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Abstract

We propose a new and simple framework for constructing fully homomorphic encryption
(FHE) which is completely different from the previous work. We use finite non-commutative
(a.k.a., non-abelian) groups which are “highly non-commutative” (e.g., the special linear
groups of size two) as the underlying structure. We show that, on such groups, the AND
and NOT operations on plaintext bits (which are sufficient to realize an arbitrary operation
by composing them) can be emulated by a “randomized commutator” (which essentially re-
quires the non-commutativity) and division operations on ciphertext elements, respectively.
Then we aim at concealing the “core structure” of ciphertexts by taking conjugation by a
secret element (where the non-commutativity is again essential), rather than adding noise
to the ciphertext as in the previous FHE schemes. The “noise-freeness” of our framework
yields the fully-homomorphic property directly, without the bootstrapping technique used
in the previous schemes to remove the noise amplified by the homomorphic operations. This
makes the overall structure of the FHE schemes significantly simpler and easier to under-
stand. Although a secure instantiation based on the framework has not been found, we hope
that the proposed framework itself is of theoretical value, and that the framework is flexible
enough to allow a secure instantiation in the future.

1 Introduction

Until the pioneering work by Gentry [11], construction of fully homomorphic (public key) en-
cryption (FHE ) that enables, without revealing any information on encrypted plaintexts, anyone
to perform arbitrary operations on the plaintexts through the corresponding “homomorphic op-
erations” on the ciphertexts had been a long-standing open problem. Due to the theoretical
and practical high importance, after his first construction of FHE, many research have been
done to improve the efficiency and security ([12, 13, 15, 23]), or to give variants of the scheme,
possibly under more standard assumptions ([3, 4, 5, 6, 7, 8, 9, 10, 14, 16, 19, 22]; see [21] for a
survey). Study of FHE is currently one of the main topics in the research area of cryptography.

To the author’s best knowledge, all the known constructions of FHE schemes1 including
the Gentry’s original one relied on the bootstrapping technique. Namely, these are two-step
construction, where the preliminary scheme uses ciphertexts with noise and has a limitation of
the number of successive homomorphic operations caused by the amplification of noise, and then
the bootstrapping operation is applied to cancel the noise on the ciphertexts for overcoming the

1Here we exclude the “trivial” construction of FHE mentioned in Section 2.1 of [17], where a ciphertext after
homomorphic circuit evaluation involves the evaluated circuit itself as well as all the original ciphertexts, since
the ciphertext size in the scheme grows rapidly by homomorphic operations and it is not practical at all.
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limitation. The bootstrapping is certainly an outstanding idea, but its theoretical and practical
treatment is complicated and it makes the overall structure of the FHE scheme not easy to
overlook. It is surmised that such a difficulty caused by the bootstrapping would be a hurdle
for future practical implementation of FHE schemes. To resolve the problem, a new approach
to construct FHE schemes that does not require the bootstrapping operation is really valuable.

1.1 Our contributions

The contribution of the present work is to propose an approach to achieve the fully-homomorphic
functionality for public key encryption, completely different from the previous work. Based on
our approach, the fully-homomorphic functionality is realized without the bootstrapping.

The main technical difference from the previous work is that, in the proposed framework,
we use non-commutative (a.k.a., non-abelian) (finite) groups as the underlying mathematical
structure. Roughly speaking, the groups should be “highly non-commutative” in order to
ensure that the homomorphic AND operation works correctly; see below for details. The main
advantages of using non-commutative groups are as follows:

• In order to increase the security, the well-formed shape of the ciphertext is scrambled by
taking a conjugate by a secret element of the group, rather than by adding a noise to the
ciphertext as in the previous FHE schemes; the “noise-free” construction avoids the use
of bootstrapping. Here we emphasize that taking a conjugate is useless in commutative
groups, therefore the non-commutativity is essential in our framework for FHE.

• In our construction, the AND and NOT operations on plaintext bits are emulated by
using “randomized commutator” and division operations on the non-commutative group,
respectively. We emphasize that the commutator operation provides no information when
the underlying group is commutative, hence the non-commutativity is again essential.

Here we explain the idea to emulate the AND and NOT bit operations on a non-commutative
group to achieve the fully-homomorphic functionality. A possible strategy to conceal the core
structure for security purpose will be explained below.

How to emulate AND operation. Our homomorphic AND operation on a group G is
established by using the commutator on G, which is an operation defined as follows:

[g, h] := g · h · g−1 · h−1 for any g, h ∈ G . (1)

Now we can see that the value of the commutator [g, h] becomes an identity element 1 ∈ G
if either of the two inputs g, h is 1. The starting point of the idea to our homomorphic AND
operation is the following observation: The above-mentioned property [1, h] = [g, 1] = 1 looks
similar to the property 0 ∧ b2 = b1 ∧ 0 = 0 of the AND operation ∧ for bits2. This similarity
suggests to associate the identity element 1 ∈ G to plaintext bit 0. Then it is naively expected
that it is effective to associate the other elements of G to plaintext bit 1.

However, the naive correspondence above does not work; if the two inputs for the commu-
tator are identical (and not 1), then the property [g, g] = g · g · g−1 · g−1 = 1 of the commutator
(which means “1 ∧ 1 = 0” under the correspondence) is not consistent to the remaining prop-
erty 1 ∧ 1 = 1 of the AND operation. We want to realize that the situation above does not
happen. For the purpose, we introduce a re-randomization of the input, which makes the two
inputs distinct (except negligible probability). Precisely, we modify the commutator operation
as follows:

[x, y]R := [g · x · g−1, y] for any x, y ∈ G , (2)
2One may be reminded of the proof of the Barrington’s theorem [1] from the property of commutators.
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where g is a uniformly random element of G. We note that the property [x, 1]R = [1, y]R = 1
corresponding to the property b1∧0 = 0∧b2 = 0 is preserved by the modification. On the other
hand, for the property of the randomized commutator corresponding to the property 1 ∧ 1 = 1
(that is, if x, y ∈ G are associated to the bit 1, then [x, y]R is also associated to the bit 1),
there does exist a group G for which the property holds. For example, the special linear group
SL2(F) consisting of the 2× 2 matrices over a finite field F (of exponentially large cardinality)
with determinant one satisfies the desired property3. Hence, by working on such a group, the
homomorphic AND operation can be efficiently realized.

How to emulate NOT operation. In order to realize the homomorphic NOT operation on
a group G as above, we switch the consideration from a single element of G to a pair of elements
of G. The idea is as follows: For (x, y) ∈ G × G for which y ̸= 1 holds4, we associate the pair
(x, y) to the bit 0 and the bit 1 if x = 1 and x = y, respectively. Then the division operation
x 7→ x−1 · y exchanges the two cases; x−1 · y = 1 (respectively, x−1 · y = y) if and only if x = y
(respectively, x = 1). Hence, the mapping

(x, y) 7→ (x−1 · y, y) (3)

works as the homomorphic NOT operation under the correspondence of pairs of group elements
to plaintext bits above. (Intuitively, the main body of the pair is the first component x, while
the second component y plays a role of a “template” to generate the output of the homomorphic
NOT operation.)

We note that, since we are now working on pairs of elements instead of single elements, the
homomorphic AND operation explained above has to be applied to both of the two components,
which should be “synchronized”. Namely, the new homomorphic AND operation is given by

(x1, y1), (x2, y2) 7→ ([g · x1 · g−1, y1], [g · x2 · g−1, y2]) (4)

where g ∈ G is chosen uniformly at random. Then it is shown that the operation is again
consistent to the properties 0 ∧ b2 = b1 ∧ 0 = 0 and 1 ∧ 1 = 1 via the correspondence above.

Towards secure realization. Although the homomorphic AND and NOT operations can be
realized on a non-commutative group G (with certain desirable property mentioned above) by
the ideas explained above, the argument above concerned the fully-homomorphic functionality
only and did not concern the security property. Indeed, it is trivially easy to detect to which
plaintext bit a given pair (x, y) of group elements is associated, by just checking whether x = 1
or not. To resolve the problem, a naive hope is that we can make the adversary not able to
know whether a given group element is the identity element or not, while keeping anyone being
able to compute the group operations.

A strategy which we consider here is as follows. We want to construct a surjective group
homomorphism φ : G→ G from an auxiliary group G to the main group G, in such a way that
it is difficult (without some trapdoor information) to decide whether a given element of G is
mapped by φ to the identity element of G or not. Once such a mapping φ : G→ G is obtained,
we work on the group G instead of G for the encryption and homomorphic operations, while the
decryption is performed by computing the value of φ from the trapdoor information. Namely,
a ciphertext is now a pair (x, y) of elements of G with φ(y) ̸= 1, and its plaintext is 0 and 1
if φ(x) = 1 and φ(x) = φ(y), respectively5. The homomorphic AND and NOT operations are
performed in a similar manner on G instead of G. See Section 3 for details.

3More precisely, now we associate to the bit 1 the elements of an appropriately specified large subset X of
G \ {1}, rather than the elements of G \ {1}; see Definition 3 below.

4more precisely, y ∈ X where X is a subset of G \ {1} mentioned in the previous footnote
5Again, the condition φ(y) ̸= 1 is actually φ(y) ∈ X in the rigorous argument.
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Moreover, a possible way to realize such a trapdoor homomorphism φ is the following: We
first define a (not necessarily difficult to compute) homomorphism φ to G from a “well-formed”
group G embedded in a larger group G̃, and then the “well-formed” structure of G is scrambled6

by taking a conjugation by a secret random element T ∈ G̃. Namely, we are working on the
secret subgroup {T · g · T−1 | g ∈ G} of G̃ instead of G itself except for the decryption, and
the decryption is performed by first moving back to G by using the trapdoor element T and
then computing φ. As mentioned above, the strategy here of taking the conjugation relies
essentially on the non-commutativity of groups, and the “noise-free” construction yields the
fully-homomorphic functionality without the bootstrapping technique.

Unfortunately, the author has not found so far a concrete and secure instantiation of FHE
schemes based on our proposed framework (more precisely, a secure instantiation of a trap-
door homomorphism φ, though an instantiation of the main group G achieving the fully-
homomorphic functionality has been found as mentioned above). To construct an instantiation
of the proposed framework which admits a reliable evidence for security (ideally, a security
proof under some standard hardness assumptions) is a future research topic. The author hopes
that the proposed new framework for constructing FHE schemes is still worthy by itself and it
can promote studies of non-commutative group-based cryptography.

1.2 Related work

Our proposed framework for FHE is simple and uses non-commutative groups, which is com-
pletely different from the previous FHE schemes. Below we compare our work to the previous
proposals of (non-commutative) group-based cryptographic schemes (see e.g., [2] for a survey).

Some major previous proposals of group-based public key encryption [18, 20] are based
on ideas analogous to the Diffie–Hellman key exchange. Hence, though their schemes are im-
plemented on non-commutative groups, these essentially use “internal commutativity” of such
groups and the non-commutativity of the groups are used only for hiding the internal com-
mutativity. In contrast, our FHE schemes (in particular, the homomorphic AND operation)
essentially use the non-commutativity of the platform groups, since the commutator operator
provides no information (i.e., its value is always the identity element) when the underlying
group is commutative. The essential dependency on non-commutative structures is a remark-
able property of our result among the existing group-based schemes.

We also note that, in those previous Diffie–Hellman-type schemes on non-commutative
groups, the platform group is required to have normal forms of elements in order to guar-
antee that the sender and the receiver will obtain identical symmetric keys during the protocol
(namely, even if the two parties obtain the same group element, the extracted symmetric keys
may be different if the expressions of the elements by the two parties are not equal). In contrast,
in our FHE scheme, it is not necessary that normal forms for elements of the platform groups
exist; only the necessary condition from the viewpoint is that the receiver can compute the value
of the trapdoor homomorphism φ from an arbitrary expression of a given group element. This
non-necessity of normal forms would enlarge the potential candidates of the platform groups
for our FHE scheme significantly, compared to the previous group-based schemes.

1.3 Organization of the paper

Section 2 summarizes some notations, terminology and basic notions. In Section 3, we describe
our proposed framework for constructing FHE schemes, study its functionality and security, and
formalizes the conditions for the underlying groups to achieve the functionality and security.

6Regarding the design principle, one may feel a flavor similar to the McEliece cryptosystem and several
multivariate quadratic public key cryptosystems.
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2 Preliminaries

In this section, we summarize some basic definitions and notations used throughout the paper.
In the paper, a group is written in multiplicative form and is not commutative unless otherwise
specified. Let 1G denote the identity element of a group G. For any elements g and h of a
group, their commutator [g, h] is defined by

[g, h] := g · h · g−1 · h−1 . (5)

Then [g, h] is the identity element if and only if g and h commute (i.e., gh = hg). Let “a←R X”
express that an element a is chosen from a finite set X uniformly at random. Let λ denote the
security parameter unless otherwise specified. We say that a quantity ε = ε(λ) ≥ 0 depending
on λ is negligible, if for any integer n ≥ 1, there exists a λ0 > 0 with the property that we have
ε(λ) < λ−n for every λ > λ0; and ε ∈ [0, 1] is overwhelming, if 1− ε is negligible.

A public key encryption (PKE ) scheme consists of three algorithms KeyGen, Enc and Dec
with the following syntax. The key generation algorithm KeyGen(1λ) outputs a pair (pk, sk)
of a public key pk and a secret key sk. The encryption algorithm Enc(pk,m) with plaintext
m ∈ M, where M denotes the plaintext space, outputs a ciphertext as the encryption result
of m. Finally, the decryption algorithm Dec(sk, c) with ciphertext c outputs either a plaintext
m ∈M as the decryption result of c, or a distinguished symbol ⊥ indicating decryption failure.
In the paper, we only deal with 1-bit plaintexts; i.e., M = {0, 1}. The correctness of a PKE
scheme means that, for any plaintext m ∈ M, the probability that Dec(sk,Enc(pk,m)) ̸= m is
negligible, where the probability is taken over the randomness in the encryption algorithm. We
note that non-zero but negligible decryption error probabilities are tolerated in the paper.

A homomorphic PKE scheme is a PKE scheme endowed with another algorithm that, for
any map of the form f :Mn →Mn′

chosen from some specified class and any ciphertexts ci ←
Enc(pk,mi) for plaintexts mi ∈ M (i ∈ {1, 2, . . . , n}), efficiently outputs ciphertexts c′1, . . . , c

′
n′

satisfying that (Dec(sk, c′i))
n′
i=1 = f((mi)

n
i=1) with overwhelming probability. In particular, if the

f can be any circuit with polynomially many gates, then the scheme is called an FHE scheme.
The security notion for (homomorphic) PKE schemes considered in the paper is the CPA

security (also known as the semantic security). We note that other advanced security notions
for FHE such as the circuit privacy (e.g., [17]) are out of the scope of the paper. We recall the
definition of the CPA security as follows, where we supposeM = {0, 1} as mentioned above:

Definition 1 (CPA security). We say that a PKE scheme with plaintext spaceM = {0, 1} is
CPA-secure, if for any probabilistic polynomial-time (PPT, in short) adversary A, the advantage
of A defined by AdvCPA

A (λ) := |Pr[b′ = b]−1/2| is negligible, where Pr[b′ = b] is the probability
that b′ = b in the following game (called the CPA game):

CPA game for PKE (1-bit plaintext case)
(pk, sk)← KeyGen(1λ), b←R {0, 1}, c∗ ← Enc(pk, b). Then A outputs b′ ← A(1λ, pk, c∗).

3 Our proposed framework for constructing FHE schemes

In this section, we present our proposed framework for construction of FHE schemes (with 1-bit
plaintexts) based on non-commutative groups. In Section 3.1, we formalize some requirements
for the underlying groups in our proposed framework to achieve the functionality and the
security for the resulting scheme. In Section 3.2, we describe our proposed framework. The
functionality and security of the schemes based on our framework are discussed in Section 3.3.
Finally, in Section 3.4, we give a sufficient condition for the underlying group to satisfy the
requirement for the fully-homomorphic functionality, and present examples of groups satisfying
the condition.
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3.1 Group samplers

Here we formalize some requirements for the underlying groups. First, we introduce the follow-
ing notion, which is relevant to the key generation and the correctness of the encryption:

Definition 2 (Group samplers). We say that a polynomial-time algorithm GS is a group sam-
pler, if it takes the security parameter as input and it outputs the following objects;

• a finite (non-commutative) group G̃ and its subgroup G, for which the multiplication and
inverse operations are polynomial-time computable;

• a finite group G and a surjective group homomorphism φ : G → G, with kernel denoted
by H := {g ∈ G | φ(g) = 1G};

• two polynomial-time algorithms SampleG and SampleH that output a uniformly random
element of G and a uniformly random element of H, respectively;

• a polynomial-time algorithm Ker that for given input g ∈ G, output 0 if g ∈ H and 1 if
g ̸∈ H.

Secondly, we introduce a condition for group samplers which is relevant to the correctness
for our proposed framework (especially for the homomorphic AND operations):

Definition 3 (Commutator-separability). We say that a group sampler GS is commutator-
separable, if there exists a subset X of G \ {1G} associated to each output of GS satisfying
that |X|/|G| is overwhelming and the following condition holds: For any x1, x2 ∈ X, we have
[gx1g

−1, x2] ∈ X with overwhelming probability, where g ←R G.

We also introduce a computational problem associated to group samplers, which is relevant
to the security of the schemes based on our framework. Intuitively, the problem is to decide, for
a given element g of a group G and a (secret) homomorphism φ : G→ G, whether φ(g) = 1G or
φ(g) = φ(g′), where g′ is another known random element of G. The definition of the problem
is as follows:

Definition 4 (Kernel decision problem). Let GS be a group sampler. We define a kernel
decision game for GS to be the following game, where A is an adversary for the game:

Kernel decision game for GS
(G̃,G,G, φ, SampleG, SampleH ,Ker)← GS(1λ), s←R G, b←R {0, 1}
If b = 0 then

g∗ ←R H
else

h←R H, g∗ := sh
end if
Then the adversary outputs b′ ← A(1λ, G̃, SampleG,SampleH , s, g∗)

We say that the kernel decision problem for GS is hard, if for any PPT adversary A, the
advantage of A defined by AdvKer

A (λ) := |Pr[b′ = b]− 1/2| is negligible, where Pr[b′ = b] is the
probability that b′ = b in the kernel decision game for GS defined above.

3.2 Description of our framework

Based on the notions in Section 3.1, here we give the description of our proposed FHE scheme
Π = (KeyGen,Enc,Dec,AND,NOT) determined by a group sampler GS:
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KeyGen(1λ) First, the key generation algorithm generates

(G̃,G,G, φ, SampleG, SampleH ,Ker)← GS(1λ) . (6)

Then the algorithm outputs pk := (G̃, SampleG, SampleH) as a public key and sk := (Ker)
as a secret key. The plaintext space isM := {0, 1}.

Enc(pk,m) Given a plaintext m ∈ {0, 1}, first, the encryption algorithm generates cT ∈ G by
cT ← SampleG, which we call the template component of the ciphertext. Secondly, the
algorithm generates cB ∈ G, which we call the body component of the ciphertext, by

cB ←

{
h if m = 0 ,

cTh if m = 1 ,
where h← SampleH . (7)

Then the algorithm outputs c := (cB, cT) as a ciphertext for the plaintext m.

Dec(sk, c) Given a ciphertext c = (cB, cT), the decryption algorithm outputs Ker(cB) ∈ {0, 1}.

AND(pk, c1, c2) Given two ciphertexts ci = (ci,B, ci,T) (i ∈ {1, 2}), first, the algorithm generates
g ← SampleG. Secondly, the algorithm calculates c′B and c′T by

c′B := [g · c1,B · g−1, c2,B] , c
′
T := [g · c1,T · g−1, c2,T] . (8)

Then the algorithm outputs c′ := (c′B, c
′
T).

NOT(pk, c) Given a ciphertext c = (cB, cT), first, the algorithm calculates c′B and c′T by

c′T := cT , c′B := c−1
B · c

′
T . (9)

Then the algorithm outputs c′ := (c′B, c
′
T).

We note that the bit-OR operation can be efficiently realized by combining bit-AND and
bit-NOT operations, therefore we do not include the homomorphic OR operation into the syntax
of our proposed framework above. For simplifying expressions, we often omit the indication of
a public key and a secret key in the notations below unless it causes ambiguity.

3.3 Properties of the resulting schemes

Here we study the properties of our proposed scheme Π defined in Section 3.2. First, for the
security of Π, we note that the CPA game for Π is identical to the kernel decision game for the
group sampler GS used in Π. Therefore, we have the following:

Theorem 1. Suppose that the kernel decision problem (see Definition 4) for the group sampler
GS used in our proposed scheme Π is hard. Then Π is CPA-secure.

From now, we discuss the correctness and homomorphic properties of Π. Let C be any
(possibly empty) circuit with polynomially many (say, n) input bits and polynomially many
(say, n′) output bits, which consists of polynomially many AND and NOT gates and no OR
gates. Let C̃ denote the algorithm obtained from C by replacing each AND and NOT gates
with algorithms AND and NOT in Π, respectively. For i ∈ {1, . . . , n}, let mi ∈ {0, 1} and
ci ← Enc(mi). We put (c′1, . . . , c

′
n′) := C̃(c1, . . . , cn), and for i ∈ {1, . . . , n′}, set m′

i ← Dec(c′i).
Then we have the following result indicating the homomorphic functionality of Π (when C is
an empty circuit, the result means the correctness of Π as a PKE scheme):
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Theorem 2. Suppose that the group sampler GS is commutator-separable (see Definition 3). Let
C be a circuit as above, and let m′

1, . . . ,m
′
n′ be the decryption results for ciphertexts generated

from ciphertexts of m1, . . . ,mn by the homomorphic operation C̃ corresponding to C (see above).
Then we have (m′

1, . . . ,m
′
n′) = C(m1, . . . ,mn) with overwhelming probability.

Since the circuit C above may be an arbitrary circuit of polynomially bounded size (with
no OR gates), Theorem 1 and Theorem 2 imply the following main result of the paper:

Theorem 3. Suppose that the group sampler GS above is commutator-separable, and the kernel
decision problem for GS is hard. Then Π is a CPA-secure FHE scheme.

Now we give a proof of Theorem 2 above.

Proof of Theorem 2. First we introduce some auxiliary definitions: We say that a ciphertext
c = (cB, cT) is of type 0, if φ(cT) ∈ X and φ(cB) = 1G where X is a subset of G \ {1G} specified
in the definition of commutator-separability (Definition 3); and c is of type 1, if φ(cT) ∈ X and
φ(cB) = φ(cT). Then by the condition for the algorithm Ker in Definition 2, it follows that
Dec(c) = b with probability 1 if c is of type b ∈ {0, 1}.

By the conditions for SampleG and SampleH in Definition 2, an output of Enc(m) for m ∈
{0, 1} is of type m with overwhelming probability.

We check that, if a ciphertext c is of type b ∈ {0, 1}, then an output of NOT(c) is of type
¬b (= NOT b) with probability 1. By the definition of NOT, the claim here follows from the
relation φ(cB

−1 · cT) = φ(cB)
−1φ(cT).

On the other hand, we check that, if a ciphertext ci is of type bi ∈ {0, 1} for each i ∈ {1, 2},
then an output of AND(c1, c2) is of type b1 ∧ b2 with overwhelming probability. Let c′ ←
AND(c1, c2). By the properties φ(c1,T) ∈ X and φ(c2,T) ∈ X, the commutator-separability
of GS (with x1 := φ(c1,T) and x2 := φ(c2,T)) implies that φ(c′T) ∈ X with overwhelming
probability (we note that, since φ is surjective, φ(g) is uniformly at random on G if g is
uniformly at random on G). From now, we suppose that φ(c′T) ∈ X. Now if b1 = b2 = 1, then
φ(c1,B) = φ(c1,T) and φ(c2,B) = φ(c2,T), therefore we have φ(c′B) = φ(c′T) by the definition of
AND. Hence c′ is of type 1 = b1 ∧ b2. On the other hand, if b1 = 0, then, since φ(c1,B) = 1G,
we have

φ(g · c1,B · g−1) = φ(g)φ(c1,B)φ(g)
−1 = φ(g)φ(g)−1 = 1G , (10)

therefore we have
φ(c′B) = 1Gφ(c2,B)1G

−1φ(c2,B)
−1 = 1G (11)

by the definition of AND. Hence c′ is of type 0 = b1 ∧ b2. Similarly, if b2 = 0, then, since
φ(c2,B) = 1G, we have

φ(c′B) = φ(g · c1,B · g−1)1Gφ(g · c1,B · g−1)−11G
−1 = 1G (12)

by the definition of AND. Hence c′ is of type 0 = b1∧ b2. Therefore, the claim of this paragraph
holds.

By the previous three paragraphs, a recursive argument implies that c′i is a ciphertext of type
bi for every i ∈ {1, . . . , n′} with overwhelming probability, where (b1, . . . , bn′) := C(m1, . . . ,mn)
(note that C involves only polynomially many gates). Then Dec(c′i) = bi for each index i by
the first paragraph of the proof, therefore the proof of Theorem 2 is concluded.
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3.4 Examples of commutator-separable groups

Here we study the condition for commutator-separability in Definition 3 more in detail. First,
we give some results in order to give a sufficient condition for a group sampler to be commutator-
separable. The key notion in the sufficient condition is the following: For any group G and any
g ∈ G, the centralizer ZG(g) of g in G is defined by

ZG(g) := {h ∈ G | gh = hg} . (13)

Then the following lemma provides the above-mentioned sufficient condition:

Lemma 1. Let G be an arbitrary finite group, and let X ⊂ G. Then for any x1, x2 ∈ G, we
have

Pr[ [gx1g
−1, x2] ̸∈ X] ≤ (|G| − |X|) · |ZG(x1)| · |ZG(x2)|

|G|
, (14)

where the probability is taken over the choice of g ←R G.

Proof. First, we put Y := {y ∈ G \X | [gx1g−1, x2] = y for some g ∈ G}. Then we have

Pr[ [gx1g
−1, x2] ̸∈ X] =

∑
y∈Y |{g ∈ G | [gx1g−1, x2] = y}|

|G|
. (15)

For each y ∈ Y , we put Gy := {g ∈ G | [gx1g−1, x2] = y}, and fix an element gy ∈ Gy. Now for
each g ∈ Gy, we have

(gx1g
−1)x2(gx1g

−1)−1x2
−1 = [gx1g

−1, x2]

= [gyx1gy
−1, x2] = (gyx1gy

−1)x2(gyx1gy
−1)−1x2

−1 ,
(16)

therefore
(gx1g

−1)x2(gx1g
−1)−1 = (gyx1gy

−1)x2(gyx1gy
−1)−1 , (17)

hence (gyx1gy
−1)−1(gx1g

−1) ∈ ZG(x2). Now for each h ∈ ZG(x2), we put

Gy,h := {g ∈ Gy | (gyx1gy−1)−1(gx1g
−1) = h} . (18)

If Gy,h ̸= ∅, then we fix an element gy,h ∈ Gy,h. Now for any g ∈ Gy,h, we have

(gyx1gy
−1)−1(gx1g

−1) = (gyx1gy
−1)−1(gy,hx1gy,h

−1) , (19)

therefore gx1g
−1 = gy,hx1gy,h

−1 and gy,h
−1g ∈ ZG(x1). This implies that |Gy,h| ≤ |ZG(x1)| for

any h ∈ ZG(x2), therefore, by the argument above,

|Gy| ≤
∑

h∈ZG(x2)

|Gy,h| ≤ |ZG(x1)| · |ZG(x2)| . (20)

Hence we have

Pr[ [gx1g
−1, x2] ̸∈ X] =

∑
y∈Y |Gy|
|G|

≤ |Y | · |ZG(x1)| · |ZG(x2)|
|G|

≤ (|G| − |X|) · |ZG(x1)| · |ZG(x2)|
|G|

,

(21)

therefore Lemma 1 holds.
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From now, by using Lemma 1 above, we show that the special linear group SL2(F) of size
two over a (sufficiently large) finite field F, which is defined by

SL2(F) := {A =

(
a b
c d

)
| a, b, c, d ∈ F and det(A) = ad− bc = 1} , (22)

satisfies the condition in Definition 3. For the purpose, we give the following evaluation of the
cardinality of the centralizers in the group:

Lemma 2. Let F be any finite field. For any A =

(
a b
c d

)
∈ SL2(F) with A ̸= ±I, we have

|ZSL2(F)(A)| ≤ 2|F| if b ̸= 0 or c ̸= 0, and |ZSL2(F)(A)| = |F| − 1 if b = c = 0.

Proof. Let X =

(
x y
z w

)
∈ ZSL2(F)(A), i.e., X ∈ SL2(F) and XA = AX. Then we have

det(X) = 1 ,

(
ax+ cy bx+ dy
az + cw bz + dw

)
=

(
ax+ bz ay + bw
cx+ dz cy + dw

)
, (23)

therefore
xw − yz = 1 , cy = bz , bx+ dy = ay + bw , az + cw = cx+ dz . (24)

We consider the case that b ̸= 0. Then we have z = b−1cy and w = x+b−1(d−a)y, therefore
x2 + b−1(d− a)xy − b−1cy2 = 1. Now for each y ∈ F, the quadratic equation in x has at most
two solutions, and z and w are uniquely determined from x and y by the relations above. This
implies that the number of the possible X is at most 2|F|. The argument for the case c ̸= 0 is
similar; x and y are linear combinations of z and w, and w satisfies a quadratic equation when
an element z ∈ F is fixed, therefore the number of the possible X is at most 2|F|.

On the other hand, we consider the remaining case that b = c = 0. By the condition
det(A) = 1, we have ad = 1, therefore a ̸= 0 and d ̸= 0. Now we have dy = ay and az = dz,
while the assumption A ̸= ±I implies that a ̸= d. Therefore, we have y = 0 and z = 0. This
implies that xw = 1, therefore w ̸= 0 and x = w−1. Hence, the number of the possible X is
|F| − 1. This concludes the proof of Lemma 2.

By combining Lemma 1 and Lemma 2, we have the following result:

Proposition 1. If the output of a group sampler GS satisfies that G = SL2(F) and |F| = λω(1),
then GS is commutator-separable, where the set X in the definition of commutator-separability
can be any subset of G \ {±I} satisfying that |G| − |X| is polynomially bounded in λ (e.g.,
X = G \ {±I}).

Proof. First, it is known that |G| = (|F| + 1)|F|(|F| − 1), therefore 1/|G| is negligible. Hence
|X|/|G| is overwhelming by the assumption that |G| − |X| is polynomially bounded. On the
other hand, for any x1, x2 ∈ X, Lemma 2 implies that |ZG(x1)| ≤ 2|F| and |ZG(x2)| ≤ 2|F|.
Therefore, by Lemma 1, we have

Pr[ [gx1g
−1, x2] ̸∈ X] ≤ |G| − |X|

(|F|+ 1)|F|(|F| − 1)
· 2|F| · 2|F| = 4|F|

(|F|+ 1)(|F| − 1)
(|G| − |X|) (25)

where g ←R G. The right-hand side is negligible by the assumption that |G|−|X| is polynomially
bounded. Hence Proposition 1 holds.
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