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Abstract

We propose constructions of fully homomorphic encryption completely different from the
previous work, using special kinds of non-commutative finite groups. Unlike the existing
schemes, our ciphertexts involve no “noise” terms, hence the inefficient “bootstrapping”
procedures are not necessary. Our first scheme is based on improved results on embeddings
of logic gates into (almost) simple groups [Ostrovsky and Skeith III, CRYPTO 2008]. Our
second scheme is based on properties of the commutator operator (analogous to those used
in Barrington’s theorem) and a new idea of input rerandomization for commutators, effective
for some (almost) simple matrix groups. Our main idea is to conceal the concrete structures
of the underlying groups by randomly applying some special transformations famous in com-
binatorial group theory, called Tietze transformations, to a kind of symbolic representations
of the groups. Ideally, the resulting group is expected to behave like a black-box group
where only an abstract group structure is available; a detailed analysis of the true effect of
random Tietze transformations on the security is a future research topic. We emphasize that
such a use of Tietze transformations in cryptology has no similar attempts in the literature
and would have rich potential for further applications to other areas in cryptology.

1 Introduction

Until the pioneering work by Gentry [14] in 2009, it had been a long-standing open problem
to construct fully homomorphic encryption (FHE ) that enables arbitrary “computation on
encrypted data” through special kinds of operations on the ciphertexts called homomorphic
operations. After that, studies of FHE to improve the efficiency (e.g., [12, 15, 17, 20, 31]) and
to give various frameworks of construction (e.g., [3, 4, 5, 6, 7, 8, 9, 10, 16, 26]) have been one of
the main research topics in cryptology (see [30] for a survey). However, all the previous FHE
schemes (with compact ciphertexts) rely on Gentry’s “bootstrapping” framework: Ciphertexts
involve “noise” terms to conceal plaintexts but the noise is increased by homomorphic operations
and will finally collapse the ciphertext, hence it must be cancelled before the collapse. This
additional cancellation procedure is a major bottleneck for efficiency improvement and makes
the syntax of FHE less analogical to the classical homomorphic encryption. Therefore, a new
approach to construct FHE schemes without the bootstrapping framework is really valuable.

1.1 Our Contributions and Related Work

In this paper, we propose a completely different approach to construction of FHE by following
the direction of so-called “group-based cryptography” (see e.g., [2] for a survey), where spe-
cial kinds of non-commutative groups are used as the underlying mathematical structure. For
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example, a variation of our proposed FHE schemes utilizes some properties of commutators
[g, h] = ghg−1h−1 for group elements (that were also used in Barrington’s theorem [1]); here
the non-commutativity of groups is indispensable, since the commutator operator becomes use-
less in commutative groups as it just outputs the identity element constantly. In our proposed
FHE schemes, the ciphertexts involve no “noise” terms that were necessary for security in the
previous FHE schemes, hence the “bootstrapping” procedures are not required.

Our new idea for achieving security without ciphertext noise is based on Tietze transforma-
tions, which is a notion famous in combinatorial group theory (see e.g., [21]). Roughly speaking,
a presentation of group by generators and relators yields a definition of a group via a (one-to-
many) correspondence between the group elements and words of finite lengths over a specified
alphabet (generating set), where multiplication of group elements corresponds to concatenation
of words and the relators determine when given two words define the same group element. Ti-
etze transformations are a class of elementary transformations for group presentations that do
not change the corresponding group (up to isomorphism). In our proposed schemes, the under-
lying group is specified by a group presentation, and to achieve security, its concrete structure
(except the abstract group structure) is concealed or “obfuscated” by applying Tietze trans-
formations randomly and successively. See Section 5 for the details. Here we emphasize that,
such a use of Tietze transformations in cryptology has no similar attempts in the literature; this
paper would open a door to develop a new general methodology based on combinatorial group
theory that seems potentially applicable to wide areas in cryptology. We also note that, Tietze
transformations are usually used in order to simplify a given group presentation. In contrast,
these are used in this paper to make a group presentation more complicated, which seems also
very rare in the literature.

Our proposed FHE schemes mainly have two variations, one with deterministic homomor-
phic operators (Section 3) and the other with probabilistic homomorphic operators (Section 4).
For the deterministic case, recall that Ostrovsky and Skeith III [27, 28] showed the existence
of embeddings of logic gates into non-commutative finite simple groups, especially into the al-
ternating group A5 on five letters where a concrete embedding is given in [27], and mentioned
that an FHE scheme will be obtained if elements of A5 can be homomorphically encrypted.
Our construction follows this direction, where embeddings of logic gates are improved in terms
of efficiency and the size of plaintext spaces (from 1-bit space to the three-element finite field).

On the other hand, for the probabilistic case, we utilize the following property of the com-
mutator operator: We have [x, y] = 1 if x = 1 or y = 1, which is partially analogous to AND
gate as we have b ∧ b′ = 0 if b = 0 or b′ = 0 (cf., Barrington’s theorem [1]). However, these
are not fully analogous, since [x, y] ̸= 1 does not hold in general even when x ̸= 1 and y ̸= 1.
To make it fully analogous, we introduce an idea of input rerandomization that results in the
element [gxg−1, y] with uniformly random element g of the group. This idea is indeed effective
(i.e., we have [gxg−1, y] ̸= 1 for a random g with probability close to 1 when x ̸= 1 and y ̸= 1)
for a kind of matrix groups called projective special linear groups (of dimension two).

Then, as mentioned before, the presentations of the underlying groups for the two schemes
above are “obfuscated” by random Tietze transformations. Ideally, the resulting group is ex-
pected to behave like a black-box group where only an abstract group structure is available; a
detailed analysis of the true effect of random Tietze transformations on the security is a future
research topic. We also note that, it is in fact not trivial to efficiently compute group oper-
ations from a given group presentation; more precisely, to efficiently derive normal forms for
group elements and their multiplication rule. See Section 6. An algorithm called Knuth–Bendix
completion (see e.g., [22, 23, 25]) can be used to derive such a system of normal forms, but it
is not guaranteed in general to find the solution efficiently with high probability. Hence, it is
an important future research topic to improve the algorithm in such a way that the algorithm
will work efficiently for inputs relevant to our proposed schemes.
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Finally, we observe that the proposed constructions of FHE schemes based on random Tietze
transformations look somewhat “artificial”; more “natural” constructions of the underlying
groups (analogous to the use of rational point groups of elliptic curves for instantiating abstract
cyclic groups appeared in ElGamal cryptosystem) would be more desirable from the viewpoints
of mathematical beauty as well as improvements of efficiency. Here we note, however, that
such a natural instantiation of our schemes seems not easy to find. For example, a naive
instantiation of our scheme may realize the ciphertext space as a group consisting of matrices.
Then the ciphertext space is easily embedded into a matrix ring. Now the matrix ring forms a
vector space (or module) over the coefficient ring, and it happens frequently that the two sets
of ciphertexts for plaintext 0 and for plaintext 1 span subspaces (or submodules) of different
dimensions; the difference of dimensions helps an adversary to break the scheme1. We note that,
for the case of our proposed schemes, it seems hard to find an embedding of the underlying group
into matrix group from the “obfuscated” group presentation. To find a “natural” instantiation
of our schemes that avoids the powerful attack strategy explained above is an interesting future
research topic.

2 Preliminaries

In this section, we summarize some basic definitions and notations used throughout the paper.
Unless otherwise specified, any group G is finite, is not necessarily commutative, and is written
in multiplicative form with identity element denoted by 1G (or simply 1, if unambiguous from
the context). The reader may refer to a textbook of group theory (e.g., [29]) for other definitions
and basic facts for groups. Let Sn denote the symmetric group on n letters, i.e., the group of
permutations {1, 2, . . . , n} → {1, 2, . . . , n} with multiplication defined by the composition of
maps. Let An denote the alternating group on n letter, i.e., the subgroup of Sn of permutations
that can be written as the product of an even number of transpositions (a, b), a ̸= b. For any
group G, we say that a subgroup N of G is normal, if we have gxg−1 ∈ N for any x ∈ N and
g ∈ G. We say that a group G is simple, if G does not have normal subgroups other than G
itself and {1G}. For example, An is a normal subgroup of Sn for any n, and An is simple if
n ≥ 5. For a subset X of a group G, let ⟨X⟩ denote the subgroup of G generated by X. The
normal subgroup generated by X or the normal closure of X, denoted by ⟨X⟩normal, is defined
to be the subgroup generated by {gxg−1 | x ∈ X , g ∈ G}. We note that, if G is simple and
x ∈ G \ {1G}, then (since ⟨x⟩normal ̸= {1G}) we have ⟨x⟩normal = G.

For a probability distribution (or a random variable) X , let a← X mean that an element a is
chosen according to X . We write a← X instead of a← U [X], where U [X] denotes the uniform
distribution over a finite set X. We also write a← A(x) for any algorithm A to indicate that a
is chosen according to the output distribution of A with input x. Let Pra←X [· · · ] denotes the
probability of the event specified in the square bracket, taken over uniformly random element
a ∈ X. The statistical distance between two probability distributions X ,Y over a finite set Z
is defined by ∆(X ,Y) = (1/2) ·

∑
z∈Z |Pr[z ← X ] − Pr[z ← Y]|. For ε ≥ 0, we say that X is

ε-close to Y, if ∆(X ,Y) ≤ ε.
Let λ denote the security parameter unless otherwise specified. We say that a function

ε = ε(λ) ≥ 0 is negligible, if for any integer n ≥ 1, there exists a λ0 > 0 with the property
that we have ε(λ) < λ−n for every λ > λ0. We say that ε ∈ [0, 1] is overwhelming, if 1 − ε is
negligible. We say that ε is noticeable, if there exist integers n ≥ 1 and λ0 > 0 with the property
that we have ε > λ−n for every λ > λ0. We say that two families of probability distributions
parameterized by λ are statistically close, if their statistical distance is negligible.

A public key encryption (PKE ) scheme consists of the following three algorithms. The key

1Such attacks was pointed out by an anonymous reviewer for a previous submission of this paper.
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generation algorithm Gen(1λ) outputs a pair of a public key pk and a secret key sk. The encryp-
tion algorithm Enc(m) = Encpk(m) outputs a ciphertext as the encryption result of plaintext
m. The decryption algorithm Dec(c) = Decsk(c) outputs either a plaintext m as the decryption
result of ciphertext c, or a distinguished symbol ⊥ indicating decryption failure. The correctness
of a PKE scheme means that, for any plaintext m, the probability Pr[Decsk(Encpk(m)) ̸= m] is
negligible, where the probability is taken over the internal randomness for the algorithms.

For a finite setM, we say that a set of operators onM is functionally complete, if any func-
tion with inputs and outputs inM can be computed by combining these operators only. We say
that a PKE scheme with plaintext spaceM is a fully homomorphic encryption (FHE ) scheme,
if there exists a functionally complete set of operators on M, which we call the fundamental
operators, and an efficient algorithm, which we call a homomorphic operator, associated to each
fundamental operator f :Mn →M that, given ciphertexts for plaintexts mi (i = 1, . . . , n) as
inputs, outputs a ciphertext for plaintext f(m1, . . . ,mn) with overwhelming probability.

We say that a PKE scheme with plaintext spaceM is CPA-secure, if for any probabilistic
polynomial-time (PPT) adversary A, the advantage AdvA(λ) = |Pr[b = b∗] − 1/2| of A is
negligible, where Pr[b = b∗] is the probability that b = b∗ in the following game:

(pk, sk)← Gen(1λ) ; (m0,m1, state)← A(submit, 1λ, pk) ;

b∗ ← {0, 1} ; c∗ ← Encpk(mb∗) : b← A(guess, 1λ, pk, state, c∗) .

2.1 Algorithms for Sampling Group Elements

Here we recall a known result on sampling an almost uniformly random element of any finite
group G. For any elements x1, . . . , xn ∈ G, let Sample[x1, . . . , xn] denote the algorithm that
outputs x1

e1 · · ·xnen ∈ G for uniformly random and independent exponents e1, . . . , en ← {0, 1}.
Then, for a sufficiently large n, the output distribution of Sample[x1, . . . , xn] becomes close to
uniform for random elements x1, . . . , xn with high probability. More precisely, the following
result was given by Dixon [11]:

Proposition 1 ([11], Theorem 3). Let G be a finite group, let 0 ≤ ε < 1, and let X be
a probability distribution over G with ∆(X ,U [G]) ≤ ε. Let n be a positive integer, and let
h, k ≥ 0. If

n ≥ log2 |G|+ h+ 2k − 2

log2(2/(1 + ε))
,

then we have Prx1,...,xn←X [∆(Sample[x1, . . . , xn],U [G]) > 2−k] < 2−h.

3 Prototype Schemes with Deterministic Operators

In the following two sections, we describe “prototypes” of our proposed FHE schemes, where
only the functionality is considered and the security is not concerned yet. A candidate method-
ology to make the scheme (conjecturally) secure will be proposed in Section 5. In this section,
we deal with the schemes with deterministic homomorphic operators.

We set the plaintext space to be M = {0, 1} (Section 3.1) or M = F3 (Section 3.2). The
ciphertext space is the direct product group C = N × S5 of symmetric group S5 and a certain
appropriate group N (see Section 5.2). Let π : C → S5 denote the projection function. We
regard N as a subgroup of C in a natural manner. For any subset X ⊂ S5, let π

−1(X) denote
the set of the elements c ∈ C with π(c) ∈ X; and we write π−1({g}) for g ∈ S5 simply as π−1(g).
For g ∈ S5, let g̃ denote any fixed element of π−1(g); hence π(g̃) = g.

Let δ > 0 be a sufficiently small parameter. For the sake of random sampling over N ,
we choose a number of random elements x1, . . . , xn ∈ N . Then by Proposition 1, by taking a
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sufficiently large n, the probability that Sample[x1, . . . , xn] is δ-close to U [N ] becomes arbitrarily
close to 1, where the probability is taken over the random choice of x1, . . . , xn. Owing to this,
here we assume that Sample[x1, . . . , xn] is indeed δ-close to U [N ].

Moreover, we choose elements σm ∈ S5 for m ∈ M in a certain manner (see Sections 3.1
and 3.2) and choose any element σ̃m ∈ π−1(σm) for each m ∈ M. Now the PKE part of the
prototype scheme is defined as follows:

Gen(1λ) Given a security parameter, the algorithm chooses the group N and elements σ̃m ∈ C
for m ∈ M and x1, . . . , xn ∈ N as above. Then it publicizes M, C = N × S5, the
elements σ̃m, the elements xi, and additional elements of C required for computation of
the homomorphic operators (see Sections 3.1 and 3.2).

Enc(m) For m ∈M, it generates x← Sample[x1, . . . , xn] and outputs c = x · σ̃m ∈ C.

Dec(c) For c ∈ C, it outputs the element m ∈ M satisfying π(c) = π(σ̃m), or equivalently
c−1σ̃m ∈ N (and output ⊥ if such an element m does not exist).

Now the correctness holds since π(x) = 1S5 for any x ∈ N . We emphasize again that here the
security is not concerned yet; the projection π in Dec is in general efficiently computable for a
naive construction of the product group C = N × S5. A candidate methodology to make the
function π harder to compute (without trapdoor information) will be proposed in Section 5.

Remark 1. We consider additional rerandomization functionality for the scheme; given c ∈ C,
the algorithm outputs x · c where x ← Sample[x1, . . . , xn]. Now if δ is negligible, then for any
c ∈ Cm with m ∈ M, the distribution of the element x · c above is statistically close to the
output distribution of Enc(m). This implies that, the scheme is endowed with circuit privacy
(see e.g., [24]) by appending the rerandomization procedure to the end of each homomorphic
operator.

From now, we describe constructions of the homomorphic operators for the scheme.

3.1 Case of 1-Bit Plaintexts

Here we construct homomorphic operators for the case of 1-bit plaintext spaceM = {0, 1}. In
[28], Ostrovsky and Skeith III proved that NAND gate is realizable in any non-commutative
finite simple group. They also gave a concrete construction over alternating group A5 in the
full version [27] of [28]. More precisely, they constructed a function f : A5 × A5 → A5 and
specified two elements σ0, σ1 ∈ A5, with the following properties: f(σb, σb′) = σNAND(b,b′) for
any b, b′ ∈ {0, 1}; and values of f are computed by group operations for inputs and some
constant elements. Here we utilize similar but significantly simpler functions defined over the
group S5 instead of A5, corresponding to fundamental operators NOT, OR, NAND, XOR, and
EQ (where EQ denotes the equality test, i.e., EQ(b, b′) = 1 if and only if b = b′).

We put σ0 = 1S5 , σ1 = (1, 2, 3) ∈ S5, and Cm = π−1(σm) for m ∈ M. Note that Cm is
nothing but the set of ciphertexts for m ∈M. For NOT operator, we define a map FNOT by

FNOT(c) = c−1σ̃1 ∈ C for c ∈ C .

Then we have FNOT(Cm) ⊂ CNOT(m) for m ∈ M (i.e., FNOT(C0) ⊂ C1 and FNOT(C1) ⊂ C0) by
definition, therefore the map FNOT provides a homomorphic NOT operator for the scheme.

For the homomorphic operators for the remaining fundamental operators op = OR, NAND,
XOR, EQ, first we define a map Fop,app that “approximates” the operator, by

FOR,app(c1, c2) = c1c2 , FNAND,app(c1, c2) = c1
−1c2

−1σ̃1
2 ,

FXOR,app(c1, c2) = c1
−1c2 , FEQ,app(c1, c2) = c1c2σ̃1

−1 for c1, c2 ∈ C .

5



Then a straightforward calculation shows that Fop,app(Cm1 , Cm2) ⊂ Xop(m1,m2) for any m1,m2 ∈
M, where X0 = C0 and X1 = C1 ∪ π−1(σ1

2) (note that σ1
2 = σ1

−1). For example, we have
π(FEQ,app(c1, c2)) = σ1σ0σ1

−1 = σ0 and FEQ,app(c1, c2) ∈ X0 = XEQ(1,0) if c1 ∈ C1 and c2 ∈
C0; and we have π(FOR,app(c1, c2)) = σ1

2 and FOR,app(c1, c2) ∈ X1 = XOR(1,1) if c1, c2 ∈ C1.
Secondly, we define another function Fad : C → C by

Fad(c) = (̃1, 5) ˜(2, 3, 4)c ˜(2, 3, 4)c(̃3, 4)c2(̃2, 3)(̃4, 5)c ˜(2, 3, 4)c(̃3, 4)c2 ˜(1, 4, 2, 5)

for c ∈ C (see the beginning of Section 3 for the notation g̃ with g ∈ S5). Then a straightforward
calculation shows that this function “adjusts” the sets Xm in such a way that Fad(Xm) ⊂ Cm
for any m ∈M. Namely, we have

(1, 5)(2, 3, 4)g(2, 3, 4)g(3, 4)g2(2, 3)(4, 5)g(2, 3, 4)g(3, 4)g2(1, 4, 2, 5)

=

{
1S5 = σ0 if g = σ0 ,

(1, 2, 3) = σ1 if g ∈ {σ1, σ12} .

By the argument, the function

Fop = Fop,ad ◦ Fop,app : C × C → C

satisfies that Fop(Cm1 , Cm2) ⊂ Cop(m1,m2) for m1,m2 ∈ M and op = OR, NAND, XOR, EQ,
therefore the function Fop provides a homomorphic operator for op. These functions Fop have
expressions with significantly smaller numbers of group elements than the function in [27], where
the latter is composed of 65 group elements in total. We note that the elements g̃ for g ∈ S5

appeared in the definition of Fop must be also included in the public key for the scheme.

3.2 Case of Ternary Plaintexts

We also construct homomorphic operators for the case of non-binary plaintext space M =
F3 = {0, 1, 2} of three elements in a similar manner, where the fundamental operators are the
ring operators op ∈ {+,×}. We put σ0 = 1S5 , σ1 = (1, 2, 3) ∈ S5, σ2 = σ1

2 = (1, 3, 2), and
Cm = π−1(σm) for m ∈M. Now since σ1

3 = 1S5 , the function F+ for the homomorphic addition
is simply defined by

F+(c1, c2) = c1c2 ∈ C for c1, c2 ∈ C ,

and it satisfies F+(Cm1 , Cm2) ⊂ Cm1+m2 for any m1,m2 ∈M.
For the homomorphic multiplication, first we define an “approximation” function F×,app by

F×,app(c1, c2) = c1 ˜(1, 4)(2, 3, 5)−1c2 ˜(1, 4)(2, 3, 5) for c1, c2 ∈ C

(see the beginning of Section 3 for the notation g̃ with g ∈ S5). Then, by putting

X0 = π−1({1S5 , (2, 4, 5), (2, 5, 4), (1, 2, 3), (1, 3, 2)}) ,

X1 = π−1({(1, 2, 4, 5, 3), (1, 3, 2, 5, 4)}) ,

X2 = π−1({(1, 2, 5, 4, 3), (1, 3, 2, 4, 5)}) ,

we have F×,app(Cm1 , Cm2) ⊂ Xm1m2 for any m1,m2 ∈ M by a straightforward calculation.
On the other hand, the “adjusting” function Fad : C → C is constructed as follows. First, the
function φ1(c) = c3 and the following sets

X
(1)
0 = π−1(1S5) , X

(1)
1 = π−1({(1, 5, 2, 3, 4), (1, 5, 3, 4, 2)}) ,

X
(1)
2 = π−1({(1, 4, 2, 3, 5), (1, 4, 3, 5, 2)})
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satisfy φ1(Xm) ⊂ X
(1)
m for any m ∈M. Secondly, the function φ2 : C → C defined by

φ2(c) = ˜(2, 3, 4)−1c−1 ˜(3, 4, 5)c2 ˜(3, 4, 5)−1c ˜(2, 3, 4)

and the following sets

X
(2)
0 = π−1(1S5) , X

(2)
1 = π−1((1, 4, 2, 3, 5)) , X

(2)
2 = π−1({(1, 5, 3, 4, 2), (1, 5, 2, 3, 4)})

satisfy φ2(X
(1)
m ) ⊂ X

(2)
m for any m ∈ M. Since X

(2)
0 = X

(1)
0 , X

(2)
1 ⊂ X

(1)
2 and X

(2)
2 = X

(1)
1 , the

same calculation implies that the function φ3 = φ2 and the following sets

X
(3)
0 = π−1(1S5) , X

(3)
1 = π−1((1, 5, 3, 4, 2)) , X

(3)
2 = π−1((1, 4, 2, 3, 5))

satisfy φ3(X
(2)
m ) ⊂ X

(3)
m for any m ∈M. Finally, the function φ4 : C → C defined by

φ4(c) = c ˜(1, 5, 3, 4, 2)c−1 ˜(1, 5, 3, 4, 2)−1c ˜(1, 4, 2, 3, 5)c−1 ˜(1, 4, 2, 3, 5)−1

satisfies φ4(X
(3)
m ) ⊂ Cm for any m ∈M. Summarizing, the function

Fad = φ4 ◦ φ3 ◦ φ2 ◦ φ1

satisfies that Fad(Xm) ⊂ Cm for any m ∈M, therefore the function

F× = Fad ◦ F×,app : C × C → C

satisfies that F×(Cm1 , Cm2) ⊂ Cm1m2 for any m1,m2 ∈ M. Hence this function provides a
homomorphic multiplication. We note that the elements g̃ for some g ∈ S5 appeared in the
definition of F× must be also included in the public key for the scheme.

4 Prototype Schemes with Probabilistic Operators

In this section, we describe the prototype schemes with 1-bit plaintext spaces M = {0, 1}
and probabilistic homomorphic operators. Let ε > 0 be a sufficiently small parameter. The
ciphertext space is the direct product group C = (N × G) × (N × G), where G is a certain
appropriate group with |G| ≥ 1/ε (see Sections 4.1 and 4.2) and N is another appropriate
group N (see Section 5.2). We often express an element of C as c = (c1, c2) with c1, c2 ∈ N ×G.
We regard N as a subgroup of N×G in a natural manner. Let π : N×G→ G be the projection
function. Now the sets Cm of ciphertexts for plaintexts m ∈M are defined by

C0 = {c = (c1, c2) ∈ C | π(c1) ̸= 1G , π(c2) = 1G} ,

C1 = {c = (c1, c2) ∈ C | π(c1) ̸= 1G , π(c2) = π(c1)} .

Let δ > 0 be a sufficiently small parameter. In the same way as Section 3, we may assume
(by Proposition 1) that randomly chosen elements x1, . . . , xn ∈ N and y1, . . . , yn′ ∈ G satisfy
that Sample[x1, . . . , xn] is δ-close to uniform over N and Sample[y1, . . . , yn′ ] is δ-close to uniform
over G. Moreover, we choose random elements ỹi ∈ N×G satisfying π(ỹi) = yi for i = 1, . . . , n′.
Note that, outputs ỹ of Sample[ỹ1, . . . , ỹn′ ] satisfy that π(ỹ) is δ-close to uniform over G. Now
the PKE part of the prototype scheme and its homomorphic NOT operator are defined as
follows:

Gen(1λ) Given a security parameter, the algorithm chooses the groups N and G and elements
x1, . . . , xn ∈ C and ỹ1, . . . , ỹn′ ∈ C as above. Then it publicizes M = {0, 1}, C, the
elements xi and the elements ỹj .
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Enc(m) Form ∈M, it generates z1, z2 ← Sample[x1, . . . , xn] and ỹ ← Sample[ỹ1, . . . , ỹn′ ]. Then
it outputs c = (z1ỹ, z2) ∈ C if m = 0, and outputs c = (z1ỹ, z2ỹ) ∈ C if m = 1.

Dec(c) For c = (c1, c2) ∈ C, it outputs 0 if π(c2) = 1G, and outputs 1 otherwise.

FNOT(c) For c = (c1, c2) ∈ C, it outputs (c1, c2−1c1) ∈ C.

For the correctness, we have π(z2) = 1G and π(z1ỹ) = π(z2ỹ) = π(ỹ) in Enc(m). Now
if π(ỹ) were uniformly random over G, then the output c of Enc(m) would satisfy c ∈ Cm
(hence Dec(c) = m) with probability at least 1 − 1/|G| ≥ 1 − ε. In fact π(ỹ) is δ-close to
uniform, therefore we have c ∈ Cm with probability at least 1 − ε − δ. Hence the correctness
holds if both ε and δ are negligible. Moreover, the algorithm FNOT satisfies by definition that
FNOT(Cm) ⊂ CNOT(m), therefore it indeed provides a homomorphic NOT operator.

On the other hand, we show that the CPA security of the scheme is equivalent to hardness
of the membership decision for the subgroup N in N ×G. We note that the latter problem is
always easy for a naive construction of the product group N ×G; a candidate construction to
make the membership decision for the subgroup N harder (without trapdoor information) will
be proposed in Section 5. We have the following result:

Theorem 1. Assume that all the algorithms in the scheme above are efficient, and both ε and δ
are negligible. Then the scheme is CPA-secure if and only if, the subgroup membership problem
for N in N × G is computationally hard; that is, for any PPT adversary A†, the advantage
AdvA†(λ) = |Pr[b = b†]− 1/2| of A† in the following game is negligible:

pk← Gen(1λ) ; b† ← {0, 1} ;

{
g† ← N ×G if b† = 1

g† ← N if b† = 0
: b← A†(1λ, pk, g†) .

Proof. We note that, by the hypothesis, an output x of Sample[x1, . . . , xn] is statistically close
to uniform over N , and an output ỹ of Sample[ỹ1, . . . , ỹn′ ] satisfies that π(ỹ) is statistically close
to uniform over G. To simplify the argument, we suppose that x is uniformly random over N
and π(ỹ) is uniformly random over G. Then it follows that xỹ is uniformly random over N ×G.
Owing to this argument, we suppose without loss of generality that a uniformly random element
of N ×G can be efficiently computable.

First, we convert an adversary A† for the subgroup membership problem to a CPA adversary
A for the scheme in the following manner. The algorithm A chooses challenge plaintexts m0 = 0
and m1 = 1. Given a challenge ciphertext c∗ = (c∗1, c

∗
2) ∈ C with challenge bit b∗, A simply

inputs c∗2 (as well as 1
λ and pk) to A†, and outputs the output bit of the A†. For the construction

of A, c∗2 is uniformly random over N if b∗ = 0, and c∗2 is uniformly random over N ×G if b∗ = 1
(see the first paragraph of the proof). Hence we have AdvA = AdvA† .

Secondly, we convert a CPA adversary A for the scheme to an adversary A† for the subgroup
membership problem in the following manner. Since the plaintext space is M = {0, 1}, we
may assume without loss of generality that A always generates challenge plaintexts m0 = 0
and m1 = 1. Given a challenge element g† with challenge bit b†, the algorithm A† generates
c∗1 ← N ×G (see the first paragraph of the proof) and b∗ ← {0, 1}; A† generates c∗2 = g†(c∗1)

b∗ ;
A† inputs c∗ = (c∗1, c

∗
2) (as well as 1

λ and pk) to A and receives the output bit b′ of A; and A†
outputs b = XOR(b∗, b′). Now if b† = 0, then g† is a uniformly random element of N , therefore
the input distribution for A is correct and we have∣∣∣∣Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣ = ∣∣∣∣Pr[b′ = b∗ | b† = 0]− 1

2

∣∣∣∣ = AdvA(1
λ) .

On the other hand, if b† = 1, then g† is a uniformly random element of N × G, therefore the
distributions of c∗2 for b∗ = 0 and for b∗ = 1 are identical (uniform over N ×G) and independent
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of c∗1. Hence we have

Pr[b = 1 | b† = 1] = Pr[b′ ̸= b∗ | b† = 1] =
1

2
.

Summarizing, we have

AdvA†(1λ) =

∣∣∣∣Pr[b = b† = 1] + Pr[b = b† = 0]− 1

2

∣∣∣∣
=

∣∣∣∣12 Pr[b = 1 | b† = 1] +
1

2
Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣
=

∣∣∣∣14 +
1

2
Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣
=

1

2

∣∣∣∣Pr[b = 0 | b† = 0]− 1

2

∣∣∣∣ = 1

2
AdvA(1

λ) .

This completes the proof of Theorem 1.

From now, we describe constructions of homomorphic AND operators for the scheme, whose
correctness depends on the choice of the group G.

4.1 Construction over Matrix Groups

The first construction of homomorphic AND operator is given as follows:

FAND(c, c
′) For c = (c1, c2) ∈ C and c′ = (c′1, c

′
2) ∈ C, it generates g ← Sample[ỹ1, . . . , ỹn′ ] and

outputs c† = (c†1, c
†
2) ∈ C defined by c†i = [gcig

−1, c′i] for i = 1, 2, where [a, b] = aba−1b−1

denotes the commutator operator.

For the correctness of the algorithm, suppose that c ∈ Cm and c′ ∈ Cm′ with m,m′ ∈ M. We
expect that c† ∈ CAND(m,m′). For the second component c†2, if m = 0 or m′ = 0, then we

have π(c2) = 1G or π(c′2) = 1G, therefore the element π(c†2) = [π(g)π(c2)π(g)
−1, π(c′2)] satisfies

that π(c†2) = [1G, π(c
′
2)] = 1G or π(c†2) = [π(g)π(c2)π(g)

−1, 1G] = 1G, respectively. On the
other hand, if m = m′ = 1, then we have π(c2) = π(c1) and π(c′2) = π(c′1), therefore we have

π(c†2) = [π(g)π(c2)π(g)
−1, π(c′2)] = [π(g)π(c1)π(g)

−1, π(c′1)] = π(c†1). Hence the condition for

the second component c†2 is satisfied. In contrast, for the first component c†1, it is in general not

guaranteed that the condition π(c†1) ̸= 1G is satisfied with high probability (for example, π(c†1)
is always equal to 1G when G is commutative), and we require some condition for the group G.
Now we introduce the following definition:

Definition 1 (Commutator-separable groups). Let ε > 0. We say that a finite group G is
ε-commutator-separable, if there exists a subset X ⊂ G satisfying that 1G ∈ X, |X| ≤ ε · |G|
(hence |G| ≥ 1/ε), and for any x, y ∈ G \X, we have

Pr
g←G

[ [gxg−1, y] ∈ X ] ≤ ε . (1)

Moreover, we say that a family of finite groups G = Gλ is commutator-separable, if there exists
a negligible function ε = ε(λ) for which G is ε-commutator-separable.

Examples of commutator-separable groups will be given below. We note that, only the
existence of the subset X in Definition 1 matters in the argument below, therefore X need not
be efficiently computable. Now assume that G is ε-commutator-separable. For each m ∈ M,
we define an auxiliary subset C†m of Cm by C†m = {c = (c1, c2) ∈ Cm | π(c1) ̸∈ X} (note that
π(c1) ̸∈ X implies π(c1) ̸= 1G, since 1G ∈ X). Then the following property holds:
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Theorem 2. Let G be ε-commutator-separable. Then:

1. For any m ∈M, the output of Enc(m) belongs to C†m with probability at least 1− ε− δ.

2. For any m ∈M, we have FNOT(C†m) ⊂ C†NOT(m).

3. Let m,m′ ∈M, c = (c1, c2) ∈ C†m and c′ = (c′1, c
′
2) ∈ C

†
m′. Then the output c† = (c†1, c

†
2) of

FAND(c, c
′) belongs to C†AND(m,m′) with probability at least 1− ε− δ, where the probability

is taken over the internal randomness for FAND.

Proof. The first two parts follow from Definition 1 and the same argument as before Section 4.1.
For the third part, by the argument above, we only need to consider the condition π(c†1) ̸∈ X.

Now we have π(c†1) = [π(g)π(c1)π(g)
−1, π(c′1)] where g ← Sample[ỹ1, . . . , ỹn′ ], while π(g) is δ-

close to uniform over G as mentioned above. Since π(c1), π(c
′
1) ∈ G \X by the hypothesis, if

π(g) were uniformly random over G, then condition (1) implies that we would have π(c†1) ̸∈ X

with probability at least 1− ε. In fact π(g) is δ-close to uniform, therefore we have π(c†1) ̸∈ X
with probability at least 1− ε− δ, as desired. This concludes the proof.

By Theorem 2, if both δ and ε are negligible, then the outputs of Enc, FNOT and FAND will
belong to a correct one of the two subsets C†m of Cm except negligible error probability. Hence
correct homomorphic NOT and AND operators are obtained.

Examples of Commutator-Separable Groups. Here we give examples of commutator-
separable groups. For the purpose, first we present some lemmas. For an element g of any
group H, let ZH(g) = {h ∈ H | gh = hg} denote the centralizer of g in H. Then, for condition
(1), we have the following property:

Lemma 1. Let H be a finite group, and let X ⊂ H. Then for any x1, x2 ∈ H, we have

Pr
g←H

[ [gx1g
−1, x2] ∈ X ] ≤ |X| · |ZH(x1)| · |ZH(x2)|

|H|
.

Proof. We put Hy = {g ∈ H | [gx1g−1, x2] = y} for y ∈ X. Then we have

Pr
g←H

[ [gx1g
−1, x2] ∈ X ] =

∑
y∈X

Pr
g←H

[ [gx1g
−1, x2] = y ] =

∑
y∈X

|Hy|
|H|

.

For each y ∈ X with Hy ̸= ∅, fix an element gy ∈ Hy. Then for each g ∈ Hy, we have

(gx1g
−1)x2(gx1g

−1)−1x2
−1 = [gx1g

−1, x2]

= [gyx1gy
−1, x2] = (gyx1gy

−1)x2(gyx1gy
−1)−1x2

−1 ,

therefore (gyx1gy
−1)−1(gx1g

−1) ∈ ZH(x2). Now for each h ∈ ZH(x2), we put

Hy,h = {g ∈ Hy | (gyx1gy−1)−1(gx1g−1) = h} .

Then we have |Hy| =
∑

h∈ZH(x2)
|Hy,h|. If Hy,h ̸= ∅, we fix an element gy,h ∈ Hy,h. Now for

any g ∈ Hy,h, we have gx1g
−1 = gyx1gy

−1 · h = gy,hx1gy,h
−1, therefore gy,h

−1g ∈ ZH(x1). This
implies that |Hy,h| ≤ |ZH(x1)| for any h ∈ ZH(x2). Summarizing, we have

Pr
g←H

[ [gx1g
−1, x2] ∈ X ] ≤

∑
y∈X

∑
h∈ZH(x2)

|ZH(x1)|
|H|

≤ |X| · |ZH(x1)| · |ZH(x2)|
|H|

.

Hence Lemma 1 holds.
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Before giving the next lemma, we note the following fact: For any finite group H and x ∈ H,
we have |ZH(x)| = |H|/|xH |, where xH = {hxh−1 | h ∈ H} denotes the conjugacy class of x in
H. Then we have the following property:

Lemma 2. Let φ : H1 → H2 be a surjective homomorphism between two finite groups. Then
we have |ZH2(φ(x))| ≤ |ZH1(x)| ≤ |ZH2(φ(x))| · |H1|/|H2| for any x ∈ H1.

Proof. First we note that, for each h ∈ H2, the number of elements g ∈ H1 with φ(g) = h is
constant independent of h, namely |H1|/|H2|. Moreover, we have φ(xH1) = φ(x)H2 . By these
arguments, we have |φ(x)H2 | ≤ |xH1 | ≤ |φ(x)H2 | · |H1|/|H2|, therefore

|H2|
|φ(x)H2 |

≤ |H1|
|xH1 |

≤ |H1|
|φ(x)H2 |

=
|H1|
|H2|

· |H2|
|φ(x)H2 |

.

Hence Lemma 2 holds.

From now, we prove that the special linear group of size two defined by

SL2(Fq) = {A =

(
a b
c d

)
| a, b, c, d ∈ Fq , det(A) = ad− bc = 1}

and the projective special linear group of size two defined by PSL2(Fq) = SL2(Fq)/{±I}, where
Fq denotes the q-element finite field and I denotes the identity matrix, are commutator-separable
if q is a sufficiently large function of the security parameter λ. In order to apply Lemma 1, we
show the following property:

Lemma 3. For any A =

(
a b
c d

)
∈ SL2(Fq) with A ̸= ±I, we have |ZSL2(Fq)(A)| ≤ 2q if b ̸= 0

or c ̸= 0, and |ZSL2(Fq)(A)| = q − 1 if b = c = 0.

Proof. Let X =

(
x y
z w

)
∈ ZSL2(Fq)(A), therefore XA = AX. Then we have

det(X) = 1 and

(
ax+ cy bx+ dy
az + cw bz + dw

)
=

(
ax+ bz ay + bw
cx+ dz cy + dw

)
,

therefore
xw − yz = 1 , cy = bz , bx+ dy = ay + bw , az + cw = cx+ dz .

First, suppose that b ̸= 0. Then we have z = b−1cy and w = x + b−1(d − a)y, therefore
x2 + b−1(d− a)xy − b−1cy2 = 1. Now for each y ∈ Fq, the quadratic equation in x has at most
two solutions, and z and w are uniquely determined from x and y by the relations above. This
implies that the number of the possible X is at most 2q. The argument for the case c ̸= 0 is
similar; x and y are linear combinations of z and w, and w satisfies a quadratic equation when
an element z ∈ F is fixed, therefore the number of the possible X is at most 2q.

On the other hand, suppose that b = c = 0. By the condition det(A) = 1, we have ad = 1,
therefore a ̸= 0 and d ̸= 0. Now we have dy = ay and az = dz, while the assumption A ̸= ±I
implies that a ̸= d. Therefore, we have y = 0 and z = 0. This implies that xw = 1, therefore
w ̸= 0 and x = w−1. Hence, the number of the possible X is q − 1. This completes the proof
of Lemma 3.

Corollary 1. We have |ZPSL2(Fq)(A)| ≤ 2q for any non-identity element A ∈ PSL2(Fq).

Proof. This follows from Lemmas 2 and 3 and the fact that there exists a surjective homomor-
phism SL2(Fq)→ PSL2(Fq) that maps ±I to the identity element.
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By combining the results above, we have the following:

Theorem 3. If the finite field Fq satisfies

8q

q2 − 1
≤ ε , or equivalently q ≥ 4 +

√
16 + ε2

ε
≈ 8

ε
,

then SL2(Fq) and PSL2(Fq) are ε-commutator-separable with the subsets X = {±I} and X =
{1PSL2(Fq)}, respectively.

Proof. Let H ∈ {SL2(Fq),PSL2(Fq)}. First, it is known that |H| = q(q2 − 1)/η, where η = 1 if
H = SL2(Fq) and η = 2 if H = PSL2(Fq). Therefore

|X|
|H|

=
2/η

q(q2 − 1)/η
=

2

q(q2 − 1)
≤ ε

by the condition for Fq in the statement. On the other hand, for any x1, x2 ∈ H \X, Lemma 3
and Corollary 1 imply |ZH(x1)|, |ZH(x2)| ≤ 2q. Therefore, by Lemma 1, we have

Pr
g←H

[ [gx1g
−1, x2] ∈ X ] ≤ (2/η) · 2q · 2q

q(q2 − 1)/η
=

8q

q2 − 1
≤ ε

by the condition for Fq in the statement. Hence Theorem 3 holds.

4.2 Construction over Simple Groups

For the second construction of homomorphic AND operator, here we assume that G is a non-
commutative finite simple group with |G| ≥ 1/ε. Then for any x ∈ G \ {1G}, G is generated
by the elements of the form hxh−1 with h ∈ G. Due to this property, for a sufficiently small
parameter ρ > 0, we may expect that the following property would hold by choosing a sufficiently
large parameter ℓ (a concrete estimate of sufficient values of ℓ will be a future research topic):

Assumption 1. For any x ∈ G\{1G}, the probability distribution of the element (h1xh1
−1)e1 ·

(h2xh2
−1)e2 · · · (hℓxhℓ−1)eℓ ∈ G, where h1, . . . , hℓ ← G and the exponents e1, . . . , eℓ are ran-

domly chosen, is ρ-close to the uniform distribution over G.

Now we define the homomorphic AND operator as follows:

FAND(c, c
′) For c = (c1, c2) ∈ C and c′ = (c′1, c

′
2) ∈ C, it generates g1, . . . , gℓ, g

′
1, . . . , g

′
ℓ ←

Sample[ỹ1, . . . , ỹn′ ], chooses exponents e1, . . . , eℓ, e
′
1, . . . , e

′
ℓ randomly, and outputs c† =

(c†1, c
†
2) ∈ C defined by (for i = 1, 2)

c†i = [(g1cig1
−1)e1 · · · (gℓcigℓ−1)eℓ , (g′1c′ig′1−1)e

′
1 · · · (g′ℓc′ig′ℓ−1)e

′
ℓ ] .

For the correctness of the algorithm, suppose that c ∈ Cm and c′ ∈ Cm′ with m,m′ ∈ M.
We expect that c† ∈ CAND(m,m′). Now by an argument similar to Section 4.1, the condition

for the second component c†2 is always satisfied, and we only need to consider the condition

π(c†1) ̸= 1G for the first component. For the purpose, we use the following group-theoretic
result by Guralnick and Robinson [19]:

Proposition 2 ([19], Theorem 9). For any non-commutative finite simple group H, we have

Pr
x,y←H

[ [x, y] = 1H ] ≤ |H|−1/2 .
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Then, under Assumption 1, we have the following result:

Theorem 4. For the group G as above, assume that Assumption 1 holds. Let m,m′ ∈ M,
c = (c1, c2) ∈ Cm and c′ = (c′1, c

′
2) ∈ Cm′ . Then an output c† = (c†1, c

†
2) of FAND(c, c

′) satisfies
c† ∈ CAND(m,m′) with probability at least 1 −

√
ε − 2ρ − 2ℓδ, where the probability is taken over

the internal randomness for FAND.

Proof. First, if the elements

π
(
(g1c1g1

−1)e1 · · · (gℓc1gℓ−1)eℓ
)
= (π(g1)π(c1)π(g1)

−1)e1 · · · (π(gℓ)π(c1)π(gℓ)−1)eℓ (2)

and

π
(
(g′1c

′
1g
′
1
−1)e

′
1 · · · (g′ℓc′1g′ℓ−1)e

′
ℓ
)
= (π(g′1)π(c

′
1)π(g

′
1)
−1)e

′
1 · · · (π(g′ℓ)π(c′1)π(g′ℓ)−1)e

′
ℓ (3)

were uniformly random over G, then by Proposition 2, we would have π(c†1) ̸= 1G with proba-
bility at least 1−|G|−1/2 ≥ 1−

√
ε. From now, we investigate the true distributions of elements

(2) and (3). Since π(c1), π(c
′
1) ̸= 1G, by Assumption 1, if the elements π(g1), . . . , π(gℓ) and

π(g′1), . . . , π(g
′
ℓ) were uniformly random over G, then the elements (2) and (3) would be ρ-close

to uniformly random over G, therefore we would have π(c†1) ̸= 1G with probability at least
1 −
√
ε − 2ρ. In fact, each of the elements π(gj) and π(g′j) is δ-close to uniform, therefore the

true probability of π(c†1) ̸= 1G is at least 1−
√
ε− 2ρ− 2ℓδ. Hence Theorem 4 holds.

By Theorem 4, if Assumption 1 holds and all of ε, ρ, and ℓδ are negligible, then we obtain
a correct homomorphic AND operator with negligible error probability.

Remark 2. We consider additional rerandomization functionality for the scheme; given c =
(c1, c2) ∈ C, the algorithm generates z1, z2 ← Sample[x1, . . . , xn], g1, . . . , gℓ ← Sample[ỹ1, . . . , ỹn′ ]

and random exponents e1, . . . , eℓ, and outputs c† = (c†1, c
†
2) where c

†
i = zi(g1cig1

−1)e1 · · · (gℓcigℓ−1)eℓ .
Now if c ∈ Cm for m ∈ M, then we have π(c†2) = 1G when m = 0 (π(c2) = 1G), and we have

π(c†2) = π(c†1) when m = 1 (π(c2) = π(c1)). Moreover, if Assumption 1 holds and all of ε, ρ,

and ℓδ are negligible, then by an argument similar to Theorem 4, π(c†1) is statistically close
to uniform over G and z1, z2 are statistically close to uniform over N , therefore c† is statisti-
cally close to the uniform distribution over Cm. This implies that, the scheme is endowed with
circuit privacy (see e.g., [24]) by appending the rerandomization procedure to the end of each
homomorphic operator. The same also holds for the case of Section 4.1 (provided the group G
is simple and Assumption 1 holds for the group).

5 Candidate Methodology to Achieve Security

In this section, we explain a candidate methodology to derive a secure FHE scheme from the
prototype schemes given in Section 3 and 4. Recall that, the insecurity of the prototype schemes
comes from the fact that the projection function π : N × G → G for a direct product group
N × G appeared in the scheme (where G = S5 for the case of Section 3) is easily computable
for a naive construction of the product group N × G. To resolve this issue, in Section 5.1, we
propose a countermeasure that, roughly speaking, “obfuscates” a symbolic expression of the
group N ×G by randomly applying a certain kind of transformations. Ideally, we expect that
the resulting group would behave like a black-box group, hence the direct product structure
of N × G is difficult to observe. Nevertheless, even if this is true, the scheme may be still
insecure for an inappropriate choice of the group N . Then in Section 5.2, we give candidates
for appropriate choices of the group N .
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5.1 Obfuscation of Group Structures

Generator-Relator Presentations for Groups. Here we summarize some definitions and
facts about the theory of presentations of groups in terms of generators and their fundamental
relations; see e.g., [21] for some omitted details. For any set X, let X± denote the disjoint
union of X and the set of symbols X−1 = {x−1 | x ∈ X}. Let R be some set of words of finite
lengths with alphabet X±, called relators. Then the presentation of group with generating set
X and relators set R, denoted by ⟨X | R⟩, defines a group as follows: Each element of the
group is specified by some (not necessarily unique) word of finite lengths with alphabet X±.
The multiplication of two elements is defined by concatenation of two words specifying these
elements. Moreover, two words define the same group element if and only if, each of the two
words can be converted to the other word by an iteration of the following kind of procedures:
Insert or remove a subword of the form xx−1 with x ∈ X± (where we set (x−1)−1 = x for
x−1 ∈ X−1) or a subword r in R. For a word w = x1 · · ·xk with x1, . . . , xk ∈ X±, we set
w−1 = xk

−1 · · ·x1−1. In the presentation ⟨X | R⟩, each relator r in R may be expressed as
“r = 1” or more generally “w = v” where w and v are two words satisfying r = w−1v. We often
identify the presentation ⟨X | R⟩ with the group which the presentation defines.

Remark 3. We note that, for any relator r = x1 · · ·xk ∈ R with x1, . . . , xk ∈ X±, the pre-
sentation ⟨X | (R \ {r}) ∪ {x2 · · ·xkx1}⟩ defines the same group as ⟨X | R⟩; for example, an
insertion of a subword r is realized by an insertion of x1x1

−1, an insertion of x2 · · ·xkx1 (to
get x1x2 · · ·xkx1x1−1) and a removal of x1x1

−1 (to get x1x2 · · ·xk). Similarly, the presentation
⟨X | (R \ {r}) ∪ {r−1}⟩ also defines the same group as ⟨X | R⟩; for example, an insertion of a
subword r is realized by an insertion of x1x1

−1, an insertion of x2x2
−1 (to get x1x2x2

−1x1
−1),

and so on, and an insertion of xkxk
−1 (to get x1x2 · · ·xkxk−1 · · ·x2−1x1−1) and a removal of

r−1 (to get x1x2 · · ·xk).
For example, it is known that the symmetric group Sn admits a presentation ⟨s1, . . . , sn−1 |

si
2 = 1 (for any i) , sisjsi = sjsisj (for |j − i| = 1) , sisj = sjsi (for |j − i| ≥ 2) ⟩, where si

denotes the adjacent transposition (i, i + 1) ∈ Sn. On the other hand, Guralnick et al. [18]
showed that SL2(Fq) admits a short presentation as follows:

Proposition 3 ([18], Section 3.2). If q > 3 is a prime, then SL2(Fq) admits a presentation
with four generators and eight relators, where each relator has length O(log q).

They also gave in [18] similar short presentations for several non-commutative finite simple
groups, including PSL2(Fq). Moreover, we have the following result on the presentations for
direct product groups:

Proposition 4 (See e.g., [21]). Let ⟨Xi | Ri⟩, i = 1, 2, be two presentations with X1 ∩X2 = ∅.
Then the direct product of the groups ⟨X1 | R1⟩ and ⟨X2 | R2⟩ admits a presentation ⟨X1 ∪X2 |
R1 ∪R2 ∪ {x1−1x2−1x1x2 | x1 ∈ X1 , x2 ∈ X2}⟩.

Tietze Transformations. There are some kinds of elementary transformations that converts
a presentation ⟨X | R⟩ of a group to another presentation of the same (isomorphic) group, called
Tietze transformations (see e.g., [21]). It consists of the following four kinds of transformations,
where the first and the second ones are inverses of each other and the third and the fourth ones
are inverses of each other:

1. Add a (redundant) relator r to R, as long as the word r defines the identity element in
the group ⟨X | R⟩.

2. Remove a (redundant) relator r from R, as long as the word r defines the identity element
in the group ⟨X | R \ {r}⟩.
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3. Add a generator y ̸∈ X± to X and add a relator y−1x1 · · ·xk to R with x1, . . . , xk ∈ X±;
i.e., add an element x1 · · ·xk of the group to the generating set and write it as y.

4. Remove a generator y from X and remove a relator y−1x1 · · ·xk from R with x1, . . . , xk ∈
(X\{y})±, as long as no relators in R other than y−1x1 · · ·xk involve y or y−1; i.e., remove
a redundant generator y that can be expressed by the other generators as y = x1 · · ·xk.

We note that, for the fourth kind of transformations, any expression by word of an element
of the group is also transformed in such a way that each appearance of the generator y is
substituted by the subword x1 · · ·xk (hence y−1 is substituted by xk

−1 · · ·x1−1).
Remark 4. The fourth kind of Tietze transformations above can be generalized to the following
form: Remove a generator y from X, remove a relator y−1x1 · · ·xk from R with x1, . . . , xk ∈
(X \{y})±, and replace any other relator r in R with another relator r† obtained by substituting
x1 · · ·xk into every appearance of y (hence xk

−1 · · ·x1−1 into every appearance of y−1) in r.
Indeed, a symbol y (respectively, y−1) in any word can be replaced with x1 · · ·xk (respectively,
xk
−1 · · ·x1−1) by inserting a word y−1x1 · · ·xk to get yy−1x1 · · ·xk and then successively remov-

ing the subword yy−1 (respectively, by successively inserting a subword x1 · · ·xkxk−1 · · ·xk−1
to get y−1x1 · · ·xkxk−1 · · ·xk−1 and then removing the subword y−1x1 · · ·xk). The converse
also holds by a similar argument. This implies that the relators r and r† are equivalent under
the existence of the relator y−1x1 · · ·xk, therefore the generalized transformation is realized by
first replacing every relator r with r†, the latter involving no y nor y−1, and then applying the
fourth kind of Tietze transformation.

Example 1. We start from a presentation ⟨x, y | x3 = y5 = xyx−1y−1 = 1⟩ of the group
Z/3Z × Z/5Z (written in multiplicative form) and its element g = xy2, and apply Tietze
transformations as follows:

1. We get ⟨x, y, z | x3 = y5 = xyx−1y−1 = 1 , z = xy⟩ by the third kind of transformation.
We also replace the relator z = xy with an equivalent one x = zy−1 (see Remark 3).

2. We get ⟨y, z | (zy−1)3 = y5 = (zy−1)y(yz−1)y−1 = 1⟩ by the fourth kind of transformation
focusing on the relator x = zy−1 (see Remark 4). This transformation changes g = xy2

to (zy−1)y2 = zy. We also replace the relator (zy−1)y(yz−1)y−1 with an equivalent one
zyz−1y−1.

3. We get ⟨y, z | (zy−1)3 = z3y−3 = y5 = zyz−1y−1 = 1⟩ by the first kind of transformation;
the relator zyz−1y−1 allows to switch z and y−1 in the relator (zy−1)3. Similarly, we get
⟨y, z | z3y−3 = y5 = zyz−1y−1 = 1⟩ by the second kind of transformation.

4. We get ⟨y, z | z3y−3 = y5 = zyz−1y−1 = 1 , y = z6⟩ by the first kind of transformation;
we can insert z6y−1 by the successive procedures ∅ 7→ z3y−3 7→ z3z3y−3y−3 = z6y−6 7→
z6y−6y5 7→ z6y−1.

5. We get ⟨z | z3z−18 = z30 = zz6z−1z−6 = 1⟩ by the fourth kind of transformation focusing
on the relator y = z6 (see Remark 4). This transformation changes g = zy to z(z6) = z7.
We also replace the relator z3z−18 with an equivalent one z15.

6. Finally, we get ⟨z | z15 = 1⟩ by the second kind of transformation, which is a presentation
of the group Z/15Z.

This process shows that Z/3Z × Z/5Z is isomorphic to Z/15Z, where (1, 2) ∈ Z/3Z × Z/5Z
corresponds to 7 ∈ Z/15Z (note that 7 mod 3 = 1 and 7 mod 5 = 2).
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Obfuscation of the Underlying Groups. Example 1 showed a process of converting a rel-
atively complicated presentation of a given group to a simpler presentation of the same group.
Here we emphasize that such a process is reversible (since every elementary Tietze transfor-
mation is reversible); a simpler presentation can be converted to a complicated presentation
by using Tietze transformations. For example, the following kind of transformations can be
realized by successive Tiezte transformations:

Lemma 4. For any presentation of group ⟨X | R⟩, let g ∈ X and let w be a word in alphabet
(X \ {g})±. Let g′ be a symbol not in the set X±, and set X ′ = (X \ {g})∪ {g′}. Moreover, let
R′ denote the set obtained from R by substituting the word g′w (respectively, w−1g′−1) into each
appearance of the generator g (respectively, g−1) in every relator in R. Then the presentation
⟨X ′ | R′⟩ defines the same group as ⟨X | R⟩.

Proof. Starting from ⟨X | R⟩, first we apply the third kind of Tietze transformation to get
⟨X ∪ {g′} | R ∪ {g′−1gw−1}⟩. Secondly, we replace the relator g′−1gw−1 with an equivalent
one wg−1g′, and furthermore with g−1g′w (see Remark 3). Finally, we apply the fourth kind of
Tietze transformation focused on the relator g−1g′w (see Remark 4), and the resulting presen-
tation is nothing but ⟨X | R⟩. Hence Lemma 4 holds.

Now we propose a candidate methodology to make the prototype schemes given in Sections 3
and 4 secure, by “obfuscating” a straightforward presentation of the product group N×G given
by Proposition 4 (where we put G = S5 for the case of Section 3) to a sufficiently complicated
presentation by applying Tietze transformations randomly. We note that the group G = S5

used in Section 3 admits a short presentation mentioned in Section 5.1. For the case of Section
4.1, the groups G = SL2(Fq) and G = PSL2(Fq) are commutator-separable (see Theorem 3)
and admit short presentations (see Proposition 3). For the remaining case of Section 4.2, we
may choose a non-commutative simple group G that admits a short presentation (see [18] and
Proposition 3). For candidates of appropriate groupsN with short presentations, see Section 5.2.
Now the transformed key generation and decryption algorithms for our proposed FHE schemes
are described as follows; while the other algorithms for encryption and homomorphic operators
are essentially unchanged, except that the computations for group elements are performed on
the obfuscated presentation instead of the original presentation:

Gen∗(1λ) Given a security parameter, it first generates some elements of the group C specified
in the original key generation algorithm. Secondly, the algorithm randomly chooses an
“obfuscated” presentation of the group N × G by using Tietze transformations. The
algorithm also records how the Tietze transformations are applied. Then the algorithm
outputs a public key pk consisting of the plaintext spaceM, the ciphertext space C with
obfuscated presentation, and the elements of C chosen as above. The algorithm also
outputs a secret key sk consisting of the record of the Tietze transformation above.

Dec∗sk(c) Given an element c ∈ C in the obfuscated form, first the algorithm applies the reverse
transformations of the Tietze transformations recorded in sk to the obfuscated presenta-
tion of the group N ×G; this results in the original presentation of the group, where the
projection function π is easily computable. Then the algorithm calculates the decryption
result in the same way as the original decryption algorithm.

For the security of the scheme, ideally, the obfuscated group N ×G might behave like a kind of
black-box groups if a sufficiently large number of random Tietze transformations are applied,
hence it would be difficult (without the record of the transformations in the secret key) to
compute the projection function π or the membership decision for the subgroup N (see Theorem
1); see Section 5.2 for a discussion on the choice of the group N . Due to the high flexibility of
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possible choices of random Tietze transformations, we may expect that a secure instantiation
of our proposed FHE schemes would be available along this direction. A detailed analysis from
both theoretical and experimental viewpoints will be a future research topic.

5.2 Choices of the Underlying Groups

Here we show that, even if the “obfuscation” methodology proposed in Section 5.1 works ideally
to conceal the structure of the underlying product group, there still exist possibilities that our
proposed scheme can be broken in a black-box manner if the subgroup N is not appropriately
selected. We also give some candidates for appropriate choices of N .

Possible Attack Strategies. Let πN : N×G→ N denote the projection function. A typical
attack strategy against our proposed scheme is to find a non-identity element g ∈ N×G (where
G = S5 for the case of Section 3) satisfying πN (g) = 1N . If such an element g is found, then
we always have gx = xg for any x ∈ N , while the probability that gx = xg holds for a random
x ∈ N × G is low by the choice of the non-commutative group G, therefore the subgroup
membership problem for N ⊂ N × G is now easily solvable. Hence, such an element g should
not be efficiently found.

For example, a naive strategy to find a target element g as above is to generate a large
number of random elements h1, . . . , hL ∈ N × G and then test for each pair (hi, hj) whether
πN (hi

−1hj) = 1N or not. By the birthday paradox, the required number L of elements is
expected to be of the order of

√
|N |, therefore

√
|N | should be sufficiently large (e.g., we may

set
√
|N | ≥ 280, therefore |N | ≥ 2160). We also note that, given any element h ∈ N × G,

the elements h1, . . . , hL may be sampled in such a way that each πN (hi) belongs to the normal
closure ⟨πN (h)⟩normal of πN (h) in N , by using a randomized function similar to Assumption 1 in
Section 4.2. This suggests us to choose a group N for which the size of ⟨x⟩normal is expected to
be as large as possible for a random element x of N . From the viewpoint, it would be reasonable
to use a non-commutative simple group N of large size, where we have ⟨x⟩normal = N for any
x ∈ N \ {1N}. (We note that N may not be a commutative group, since g = [h1, h2] becomes
a target element when N is commutative.) It may be also reasonable to use an almost simple
group such as SL2(Fq); note that PSL2(Fq) = SL2(Fq)/{±I} is a simple group for q > 3.

On the other hand, there are other possible attack strategies as follows. Suppose that
an integer k satisfies that both probabilities Prx←N [xk = 1] and Pry←N×G[y

k ̸= 1] are non-
negligible and at least one of them is noticeable. Then an adversary can distinguish the uniform
distributions over N and over N × G with non-negligible advantage by checking if a random
element z of N or of N×G satisfies zk = 1. Therefore, such an integer k should not be efficiently
found.

For example2, suppose that N = G = Aλ with λ ≥ 4. Let p be the largest odd prime
with p ≤ λ. Then the number of elements of Aλ that are cyclic permutations on p letters is(
λ

p

)
(p− 1)! =

2

p · (λ− p)!
· |Aλ|. This implies that Pr

x←N
[xp = 1] =

2

p · (λ− p)!
+

1

|Aλ|!
, denoted

here by P ; while we have Pry←N×G[y
p = 1] = P 2. Since λ−p is small for reasonable choices of λ

(e.g., λ−p ≤ 6 for λ ≤ 80), P is significantly larger than P 2, therefore the uniform distributions
over N and over N×G can be distinguished with non-negligible advantage by checking if xp = 1
for a random element x of N or of N ×G.

Candidates for the Group. By the arguments above, it is reasonable to use a non-commutative
(almost) simple group N of sufficiently large size for which an integer k yielding non-negligible

2This is the case of the candidate instantiation given in a previous version (20150819:140754) of this paper
posted to http://eprint.iacr.org/2014/097 on August 19, 2015.
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Table 1: The conjugacy classes in SL2(Fq) for odd prime q > 3 (here ζ denotes a generator of
(Fq)

×, and matrices Ai and Bj are as defined in the text)

type representative x |xSL2(Fq)| order of x

1

(
1 0
0 1

)
1 1

2

(
−1 0
0 −1

)
1 2

3

(
1 1
0 1

)
q2 − 1

2
q

4

(
1 ζ
0 1

)
q2 − 1

2
q

5

(
−1 1
0 −1

)
q2 − 1

2
2q

6

(
−1 ζ
0 −1

)
q2 − 1

2
2q

7-i Ai (1 ≤ i <
q − 1

2
) q2 + q

q − 1

gcd(q − 1, i)

8-i B(q−1)i (1 ≤ i <
q + 1

2
) q2 − q

q + 1

gcd(q + 1, i)

probability Prx←N [xk = 1N ] is difficult to find. Here we propose to use N = SL2(Fq) for an odd
prime q satisfying that 1/q is negligible in the security parameter λ. Note that this group N
indeed admits a short presentation by Proposition 3. From now, we investigate the distribution
of the orders of elements of N = SL2(Fq).

Following the argument in Section 5.2 of [13], we choose a generator ζ of the cyclic group

(Fq)
×. Put Ai =

(
ζi 0
0 ζ−i

)
for i = 0, 1, . . . , q − 2. On the other hand, by considering the

quadratic extension field Fq2 of Fq, ζ has a square root in (Fq2)
× \ (Fq)

× (since q is odd),
denoted by

√
ζ. Then we have a bijection Fq ×Fq → Fq2 , (a, b) 7→ a+ b

√
ζ. Choose a generator

υ of the cyclic group (Fq2)
×. For i = 0, 1, . . . , q2 − 2, put Bi =

(
a b
bζ a

)
where υi = a + b

√
ζ.

By using these notations, the list of conjugacy classes in SL2(Fq) is obtained as in Table 1,
where the second column (showing a representative element x for each conjugacy class) and the
third column (showing the size of the conjugacy class |xSL2(Fq)| of x) are quoted (with slightly
different notations) from Section 5.2 of [13]. The fourth column gives the order of an element
of each conjugacy class, which is constant on the conjugacy class. Note that, for elements of
type 8 in the table, the map υi 7→ Bi is a homomorphism from (Fq2)

× to the matrix group.

In Table 1, the ratio |xSL2(Fq)|/|SL2(Fq)| of the size of each conjugacy class of type 1 to 6

to the size of the whole group is at most a negligible value
(q2 − 1)/2

q(q2 − 1)
=

1

2q
, therefore these

conjugacy classes can be ignored in the current argument. On the other hand, for each divisor k
of q−1, an element x of the conjugacy class of type 7-i satisfies xk = 1 if and only if i is a multiple

of (q−1)/k. Therefore, the number of such elements x is at most
(q − 1)/2

(q − 1)/k
(q2+q) =

k

2
(q2+q),

whose ratio to the size q(q2−1) of the whole group is
k

2(q − 1)
. To make the ratio non-negligible,

one must find a divisor k of q−1 which is almost as large as q−1; this is expected to be difficult
if the size q of the coefficient field Fq is not known. The same also holds for conjugacy classes
of type 8.
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Summarizing, the attack strategy described above will be not effective for the group N =
SL2(Fq), provided the size of the coefficient field Fq is appropriately concealed by the “obfus-
cating” methodology applied to the presentation of N ×G in Section 5.1. A further analysis of
other possible attack strategies will be a future research topic.

6 Concluding Remarks and Future Research Topics

The security of our proposed FHE schemes is based on the (conjectural) hardness of observing
some significant information (e.g., the size of the coefficient field for a matrix group) from
an “obfuscated” presentation of the underlying group obtained by applying random Tietze
transformations. Since such a use of presentations for groups and Tietze transformations in
cryptology is new, a detailed analysis of the reliability of this kind of hardness assumptions (as
well as a study of possibilities for other applications of the proposed methodology) is left as a
new research area where cryptology and combinatorial group theory intersect.

On the other hand, another issue about our proposed scheme is for the efficiency. Namely,
in the underlying group with “obfuscated” presentation, any element is expressed as a word on
the generating set (involving the inverses of generators) as the alphabet, where the expression is
in general not unique. Since the length (as a word) of the product of group elements calculated
naively is the sum of the lengths of the original elements, it is required to reduce the length of
the word by using the relators; otherwise, the scheme might become a somewhat homomorphic
encryption, where successive homomorphic operators would be available as long as the length
of the resulting group element stays treatable by the implementation. To resolve the issue, a
desirable situation is as follows: A unique representative of the set of expressions for each group
element, called the normal form of the element, is determined, and an efficient algorithm to
calculate the normal form of a given element is available. In fact, there exists an algorithm to
find such a system of normal forms from a given presentation for group, called Knuth–Bendix
completion (see e.g., [22, 23, 25]), but it is not guaranteed in general to find the solution
efficiently with high probability. Hence, it is an important future research topic to improve
the algorithm in such a way that the algorithm will work efficiently for inputs relevant to our
proposed schemes.
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