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Robustly Secure Two-Party Authenticated Key

Exchange from Ring-LWE
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Abstract

Using the hard assumption of Ring-Decision Learning With Errors (DLWE) in the lattice, we propose a new

authenticated key exchange (AKE) scheme which is based on Peikert’s reconciliation technique. Under the CK+

model, the proposed scheme is provably secure. Compared with the traditional Diffie-Hellman (DH) authenticated

key exchange (AKE) schemes, the proposed scheme not only has better efficiency and stronger security but also

resists quantum attacks because of the hard assumption on lattice problem. The comparisons between Ring-LWE

based ones shows that the proposed scheme protects the shared session key with balanced key derivation function

(KDF) compared with those current AKE schemes from LWE.
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I. INTRODUCTION

Authenticated Key Exchange (AKE) is an elementary cryptographical original, which not only permits

participants to negotiate a common session key but also provides identity authentication between two

parties. Generally speaking, every participant owns certain public information, namely a static public

key (SPK), which is issued by a trusted third party, e.g., public key infrastructure (PKI), or certification

authority (CA), and the homologous secret information, namely, a static secret key (SSK). During the
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execution of the agreement, each participant first generates his own ephemeral secret key (ESK) and

concomitant ephemeral public key, and exchanges the ephemeral public key (EPK). Then, each participant

uses their static public keys, the static secret keys, the ephemeral public keys, and the ephemeral secret

keys to compute certain session state. Finally, each participant derives a common session key by using

a function named the key derivation function (KDF), namely, robust extractor. Bellare and Rogaway first

presented a security model of AKE called BR model (Bellare et al., 1994), which was based on the

indistinguishability between the real common session key and any random key uniformly chosen from the

same distribution. Menezes, Qu, and Vanstone put forward the MQV protocol (Menezes et al., 1995). Due

to its prominent security properties, the MQV protocol has been selected by National Security Agency

(NSA) as the key exchange mechanism preferred to safeguard US government information. In 2001, Canetti

and Krawcyk projected Canetti-Krawcyk (CK) security model (Canetti et al., 2001). Moreover, it pointed

that a combination of symmetrical encryption, message authentication code (MAC), and common session

key contributes to build a secure channel for Internet. But Krawczyk (2005) pointed that the MQV protocol

is not resistant to some attacks such as unknown key share (UKS) attacks, key compromise impersonation

(KCI) attacks, and disclosure of DH exponents. Besides, the MQV protocol lacks perfect forward secrecy

(PFS). Thus, he proposed HMQV protocol that is resistant to the above attacks. This protocol utilized

the Exponential Challenge-Response Signatures to realize authentication. Krawczyk (2005) and Fujioka

et al. (2012) independently programmed the satisfying CK+ security model of AKE. In CK+ model, the

protocol not only achieves basic SK security and weak perfect forward security (wPFS), but also has

resistance to KCI, and resistance to MEX.

Recently, cryptographic schemes based on lattices have appeared as a prospective replacement to

more traditional ones based on the factoring and discrete logarithm problems. Moreover, lattice-based

cryptography has several fascinating features. From a security perspective, the best attacks for quantum

adversaries on the potential problems require exponential time in the primary security parameter n.

Additionally, robust average-case/worst-case security reductions support security proofs in lattice-based
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cryptography. Lattice-based cryptography computations should be greatly simple, fast and parallelizable in

the name of efficiency. Especially, public key encryptions from LWE (Lyubashevskyet al., 2010; Bennyet

al., 2009) and identity-based encryptions from LWE (Peikert et al., 2008) are widely used.

Jin-tai Ding et al.(2012) proposed a simple provably secure key exchange from LWE. In order to

eliminate the noises from the LWE problem, they use a signal function. Meanwhile, they give a multiparty

key exchange protocol, which lacks its security analysis. We find out that using of the signal function

would expose some information of the session key. Jiang Zhang et al.(2014) recently proposed an AKE

from ideal lattices. In order to eliminate the noises from the LWE problem, they construct a characteristic

function and a modular function. Given the characteristic function, the distribution of the modular function

was not uniform, namely, it is not a balanced function. To make the output distribution of the modular

function undistinguishable from uniform distribution, the modulus q is required to be large, namely,

q = 2ω(logn).

This paper builds a new robustly secure AKE scheme via Ring-LWE. Our security analysis is based

on the hard average-case problems Ring-DLWEq,χ, which is at least as hard as Õ(
√
n/γ)-approximate

SIVP on ideal lattices in R.

By virtue of the design idea of HMQV protocol, we tactfully embed the identity authentication into

the message transmission. Since only one party needs to extract the common session key with the robust

extractor during the session computation, so our scheme can significantly improve the robustness and

reduce the computational complexity, compared with other existing schemes from LWE.

How to evaluate the security of a cryptographic protocol is one of the important research matters. From

the viewpoint of provably security, there are two methods to evaluate the security of a cryptographic

protocol: One is the CK security model which is proposed by Canetti and Krawezyk (2001). The other

one is the UC (Universally Composable) security model which is also presented by Canetti and Krawezyk

(2002). The latter is always stronger than the former. The major difference between CK model and UC

model originates from the cognition and characterization of the insider attacks to group key exchange
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protocols. The adoption of Non Information Oracle can reduce the UC security to the CK security. The

adoption of some internal authentication technology can increase the CK security to the UC security.

Thus, it is enough for this paper to consider the CK model.

II. PRELIMINARIES

A. Notations

In this paper, C,R,Z,Q denote the set of complex numbers, the set of real numbers, the set of integers

and the set of rational numbers, respectively. For x ∈ R, define ⌊x⌉ = ⌊x + 1
2
⌋ ∈ Z. For q ≥ 1, define

Zq = Z/qZ. Let λ be the security parameter, if a algorithm A runs in polynomial time (PT) of λ, then it

is efficient. If a function f(λ) = o(n−c), where c > 0, then it is negligible. We make use of the Landau

notations. For the algorithm A, if |Pr[A(X)] − Pr[A(Y )]| ≤ negl(λ), then these two distributions are

computationally indistinguishable.

B. Gaussian distribution on lattice

For arbitrary δ > 0, the random variable X over R is called δ-subgaussian variable with parameter

r > 0, if the moment-generating function satisfies E[exp(2πtX)] ≤ exp(δ) · exp(πr2t2), for each t ∈ R.

By Markov’s inequality, we obtain Pr[|X| ≥ t] ≤ 2 exp(δ − xt2/r2), for each t ≥ 0. For r > 0, the

probability distribution function of the gaussian distribution Dr is exp(−πx2/r2)/r.

Fact1 B-bounded center random variable is 0-subgaussian variable with parameter B
√
2π. If X1 is

a δ1-subgaussian variable with parameter r1, X2 is a δ2-subgaussian variable with parameter r2, and X1

and X2 are independent of each other, then X1 + X2 is a δ1 + δ2-subgaussian variable with parameter√
r21 + r22.

C. Cyclotomic field and cyclotomic ring

For positive integer m, let K = Q(ζm) represent the m-th cyclotomic field, let R = Z[ζm] represent

the m-th cyclotomic ring, where ζm is an m order element. The unique monic polynomial f(X) ∈ Q[X]
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of minimal degree having ζm as root is called the m-th cyclotomic polynomial. Its complex roots are in

the form of ωi
m, where i ∈ Z∗

m, ωm = exp(2πi/m) ∈ C. So, [R : Z] = φ(m), R ∼= Z[X]/(Φm(X)), where

Φm(X) ∈ Z[X]. Specially, {ζjm}
φ(m)−1
j=0 is a Z-basis of R = Z[ζm]. Let g =

∏
p|m(1− ζ

m/p
m ).

Definition1 (Regular embedding) Define σi|Q : K → C via ζm 7→ ωi
m, the regular embedding is

defined as σ(e) = (σi(e))i∈Z∗
m

.

Definition2 (Norm) The norm is defined as ∥e∥2 = (
∑

i∈Z∗
m
|σi(e)|2)1/2, ∥e∥∞ = maxi∈Z∗

m
|σi(e)|.

Consider the fractional codifferent ideal R∨ = (m̂/g)−1R, its specific Z-basis is called the decoding

basis. The encoding basis not only has the optimal error resilience but also allows the fast sample algorithm

to be used to generate the error terms. Our scheme adopts the encoding basis of R = (m̂/g) ·R∨.

Lemma1 Assume e ∈ Q(ζm) such that g · e is a δ-subgaussian variable with parameter m̂ · r. Let

e′ ∈ Q(ζm), then each encoding basis coefficient of e · e′ is a δ-subgaussian variable with parameter

r · ∥e∥2.

Lemma2 Let e← χr, where χr = ⌊φr⌉, φr = (m̂/g) · Dr, then g · e is a δ-subgaussian variable with

parameter m̂ ·
√
r2 + 2π · rad(m)/m, and ∥g ·e∥2 ≤ m̂ ·(r+

√
rad(m)/m) ·

√
n holds with at least 1−2−n

probability.

D. Hard problems in the lattice

Definition3 (Ring-LWE distribution) For s ∈ R, the distribution χ over R, a sample from the Ring-

LWE distribution As,χ over Rq × Rq is to sample a ← Rq, e ← χ uniformly at random, outputting

(a, b = a · s+ e).

Definition4 (Average-case problem)The Ring-DLWE problem is with non-negligible probability to

differentiate independent samples from As,χ, where s ∈ χ, and the same number of random samples from

the uniform distribution over Rq ×Rq.

Definition5 (Worst-case problem) The shortest independent vector problem (SIVP) is to input a basis

B of lattice, outputting n linearly independent vectors S ⊂ L(B) satisfying ∥S∥ ≤ poly(n) · λ1(L(B)).
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Theorem1 Let R be the mth cyclotomic ring of dimension n = φ(m). Let γ = γ(n) <
√

logn
n

. Let

q = q(n) be a polynomial-bounded prime that satisfies q ≡ 1 mod m, γq ≥ ω(
√
log n). There exists

a polynomial time (PT) quantum reduction from solving Õ(
√
n/γ)-approximating SIVP on ideal lattice

over R to solving Ring-DLWEq,χ, given λ − 1 samples from χ, where χ = ⌊φ⌉, φ = (m̂/g) · Dξq, and

ξ = γ · (nλ/ log(nλ))1/4.

III. CK+ SECURITY MODEL

In this subsection, we review the CK+ model. All the participants are regarded as probabilistic poly-

nomial time (PPT) Turing machines.

Session. Let k be the security parameter. A positive integer m = m(k) represents the max number of

all the participants in our AKE scheme. Each participant has a static secret key and a homologous static

public key, which are guaranteed via a certificate authority (CA), binding up with its identity. We say

an implementation of protocol is a session. An influent message of the form (Π, I, i, j) or (Π, I, i, j,Xi)

activates session. Π is the protocol identifier. I and R are role identifiers. i and j are participant identifiers.

(Π, I, i, j) activates participant i, which is the session initiator. Participant i sends a message Xi to

participant j. Participant j sends a message Yj to participant i. After exchanging two-channel messages,

participant i and participant j derive a session key, respectively.

Provided i is the initiator, then the session is denoted via sid = (Π, I, i, j) or (Π, I, i, j,Xi, Yj). Provided

j is the responsor, then the session is denoted via sid = (Π, R, j, i,Xi, Yj). For sid = (Π, ∗, i, j, ∗, ∗), the

third coordinate represents the owner of sid, while the fourth one represents the peer of sid. Provided the

owner of protocol computes the session key, then a session is completed. sid = (Π, I, i, j,Xi, Yi) matches

sid = (Π, R, j, i,Xi, Yi) and vice versa.

Freshness. Set sid = (Π, I, i∗, j∗, Xi, Yj) or sid = (Π, R, j∗, i∗, Xi, Yj) as a completed session.

Suppose that the matching session exists, then set sid
∗

as the matching session of sid∗. sid∗ is fresh

provided the following situations satisfy:

-sid∗ has not been sent a SessionKeyReveal query.



7

-Provided sid
∗

exists, it has not been queried from a SessionKeyReveal query.

-Provided sid
∗

does not exist, i∗ and j∗ have not been queried from a Corrupt query.

Adversary abilities. We regard an adversary A as a probabilistic polynomial time (PPT) Turing

machine. A dominates the whole networks. Specifically, it can wiretap, change, cancel any data transfer,

or add data. We permit the adversary to ask some oracles to acquire the relevant messages that are

concerned with the session key and all participants’ static secret keys. We define above mentioned oracles

queries as follows:

−Send0(Π, I, i, j) : A activates participant i as an initiator, and acquires a message Xi, which is sent

to participant j.

−Send1(Π, R, j, i,Xi) : A activates participant j as an responsor with Xi on behalf of participant i,

and acquires a message Yi, which is sent to participant i.

−Send2(Π, I, i, j,Xi, Yi) : A sends Yi to finish a session of i on behalf of j.

−SessionKeyReveal(sid) : Once the session is finished, A acquires the session key sk of the session

sid. Otherwise, this query terminates.

SessionStateReveal(sid) : A obtains the session state (namely all ephemeral keys and intermediate

computation results) of the owner of the session sid.

−Corrupt(i) : Once A corrupts participant i, then A obtains the static secret key of participant i. In

this case, participant i is dishonest. Otherwise, i is honest.

−Test(sid∗) : We limit this query only on fresh session. A can send out query only once. After

receiving this query, test oracle selects a bit b ∈R {0, 1}, randomly. When b = 1, A obtains the session

key of sid∗. Otherwise, it gets a random key, which is selected from the same distribution of the real key

sk.

Experiment. We permit the adversary A to send any series of the above mentioned queries, however

sends out only one Test query by a fresh session sid∗. Finally, A outputs a guess b′ for b. When b′ = b,

A wins the game. We define the advantage of A as AdvAKE
Π,A = |Pr[b′ = b]− 1

2
|.
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Security. An AKE protocol is CK+ secure provided the following situations satisfy:

-Provided two honest participants finish matching sessions, then they compute an identical session key

with an overwhelming probability.

-For any PPT adversary A, AdvAKE
Π,A is negligible in security parameter for the test session sid∗,

1. If sid
∗

exists, and the SSK of the owner of sid∗ and the ESK of sid
∗

are given to A.

2. If sid
∗

exists, and the ESK of the owner of sid∗ and the ESK of sid
∗

are given to A.

3. If sid
∗

exists, and the SSK of the owner of sid∗ and the SSK of the peer of sid∗ are given to A.

4. If sid
∗

exists, and the ESK of sid∗ and the SSK of the peer of sid∗ are given to A.

5. If sid
∗

does not exist, and the SSK of the owner of sid∗ is given to A.

6. If sid
∗

does not exist, and the ESK of the owner of sid∗ is given to A.

IV. ROBUSTLY SECURE AUTHENTICATED KEY EXCHANGE BASED ON RING-LWE

Before describing our AKE scheme, we first introduce some notations.

Definition 6 The modular rounding function ⌊·⌉p : Zq → Zp is defined by x 7→ p
q
· x, where p|q.

Definition 7 The cross-rounding function ⟨·⟩2 : Zq → Z2 is defined by x 7→ ⌊4
q
· x⌋ mod 2.

Lemma 3 For even modular q, if v ∈ Zq is uniformly random, then ⌊v⌉2 is randomly random given

⟨v⟩2.

Definition 8 If v is close to w, ⌊v⌉2 can be recovered given w and ⟨v⟩2. Set E = [− q
8
, q
8
)
∩
Z, define the

reconciliation function rec : Zq×Zq → Z2 as follows: rec(w, b) = 0, if w ∈ Ib+E mod q; rec(w, b) = 1,

otherwise.

Lemma 4 For even modular q, if w = v + e mod q, v ∈ Zq,e ∈ E, then rec(w, ⟨v⟩2) = ⌊v⌉2.

Definition 9 The randomization function dbl : Zq → Z2q is defined via v 7→ v = 2v − e( mod q),

where e ∈R Z2, Pr[e = 0] = 1
2
, Pr[e = −1] = Pr[e = 1] = 1

4
. e in our scheme is 0-subgaussian with

parameter
√
2π.

Lemma 5 For an odd modular q, if v ∈ Zq is uniformly random, v ← dbl(v) ∈ Z2q, then ⌊v⌉2 is

uniformly random given ⟨v⟩2.
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A. The scheme

Our AKE scheme is built over the cyclotomic field Rq = Zq[X]/(Φm(X)). When q is odd, directly

using of the modular rounding function will cause the calculated bits biased, namely, using of unbalanced

robust extractor will expose some information of the shared session key. Thus, our scheme scales up the

modular to extend the data. Concretely, let q be an odd prime modular satisfying q ≡ 1 mod m and

γq ≥ ω(
√
log n). Let PA = a · sA + eA ∈ Rq and sA ∈ Rq be the static public key (SPK) and the static

secret key (SSK) of A respectively, where sA, eA ← χr. Let PB = a · sB + eB ∈ Rq and sB ∈ Rq be the

SPK and the SSK of B respectively, where sB, eB ← χr. Let H(·) : {0, 1}∗ → χr, which maps a string

into a sample in χr. More specifically, one can first hash the inputs to certain random string via using

SHA-2, and then use it as the randomness to sample a vector (or a ring element) from χr.

Our scheme uses the reconciliation technique to generate the session state for two parties and extract

the shared session key for one of the parties, which not only is different from existing bilateral extracting

mode but also obviously reduces computational complexity. Suppose that D = dj is the decoding basis.

Let v =
∑

j vjdj , where vj ∈ Zq, then ⌊v⌉2 =
∑

j⌊vj⌉2 ·dj ∈ R2, ⟨v⟩2 =
∑

j⟨vj⟩2 ·dj . Let w =
∑

j wj ·dj ,

b =
∑

j bj · dj . Our scheme applies the randomization function to act on each coefficient of the encoding

basis. Choose ψ = (m̂/g) · Dr, where m̂/g corresponds to the transform R∨ → R. Then, our scheme

processes the distribution ψ with the discrete way χr = ⌊ψ⌉. Specifically, we round each vector of the

encoding basis to the nearest rational integer via selecting a ∈ K from the distribution ψ. We first reconcile

2w ∈ Rq so as to reconcile w ∈ Rq. The specific scheme is given as follows:

Initiation : Party A first computes xA = a · rA + fA ∈ Rq, where rA, fA ← χr, and then sends xA to

party B.

Response : After receiving xA, party B computes yB = a · rB + fB ∈ Rq, where rB, fB ← χr,

d = H(xA,B), e = H(yB,A). Then, it computes σB = g · (xA + d · PA) · (rB + e · sB), vB = dbl(σB),

vB = ⟨σB⟩2, and SKB = ⌊vB⌉2. Finally, it sends yB and vB to party A, and takes SKB as its session key.

Completion : After receiving yB and vB, party A computes σA = g · (yB + e · PB) · (rA + d · sA) and
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rec(σA, vB) = SKA, and then takes SKA as its session key.

B. Correctness

Lemma 6 Suppose ∥g · si∥2 ≤ ℓ, ∥g · ri∥2 ≤ ℓ, where i = A,B, and

(
q

8
)2 ≥ [ℓ2 · r′2 · (3r2 + n) + 1 +

π

4
] · w2,

where w > 0, r′ =
√
r2 + 2π · rad(m)/m, then SKA = SKB holds with probability at least 1 − 2n ·

exp(8δ − πw2), where δ ≥ 2−n.

Proof It is obtained by calculating that σA = σB + g · [d · fB · sA + e · eB · rA − d · eA · rB − e · fA ·

sB + d · e · (sA · eB − sB · eA)] + g · (fB · rA − fA · rB). Set e1 = g · [d · fB · sA + e · eB · rA − d · eA ·

rB − e · fA · sB + d · e · (sA · eB − sB · eA)] + g · (fB · rA − fA · rB). Let e1 ∈ R be the random element

chosen in σB ← dbl(σB). Then, we obtain σB = 2σB − e1 ∈ R2q. By lemma 4, it suffices to prove that

each encoding basis coefficient of 2e1 + e1 falls into [− q
4
, q
4
), then g · fB is δ-subgaussian variable with

parameter m̂ · r′, where r′ =
√
r2 + 2π · rad(m)/m by lemma 2.

Since ∥g · sA∥2 ≤ ℓ, then each encoding basis coefficient of g · sA · fB is δ-subgaussian with parameter

r′ · ℓ by lemma 1. By lemma 2, each encoding basis coefficient of g · d is δ-subgaussian with parameter

m̂ · r′. Since ∥g · sA · fB∥2 ≤ ∥g · sA∥2 · ∥fB∥∞ ≤ ℓ · r
√
n holds with probability at least 1 − 2−n. By

lemma 1, each encoding basis coefficient of g · d · sA · fB is δ-subgaussian with parameter ℓ · r′ · r
√
n.

Similarly, we obtain that each encoding basis coefficient of g · d · eB · rA, g · d · eA · rB and g · d · fA · sB

is δ-subgaussian with parameter ℓ · r′ · r
√
n, respectively.

We have known that each encoding basis coefficient of g · d is δ-subgaussian with parameter m̂ · r′ and

∥g · e · sA · eB∥2 ≤ ∥g · sA · eB∥2 · ∥e∥∞ ≤ ℓ · r
√
n · r
√
n = ℓ · r2 · n. By lemma 1, each encoding basis

coefficient of g · d · e · sA · eB is δ-subgaussian with parameter r′ · ℓ · r2 · n. By lemma 2, each coefficient

of g · fB is δ-subgaussian with parameter m̂ · r′. Since ∥g · rA∥2 ≤ ℓ, each encoding basis coefficient of

g · fB · rA is δ-subgaussian with parameter r′ · ℓ by lemma 1. Similarly, each coefficient of g · fB · rA is

δ-subgaussian with parameter r′ · ℓ.
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By assumption, we obtain that each coefficient of e1 is 0-subgaussian with parameter
√
2π. Finally, we

obtain that 2e1 + e1 is 8δ-subgaussian with parameter 2
√
2 ·

√
[ℓ2 · r′2 · (3r2 + n) + 1 + π

4
]. By Markov’s

inequality and the union bound over all n coefficients, it naturally proves this lemma.

C. Choices of parameters

Since rad(m)/m ≤ 1, then ∥g·sA∥2 ≤ (r+1)·m̂·
√
n, ∥g·sB∥2 ≤ (r+1)·m̂·

√
n, ∥g·rA∥2 ≤ (r+1)·m̂·

√
n,

∥g ·rB∥2 ≤ (r+1) ·m̂ ·
√
n. Moreover, because of r′2 ≤ r2+2π, we take w =

√
log(2n/ε)/π, m̂ = O(n),

ε = 2−256, q = O(r2 · n3/2 · lnn). Consider the simplest case, namely, λ = 2, let r = ξq, where ξ =

γ · [2n/ log(2n)]1/4 satisfying γ · q ≥ ω(
√
log n). Now we have that Ring-DLWEq,χ is difficult, supposing

that SIVP on ideal lattice in R is difficult to approximate to within Õ(
√
n/γ) = Õ(q ·

√
n) = Õ(n2.5).

V. SECURITY ANALYSIS

In CK+ model, let sid∗ be the session identifier of the test session. Let n be the security parameter.

Let A be the adversary. Suc represents the event that the adversary wins.

A. Event E1

∧
Suc

Let E1 represent the event that the test session sid∗ has matching session sid
∗
, the owner of sid∗ is

the initiator, and the SSK of the initiator is given to A.

Simulation. We alter the computation of the session key over four hybrid games. G1,x represents these

games and Adv(A,G1,x) represents the advantage of A wins in the game G1,x, where x = 1, 2, 3, 4.

G1,0: The adversary A chooses sid∗ = (Π, I,A∗,B∗, xA∗ , (yB∗ , vB∗)) to be the test session, where xA∗

is the session output of A∗, and yB∗ is the session output of B∗ activated by Send1(Π, R,B
∗,A∗, xA∗).

Then, the simulator S randomly selects a ∈ Rq, honestly generates both the static public keys for two

parties, and simulates the attack environment for A. S maintains two tables L and Lsk for the random

oracle H(·) and SessionKeyReveal respectively, and answers the following queries from A.
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H(·): If there is no (in, out) in L, then S randomly selects out ∈ χr, and adds (in, out) into L. Then,

it returns out to A.

Send0(Π, I,A,B): A initiates a new session from A to B. S randomly selects rA, fA ← χr, and returns

xA = a · rA + fA ∈ Rq to A.

Send1(Π, R,B,A, xA): S randomly selects rB, fB ← χr, and computes yB = a·rB+fB ∈ Rq, σB, vB, vB

and SKB. Finally, it returns (yB, vB) to A.

Send2(Π, I,A,B, xA, (yB, vB)): S computes σA, SKA according to the scheme.

SessionKeyReveal(sid): Let sid = (Π, ∗,A, ∗, ∗, ∗, ∗), S returns SKA to A, if the session key of sid

is generated. If there is no (in, out) in Lsk, then S randomly selects out ∈ {0, 1}n, and it adds (in, out)

into Lsk. Then, returns out to A.

Corrupt(A): S returns sA to A.

Test(sid): If (A,B) ̸= (A∗,B∗), or xA is not the session output of A∗, and yB is not the session output

of B∗, then S aborts. Otherwise, S randomly selects b ∈ {0, 1}, SK ′
A ∈ {0, 1}n. If b = 0, then S returns

SK ′
A. Otherwise, S returns the real session key of sid.

G1,1: S computes y′B = a · r′B + f ′
B, where r′B, f

′
B ← χr. Then, S behaves almost identically as in

G1,0, except during Send1, if (A,B) ̸= (A∗,B∗), or y′B is not the session output of B∗, then S behaves

identically as in G1,0. Otherwise, S randomly selects e ← χr, computes yB = y′B − e · PB. If there is

(A, yB) in L, then S aborts. Otherwise, it adds (A, yB) into L, computes σB = g · (xA + d · PA) · r′B.

Finally, it honestly computes vB, vB, SKB according to the scheme, and sends (yB, vB) to A.

G1,2: S computes x′A = a · r′A + f ′
A, where r′A, f

′
A ← χr. Then, it behaves almost identically as in

G1,1, except during Send0, if (A,B) ̸= (A∗,B∗), or x′A is not the session output of A∗, then S behaves

identically as in G1,1. Otherwise, it randomly selects d← χr, and computes xA = x′A− d ·PA. If there is

(B, xA) in L, then S aborts. Otherwise, it adds (B, xA) into L. Finally, it returns xA to A. During Send2,

S behaves identically with in G1,1. Otherwise, if (yB, vB) is not the session output of B∗, then let SKB

be the session key of sid. S sets SKA = SKB. Otherwise, S computes σA = g · (yB+ e ·PB) · r′A. Finally,
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it honestly computes SKA according to the scheme.

G1,3: S randomly selects x′A ∈ Rq, behaves almost identically as in G1,2, except during Send2, if

(A,B) ̸= (A∗,B∗), or xA is not the session output of A∗ and (yB, σB) is not the session output of B∗,

then S behaves identically as in G1,2. Otherwise, it randomly selects SKA ← {0, 1}n as the session key.

G1,4: S randomly selects y′B ← Rq, and behaves identically as in G1,3, except during Send1, if

(A,B) ̸= (A∗,B∗), or y′B is not the session output of B∗, then it answers queries identically as in G1,3.

Otherwise, it randomly selects e← χR, and computes yB = y′B − e ·PB. If there is (A, yB) in L, then S

aborts. Otherwise, it adds (A, yB) into L. Then, it randomly selects σB ← Rq, and computes vB, vB. If

A has queried SessionKeyReveal, then S aborts. Otherwise, S randomly selects SKB ∈ {0, 1}n, and

sets ⌊vB⌉2 = SKB. Finally, S sends (yB, σB) to A.

Analysis. (a, y′B = a·r′B+f ′
B) is a Ring-LWE group, where r′B, f

′
B ← χr. Since the distribution of y′B is

indistinguishable from the uniform distribution over Rq, then the probability of the event that A correctly

guesses yB = y′B−e·PB is negligible. Since PB = a·sB+eB ∈ Rq, then yB = a·(r′B−e·sB)+(f ′
B−e·eB).The

distribution of r′B− e · sB and that one of f ′
B− e · eB is close to χr respectively. The distribution of yB in

G1,1 is close to that one of yB in G1,0. Assume γ · q ≥ ω(
√
log n), and Ring-DLWEq,χ is hard, then we

obtain |Adv(A,G1,1)− Adv(A,G1,0)| ≤ negl.

The distribution of xA in G1,2 is close to that in G1,1. The probability of the event that A quires H(·)

with xA is negligible. The probability of the event that S aborts in G1,2 is close to that one in G1,1. So

we obtain |Adv(A,G1,2)− Adv(A,G1,1)| ≤ negl.

The real session key SKA in G1,2 is replaced by a randomly chosen key in G1,3. By lemma 5, if σB is

uniformly random, then ⌊σB⌉2 is uniformly random given ⟨σB⟩2. A cannot differentiate the view of G1,3

and that one of G1,2, namely, |Adv(A,G1,3)− Adv(A,G1,2)| ≤ negl.

Under the Ring-DLWEq,χ assumption, G1,4 and G1,3 are computationally indistinguishable. Let (α1, β1)

and (α2, β2) be two Ring-DLWE challenge groups. Assume that there exists a adversary that can d-

ifferentiate G1,4 and G1,3, then we can construct a distinguisher D that can solve the Ring-DLWE
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problem. Concretely, D first sets the public parameters α1 = a, α2 = sB, β1 = y′B. Then, D behaves

identically with in G1,3, except during Send1, if (A,B) ̸= (A∗,B∗), or y′B is not the session output of

B∗, then D answers queries identically as in G1,3. Otherwise, D randomly selects e← χr, and computes

yB = y′B − e · PB. if there is (yB,A) in L, then D aborts. Otherwise, D adds (yB,A) into L. Then, D

computes σB = g · x′A(rB + e · sB), and it sets β2 = rB + e · sB. Since x′A ←R Rq, then the distribution

of β2 is computationally indistinguishable with the uniform distribution over Rq. Thus, the distribution of

σB is computationally indistinguishable with the uniform distribution over Rq. Let (yB, vB) be the session

output of B = B∗. Let (yB, v′B) be the session information of A = A∗, which is used to accomplish the

test session. In G1,4, σB ← Rq which is chosen randomly is independent of both public keys, except vB.

We use q1,x to represent that A makes a SessionKeyReveal query in G1,x.

If vB = v′B, then SKA = rec(σA, vB) = ⌊vB⌉2 = SKB. In G1,4, σB is randomly selected from the

uniform distribution over Rq. By lemma 5, A cannot differentiate the view of G1,4 and that of G1,3. If

vB ̸= v′B, then q1,4 does not happen. In all, we obtain |Adv(A,G1,4|¬q1,4)−Adv(A,G1,3|¬q1,3)| ≤ negl.

Since all the information are completely randomized in G1,4, then we obtain Adv(A,G1,4) = 0. Thus,

we obtain Pr[E1

∧
Suc] = 0.

B. Event E2

∧
Suc

Let E2 represent the event that the test session sid∗ has no matching session sid
∗
, the owner of sid∗

is the initiator, and the ephemeral key of the initiator is given to A.

Simulation. We alter the computation of the session key over seven hybrid games. G2,x represents these

games and Adv(A,G2,x) represents the advantage of A wins in the game G2,x, where x = 1, 2, 3, 4, 5, 6, 7.

G2,0: It is identical with G1,0.

G2,1: S behaves identically as in G2,0, except during Send0(Π, I,A,B), if A ̸= B∗, then S answers

queries identically as in G2,1. Additionally, it computes x′A = a · r′A + f ′
A, where r′A, f

′
A ← χr. Then,

S randomly selects d ← χr, and computes xA = x′A − d · PA. If there is (B, xA) in L, then S aborts.

Otherwise, it adds (B, xA) into L, and returns xA to A. During Send1, if B ̸= B∗, then S answers queries
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identically as in G2,0. In addition, it computes y′B = a · r′B + f ′
B, where r′B, f

′
B ← χr. Then, S randomly

selects e← χr, and computes yB = y′B− e ·PB. If there is (A, yB) in L, then S aborts. Otherwise, it adds

(A, yB) into L, and computes σB = g · (xA + d ·PA) · r′B. Finally, S computes vB, vB, SKB according to

the protocol, and sends (yB, vB) to A. During Send2, if A ̸= B∗, then S answers quires identically as in

G2,1. Otherwise, let xA = x′A − d ·PA, where x′A = a · r′A + f ′
A, S computes σA = g · (yB + e ·PB) · r′A.

Finally, it computes SKA according to the scheme.

G2,2: S behaves identically as in G2,1, except that it replaces the public key in G2,1 with PB∗ which

is uniformly chosen in G2,2.

G2,3: S computes x′A = a · r′A + f ′
A, where r′A, f

′
A ← χr. Then, S behaves almost identically as in

G2,2, except during Send0, if (A,B) ̸= (A∗,B∗), or x∗A is not the session output of A∗, then S answers

quires identically as in G2,2. Otherwise, S randomly selects d ← χr, and computes xA = x′A − d · PA.

If there is (B, xA) in L, then S aborts. Otherwise, it adds (B, xA) into L, and returns xA to A. During

Send2, if (A,B) ̸= (A∗,B∗), or xA∗ is not the session output of A∗, then S behaves identically as in G2,2.

Otherwise, it computes σA = g · (yB + e ·PB) · r′A. Finally, it computes SKA according to the scheme.

G2,4: S first computes t1 = a · r′A + f ′
A, t2 = PB · r′A + ẽ′A, where r′A, ẽ

′
A ← χr. Then, S computes

x′A = t1 + f ′
A = a · r′A + (f ′

A + f̃ ′
A), where f ′

A ← χγ . Finally, S behaves almost identically as in G2,3,

except during Send2, if (A,B) ̸= (A∗,B∗), or x∗A is not the session output of A∗, then S answers quires

identically as in G2,3. Otherwise, it computes σA = g · (e · t2 + yB · r′A) = g · [(yB + e ·PB) · r′A + e · ẽ′A].

Finally, it computes SKA according to the scheme.

G2,5: S behaves almost identically as in G2,4, except during Send2, if (A,B) ̸= (A∗,B∗), or x∗A is

not the session output of A∗, then S answers quires identically as in G2,4. Otherwise, it randomly selects

σA ← χr.

G2,6: S randomly selects t1, t2 ← Rq, and behaves almost identically as in G2,5.

G2,7: S randomly selects SKA ← {0, 1}n, and behaves almost identically as in G2,6.

Analysis. As similar analysis of the indistinguishability between G1,1 and G1,0, we can obtain |Adv(A,G2,1)−
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Adv(A,G2,0)| ≤ negl.

Since S replaces PB∗ = a · sB∗ + eB∗ ∈ Rq in G2,2 with PB∗ ←R Rq in G2,3, if the adversary

can differentiate G2,1 and G2,2, then Ring-DLWEq,χ is solvable. Thus, we can obtain |Adv(A,G2,1) −

Adv(A,G2,0)| ≤ negl.

As similar analysis of the indistinguishability between G1,1 and G1,0, we can obtain |Adv(A,G2,3)−

Adv(A,G2,2)| ≤ ngel.

In G2,4, x′A = a · r′A + (f̃ ′
A + f ′

A), σA = g · [(yB + e ·PB) · r′A + e · ẽ′A], where ẽ′A, f̃
′
A, f

′
A ← χr. Since

the distribution of f̃ ′
A + f ′

A is close to χr. So, we can obtain |Adv(A,G2,4)− Adv(A,G2,3)| ≤ negl.

S replaces σA = g · (e · t2 + yB · r′A) in G2,4 with σA ←R Rq in G2,5. By lemma 5, we can obtain

|Adv(A,G2,5)− Adv(A,G2,4)| ≤ negl.

S replaces t1 = a · r′A + f̃ ′
A and t2 = PB · r′A + ẽ′A in G2,5 with two random elements from Rq. If the

adversary can differentiate G2,5 and G2,6, then Ring-DLWEq,χ is solvable.

G2,6 is completely randomized, then A cannot obtain any advantage via asking Test oracle, namely

Adv(A,G2,6) = 0. Thus, we obtain Pr[E2

∧
Suc] = 0.

C. Event E3

∧
Suc

Let E3 represent the event that the test session sid∗ has no matching session sid
∗
, the owner of sid∗

is the responsor, and the SSK of the responsor is given to A.

The proof is essentially identical with E2

∧
Suc. In G3,2, S randomly selects PA∗ ← Rq. In G3,3, S

first computes y′B = a ·r′B+f ′
B, where r′B, f

′
B ← χr. Then, S behaves almost identically as in G3,2, except

during Send1, if (A,B) ̸= (A∗,B∗), or y′B is not the session output of B∗, then S answers quires identically

as in G3,2. Otherwise, it randomly selects e← χr, and computes yB = y′B− e ·PB. If there is (A,PB) in

L, then S aborts. Otherwise, it adds (A,PB) into L, and computes σB = g · (xA + d ·PA) · r′B. Finally, S

computes SKB according to the scheme, and sends (yB, vB) to A. In G3,4, S computes t1 = a · r′B + f ′
B,

t2 = PA · r′B+ ẽ′B. Then S computes y′B = t1+ f
′
B = a · r′B+(f̃ ′

B+ f
′
B), where f ′

B, f̃
′
B, ẽ

′
B ← χr. Finally, S

behaves almost identically as in G3,3, except during Send1, if (A,B) ̸= (A∗,B∗), or y′B is not the session
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output of B∗, then S answers quires identically as in G3,3. Otherwise, S randomly selects e ← χr, and

computes yB = y′B − e · PB. If there is (A,PB) in L, then S aborts. Otherwise, it adds (A,PB) into L,

and computes σB = g · (e · t2+xA · r′B) = g · [(xA+ e ·PA) · r′B+ e · ẽ′B]. Finally, S computes vB, vB, SKB

according to the scheme, and send (yB, vB) to A. In G3,5, if (A,B) ̸= (A∗,B∗), or y′B is not the session

output of B∗, then S answers quires identically as in G3,4. Otherwise, S selects randomly σB ← Rq. In

G3,7, S randomly selects SKB ← {0, 1}n, and behaves almost identically as in G3,6.

D. Event E4

∧
Suc

Let E4 represent the event that the test session sid∗ has no matching session sid
∗
, the owner of sid∗

is the responsor, and the ephemeral key of the responsor is given to A. The proof is essentially identical

with E1

∧
Suc.

E. Event E5

∧
Suc

Let E5 represent the event that the test session sid∗ has matching session sid
∗
, both the static secret

keys are given to A. The proof is essentially identical with E1

∧
Suc.

F. Event E6

∧
Suc

Let E6 represent the event that the test session sid∗ has matching session sid
∗
, both the ephemeral

keys are given to A. The event that the ephemeral key of sid
∗

is given A is same as the event that sid

has no matching session. Since A cannot determine arbitrary ephemeral key, then the proof is essentially

identical with E2

∧
Suc.

G. Event E7

∧
Suc

Let E7 represent the event that the test session sid∗ has matching session sid
∗
, the static secret keys of

sid∗ and the ephemeral keys of sid
∗

are given to A. The event that the ephemeral key of sid
∗

is given to

A is same as the event that sid has no matching session. Since A cannot determine arbitrary ephemeral

key, then the proof is essentially identical with E1

∧
Suc.
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H. Event E8

∧
Suc

Let E8 represent the event that the test session sid∗ has matching session sid
∗
, the ephemeral keys of

sid∗ and the static secret keys of sid
∗

are given to A. The event that the ephemeral key of sid
∗

is given to

A is same as the event that sid
∗

has no matching session. Since A cannot determine arbitrary ephemeral

key, then the proof is essentially identical with E4

∧
Suc.

VI. CONCLUSIONS

In this paper, we build a new efficient authenticated key exchange based on Ring-LWE, which is provably

secure under CK+ secure model. This new scheme has many other advantages over those existing ones.

First, compared with the AKE schemes based on trapdoor one-way functions and ones based on multilinear

maps respectively, the operations from LWE not only are positive but also does not need to store lots

of public parameters. Second, compared with current Key Exchange (KE) schemes based on LWE, the

proposed scheme not only protects the shared session key with balanced key derivation function (KDF)

but also resists quantum attacks because of the hard assumption in lattice. Finally, only one party needs

to retrieve its session key with the robust extractor. Thus, the communication overhead of the network is

decreased and the computation is greatly reduced. In addition, since the proposed scheme is built in the

cyclotomic ring, then we can adopt Fast Fourier Transform (FFT) over the cyclotomic field to accelerate

the calculations, which can obviously improve the efficiency of our scheme.
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