µ, and (iii) λj cannot decrease for i0 ≤ j ≤ iµ by λ � µ and by (ii).
But (iii) and iλ ≤ iµ contradicts i0 ≤ i∗λ − 1. We conclude that λ′ � µ′, as desired. ⊓⊔

Now we can apply the following theorem, which constitutes a classical maximum occupancy result:

Theorem 4. Let q balls be thrown independently into p bins, q ≥ 16 and p ≥ 4. Let mi denote the

the number of balls in bin i, and let M = max{mi}. If q ≤ 2p, there is probability less than 1/p
that M exceeds 3 log(q). If q ≥ 2p, there is probability less than 1/p that M exceeds 3 log(p)(q/p).
Finally if q ≥ p log(p) there is probability less than 1/p that M exceeds 6q/p.

The above theorem is a well-known result and can be easily proved by a union bound. For com-
pleteness we present the proof below.

Proof. We want to bound the probability that there exists some bin that has more than B balls.
The probability that B selected balls fall into a specific bin is 1/pB , and using a union bound over
all possible combinations of B balls and possible bins, we have

Pr[M ≥ B] ≤
p
∑

i=1

Pr[mi ≥ B]

≤ p ·
(

q

B

)

· 1

pB

≤ 1

pB−1
· q

B

B!

≤ p

(

q

p

)B

· 1√
2πB(B/e)B

≤ p

(

qe

pB

)B

where the second last inequality is because of Stirling’s formula.
If q ≤ 2p and q ≥ 16, let B = 3 log(q) and the above equation becomes

Pr[M ≥ B] ≤ p

(

qe

3p log(q)

)3 log q

≤ q2

p

(

2e

3 · 4

)3 log q−2

29

≤ q2(1/2)2 log q/p

= 1/p

On the other hand if q ≥ 2p and p ≥ 4, let B = 3 log(p)(q/p) and we have

Pr[M ≥ B] ≤ p

(

e

3 log(p)

)3 log(p)(q/p)

≤ p
(e

3 · 2
)6 log(p)

≤ p(1/2)6 log(p)

≤ 1/p

Moreover, suppose q ≥ p log(p) and let B = 6q/p, we have

Pr[M ≥ B] ≤ p
(e

6

)6q/p

≤ p(1/2)6 log(p)

≤ 1/p

⊓⊔
It follows from Theorem 4 applied with p = N/2 and from Lemma 4 that

Pr[fwd(Q+N

E) ≥ 3 log q] ≤ 2

N

for q ≤ N , that

Pr[fwd(Q+N

E) ≥ 6nq/N] ≤ 2

N
for q ≥ N , and that

Pr[fwd(Q+N

E) ≥ 12q/N] ≤ 2

N
for q ≥ n ·N . Lemma 1 then follows from (27) and from (28).

C Double (and single) encryption

In this appendix we give a simple proof of the main result of [1] (slightly corrected—see below)
concerning double encryption. In fact Bellare and Rogaway [4] already hint at the existence of a
simple game-based proof of [1]’s main result, as the original proof of [1] is quite involved. Instead of
game-playing we use the H-coefficient technique, which is more practical for us partly because we
have already set the stage for the technique in the main proof. Moreover this should help convince
that the H-coefficient technique can also be quite effective in settings that are combinatorially
simple, and is not only a tool of “last resort” for hairy, quasi-intractable situations.

For the sake of completeness we follow up with a formal analysis (again H-coefficient-based)
of single encryption. (We emphasize, however, that the results of previous sections are valid for
ℓ = 1, 2 as well; the point here is just to give tighter bounds with cleaner proofs.)

Double encryption. The result we prove on double encryption is the following:

30

Theorem 5. One has

Advcasc
2,κ,n(q) ≤

q2

22κ
+

1

2κ

for all q, κ, n. This bound also holds if the adversary is allowed 2n free queries to its second oracle.

Aiello et al. actually claim a stronger bound of q2/22κ, but this bound is incorrect as can be seen
by considering the case q = 0. In more detail, one might have k∗1 = k∗2 , while the composition of a
random permutation with itself is no longer random. Hence the adversary already has a nonzero

distinguishing advantage by making only queries to E
(2)
k∗ /π, and not making any queries to E/E−1,

and which contradicts a security bound of q2/22κ. (If further convincing is needed one should
consider the case n = 1.) The error can be found in the proof of Lemma 3.6 in [1], when it is
claimed that “the composition of two permutations with one random, is random” (overlooking that
the composition of two random but equal permutations is not random). We emphasize, however,
that the proof of [1] is easily repairable by adding k∗1 = k∗2 to their list of “bad events”.

In the next few bullets we give a proof of Theorem 5, assuming familiarity with the material
and notations of Section 5.

Preliminary reductions.We again follow Bellare and Rogaway [4] and replace E(2)/π by a fixed
permutations S. More precisely, and like in the general case, we start by sending the adversary a
symbol ⋆ ∈ {⊥,⊤} where ⋆ = ⊤ unless we are in the real world and k∗1 = k∗2 where k∗1‖k∗2 is the
secret key, in which case we send ⋆ = ⊥ and the real world aborts. If the real world doesn’t abort
we overwrite Ek∗2

= S ◦E−1
k∗1

in the real world. As before the adversary no longer requires access to

its second oracle, since it knows S. We refer to the description of the same step in the general case
for more details.

In terms of the underlying probability space, we recall that the space of all real world (or, for
that matter, ideal world) oracles is the set of all pairs

(E′, k∗) ∈ Pexp(κ) × {0, 1}2κ.

In the real world, the adversary’s oracle E is built from E′ by setting

Ek =

{

E′
k if k 6= k∗2

S ◦ E′−1
k∗1

if k = k∗2

(presuming ⋆ 6= ⊥) whereas E = E′ in the ideal world.

We also assume that the adversary is deterministic and makes no redundant queries.

Transcripts. Here we adopt all the same conventions as in our main proof. In particular the key
k∗ is included at the end of the transcript, where k∗ is a dummy key sampled uniformly at random
in the ideal world. As before, T denotes the set of all transcripts.

Bad transcripts. A transcript τ = (⋆,QE , k
∗) with k∗ = k∗1‖k∗2 is bad if k∗1 = k∗2 or if QE contains

both a query of the form (k∗1 , x, y) and a query of the form (k∗2 , x, y). As usual T2 denotes the set of
bad transcripts, and T1 := T \T2.
Probability of bad transcript. We recall the probability of bad transcript is computed in the
ideal world, and in the ideal world we can think of k∗ as being sampled at random after all the
queries in QE have been made. Since QE contains q queries, k∗i has probability at most q/2κ of

31

being a key in the transcript, and this probability is independent for i = 1, 2; thus

Pr[Y ∈ T2] ≤
q2

22κ
+

1

2κ

where the second term accounts for the probability that k∗1 = k∗2 and where where Y is the proba-
bility distribution over transcripts in the ideal world.

Probability ratio for good transcripts. Let τ = (⋆,QE , k
∗) ∈ T1 be a good transcript. Let

qk be the number of queries in QE appearing in QE with key k, so that either qk∗1 = 0 or qk∗2 = 0
by definition of good transcripts. If qk∗2 = 0 then it is easy to see that

compX(τ) =
∏

k∈{0,1}κ

(2n − qk)! (29)

compY (τ) =
∏

k∈{0,1}κ

(2n − qk)! (30)

with the set of all possible real-world/ideal-world oracles ΩX , ΩY and with the sets of compatible
oracles compX(τ) ⊆ ΩX , compY (τ) ⊆ ΩY defined as in Section 5. (Note that in (29) the product
term with k = k∗2 accounts for the 2n! possibilities for E′

k∗2
. Indeed, in the real world the transcript

never constrains E′
k∗2
.) On the other hand if qk∗2 > 0 then each query under key k∗2 in τ induces, in

the real world, a unique constraint on Ek∗1
= E′

k∗1
; thus (29) also holds if qk∗2 > 0 (though now the

product term with k = k∗2 is counting the number of possibilities for E′
k∗1
, whereas the term with

k = k∗1 is counting the number of possibilities for E′
k∗2
, which is still 2n!). Since (30) also obviously

holds if qk∗2 > 0, we have |compX(τ)| = |compY (τ)| whether qk∗1 > 0 or whether qk∗2 > 0. Thus, by
equations (9), we have

Pr[X = τ]

Pr[Y = τ]
= 1

for all τ ∈ T1 such that Pr[Y = τ] > 0. It follows that the adversary’s advantage is at most the
probability of obtaining a bad transcript, which, as shown above, is upper bounded by q2/22κ+1/2κ.
This completes the proof of Theorem 5.

Single encryption. For single encryption we can prove the following theorem:

Theorem 6. One has

Advcasc
1,κ,n(q) ≤

q

2κ

for all q, κ, n. This bound also holds if the adversary is allowed 2n free queries to its second oracle.

By now, the proof should be transparent. We apply the customary reduction of Bellare and Rogaway
[4], except that this time we don’t even need the initial message ⋆. Thus we replace the second oracle
by a fixed permutation S, and set

Ek =

{

E′
k if k 6= k∗

S if k = k∗

in the real world and by setting E = E′ in the ideal world, and where (E′, k∗) ∈ Pexp(κ)×{0, 1}κ is
the underlying oracle (a.k.a. random tape) in either ΩX or ΩY . Transcripts are defined as before,

32

with the key k∗ ∈ {0, 1}κ included. A transcript τ = (QE , k
∗) is bad if a query with key k∗ appears

in QE. The probability of a bad transcript in the ideal world is at most q/2κ since k∗ is independent
from QE in the ideal world. Moreover, Pr[X = τ] = Pr[Y = τ] for a good transcript τ , as is easy
to see that (29), (30) hold as well here. Theorem 6 follows.

D Some leftover formalities

In this appendix we make a few more brief comments on the identities

Pr[X = τ] =
|compX(τ)|
|ΩX |

, Pr[Y = τ] =
|compY (τ)|
|ΩY |

(31)

mentioned in Section 5. Our comments have a significant intersection with similar comments made
in [8] but are not a proper subset thereof (nor vice-versa).

The fact that Pr[Y = τ] > 0, mentioned as a sufficient condition for (31) to hold, can be
replaced, in a general14 context, by the requirement that τ be attainable [8], in the sense that there
exists some oracle ω′ (which could be neither real nor ideal, but something else entirely) such that A
produces transcript τ on oracle ω′, notated Aω′ → τ . Without loss of generality ω′ is deterministic
(just as any ω ∈ ΩX ∪ ΩY is deterministic). Moreover, as indicated in footnote 5, an oracle ω is
compatible with a transcript τ if and only if there exists some (wlog deterministic) adversary A′ that
produces transcript τ on oracle ω, notated A′ω → τ . Thus, once the the definitions of “attainability”
(necessary for (31)) and “compatibility” are unfolded, both equalities in (31) become equivalent to
the fact that

(Aω → τ) ⇐⇒ ((∃A′ s.t. A′ω → τ) ∧ (∃ω′ s.t. Aω′ → τ)) (32)

for every τ and A, where the existential quantifications are taken over deterministic adversaries A′

and over deterministic oracles ω′. Here the forward implication is obvious. The reverse is equally
straightforward: if B,C,B′, C ′ are four deterministic interactive Turing machines such that both
of the interactions B ↔ C and B′ ↔ C ′ produce the same transcript τ , then, obviously, B ↔ C ′

and B′ ↔ C also produce τ as transcript.
We note the viewpoint espoused here allows oracles to be arbitrary deterministic (and possi-

bly stateful) functions of a random tape, i.e., to be interactive probabilistic Turing machines15.
This is more general than the definition proposed in [8], where oracles are described as stateless

(deterministic) functions of a random tape.

14 For the purpose of applying the H-coefficient technique, however, the difference between an attainable a transcript
and a transcript for which Pr[Y = τ] > 0 is immaterial, since in any case we are only interested in applying (31)
for transcripts τ such that Pr[Y = τ] > 0 (cf. footnote 5).

15 It’s even a little more general than that, since the oracles need not implement computable functions, and since the
random tape can be sampled from an arbitrary probability space. To give a perfectly general and formal definition,
one might define an oracle to be arbitrary deterministic function taking a private random tape input as well as
a transcript input (consisting of the questions so far and including, without loss of generality, only the questions
asked). This model is close to Maurer’s random systems framework [23] in its degree of generality, but trades
conditional probabilities for an explicit random tape.

33

