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Abstract

We propose a new and simple framework for constructing fully homomorphic encryption
(FHE) which is completely different from the previous work. We show that, the AND op-
erator on plaintext bits is emulatable, with negligible error probability, by the commutator
operator on a finite non-commutative group with appropriately rerandomized inputs, pro-
vided the group is large and “far from being commutative” in a certain sense. The NOT
operator is also easily emulated on such a group; hence the FHE functionality is realized. Fi-
nally, in order to realize security, we propose some possible strategies for concealing the core
structure of the FHE functionality, based on techniques in combinatorial or computational
group theory. In contrast to the previous noise-based constructions of FHE, our proposed
construction does not suffer from increasing noise in ciphertexts and therefore needs no
bootstrapping procedures, which is the most inefficient part in the previous schemes.

1 Introduction

Until the pioneering work by Gentry [13], it had been a long-standing open problem to construct
fully homomorphic (public key) encryption (FHE ) that enables, without revealing any informa-
tion on encrypted plaintexts, anyone to perform arbitrary operations on the plaintexts through
the corresponding “homomorphic operations” on the ciphertexts. After that, studies of FHE to
improve the efficiency (e.g., [11, 14, 16, 19, 27]) and to give various frameworks of construction
(e.g., [3, 4, 5, 6, 7, 8, 9, 10, 15, 22]) have been one of the main research topics in cryptology
(see [26] for a survey). Now we note that, all the previous FHE schemes (with compact ci-
phertexts) rely on Gentry’s bootstrapping framework. Namely, any ciphertext involves noise,
which is increased by homomorphic operations and will collapse the ciphertext after a number
of operations, therefore a “bootstrapping” procedure is required to cancel the noise before the
collapse. This additional procedure is a major bottleneck for efficiency improvement and makes
the syntax of FHE less analogical to the classical homomorphic encryption. Therefore, a new
approach to construct FHE schemes that does not require bootstrapping is really valuable.

1.1 Our Contributions and Related Work

In this paper, we propose a new framework for construction of FHE, which is completely different
from the previous work and realizes the FHE functionality without bootstrapping. Our approach
follows the direction of so-called “group-based cryptography” (see e.g., [2] for a survey), where
non-commutative groups with some special properties are used as the underlying mathematical
structure. We also emphasize that, the non-commutativity of groups in our construction is
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essential for the functionality of the scheme; our homomorphic operation uses the commutator
operator in the group (see below for the definition), which becomes just a constant function if
the group is commutative. This is a contrast to the major previous group-based cryptographic
schemes (e.g., [21, 24]), where the functionality is realized on a commutative subset (e.g., by the
technique of Diffie–Hellman key exchange) and the non-commutativity is used only for security
purpose to conceal the commutative subset. The author hopes that this work shows a new
possibility of group-based cryptography which is left unexplored.

Our proposed approach to FHE is twofold; we first realize the functionality of homomorphic
operators on a non-commutative “base” group (denoted by G), and then “lift” it (in a way
compatible to the homomorphic operations) to a larger “obfuscated” group (denoted by G) to
conceal the base structure. More precisely, we use a surjective group homomorphism φ : G→ G,
g 7→ g, whose values are difficult to guess when the map φ is not announced (see below).
The “base” structure consists of pairs (c1, c2) of elements of G, which satisfies that c2 = 1
(the identity element) and c2 = c1 if the pair is associated to plaintext m = 0 and m = 1,
respectively; we call such a pair a class-m pair. An additional condition c1 ̸= 1 is also required
to separate the two classes. Now our homomorphic NOT operator for the pair (c1, c2) replaces
the component c2 with c1 · (c2)−1; this exchanges the two states c2 = 1 and c2 = c1 successfully.

On the other hand, the key tool for constructing our homomorphic AND operator is the
commutator operator [·, ·], which is defined for any group H by

[g, h] = g · h · g−1 · h−1 ∈ H for any g, h ∈ H .

The key property is the following: If g = 1 or h = 1, then [g, h] = 1. This is similar to the
AND operator for bits (denoted by ∧)1, i.e., if b = 0 or b′ = 0, then b ∧ b′ = 0. Motivated
by this analogy, we want to define the homomorphic AND operator for class-m pair (c1, c2)
and class-m′ pair (d1, d2) as outputting the pair (e1, e2) with ei = [ci, di] for i = 1, 2. By
the above-mentioned property of commutator (as well as the “synchronized” definition for two
components), the output satisfies almost all requirements for class-(m ∧m′) pairs regardless of
the choices of m and m′, but only the requirement e1 ̸= 1 is in general not guaranteed even if
c1 ̸= 1 and d1 ̸= 1 (for example, consider the case c1 = d1, which always yields e1 = 1).

Our idea to resolve the issue is to “rerandomize” the inputs of the commutator operator in
a “synchronized” manner. Namely, we modify the definition of ei in the following manner:

e1 = [g · c1 · (g)−1 , d1] and e2 = [g · c2 · (g)−1 , d2] ,

where g is a uniformly random element of G commonly used for the two components. This
does not affect the already satisfied conditions for (e1, e2), since c2 = 1 implies g · c2 · (g)−1 = 1.
Then we prove that, if the group G is appropriately chosen (for example, G is the group of 2×2
matrices with determinant one over a sufficiently large finite field F, denoted by SL2(F)), then
the remaining condition e1 ̸= 1 is satisfied with sufficiently high probability (with respect to
the random choice of g), therefore our homomorphic AND operator works correctly. We also
propose more complicated rerandomizing functions for inputs of commutator, which enlarges
the possibilities of G significantly. We note that, this FHE functionality can be lifted to G since
the functionality is realized by using group operators in G only; i.e., a pair (c1, c2) of elements
of G is regarded as a ciphertext for plaintext m if (φ(c1), φ(c2)) = (c1, c2) is a class-m pair.

Towards secure instantiation of the proposed scheme (i.e., to choose a group homomorphism
φ : G→ G for which it is difficult to decide if a given element x ∈ G satisfies φ(x) = 1 ∈ G), our
candidate strategy proposed in this paper is based on the theory of presentations of groups in
terms of generators and fundamental relations satisfied by the generators. First we note that,
the candidates for G given in this paper (including SL2(F) mentioned above) admit efficient

1From the property of commutators, one may be reminded of the proof of the Barrington’s theorem [1].
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group presentations (e.g., [17]). We choose G to be the direct product N ×G of G and another
group N and define the map φ to be the natural projection to the second factor. Here we take a
non-commutative group N having efficient group presentation, which (together with the above-
mentioned group presentation of G) yields a group presentation of G. Examples of such groups
N , as well as some necessary condition for security purpose, will be presented in later sections.
Then we “obfuscate” the structure of G by repeatedly applying Tietze transformations, which is
an invertible transformation of group presentations that keeps the underlying group structure
unchanged. Now the structure of G would be suitably concealed if the transformations are
applied randomly and sufficiently many times; detailed theoretical and experimental analyses
of this construction will be a future research topic. We note that the proposed strategy would
be also applicable to construct homomorphic encryption schemes with plaintext spaces being
non-commutative groups, which (as mentioned in [23]) can be also converted to FHE schemes
by choosing the plaintext group appropriately.

1.2 Organization of the Paper

In Section 2, we summarize some notations, terminology and basic definitions. In Section 3,
we present our new framework for construction of FHE schemes. Two proposed choices of the
rerandomization functions for inputs of the commutator operator in our framework are studied
in Section 4 and 5. Finally, in Section 6, we describe some strategies for instantiating the
proposed scheme. Some basic facts about group theory are supplied in Appendix A.

2 Preliminaries

In this section, we summarize some basic definitions and notations used throughout the paper.
Unless otherwise specified, a group G is written in multiplicative form with identity element de-
noted by 1G (or simply by 1, if the group G is obvious from the context) and is not commutative.
The commutator [g, h] of two elements g, h ∈ G is defined by

[g, h] = g · h · g−1 · h−1 ∈ G .

Note that, [g, h] = 1 if and only if gh = hg, i.e., g and h commute. The reader may refer to
a textbook of group theory (e.g., [25]) for other definitions and basic facts for groups (see also
Appendix A). Let a ←R X mean that an element a is chosen from a finite set X uniformly
at random, and let a ← A(x) mean that a is an output of an algorithm A with input x.
We use a similar notation for outputs of probability distributions. Let Pra←RX [· · · ] denotes
the probability of the specified event, taken over uniformly random element a ∈ X. Let λ
denote the security parameter unless otherwise specified. We say that a quantity ε = ε(λ) ≥ 0
depending on λ is negligible, if for any integer n ≥ 1, there exists a λ0 > 0 with the property
that we have ε(λ) < λ−n for every λ > λ0; ε ∈ [0, 1] is overwhelming, if 1− ε is negligible; and ε
is noticeable, if there exist integers n ≥ 1 and λ0 > 0 with the property that we have ε > λ−n for
every λ > λ0. The statistical distance between two probability distributions X ,Y over a finite
set Z is defined by

∑
z∈Z |Pr[z ← X ]−Pr[z ← Y]|/2. We say that two probability distributions

(parameterized by λ) are statistically close, if their statistical distance is negligible.
A public key encryption (PKE ) scheme consists of the following three algorithms. The key

generation algorithm Gen(1λ) outputs a pair (pk, sk) of a public key pk and a secret key sk.
The encryption algorithm Enc(pk,m) with plaintext m outputs a ciphertext as the encryption
result of m. Finally, the decryption algorithm Dec(sk, c) with ciphertext c outputs either a
plaintext m as the decryption result of c, or a distinguished symbol ⊥ indicating decryption
failure. In the paper, any PKE scheme has 1-bit plaintext space {0, 1}. The correctness of a
PKE scheme means that, for any plaintext m, the probability Pr[Dec(sk,Enc(pk,m)) ̸= m] is
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negligible, where the probability is taken over the randomness in the encryption algorithm. In
particular, negligible probabilities of decryption errors are tolerated in the paper.

A homomorphic PKE scheme (with 1-bit plaintexts) is a PKE scheme endowed with another
algorithm that, given any map of the form f : {0, 1}n → {0, 1}n′

in some specified class and
any ciphertexts ci ← Enc(pk,mi) for plaintexts mi (i ∈ {1, 2, . . . , n}) as inputs, efficiently
outputs ciphertexts c′1, . . . , c

′
n′ satisfying that (Dec(sk, c′i))

n′
i=1 = f((mi)

n
i=1) with overwhelming

probability. In particular, if the f can be any circuit with polynomially many gates, then the
scheme is called an FHE scheme. The proposed FHE scheme in the paper calculates the circuit
f by combining AND and NOT operators, hence it is endowed with two algorithms AND and
NOT for homomorphically computing AND and NOT operators, respectively.

We say that a PKE scheme with 1-bit plaintexts is CPA-secure, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage AdvA(λ) = |Pr[b = b∗] − 1/2| of A is
negligible, where Pr[b = b∗] is the probability that b = b∗ in the following game:

(pk, sk)← Gen(1λ) ; b∗ ←R {0, 1} ; c∗ ← Enc(pk, b∗) : b← A(1λ, pk, c∗) .

We note that other advanced security notions for FHE, such as the circuit privacy (e.g., [20]),
are out of the scope of the paper and are left as future research topics.

3 Our Proposed Framework for FHE Schemes

In this section, we present our proposed framework for non-commutative group-based FHE
schemes. In Section 3.1, we summarize some basic properties of the underlying groups which
are assumed throughout our argument below. Then in Section 3.2, we describe the proposed
framework and show a part of the correctness property of the resulting scheme. Our framework
involves some (probabilistic) functions on the underlying group, and the required conditions for
the underlying groups to achieve the remaining part of the correctness property depend on a
concrete choice of the functions, discussed in the following sections.

3.1 Common Properties of Underlying Groups

Here we summarize some basic properties of the underlying groups to be assumed in all of
our proposed constructions. We suppose that, we are given (certain descriptions of) two finite
groups2 G and G and a surjective group homomorphism φ : G→ G. We assume that the group
G (hence G as well) is sufficiently large, or more precisely, |G|−1 is negligible in the security
parameter λ. We denote the kernel of φ by N = kerφ = {g ∈ G | φ(g) = 1G}.

We will also use some functions and algorithms associated to these groups. First, we suppose
that we are given two algorithms SampleG and SampleN which output uniformly random (or
more generally, statistically close to uniform) elements of G and of N , respectively. A typical
implementation of these algorithms will be as follows: Given a generating set of G (respectively,
N), the algorithm computes a random product of random powers of generators chosen randomly
from the generating set, and outputs the resulting element. Secondly, we also suppose that we
are given two probabilistic functions F1, F2 : G→ G, which we call shuffling functions, satisfying
the following conditions, where ∗ ∈ {1, 2} and r denotes any fixed internal randomness for F∗:

φ(F∗(1G; r)) = 1G . (1)

If g1, g2 ∈ G and φ(g1) = φ(g2) then φ(F∗(g1; r)) = φ(F∗(g2; r)) . (2)

2The argument in Section 3 can be extended to more general cases where G or G has non-associative mul-
tiplication. It can be also extended even to the cases of infinite G, though the resulting scheme will be just a
somewhat encryption scheme and its conversion to FHE (if possible) will require bootstrapping.

4



Examples of shuffling functions will be presented in later sections. Moreover, we suppose that
we are given an algorithm Kerφ to determine whether its input g ∈ G is an element of kerφ or
not. An obvious implementation of the algorithm is to calculate the value φ(g) itself, provided
φ is efficiently computable. Further conditions for these objects required to realize correctness
and security in each of our proposed construction will be discussed later.

3.2 Description of Our Framework

Here we give the description of our proposed framework to construct FHE schemes. We write
the resulting FHE scheme as Π = (Gen,Enc,Dec,NOT,AND). Each of the algorithms in Π is
defined as follows, where ε = ε(λ) denotes any fixed function which is negligible in λ:

Gen(1λ): According to the security parameter λ, the algorithm generates groups G and G, a
surjective group homomorphism φ : G→ G, algorithms SampleG, SampleN and Kerφ and
probabilistic functions F1 and F2, as in Section 3.1. In particular, |G|−1 ≤ ε. Then the
algorithm outputs a public key pk and a secret key sk defined by

pk = (G,SampleG, SampleN , F1, F2) , sk = Kerφ .

Enc(pk,m) for m ∈ {0, 1}: The algorithm outputs c = (c1, c2) ∈ G×G generated by

c1 ← SampleG , c2 ←

{
h if m = 0 ,

c1h if m = 1 ,
where h← SampleN .

The ciphertext space is defined as C := G×G.

Dec(sk, c) for c = (c1, c2) ∈ C: The algorithm decides whether φ(c2) = 1G or not, by using the
algorithm Kerφ. Then it outputs 0 if φ(c2) = 1G; and outputs 1 otherwise.

NOT(pk, c) for c ∈ C: The algorithm outputs

(c1 , c2
−1c1) ∈ C .

AND(pk, c, c′) for c, c′ ∈ C: The algorithm outputs(
[F1(c1; r1), F2(c

′
1; r2)] , [F1(c2; r1), F2(c

′
2; r2)]

)
∈ C

(recall that [x, y] = x · y · x−1 · y−1), where r1 and r2 denote internal randomness for F1

and F2, respectively, chosen uniformly at random. (We emphasize that computations for
the two components are “synchronized”, i.e., the randomness used in the functions F1 and
F2 for the computation of the first component of the output are the same as ones for the
second component.)

We show some basic properties of the proposed framework. We use the following fact:

Lemma 1. If f : H → K is a surjective group homomorphism, |H|, |K| < ∞ and g is a
uniformly random element of H, then f(g) is also a uniformly random element of K.

Proof. This follows from the fact that, for any element x of the image of f , the number of
elements g ∈ H satisfying f(g) = x is equal to | ker f |, regardless of the choice of x.

To show the correctness of the proposed scheme, we introduce an auxiliary terminology:
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Definition 1. For a ciphertext c = (c1, c2) ∈ C, we say that c is class-0 if φ(c1) ̸= 1G and
φ(c2) = 1G, and c is class-1 if φ(c1) ̸= 1G and φ(c2) = φ(c1).

By the definition of the decryption algorithm, for b ∈ {0, 1}, we have Dec(sk, c) = b if c is a
class-b ciphertext. This implies the following result:

Proposition 1. For any m ∈ {0, 1}, the algorithm Enc(pk,m) outputs a class-m ciphertext
with overwhelming probability. Hence, the scheme Π satisfies the correctness as a PKE scheme.

Proof. Let c = (c1, c2) ← Enc(pk,m). First, since c1 ← SampleG, Lemma 1 implies that φ(c1)
is uniformly random over G, therefore we have φ(c1) ̸= 1G with probability 1 − |G|−1 ≥ 1 − ε
which is overwhelming. Now, assuming the overwhelming case φ(c1) ̸= 1G, if m = 0, then we
have φ(c2) = φ(h) = 1G since h ∈ N , therefore c is class-0. On the other hand, if m = 1, then
we have φ(c2) = φ(c1h) = φ(c1)φ(h) = φ(c1) since h ∈ N , therefore c is class-1. Hence the
assertion holds.

Secondly, we prove a part of the homomorphic property of the proposed scheme:

Proposition 2. For any m ∈ {0, 1}, if c is a class-m ciphertext, then NOT(pk, c) always
outputs a class-(¬m) ciphertext, where ¬m = 1−m denotes the NOT operator.

Proof. First, we note that the algorithm NOT does not change the first component of a cipher-
text. Now if φ(c2) = 1G, then we have φ(c2

−1c1) = φ(c2)
−1φ(c1) = φ(c1). On the other hand,

if φ(c2) = φ(c1), then we have φ(c2
−1c1) = φ(c2)

−1φ(c1) = 1G. Hence the assertion holds.

Proposition 3. Let m,m′ ∈ {0, 1}, c be a class-m ciphertext, and c′ be a class-m′ ciphertext.

Let c† = (c†1, c
†
2)← AND(pk, c, c′). Then:

• If m = 0 or m′ = 0, then we always have φ(c†2) = 1G.

• If m = m′ = 1, then we always have φ(c†2) = φ(c†1).

Namely, the component c†2 satisfies the condition for class-(m ∧ m′) ciphertexts in any case,
where m ∧m′ denotes the AND operator.

Proof. When m = 0, since φ(c2) = 1G = φ(1G), we have φ(F1(c2)) = φ(F1(1G)) = 1G by (1)
and (2) regardless of the randomness in F1. Now we have

φ(c†2) = φ([F1(c2), F2(c
′
2)])

= φ(F1(c2) · F2(c
′
2) · F1(c2)

−1 · F2(c
′
2)
−1)

= φ(F1(c2)) · φ(F2(c
′
2)) · φ(F1(c2))

−1 · φ(F2(c
′
2))
−1

= 1G · φ(F2(c
′
2)) · 1G · φ(F2(c

′
2))
−1 = φ(F2(c

′
2)) · φ(F2(c

′
2))
−1 = 1G .

When m′ = 0, the same argument implies that φ(F2(c
′
2)) = 1G and

φ(c†2) = φ(F1(c2)) · φ(F1(c2))
−1 = 1G .

Finally, when m = m′ = 1, since φ(c2) = φ(c1) and φ(c′2) = φ(c′1), by (2), we have

φ(F1(c1; r1)) = φ(F1(c2; r1)) and φ(F2(c
′
1; r2)) = φ(F2(c

′
2; r2)) .

Therefore, we have

φ(c†2) = φ(F1(c2; r1)) · φ(F2(c
′
2; r2)) · φ(F1(c2; r1))

−1 · φ(F2(c
′
2; r2))

−1

= φ(F1(c1; r1)) · φ(F2(c
′
1; r2)) · φ(F1(c1; r1))

−1 · φ(F2(c
′
1; r2))

−1

= φ([F1(c1; r1), F2(c
′
1; r2)]) = φ(c†1) .

Hence the assertion holds.
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Proposition 2 showed that the algorithm NOT(pk, c) behaves as a homomorphic NOT op-
erator for class-0 and class-1 ciphertexts. On the other hand, Proposition 3 showed that the
algorithm AND(pk, c, c′) will behave as a homomorphic AND operator for class-0 and class-1

ciphertexts, provided the condition φ(c†1) ̸= 1G for the first component is satisfied. The re-

quirements for the groups G and G to guarantee the condition φ(c†1) ̸= 1G (with overwhelming
probability) depend on the choices of shuffling functions F1 and F2. We propose two choices of
these functions in the following two sections.

On the other hand, the following holds for the CPA security of the proposed scheme Π:

Theorem 1. Suppose that all the algorithms in Π are efficient. Then Π is CPA-secure if and
only if, the subgroup membership problem for N ⊂ G is computationally hard; that is, for any
PPT adversary A†, the advantage AdvA†(λ) = |Pr[b = b†] − 1/2| of A† in the following game
is negligible:

(pk, sk)← Gen(1λ) ; b† ←R {0, 1} ;

{
g† ←R G if b† = 1

g† ←R N if b† = 0
: b← A†(1λ, pk, g†) .

Proof. First, to convert this adversary A† to a CPA adversary A for Π, given a challenge
ciphertext c∗ = (c∗1, c

∗
2) with challenge bit b∗, the simulator simply inputs c∗2 (as well as 1λ and

pk) to A† and outputs the output bit of the A†. Now c∗2 is uniformly random over N if b∗ = 0,
and c∗2 is uniformly random over G if b∗ = 1 (since c∗2 = c∗1h and c∗1 is uniformly random over
G). Hence we have AdvA = AdvA† .

Secondly, to convert a CPA adversaryA for Π to this adversaryA†, given a challenge element
g† with challenge bit b†, the simulator generates c∗1 ← SampleG and b∗ ←R {0, 1}; computes
c∗2 = g† if m∗ = 0 and c∗2 = c∗1g

† if m∗ = 1; inputs c∗ = (c∗1, c
∗
2) (as well as 1

λ and pk) to A and
receives the output bit b′; and outputs b = b∗ ⊕ b′ where ⊕ denotes the XOR operator. Now if
b† = 0, then g† is a uniformly random element of N , therefore the input distribution for A is
correct and we have∣∣∣∣Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[b′ = b∗ | b† = 0]− 1

2

∣∣∣∣ = AdvA(1
λ) .

On the other hand, if b† = 1, then g† is a uniformly random element of G, therefore the
distributions of c∗2 for b∗ = 0 and for b∗ = 1 are identical (uniform over G) and independent of
c∗1. Hence we have

Pr[b = 1 | b† = 1] = Pr[b′ ̸= b∗ | b† = 1] =
1

2
.

Summarizing, we have

AdvA†(1λ) =

∣∣∣∣Pr[b = b† = 1] + Pr[b = b† = 0]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[b = 1 | b† = 1] +
1

2
Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣
=

∣∣∣∣14 +
1

2
Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣ = 1

2
AdvA(1

λ) .

This completes the proof of Theorem 1.
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4 First Candidate of Shuffling Functions

In this section, we present one of the two proposed choices of the shuffling functions F1 and F2

for our construction in Section 3. We define

F1(x) = gxg−1 with g ← SampleG and F2(x) = x .

Now conditions (1) and (2) for F2 are trivially satisfied, and condition (1) for F1 is also satisfied
since g · 1G · g−1 = 1G. Moreover, for condition (2) for F1, if φ(g1) = φ(g2), then we have

φ(g · g1 · g−1) = φ(g)φ(g1)φ(g)
−1 = φ(g)φ(g2)φ(g)

−1 = φ(g · g2 · g−1) .

Hence the shuffling functions satisfy the two conditions.
In this case, a sufficient condition for our proposed scheme to have the fully homomorphic

functionality can be formulated as follows:

Definition 2 (Commutator-separable group). We say that the family of groups G used in our
proposed scheme, parameterized by the security parameter λ, is commutator-separable, if there
exists a subset X of G satisfying the following conditions, where ε = ε(λ) is the negligible
function appeared in Section 3.2:

1. We have 1G ∈ X.

2. We have |X| ≤ ε · |G|.

3. For any x, y ∈ G \X, we have Prg←RG[ [gxg
−1, y] ∈ X ] ≤ ε.

Examples of commutator-separable groups will be shown in Section 6.1. We note that, only
the existence of the subsetX as in Definition 2 matters in the proofs below, thereforeX need not
be efficiently computable. Then, assuming that G is commutator-separable, the homomorphic
functionality holds for class-0 and class-1 ciphertexts c = (c1, c2) with the additional property
c1 ̸∈ X. More precisely, we have the following result:

Theorem 2. Assume that G is commutator-separable with the subset X ⊂ G. Then:

• For any m ∈ {0, 1}, the algorithm Enc(pk,m) outputs, with probability at least 1 − ε, a
class-m ciphertext c = (c1, c2) satisfying φ(c1) ̸∈ X.

• For any m ∈ {0, 1}, if c is a class-m ciphertext and φ(c1) ̸∈ X, then the output c† of

NOT(pk, c) is a class-(¬m) ciphertext satisfying φ(c†1) ̸∈ X.

• Let m,m′ ∈ {0, 1}, c be a class-m ciphertext satisfying φ(c1) ̸∈ X, and c′ be a class-m′

ciphertext satisfying φ(c′1) ̸∈ X. Then AND(pk, c, c′) outputs, with probability at least

1− ε, a class-(m ∧m′) ciphertext c† satisfying φ(c†1) ̸∈ X.

Hence, the proposed scheme Π is an FHE scheme.

Proof. First, since 1G ∈ X and |G \X|/|G| = 1 − |X|/|G| ≥ 1 − ε, the same argument as the
proof of Proposition 1 implies that Pr[φ(c1) ̸∈ X] ≥ 1− ε for c← Enc(pk,m) and the assertion
for Enc(pk,m) holds. Secondly, the assertion for NOT(pk, c) follows from Proposition 2 and
the fact that NOT(pk, c) does not change the first component c1. Finally, for the assertion for
AND(pk, c, c′), we have

φ(c†1) = φ([gc1g
−1, c′1]) = [φ(g)φ(c1)φ(g)

−1, φ(c′1)] .

Since φ(c1), φ(c
′
1) ∈ G\X and φ(g) is a uniformly random element of G by Lemma 1, Definition

2 implies that we have φ(c†1) ̸∈ X with probability at least 1− ε. Therefore, the assertion holds
by Proposition 3. This completes the proof of Theorem 2.
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5 Second Candidate of Shuffling Functions

In this section, we present another proposed choice of the shuffling functions F1 and F2 for our
construction in Section 3. We define

F1(x) = (g1xg1
−1)e1 · (g2xg2−1)e2 · · · · · (gℓxgℓ−1)eℓ and F2 = F1 ,

where ℓ > 0 is an integer parameter (independent of x ∈ G), e1, . . . , eℓ are random integers, and
g1, . . . , gℓ ← SampleG. Now condition (1) is satisfied since gi · 1G · gi−1 = 1G, and condition (2)
is satisfied since F1 is constructed from multiplications and inverses of elements of G only, in a
way similar to the case of Section 4. Hence the shuffling functions satisfy the two conditions.

We suppose that G has a non-commutative simple quotient group G∗ satisfying |G∗|−1 ≤ ε.
Let φ∗ : G→ G∗ be the composite map of φ : G→ G followed by the natural projection G→ G∗,
hence φ∗ is a surjective group homomorphism as well as φ. For example, we may take G itself
as the G∗ if G is a non-commutative simple group (since we have assumed that |G|−1 ≤ ε). We
note that, only the existence of the quotient group G∗ matters in the proofs below, therefore
G∗ need not be efficiently computable. Then, for any x∗ ∈ G∗ \ {1G∗

}, the simple group G∗ is

generated by the elements h · x∗ · h−1 with h ∈ G∗. Now for x ∈ G, we have

φ∗(F1(x)) = (φ∗(g1)φ∗(x)φ∗(g1)
−1)e1 · · · · · (φ∗(gℓ)φ∗(x)φ∗(gℓ)−1)eℓ

and each φ∗(gi) is a uniformly random element of G∗ by Lemma 1. If φ∗(x) ̸= 1G∗
, then

φ∗(F1(x)) is a product of powers of randomly chosen generators of G∗ by the argument above.
Therefore, we may expect that the following would hold by choosing a sufficiently large (but
still polynomially bounded) parameter ℓ:

Assumption 1. For any x ∈ G, if φ∗(x) ̸= 1G∗
, then the statistical distance between the

probability distribution of φ∗(F1(x)) and the uniform distribution over G∗ is at most ε.

A concrete estimate of the sufficient number ℓ to guarantee Assumption 1 will be a future
research topic. On the other hand, the following result by Guralnick and Robinson [18] is the
key fact in our argument:

Proposition 4 ([18], Theorem 9). For any finite non-commutative simple group H, we have

Pr
x,y←RH

[ [x, y] = 1H ] ≤ |H|−1/2 .

In this setting, the homomorphic functionality holds for class-0 and class-1 ciphertexts
c = (c1, c2) with the additional property φ∗(c1) ̸= 1G∗

. More precisely, we have the following
result:

Theorem 3. Assume that G has a non-commutative simple quotient group G∗ satisfying
|G∗|−1 ≤ ε. Then, under Assumption 1, we have:

• For any m ∈ {0, 1}, the algorithm Enc(pk,m) outputs, with probability at least 1 − ε, a
class-m ciphertext c = (c1, c2) satisfying φ∗(c1) ̸= 1G∗

.

• For any m ∈ {0, 1}, if c is a class-m ciphertext satisfying φ∗(c1) ̸= 1G∗
, then the output

c† of NOT(pk, c) is a class-(¬m) ciphertext satisfying φ∗(c
†
1) ̸= 1G∗

.

• Let m,m′ ∈ {0, 1}, c be a class-m ciphertext satisfying φ∗(c1) ̸= 1G∗
, and c′ be a class-m′

ciphertext satisfying φ∗(c
′
1) ̸= 1G∗

. Then AND(pk, c, c′) outputs, with probability at least

1− (
√
ε+ 2ε), a class-(m ∧m′) ciphertext c† satisfying φ∗(c

†
1) ̸= 1G∗

.
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Hence, the proposed scheme Π is an FHE scheme.

Proof. First, the same argument as the proof of Proposition 1 implies that Pr[φ∗(c1) ̸= 1G∗
] ≥

1 − ε for c ← Enc(pk,m) and the assertion for Enc(pk,m) holds. Secondly, the assertion for
NOT(pk, c) follows from Proposition 2 and the fact that NOT(pk, c) does not change the first
component c1. Finally, for the assertion for AND(pk, c, c′), we have (since F2 = F1)

φ∗(c
†
1) = φ∗([F1(c1), F1(c

′
1)]) = [φ∗(F1(c1)), φ∗(F1(c

′
1))] .

Now if φ∗(F1(c1)) and φ∗(F1(c
′
1)) were uniformly random elements of G∗, then the probability

that φ∗(c
†
1) = 1G∗

would be at most |G∗|−1/2 ≤
√
ε by Proposition 4 since |G∗|−1 ≤ ε. Then, by

Assumption 1, the true probability Pr[φ∗(c
†
1) = 1G∗

] is at most
√
ε+2ε, which is still negligible.

Therefore, the assertion holds by Proposition 3. This completes the proof of Theorem 3.

6 Towards Instantiation of the Proposed Scheme

In Section 6.1, we give examples of commutator-separable groups used in Section 4. Then in
Section 6.2, we describe a candidate strategy for constructing instantiations of our proposed
scheme.

6.1 Examples of Commutator-Separable Groups

Here we give examples of commutator-separable groups in Definition 2. For an element g of
any group H, let ZH(g) denote the centralizer of g in H defined by

ZH(g) = {h ∈ H | gh = hg} .

Then the following holds for the probability appeared in Definition 2:

Lemma 2. Let H be a finite group, and let X ⊂ H. Then for any x1, x2 ∈ H, we have

Pr
g←RH

[ [gx1g
−1, x2] ∈ X ] ≤ |X| · |ZH(x1)| · |ZH(x2)|

|H|
.

Proof. We put Hy = {g ∈ H | [gx1g−1, x2] = y} for y ∈ X. Then we have

Pr
g←RH

[ [gx1g
−1, x2] ∈ X ] =

∑
y∈X

Pr
g←RH

[ [gx1g
−1, x2] = y ] =

∑
y∈X

|Hy|
|H|

.

For each y ∈ X with Hy ̸= ∅, fix an element gy ∈ Hy. Then for each g ∈ Hy, we have

(gx1g
−1)x2(gx1g

−1)−1x2
−1 = [gx1g

−1, x2]

= [gyx1gy
−1, x2] = (gyx1gy

−1)x2(gyx1gy
−1)−1x2

−1 ,

therefore (gyx1gy
−1)−1(gx1g

−1) ∈ ZH(x2). Now for each h ∈ ZH(x2), we put

Hy,h = {g ∈ Hy | (gyx1gy−1)−1(gx1g−1) = h} .

Then we have |Hy| =
∑

h∈ZH(x2)
|Hy,h|. If Hy,h ̸= ∅, we fix an element gy,h ∈ Hy,h. Now for

any g ∈ Hy,h, we have gx1g
−1 = gyx1gy

−1 · h = gy,hx1gy,h
−1, therefore gy,h

−1g ∈ ZH(x1). This
implies that |Hy,h| ≤ |ZH(x1)| for any h ∈ ZH(x2). Summarizing, we have

Pr
g←RH

[ [gx1g
−1, x2] ∈ X ] ≤

∑
y∈X

∑
h∈ZH(x2)

|ZH(x1)|
|H|

≤ |X| · |ZH(x1)| · |ZH(x2)|
|H|

.

Hence Lemma 2 holds.
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By using the result, we prove that the group

SL2(Fq) = {A =

(
a b
c d

)
| a, b, c, d ∈ Fq , det(A) = ad− bc = 1}

and its quotient group PSL2(Fq) = SL2(Fq)/{±I}, where Fq denotes the finite field with
q elements and I denotes the identity matrix, are commutator-separable if q is a function
of λ with sufficiently large values. For the purpose, we study the sizes of ZH(A) for H ∈
{SL2(Fq),PSL2(Fq)} and each A ∈ H. First we show the following properties:

Lemma 3. For any A =

(
a b
c d

)
∈ SL2(Fq) with A ̸= ±I, we have |ZSL2(Fq)(A)| ≤ 2q if b ̸= 0

or c ̸= 0, and |ZSL2(Fq)(A)| = q − 1 if b = c = 0.

Proof. Let X =

(
x y
z w

)
∈ ZSL2(Fq)(A), therefore XA = AX. Then we have

det(X) = 1 and

(
ax+ cy bx+ dy
az + cw bz + dw

)
=

(
ax+ bz ay + bw
cx+ dz cy + dw

)
,

therefore
xw − yz = 1 , cy = bz , bx+ dy = ay + bw , az + cw = cx+ dz .

First, suppose that b ̸= 0. Then we have z = b−1cy and w = x + b−1(d − a)y, therefore
x2 + b−1(d− a)xy − b−1cy2 = 1. Now for each y ∈ Fq, the quadratic equation in x has at most
two solutions, and z and w are uniquely determined from x and y by the relations above. This
implies that the number of the possible X is at most 2q. The argument for the case c ̸= 0 is
similar; x and y are linear combinations of z and w, and w satisfies a quadratic equation when
an element z ∈ F is fixed, therefore the number of the possible X is at most 2q.

On the other hand, suppose that b = c = 0. By the condition det(A) = 1, we have ad = 1,
therefore a ̸= 0 and d ̸= 0. Now we have dy = ay and az = dz, while the assumption A ̸= ±I
implies that a ̸= d. Therefore, we have y = 0 and z = 0. This implies that xw = 1, therefore
w ̸= 0 and x = w−1. Hence, the number of the possible X is q − 1. This completes the proof
of Lemma 3.

Lemma 4. We have |ZPSL2(Fq)(A)| ≤ 2q for any non-identity element A ∈ PSL2(Fq).

Proof. First we note the following fact: For any finite group H and its element x, we have
|ZH(x)| = |H|/|xH |, where xH = {hxh−1 | h ∈ H} denotes the conjugacy class of x in H.
Now let π : SL2(Fq)→ PSL2(Fq) denote the natural projection. Then for each π(x) ∈ PSL2(Fq)
with x ∈ SL2(Fq), the image of xSL2(Fq) via the map π is included in π(x)PSL2(Fq). Since π is a
two-to-one map, this implies that |π(x)PSL2(Fq)| ≥ |xSL2(Fq)|/2, therefore

|ZPSL2(Fq)(π(x))| =
|PSL2(Fq)|
|π(x)PSL2(Fq)|

≤ |SL2(Fq)|/2
|xSL2(Fq)|/2

=
|SL2(Fq)|
|xSL2(Fq)|

= |ZSL2(Fq)(x)| .

Hence the assertion follows from Lemma 3.

By combining the results above, we have the following:

Theorem 4. If the finite field Fq satisfies that

8q

q2 − 1
≤ ε , or equivalently q ≥ 4 +

√
16 + ε2

ε
≈ 8

ε
,

then SL2(Fq) is commutator-separable with the subset X = {±I} ⊂ SL2(Fq), and PSL2(Fq) is
commutator-separable with the subset X = {1PSL2(Fq)} ⊂ PSL2(Fq).
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Proof. Let H ∈ {SL2(Fq),PSL2(Fq)}. First, it is known that |H| = q(q2 − 1)/η, where η = 1 if
H = SL2(Fq) and η = 2 if H = PSL2(Fq). Therefore

|X|
|H|

=
2/η

q(q2 − 1)/η
=

2

q(q2 − 1)
≤ ε

by the condition for Fq in the statement. On the other hand, for any x1, x2 ∈ H \X, Lemmas
3 and 4 imply that |ZH(x1)|, |ZH(x2)| ≤ 2q. Therefore, by Lemma 2, we have

Pr
g←RH

[ [gx1g
−1, x2] ∈ X ] ≤ (2/η) · 2|F| · 2|F|

|F|(|F|2 − 1)/η
=

8|F|
|F|2 − 1

≤ ε

by the condition for Fq in the statement. Hence the assertion holds.

6.2 Candidate Strategy to Instantiate Our Scheme

Here we propose a strategy to give a candidate instantiation of the proposed scheme. An outline
of the strategy is explained as follows:

1. We choose a surjective group homomorphism φ0 : G0 → G, where G satisfies the require-
ment in Section 4 or Section 5. In this step, it is not yet assumed that the subgroup
membership problem for kerφ0 ⊂ G0 is computationally hard.

2. We choose a (possibly infinite) group G̃0 containing G0 as a subgroup, and randomly
choose a group G̃ isomorphic to G̃0 and a group isomorphism ρ : G̃0

∼→ G̃. Then we define
the group G and the homomorphism φ : G → G by G = ρ(G0) and φ(g) = φ0(ρ

−1(g))
for g ∈ G. We conceal ρ to make the subgroup membership problem N = kerφ ⊂ G
computationally hard.

3. We randomly choose a generating set {genG0,i}
LG
i=1 of G0, and put genG,i = ρ(genG0,i),

therefore genG = {genG,i}
LG
i=1 is a generating set of G. In a public key pk, the group G

is specified by the pair of G̃ and genG. The algorithm SampleG is defined as outputting
a random product of random powers of elements randomly chosen from genG, where the
number of the multiplied elements is set to be sufficiently large in order to make the output
of SampleG statistically close to the uniform distribution on G. The algorithm SampleN is
defined similarly, by using a randomly chosen generating set genN of N instead of genG.

4. We construct the algorithm Kerφ. For example, Kerφ may consist of φ0 and ρ−1, which
enable one to compute the value φ(g) = φ0(ρ

−1(g)) itself.

A possible way to do this is as follows. First, we define the homomorphism φ0 : G0 → G by
setting G0 = N0 × G with some finite group N0 and by taking the projection to the factor G
as the map φ0. Secondly, we choose a group G̃0 containing G0 as above, which may be simply
the group G0 itself, together with a group presentation of G̃0 in terms of generators and their
fundamental relations (see Appendix A for the terminology). Then we construct the group G̃
by “obfuscating” the group presentation of G̃0 by a random composition of transformations,
called Tietze transformations. More precisely, starting from a given group presentation of G̃0,
we apply a sufficiently large number of the following transformations successively. Suppose that
the group presentation at the current step is of the form ⟨g1, . . . , gn | r1, . . . , rm⟩. Then:

1. We randomly choose a generator gi and a word w on the letters g1, . . . , gi−1, gi+1, . . . , gn,
and take a new letter g′.

2. For each rj , we substitute g′w into each letter gi in rj and substitute w−1g′−1 into each
letter gi

−1 in rj ; let r̃j denote the resulting word.
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3. Then we define the new group presentation to be ⟨g1, . . . , gi−1, g′, gi+1, . . . , gn | r̃1, . . . , r̃m⟩.

The record of the transformation process above gives a description of the isomorphism ρ : G̃0 →
G̃, by which an element of G̃0 can be recovered from its “obfuscated” version in G̃.

On Efficient Computation in G̃. We note that, since each element of G̃ can be represented
by more than one words on the specified generating set of G̃, it may be in general not efficient
to decide whether given two elements of G̃ are equal or not. To avoid the problem, it is
desirable to provide (and specify in the public key) a way of calculating the normal form for each
element (i.e., representatives of words representing each element). For example, we can apply
Knuth–Bendix completion algorithm for term rewriting systems to the group presentation of G̃.
Unfortunately, Knuth–Bendix algorithm does not always halt for arbitrary inputs; therefore, we
should either repeat the algorithm several times with various choices of parameters (reduction
orderings), or change the original group presentation of G̃, until the algorithm succeeds.

On the Security. A possible attack strategy against an instantiation of our proposed scheme
obtained in the above-mentioned manner is to find a non-identity element x ∈ G̃ with the
property that gx = xg for every g ∈ N = ρ(N0). If such an element is found, then for a given
g ∈ G = N × ρ(G), gx = xg holds for every g ∈ N and gx ̸= xg would hold for a large fraction
of g ∈ G \ N , which will enable the adversary to solve the subgroup membership problem.
For example, any non-identity element x of ρ(G) satisfies the condition above, therefore such
an element should not be efficiently found for security purpose. In particular, we consider
the following strategy to find such an element: Sample elements g = (g0, g1) of G = N ×
ρ(G) randomly and repeatedly, and check, for each pair of distinct elements g = (g0, g1) and
g′ = (g′0, g

′
1) obtained in this way, if x = g−1g′ satisfies the condition (by checking whether

genN,i · x = x · genN,i for every generator genN,i of N or not). Now the condition is satisfied if
and only if g0 = g′0. By the birthday paradox, the order of the number of the sampled elements
of G until the suitable x is found is expected to be

√
|N |, which is e.g., at least 280 if |N | is set

to be at least 2160.
On the other hand, there may be a more direct attack that distinguishes distributions over

G = N × ρ(G) and over N without using such a special element x as above. For example3,
suppose that both N and ρ(G) are alternating group Aλ on λ letters with λ ≥ 4. Let p be
the largest odd prime with p ≤ λ. Note that p > λ/2. Then the number of elements of Aλ

which are cyclic permutations on p letters is

(
λ

p

)
(p − 1)! =

2

p · (λ− p)!
· |Aλ|. This implies

that, the probability (denoted by P ) that xp = 1 for a uniformly random element x of N = Aλ

is P =
2

p · (λ− p)!
+

1

|Aλ|!
. On the other hand, the probability that xp = 1 for a uniformly

random element x of G = Aλ ×Aλ is P 2. Since λ− p is small for reasonable choices of λ (e.g.,
λ−p ≤ 6 for λ ≤ 80), P is significantly larger than P 2, therefore the uniform distributions over
G and over N can be distinguished with non-negligible advantage by checking if xp = 1 for a
given element x.

The observation in the previous paragraph can be generalized as follows: If it is possible
to efficiently find an integer k satisfying that both Prx←RN0 [x

k = 1] and 1 − Pry←RG[y
k = 1]

are non-negligible and at least one of them is noticeable, then an adversary can distinguish the
uniform distributions over G and over N with non-negligible advantage by checking if a given
element z of G or of N satisfies zk = 1. Therefore, such a k should be difficult to find for
security purpose.

3This is the case of the candidate instantiation given in a previous version (20150819:140754) of this paper
posted on August 19, 2015 to http://eprint.iacr.org/2014/097 .
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Table 1: The conjugacy classes in SL2(Fq) for q odd (here ζ denotes a generator of (Fq)
×, and

matrices Ai and Bj are as defined in the text)

type representative x |xSL2(Fq)| order of x

1

(
1 0
0 1

)
1 1

2

(
−1 0
0 −1

)
1 2

3

(
1 1
0 1

)
q2 − 1

2
q

4

(
1 ζ
0 1

)
q2 − 1

2
q

5

(
−1 1
0 −1

)
q2 − 1

2
2q

6

(
−1 ζ
0 −1

)
q2 − 1

2
2q

7-i Ai (1 ≤ i <
q − 1

2
) q2 + q

q − 1

gcd(q − 1, i)

8-i B(q−1)i (1 ≤ i <
q + 1

2
) q2 − q

q + 1

gcd(q + 1, i)

Candidates of the Groups. Here we take N0 = SL2(Fq) with q odd and G = SL2(Fq′),
where 1/q and 1/q′ are negligible in λ, as a candidate of the underlying group G0 = N0×G for
our proposed scheme satisfying the requirements in Section 4. Based on the argument in the
previous paragraph, here we investigate the distribution of the orders of elements of SL2(Fq).
Following the argument in Section 5.2 of [12], we choose a generator ζ of the cyclic group (Fq)

×.

Then for an integer i with 0 ≤ i ≤ q−2, put Ai =

(
ζi 0
0 ζ−i

)
. On the other hand, by considering

the quadratic extension field Fq2 of Fq, ζ has a square root in (Fq2)
× (since q is odd), denoted

by
√
ζ. Then we have a bijection Fq × Fq → Fq2 , (a, b) 7→ a + b

√
ζ. Choose a generator υ of

the cyclic group (Fq2)
×. Then for an integer i with 0 ≤ i ≤ q2 − 2, put Bi =

(
a b
bζ a

)
where

υi = a+ b
√
ζ. By using these notations, the list of conjugacy classes in SL2(Fq) is obtained as

in Table 1, where the second column (showing a representative element x for each conjugacy
class) and the third column (showing the size |xSL2(Fq)| of the conjugacy class of x) are quoted
(with slightly different notations) from Section 5.2 of [12]. The fourth column gives the order
of an element of each conjugacy class, which is constant on each conjugacy class. Note that, for
elements of type 8, the map υi 7→ Bi is a homomorphism from (Fq2)

× to the matrix group.

In Table 1, the ratio |xSL2(Fq)|/|SL2(Fq)| of the size of each conjugacy class of type 1 to 6 to

the size of the whole group is at most
(q2 − 1)/2

q(q2 − 1)
=

1

2q
which is negligible, therefore these can

be ignored in the current argument. On the other hand, for each divisor k of q − 1, an element
x of the conjugacy class of type 7-i satisfies xk = 1 if and only if i is a multiple of (q − 1)/k.

Therefore, the number of such elements x is at most
(q − 1)/2

(q − 1)/k
(q2+ q) =

k

2
(q2+ q), whose ratio

to the size q(q2− 1) of the whole group is
k

2(q − 1)
. To make the ratio non-negligible, one must

find a divisor k of q − 1 which is almost as large as q − 1; this is expected to be difficult if
the size q of the coefficient field Fq is not known. The same also holds for conjugacy classes of
type 8. Summarizing, by the choice of groups N0 and G, the attack strategy described above
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will be not effective provided the size of the coefficient field is appropriately concealed (e.g.,
by “obfuscating” the group presentation of N0 × G as above). We also note that, instead of
SL2(Fq) itself, some more complicated group having SL2(Fq) as a quotient group may be taken
as N0 for safety; e.g., the semidirect product SL2(Fq) ⋊ SL2(Fq) of two copies of SL2(Fq) via
the conjugate action of the right-side SL2(Fq) on the left-side SL2(Fq).

For the construction above, we can use the following fact for short group presentations of
SL2(Fq):

Proposition 5 ([17], Section 3.2). If q is prime and q > 3, then SL2(Fq) has a group presen-
tation with four generators and eight relations, where each relation is represented by a word of
length O(log q) in the generators.

We also note that, several finite non-commutative simple groups also admit short group
presentation as shown in the same paper [17]; owing to this fact, we can also use those simple
groups such as PSL2(Fq) instead of SL2(Fq) in the construction above.

Acknowledgments

The author thanks members of Shin-Akarui-Angou-Benkyou-Kai for their helpful comments. In
particular, the author thanks Shota Yamada for inspiring him with motivation to the present
work; Takashi Yamakawa for pointing out the relation to the proof of the Barrington’s theorem;
and Takahiro Matsuda, Keita Emura, Yoshikazu Hanatani, Jacob C. N. Schuldt and Goichiro
Hanaoka for giving many precious comments on the work. The author also thanks the anony-
mous referees of previous conference submissions of the paper for their careful reviews and
valuable comments.

References

[1] D. A. Barrington, Bounded-Width Polynomial-Size Branching Programs Recognize Exactly
Those Languages in NC1, in: Proceedings of STOC 1986, 1986, pp.1–5.

[2] S. R. Blackburn, C. Cid and C. Mullan, Group Theory in Cryptography, in: Proceedings
of Group St Andrews 2009 in Bath, LMS Lecture Note Series 387, 2011, pp.133–149.

[3] Z. Brakerski, Fully Homomorphic Encryption without Modulus Switching from Classical
GapSVP, in: Proceedings of CRYPTO 2012, LNCS 7417, 2012, pp.868–886.

[4] Z. Brakerski, C. Gentry and V. Vaikuntanathan, (Leveled) Fully Homomorphic Encryption
without Bootstrapping, in: Proceedings of ITCS 2012, 2012, pp.309–325.

[5] Z. Brakerski and V. Vaikuntanathan, Efficient Fully Homomorphic Encryption from (Stan-
dard) LWE, in: Proceedings of FOCS 2011, 2011, pp.97–106.

[6] Z. Brakerski and V. Vaikuntanathan, Fully Homomorphic Encryption from Ring-LWE and
Security for Key Dependent Messages, in: Proceedings of CRYPTO 2011, LNCS 6841,
2011, pp.505–524.

[7] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi and A. Yun, Batch
Fully Homomorphic Encryption over the Integers, in: Proceedings of EUROCRYPT 2013,
LNCS 7881, 2013, pp.315–335.

[8] J. H. Cheon and D. Stehlé, Fully Homomophic Encryption over the Integers Revisited, in:
Proceedings of EUROCRYPT 2015 (1), LNCS 9056, 2015, pp.513–536.

15



[9] J.-S. Coron, D. Naccache and M. Tibouchi, Public Key Compression and Modulus Switch-
ing for Fully Homomorphic Encryption over the Integers, in: Proceedings of EUROCRYPT
2012, LNCS 7237, 2012, pp.446–464.

[10] M. Dijk, C. Gentry, S. Halevi and V. Vaikuntanathan, Fully Homomorphic Encryption
over the Integers, in: Proceedings of EUROCRYPT 2010, LNCS 6110, 2010, pp.24–43.

[11] L. Ducas and D. Micciancio, FHEW: Bootstrapping Homomorphic Encryption in Less
Than a Second, in: Proceedings of EUROCRYPT 2015 (1), LNCS 9056, 2015, pp.617–640.

[12] W. Fulton and J. Harris, Representation Theory, Springer GTM series vol.129, Springer,
1991.

[13] C. Gentry, Fully Homomorphic Encryption Using Ideal Lattices, in: Proceedings of STOC
2009, 2009, pp.169–178.

[14] C. Gentry and S. Halevi, Implementing Gentry’s Fully-Homomorphic Encryption Scheme,
in: Proceedings of EUROCRYPT 2011, LNCS 6632, 2011, pp.129–148.

[15] C. Gentry and S. Halevi, Fully Homomorphic Encryption without Squashing Using Depth-3
Arithmetic Circuits, in: Proceedings of FOCS 2011, 2011, pp.107–109.

[16] C. Gentry, S. Halevi and N. P. Smart, Better Bootstrapping in Fully Homomorphic En-
cryption, in: Proceedings of PKC 2012, LNCS 7293, 2012, pp.1–16.

[17] R. M. Guralnick, W. M. Kantor, M. Kassabov and A. Lubotzky, Presentations of Finite
Simple Groups: A Quantitative Approach, Journal of the American Mathematical Society,
vol.21, 2008, pp.711–774.

[18] R. M. Guralnick and G. R. Robinson, On the Commuting Probability in Finite Groups,
Journal of Algebra, vol.300, 2006, pp.509–528.

[19] S. Halevi and V. Shoup, Bootstrapping for HElib, in: Proceedings of EUROCRYPT 2015
(1), LNCS 9056, 2015, pp.641–670.

[20] J. Katz, A. Thiruvengadam and H.-S. Zhou, Feasibility and Infeasibility of Adaptively
Secure Fully Homomorphic Encryption, in: Proceedings of PKC 2013, LNCS 7778, 2013,
pp.14–31.

[21] K. H. Ko, S. Lee, J. H. Cheon, J. W. Han, J.-S. Kang and C. Park, New Public-Key
Cryptosystem Using Braid Groups, in: Proceedings of CRYPTO 2000, LNCS 1880, 2000,
pp.166–183.

[22] K. Nuida and K. Kurosawa, (Batch) Fully Homomorphic Encryption over Integers for Non-
Binary Message Spaces, in: Proceedings of EUROCRYPT 2015 (1), LNCS 9056, 2015,
pp.537–555.

[23] R. Ostrovsky and W. E. Skeith III, Communication Complexity in Algebraic Two-Party
Protocols, in: Proceedings of CRYPTO 2008, LNCS 5157, 2008, pp.379–396.

[24] S.-H. Paeng, K.-C. Ha, J. H. Kim, S. Chee and C. Park, New Public Key Cryptosystem
Using Finite Non Abelian Groups, in: Proceedings of CRYPTO 2001, LNCS 2139, 2001,
pp.470–485.

[25] D. J. S. Robinson, A Course in the Theory of Groups, Second Edition, Springer GTM
series vol.80, Springer, 1996.

16



[26] A. Silverberg, Fully Homomorphic Encryption for Mathematicians, IACR Cryptology
ePrint Archive 2013/250, 2013, http://eprint.iacr.org/2013/250
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A Preliminaries for Group Theory

Here we summarize some definitions and facts used in the main text; see e.g., [25] for more
details. For any group G, we say that a subgroup N of G is normal, if we have g ·x ·g−1 ∈ N for
any x ∈ N and g ∈ G. For example, for any group homomorphism φ : G→ H from G to another
groupH, the kernel kerφ = {g ∈ G | φ(g) = 1H} of φ is a normal subgroup of G. IfN is normal,
we define G/N = {gN | g ∈ G} where gN = {gx | x ∈ N} ⊂ G. Note that gN = hN (as
subsets of G, or as elements of G/N) if and only if g−1h ∈ N . Then the set G/N forms a group,
called the quotient of G by N , with multiplication operator defined by (gN) · (hN) = ghN for
g, h ∈ G. Now the (natural) projection π from G to G/N is defined by π(g) = gN , g ∈ G. This
is a surjective group homomorphism, and its kernel is equal to N , hence G/ kerφ is (trivially)
isomorphic to G/N . Similarly, given a surjective group homomorphism φ : G→ H, it is known
that the quotient group G/ kerφ is isomorphic to H, via a map g kerφ 7→ φ(g) for g ∈ G.

We say that a group G is simple, if G does not have normal subgroups other than G itself
and {1G}. For example, let Sn denote the symmetric group on n letters, i.e., the group of per-
mutations {1, 2, . . . , n} → {1, 2, . . . , n} with multiplication operator given by the composition
of maps. Let An denote the alternating group on n letter, i.e., the (normal) subgroup of Sn

of permutations that can be written as the product of an even number of transpositions (a b),
a, b ∈ {1, 2, . . . , n} (which is the permutation exchanging a and b and fixing other elements of
{1, 2, . . . , n}). Then An is a simple group if n ≥ 5.

For a subset X of a group G, the subgroup of G generated by X, denoted by ⟨X⟩, is defined
to be the set of elements of G written in the form x1

e1 · · ·xnen with n ≥ 0, xi ∈ X and ei ∈ Z
(the element is regarded as 1G if n = 0). On the other hand, the normal subgroup generated by
X or the normal closure of X, denoted by ⟨X⟩normal, is defined to be the subgroup generated
by {gxg−1 | x ∈ X , g ∈ G}. Then ⟨X⟩ is the unique minimal subgroup of G containing X,
and ⟨X⟩normal is the unique minimal normal subgroup of G containing X. We say that X is a
generating set of G or X generates G, if ⟨X⟩ = G. For example, the symmetric group Sn is
generated by the adjacent transpositions (a a + 1) for a ∈ {1, 2, . . . , n − 1}. We note that, for
any simple group G and any x ∈ G \ {1G}, ⟨x⟩normal is a normal subgroup of G different from
{1G}, therefore we have ⟨x⟩normal = G, i.e., G is generated by the elements gxg−1 with g ∈ G.

For any set X, let X± denote the disjoint union X ∪ X−1 of X and the set of symbolic
inverses X−1 = {x−1 | x ∈ X} of elements of X. Let F (X) be the set of finite-length words on
the alphabet X±, where two words are regarded as the same element in F (X) if and only if, any
of the two words can be converted to the other by successively inserting or removing subwords of
the form xx−1 or x−1x with x ∈ X. Then F (X) forms a group, where multiplication is defined
by concatenation of words, and the empty word, denoted by 1, is the identity element of F (X).
Now for any subset R of F (X), the group defined by the group presentation ⟨X | R⟩ is defined
as the quotient group F (X)/⟨R⟩normal. Intuitively, each element of this group is represented by
a word on X± of finite length, the multiplication in this group corresponds to concatenation
of words, and two words represent the same element of this group if and only if, any of the
two words can be converted to the other by successively inserting or removing subwords of the
form xx−1, x−1x or r with x ∈ X, r ∈ R. For example, it is known that Sn has the following
group presentation ⟨s1, . . . , sn−1 | si2 (∀i) , (sisj)3 (|j − i| = 1) , (sisj)

2 (|j − i| ≥ 2) ⟩, where si
denotes the adjacent transposition (i i+ 1).
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