
Bringing Deployable Key Transparency to End Users

Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, Michael J. Freedman

Princeton University

Abstract
We present CONIKS, an end-user key verification ser-

vice capable of integration in end-to-end encrypted com-
munication systems. CONIKS builds on related designs
for transparency of web server certificates but solves sev-
eral new challenges specific to key verification for end
users. In comparison to prior designs, CONIKS enables
more efficient monitoring and auditing of keys, allowing
small organizations to effectively audit even very large
key servers. CONIKS users can efficiently monitor their
own key bindings for consistency, downloading less than
20 kB per day to do so even for a provider with billions of
users. CONIKS users and providers can collectively audit
providers for non-equivocation, and this requires down-
loading a constant 2.5 kB per day regardless of server size.
Unlike any previous proposal, CONIKS also preserves the
level of privacy offered by today’s major communication
services, hiding the list of usernames present and even
allowing providers to conceal the total number of users in
the system.

1 Introduction

Billions of users now depend on online services for sensi-
tive communication. While much of this traffic is trans-
mitted encrypted via SSL/TLS, the vast majority is not
end-to-end encrypted meaning service providers still have
access to the plaintext in transit or storage. Given both
the well-documented insecurity of certificate authorities
protecting TLS certificates [9, 10, 55] and the aggressive
level of government surveillance of communication pro-
viders revealed by recent leaks [8, 22, 25], this status quo
is unacceptable.

Spurred by these security threats and users’ desire for
stronger security [39], several large services including
Apple iMessage and WhatsApp have recently deployed
end-to-end encryption [18, 54]. However, while these
services have limited users’ exposure to TLS failures and
demonstrated that end-to-end encryption can be deployed
with an excellent user experience, they still rely on a
centralized directory of public keys maintained by the
service provider. These key servers remain vulnerable to
technical compromise [15, 30, 43], and legal or extralegal
pressure for access by surveillance agencies or others.

Despite its critical importance, secure key verification
for end users remains an unsolved problem. Over two
decades of experience with PGP email encryption [11, 49,
62] suggest that manual key verification is error-prone and
irritating [20, 61]. The EFF’s recent Secure Messaging
Scorecard reported that none of 40 secure messaging apps
which were evaluated have a practical and secure system
for contact verification [17]. Similar conclusions were
reached by a recent academic survey on key verification
mechanisms [58].

To address this essential problem, we present CONIKS,
a deployable and privacy-preserving system for end-user
key verification.

Key directories with consistency. We retain the basic
model of service providers issuing authoritative name-
to-key bindings within their namespaces, but ensure that
users can automatically verify consistency of their bind-
ings. That is, given an authenticated binding issued by
the foo.com server, binding the name alice@foo.com to
one or more public keys, any party can verify that this is
the same (and only) binding for alice@foo.com that any
other user observed.

Ensuring a stronger correctness property of bindings is
impractical to automate as it would require users to verify
that keys bound to the name alice@foo.com are genuinely
controlled by an individual named Alice. Instead, with
CONIKS, Bob can confidently use an authenticated bind-
ing for the name alice@foo.com because he knows Alice’s
software will monitor this binding and detect if it does
not represent the key (or keys) Alice actually controls.

These bindings function somewhat like certificates in
that users can present them to other users to set up a secure
communication channel. However, unlike certificates,
which present only an authoritative signature as a proof of
validity, CONIKS bindings contain a cryptographic proof
of consistency. To enable consistency checking, CONIKS
servers periodically sign and publish an authenticated
data structure encapsulating all bindings issued within
their namespace, which all clients automatically verify is
consistent with their expectations. If a CONIKS server
ever tries to equivocate by issuing multiple bindings for
a single username, this would require publishing distinct
data structures which would provide irrefutable proof of

1

the server’s equivocation. CONIKS clients would detect
the equivocation promptly with high probability.

Transparency solutions for web PKI. Several proposals
seek to make the complete set of valid PKIX (SSL/TLS)
certificates visible by use of public authenticated data
structures often called transparency logs [5, 29, 34, 35, 47,
53]. The security model is similar to CONIKS in that pub-
lication does not ensure a certificate is correct, but users
can accept it knowing the valid domain owner will be able
to promptly detect any certificate issued maliciously. In
Certificate Transparency [35], one of the earlier proposals
and the closest to practical deployment today, this data
structure is simply an append-only log (implemented as a
Merkle tree) of all certificates in chronological order.

Follow-up proposals have incorporated more advanced
features such as revocation [5, 29, 34, 53] and finer-
grained limitations on certificate issuance [5, 29], but all
have made several basic assumptions which make sense
for web PKI but not for end-user key verification. Specif-
ically, all of these systems make the set of names and
keys/certificates completely public, and all rely to varying
degrees on third-party monitors interested in ensuring the
security of web PKI on the whole. End-user key verifi-
cation has stricter requirements: there are hundreds of
thousands of email providers and communication appli-
cations, most of which are too small to be monitored by
independent parties and many of which would like to keep
their users’ names and public keys private.

Our primary contributions solve these two problems:
1. Efficient self-monitoring. All previous schemes

include third-party monitors since monitoring the certifi-
cates/bindings issued for a single domain or user requires
tracking the entire log. Webmasters might be willing to
pay for this service or have their certificate authority pro-
vide it as an add-on benefit, receiving alerts whenever a
new certificate was issued for one of their domains. For
individual users, it is not clear who might provide this
service free of charge or how users would choose such a
monitoring service, which must be independent of their
service provider itself.

CONIKS obviates this problem by using an efficient
data structure, a Merkle prefix tree, which allows a sin-
gle small proof (logarithmic in the total number of users)
to guarantee the consistency of a user’s entry in the di-
rectory. This allows users to monitor only their own
entry without needing to rely on third parties to perform
computationally-intensive monitoring. A user’s device
can automatically monitor the user’s key directory entry
and alert the user if unexpected keys are ever bound to
their username.

2. Privacy-preserving key directories. Since prior
systems to date [29, 35, 47, 53] require third-party moni-
tors to view the entire system log, monitoring leaks the

set of users who have been issued keys. CONIKS, on
the contrary, is privacy-preserving. CONIKS servers can
choose when to respond to queries for individual user-
names (which can be rate-limited and/or authenticated)
and the response for any individual queries leaks no in-
formation about which other users exist or what data is
mapped to their username. As a result, CONIKS can
be used to provide authenticated bindings for sensitive
application-specific data (e.g., contact lists, profile pho-
tos) in addition to public keys. CONIKS also naturally
supports obfuscating the number of users and updates in
a given directory.

CONIKS in Practice. We have built a prototype CON-
IKS system, which includes both the application-agnostic
CONIKS server and an example CONIKS Chat appli-
cation integrated into the OTR plug-in [7, 23, 56] for
Pidgin [1]. Our CONIKS clients automatically monitor
their directory entry by regularly downloading consis-
tency proofs from the CONIKS server in the background,
avoiding any explicit user action except in the case of
notifications that a new key binding has been issued.

In addition to the strong security and privacy features,
CONIKS is also very efficient in terms of bandwidth, com-
putation, and storage overheads for clients and servers.
Clients need to download about 19.1 kB per day from the
CONIKS server, and verifying key bindings is trivially
fast. Our prototype server implementation is able to easily
support 10 million users (with 1% changing keys per day)
on a commodity machine with 64 GB of RAM. Feedback
from industrial developers at major communication ser-
vice companies has confirmed that CONIKS is a viable
solution for a key verification system for their users.

2 System model and design goals

The goal of CONIKS is to provide a key verification sys-
tem that facilitates practical, seamless, and secure com-
munication for virtually all of today’s users.

2.1 Participants and Assumptions

CONIKS’s security model includes four main types of
principals: identity providers, clients (specifically client
software), auditors and users.

Identity Providers. Identity providers run CONIKS
servers and manage disjoint namespaces, each of which
has its own set of name-to-key bindings.1 We assume a
separate PKI exists for distributing public keys for each
identity provider to sign its bindings.

1Existing communication service providers can act as identity pro-
viders, although CONIKS also enables dedicated “stand-alone” identity
providers to become part of the system.

2

While we assume that CONIKS providers may be mali-
cious, we assume they have a reputation to protect and do
not wish to attack their users in a public manner. Because
CONIKS primarily provides transparency and enables
reactive security in case of provider attacks, CONIKS
cannot deter a service provider which is openly willing to
attack its users (although it will expose the attacks).

Clients. Users run CONIKS client software on one or
more trusted devices; CONIKS does not address the prob-
lem of compromised client endpoints. Clients monitor
their identity provider for consistency of their own bind-
ings, unlike previous systems in which this functionality
is provided by third parties. To support consistency moni-
toring, we assume that at least one of a user’s clients has
access to a reasonably accurate clock as well as access
to secure local storage in which the client can save the
results of prior checks.

We also assume clients have network access which can-
not be reliably blocked by their communication provider.
This is necessary for whistleblowing if a client detects
misbehavior by an identity provider, the threat of which
we assume will prevent the identity provider from certain
attacks including equivocation. CONIKS cannot ensure
security if clients have no means of communication that
the communication provider does not control.2

Auditors. To verify that identity providers are not equiv-
ocating, auditors track the chain of signed “snapshots” of
the Merkle prefix tree that they publish and gossip with
other auditors to ensure global consistency. Being a CON-
IKS auditor is very lightweight, with less than 20 kB per
day of data to fetch and a trivial number of cryptographic
calculations. Indeed, CONIKS clients all serve as auditors
for their own identity provider and providers audit each
other. Third-party auditors are also able to participate if
they desire.

Users. An important design strategy is to provide good
baseline security which is accessible to nearly all users,
necessarily requiring some security tradeoffs, with the op-
portunity for upgraded security for advanced users within
the same system to avoid fragmenting the communication
network. While there are many gradations possible, we
draw a recurring distinction between cautious users and
paranoid users to illustrate the differing security proper-
ties and usability challenges of the system.

An essential difference is that cautious users permit
unauthenticated (but publicly visible) key changes by the
server in case of lost keys, while paranoid users commit
to maintaining a private key forever and will lose access

2Even given a communication provider who also controls all network
access, it may be possible for users to whistleblow manually by reading
information from their device and using a channel such as physical mail
or sneakernet, but we will not model this in detail.

to their username if they lose private key material. We
will discuss further security tradeoffs, such as whether
usernames are publicly visible in §4.4.

2.2 Design Goals

The design goals of CONIKS are divided into security,
privacy and deployability goals.

Security goals.
G1: Non-equivocation. An identity provider may at-
tempt to equivocate by presenting diverging views of
the name-to-key bindings in its namespace to different
users. Because CONIKS providers issue signed, chained
“snapshots” of each version of the key directory (called
STRs), any equivocation to two distinct parties must be
maintained forever or else it will be detected by auditors
who can then broadcast non-repudiable cryptographic evi-
dence. This built-in auditing provides high assurance that
equivocation will be detected with high probability (see
Appendix A for a detailed analysis). Because any equivo-
cation may produce non-repudiable evidence, we assume
that identity providers will avoid this attack strategy for
fear of damaging their reputation.
G2: Key binding consistency. If an identity provider
inserts a malicious key binding for a given user, her client
software will rapidly detect this and alert the user. For
cautious users, this will not produce non-repudiable ev-
idence as key changes are not necessarily cryptographi-
cally signed with a key controlled by the user. However,
the user will still see evidence of the attack and can report
it publicly. For paranoid users, all key changes must be
signed by the user’s previous key and therefore malicious
bindings can be proved publicly.

Privacy goals.
G3: Privacy-preserving consistency proofs. CONIKS
servers do not need to make any information about their
bindings public in order to allow consistency verification.
Specifically, an adversary who has obtained an arbitrary
number of consistency proofs at a given time, even for
adversarially chosen usernames, cannot learn any infor-
mation about which other users exist in the namespace or
what data is bound to their usernames. To our knowledge,
CONIKS is the first system which enables this level of
privacy while still allowing auditability for consistency.
G4: Concealed number of users. Identity providers
may not wish to reveal their exact number of users. CON-
IKS allows providers to insert an arbitrary number of
dummy entries into their key directory which are indis-
tinguishable from real users (assuming goal G3 is met),
exposing only an upper bound on the number of users
they manage.

3

CT [35] ECT [53] CONIKS
Auditor cost O(lgN) O(n) O(1)
Monitor cost O(n) O(lgN) O(lgN)
Privacy — — X

Table 1: Comparison of CONIKS with similar pro-
posals in terms of efficiency and privacy. N is the to-
tal number of log entries and n is the total number of
updates to the log.

Deployability goals.
G5: Strong security with human-readable names.
With CONIKS, users of the system only need to learn their
contacts’ usernames in order to communicate with end-to-
end encryption and need not explicitly reason about keys.
This enables seamless integration in end-to-end encrypted
communication systems and requires no effort from users
in normal operation.
G6: Efficient data structure for key directories. Com-
putational and communication overhead should be mini-
mized so that CONIKS is feasible to implement for iden-
tity providers using commodity servers and for clients on
common mobile devices. All overhead should scale at
most logarithmically in the number of total users.

2.3 Related proposals

We will briefly discuss two related proposals: Certifi-
cate Transparency [35] and Enhanced Certificate Trans-
parency [53], which was developed concurrently [44]. A
summary is provided in Table 1. CT introduced the ter-
minology of auditors to check for non-equivocation and
monitors to check for consistency/validity of data, which
we adapt as well, although we emphasize that users’ own
clients perform both auditing and monitoring in CONIKS.

Certificate Transparency (CT) [35] is designed to
mitigate the problem of mis-issued TLS certificates by
publicly logging all certificates as they are issued in
a signed append-only log which is implemented as a
chronologically-ordered Merkle binary search tree. Audi-
tors check that each signed tree root3 represents an exten-
sion of the previous version of the log and gossip to ensure
that the log server is not equivocating. A domain adminis-
trator can monitor the set of newly logged-certificates (or
use a third-party monitor) to detect suspicious certificates
issued for their domain.

This design only maintains a set of issued certificates
and not a mapping from domains to certificates and does
not allow for efficient queries of the form “what is the
most recent certificate issued for domain X .” Because
of this, in practice it requires monitors to scan the en-
tire list of issued certificates on behalf of small domain

3CT uses the term signed tree head roughly equivalently to our
signed tree root.

owners, so acting as a CT monitor requires an amount of
work linear in the total number of issued certificates. We
consider this a major limitation for user communication
because independent and trustworthy monitors may not
exist for small identity providers. CT is also not privacy-
preserving; indeed it was designed with the opposite goal
of making all certificates publicly visible.

Enhanced Certificate Transparency [53] extends the
basic CT design to support efficient queries of the current
set of valid certificates for a domain, enabling built-in
revocation. ECT servers maintain an append-only log
of certificates in chronological order, as in CT, and adds
a second Merkle tree of currently valid certificates or-
ganized as a binary search tree sorted lexicographically
by domain name. Third-party auditors must verify that
the two trees are maintained consistently with each other,
i.e., that no certificate appears in only one of the trees,
by mirroring the entire structure and verifying all inser-
tions and deletions. Auditors must also gossip to detect
equivocation.

Assuming third-party auditors perform these checks
correctly, ECT enables users to efficiently query the cur-
rent state of the system for all certificates considered valid
for their domain or username. However, unlike in CT
or CONIKS, auditing in ECT is requires effort linear in
the total number of changes to the logs, which we do not
consider practical for end-user communication.

ECT also does not provide privacy. The proposal sug-
gests storing users in the lexicographic tree by a hash of
their name, but this provides only weak privacy as most
usernames are predictable and their hash can easily be
determined by a dictionary attack.

3 Core Data Structure Design

At a high level, CONIKS identity providers manage a
directory of verifiable bindings of usernames to data. In a
key verification service, a username is mapped to a user’s
public key. This directory is constructed as a Merkle
prefix tree of all registered bindings in the provider’s
namespace.

In order to make the directory privacy-preserving, a pri-
vate index is computed for each username via a verifiable
unpredictable function. Each user’s data is stored at the
associated private index rather than his or her username
(or a hash of it). This prevents the data structure from
leaking data about usernames. To ensure that users’ data
can be verified without revealing any information about
other users’ data, a cryptographic commitment4 to each
user’s data is stored at the private index, rather than the
data itself.

4Commitments are a basic cryptographic primitive. A simple imple-
mentation computes a collision-resistant hash of the input data and a
random nonce.

4

…	

…	

H(subL)	
 H(subR)	

iBob	
 ||
commit(PKBob)	

H(subL)	
 H(subR)	

H(subL)	
 H(subR)	

H(subL)	
 H(subR)	

…	

H(subL)	
 H(subR)	

0	

0	

0	

1	

1	

1	

root	

Figure 1: An authentication path from Bob’s data to
the root node of the Merkle prefix tree. Bob’s index,
iBob, has the prefix “000”. Dotted nodes are not in-
cluded in the proof’s authentication path.

At regular time intervals, or epochs, the identity pro-
vider publicly commits to a “snapshot” of the directory by
digitally signing the root of the Merkle tree. We call this
signature a signed tree root (STR). Each STR includes
the hash of the previous version to associate it with past
versions of the directory.

3.1 Merkle Prefix Tree
CONIKS directories are constructed as a Merkle binary
prefix tree. In a binary prefix tree, each branch of the tree
represents the next bit in the binary representation of a
user’s index. Interior nodes have a left and right subtree.
The left subtree contains all indices whose next bit is 0,
and the right subtree contains all indices whose next bit is
1. The hash of an interior node is computed as:

H(“interior”||H(substreeleft)||H(substreeright))

where H() is a one-way hash function. As a convenience,
empty subtrees can be represented with a null string of all
zeroes.

A leaf node includes the complete lookup index i and
a cryptographic commitment to the data mapped to that
index:

H(“leaf”||i||commit(datai))

Data Binding Proofs. To prove that a particular index
exists in the tree, a data binding proof consists of the
complete authentication path between the corresponding
leaf node and the root. This is a pruned tree containing the
prefix path to the requested index, as shown in Figure 1.
By itself, this path only reveals that an index exists in the
directory, because the commitment hides the data mapped
to an index. To prove the full index-to-data binding, the
server provides an opening of the commitment in addition
to the authentication path.

Proofs of Absence. To prove that a given index i has no
data mapped to it, an authentication path is provided to the

root0	

H(seed)	

0	

…	
 .	

STR0	
 STRprev	
 STRt	

P	

rootprev	

H(rootprev-­‐1)	

tprev	

P	

roott	

H(rootprev)	

t	

P	

tprev-­‐1	
 tprev	

Figure 2: The directory’s history is published as a lin-
ear hash chain of signed tree roots.

longest prefix match of i currently in the directory. That
node will be a leaf node with a different private index, or
it will have an empty subtree where i’s data would reside.

3.2 Signed Tree Roots

At each epoch, the provider signs the root of the direc-
tory tree, as well as some metadata, using their directory-
signing key SKd . Specifically, an STR consists of

STR = SignSKd
(t||tprev||roott ||H(rootprev)||P)

where t is the epoch number and P is a summary of this
provider’s current security policies. P may include, for
example, a key Ki used to generate private indices, an
expected time the next epoch will be published, as well
as the cryptographic algorithms in use, protocol version
numbers, and so forth. The previous epoch number tprev
must be included because epoch numbers need not be se-
quential (only increasing). In practice our implementation
uses UNIX timestamps.

By including the hash of the previous root, the STRs
form a hash chain of STRs, as shown in Figure 2. This
hash chain is used to ensure that providers maintain a
linear history of STRs. If an identity provider ever equiv-
ocates by creating a fork in its history, the provider must
maintain these forked hash chains for the rest of time.
Otherwise, clients will immediately detect the equivoca-
tion when presented with an STR belonging to a different
branch of the hash chain [37].

3.3 Private Index Calculation

A key design goal is to ensure that each authentication
path reveals no information about whether any other
names are present in the directory. Without further con-
sideration, or by using a simple hash function of the user-
name as the index (as is proposed in Extended Certificate
Transparency), a user’s authentication path would reveal
some information about whether there are other users with
prefixes “close” to that user.

For example, if a user alice@foo.com’s shortest unique
prefix in the tree is x and her immediate neighbor in the
tree is a non-empty node, this reveals that at least one
users exists with the same prefix x. An attacker could
then hash a large number of potential usernames offline,
searching for a potential username whose index shares
this prefix x.

5

An active attacker, seeking to test if a user
bob@foo.com has registered a key, could instead hash
many strings until they find one whose index shares a
prefix of length ` with the target user and then register
this string as their name. As ` increases, the existence
of another user sharing this prefix provides increasingly
strong evidence that bob@foo.com has registered.

Private Indices. To prevent such leakage, we compute
private indices using a verifiable unpredictable function,
which is a function that requires a private key to compute
but can then be publicly verified. VUFs are a simpler form
of a stronger cryptographic construction called verifiable
random functions [42]. In our application, we only need
to ensure that a user’s location in the tree is not predictable
and do not need strong randomness (although randomness
is helpful to produce a balanced tree).

We can implement a VUF using any deterministic, ex-
istentially unforgeable signature scheme [42]. The signa-
ture scheme must be deterministic or else (in our applica-
tion) the identity provider could insert multiple bindings
for a user at different locations each with a valid authenti-
cation path. In practice, this could be a classic RSA signa-
ture [52] (using a deterministic padding scheme such as
PKCS v. 1.5 [27]) or BLS “short signatures” [6], which
provide the best space efficiency. Discrete-log based sig-
nature schemes such as DSA [32] are not immediately
applicable as they require a random nonce.

We generate the index for a user u as:

i = H(VUFKi(u))

where VUF() is a deterministic, existentially unforgeable
signature scheme. The key Ki is specified in each STR. A
hash function is required because some bits of VUFKi(u)
might otherwise leak through data binding proofs, and
signature schemes are generally not unforgeable given
some bits of the valid signature. A full index-to-data bind-
ing proof for user u therefore requires the authentication
path, the value of VUF(u) and the user u’s data.

4 CONIKS Operation

CONIKS providers, clients and auditors collaborate in
ensuring that identity providers maintain a single linear
history of STRs. This enables clients to verify the consis-
tency of bindings and check for non-equivocation. Fig. 3
and Fig. 4 summarize the basic protocols for registration
and verification of bindings.

4.1 Auditing Provider History

CONIKS auditors maintain the current STRs of CON-
IKS providers. Note that because the STRs are chained,

Commit	
 to	

directory	
 including	
 	

(“alice”	
 àPKA)	

	

Check	
 published	
 (“alice”	
 à	
 PKA)	

is	
 as	
 expected	

Register	
 	

(“alice”	
 à	
 PKA)	

5	

Provider	

bar2.com	

Provider	

bar1.com	

Publish	
 STR	
 to	
 observers	

Alice’s	

Client	

.

. .
Provider	

foo.com	

1	

3	

2	

Check	
 foo.com’s	
 	

STR	
 history	
 is	
 linear	

4	

Figure 3: Steps required for a user Alice to register
a key PKA with her provider foo.com. After registra-
tion, foo.com publishes a new STR to any auditors,
and Alice’s client verifies that foo.com is publishing
her expected binding.

Random	
 observers	
 see	
 	

iden.cal	
 STR	
 for	

foo.com?	

Check	
 foo.com’s	
 STR	

history	
 is	
 linear	

3	

Provider	

bar2.com	

Provider	

bar1.com	

.

. .
Provider	

foo.com	

2	

Check	
 (“alice”	
 àPKA)	

binding	
 consistency	

1	

Alice’s	

Client	

Figure 4: Steps required for self-monitoring in CON-
IKS. At the beginning of every epoch, Alice’s client
verifies the consistency of her binding and checks that
foo.com is publishing a linear STR history. To check
for non-equivocation, Alice’s client queries randomly
chosen auditors and compares the received STRs to
the one foo.com presented her.

maintaining the current STR commits to the entire history.
Because this is a small, constant amount of data (less
than 1 kB) it is efficient for a single machine to act as an
auditor for thousands of CONIKS providers.

In typical deployment, we expect most CONIKS pro-
viders will act as auditors of all CONIKS providers with
which their users have been in communication, although
it is also possible for any other entity to act as an auditor.
Indeed, CONIKS clients are themselves auditors of their
own provider since they will maintain their provider’s
current STR in the course of self-monitoring.

6

Ensuring a Linear STR History. The steps for an audi-
tor (including client software) to verify a new STR are
summarized in Figure 5. The auditor first ensures that
the provider correctly signed the STR before checking
whether the embedded previous root hash matches what
the auditor saw previously. If they do not match, the
provider has generated a fork in its STR history.

Liveness. CONIKS servers may attempt to hide mali-
cious behavior by ceasing to respond to queries. We
provide flexible defense against this, as servers may also
simply go down. Servers may publish an expected next
epoch number with each STR in the policy section P.
Clients must decide whether they will accept commit-
ments published at a later time than previously indicated.

4.2 Verifying Bindings

Clients ensure the validity of users’ bindings before com-
munication. CONIKS depends on the fact that each client
will monitor its own user’s binding for consistency. Given
that, for one client to contact another client, it need only
ensure that both clients see the same STR. This is done
by querying the user’s provider for the data binding proof,
verifying that the binding is included in the presented
STR, and checking with auditors for equivocation.

Self-Monitoring Checks. When clients check a user’s
own bindings, the client begins by querying the user’s
provider for a data binding proof. Next, the client verifies
the validity of the binding to ensure the binding represents
the data the user believes is correct. In the simplest case,
this is done by checking the consistency of a user’s key
between epochs. If the keys have not changed, or the
client knows the changes were requested, then the user
does not need to be notified.

In the case of an unexpected key change, by default the
user chooses what course of action to take as this change
may reflect, for example, having recently enrolled a new
device with a new key. Alternately, security-conscious
users may request a paranoid policy for key changes
which can be automatically enforced, and which we will
discuss further in §4.4. After checking the validity of
the binding, the client verifies the authentication path as
described in § 3, including verifying the user’s private
index. Fig. 6 summarizes the steps taken during the self-
monitoring checks.

Auditing Other Users’ Bindings. CONIKS assumes
that a binding’s owner is responsible for self-monitoring,
so clients need only audit another user’s binding to ensure
her binding is consistent with her provider’s STR for a
given epoch. Thus, if a binding is invalid, the binding’s
owner will detect it during self-monitoring.

The client begins by querying a user’s provider for the
data binding proof (or obtains it from their communica-
tion partner directly), and verifies the authentication path
and private index. After verifying that the binding is con-
sistent, no further checks need be performed for auditing
other users’ bindings.

Checking for Non-Equivocation. After checking the
consistency of any user’s binding (its own or another’s),
the client queries one or more CONIKS auditors at ran-
dom.5 The client asks the auditor for the signed tree root
STR′t it observed from the provider in question at epoch
t. The client then compares STR′t with the signed tree
root STRt which the provider directly presented it. The
client may repeat this process with different auditors as
desired to increase confidence. For an analysis of the
number of checks necessary to detect equivocation with
high probability, see App. A.

Performing checks after missed epochs. Because STRs
are associated with each other across epochs, clients can
“catch up” to the most recent epoch if they have not veri-
fied the consistency of a their own or a contact’s bindings
for several epochs. They do so by performing a series of
checks until they are sure that the data binding proofs they
last verified are consistent with the more recent proofs.

Whistleblowing. If a client ever discovers two inconsis-
tent STRs (for example, two distinct versions signed for
the same epoch time), they will whistleblow by publishing
them to all auditors they are able to contact. Any hon-
est auditor noting that a provider has equivocated should
permanently consider that provider untrustworthy.

4.3 Temporary bindings
An important deployability goal is for users to be able to
communicate immediately after enrollment. This means
users must be able to use new keys before they can be
added to the key directory. An alternate approach would
be to reduce the epoch time to a very short interval (on
the order of seconds) but we consider this undesirable
both on the server end and in terms of client overhead.
Enhanced Certificate Transparency [53] appears to take
this approach, relying on third-party monitors to check
the frequent updates to the tree.

Certificate Transparency [35] issues “signed certificate
timestamps” upon receipt of new certificates for logging
before they are added to the main transparency log. These
can be used as proof of logging, with failure to add a
signed certificate to the log within a “maximum merge
delay” being considered a sign of misbehavior.

5We assume the client maintains a list of CONIKS providers acting
as auditors from which it can choose any provider with equal probability.
The larger this list, the harder it is for an adversary to guess which
providers a client will query.

7

Fail Not matching
Invalid

Valid Match STRt

No response

Check
signature on

STR

Compare hash of
cached rootprev with
H(rootprev) in STRt

rootprev

Check passed
Get provider's

STR for
epoch t

Figure 5: Steps taken when auditors check that a provider’s STR history is linear. Auditors verify the hash
chain formed by the STRs.

Fail

Not matching Invalid change

PKt
authPatht

No response No response
Key unchanged,
Valid change STRt Match Check key

change
Check

signature on
STR

Compute root hash from
authPatht & compare to

received roott in STRt

PKprev

Valid

Invalid

Get public key
and auth.

path for epoch t

Get provider's
STR for
epoch t

Check passed

Figure 6: Steps taken during the self-monitoring checks a client performs every epoch. Clients check whether
the public key has changed unexpectedly, and verify the authentication path in the Merkle prefix tree.

With CONIKS, we take a similar approach to CT. CON-
IKS servers may issue temporary bindings without writ-
ing any data to the Merkle prefix tree. A temporary bind-
ing consists of:

TB = SignKd
(ST Rt , i,commit(k))

The binding includes the most recent signed tree root
ST Rt , the index i for the user’s binding, and a commit-
ment to the user’s new key information k. The binding is
signed by the identity provider, creating a non-repudiable
promise to add this data to the next version of the tree.

Accepting and Verifying a Temporary Binding. If
Bob’s client accepts a temporary binding for a user Alice,
Bob has the obligation to check the next version of the tree
to ensure that the data is added as promised. If it has not
been added to a version ST Rt+1 which references ST Rt as
its predecessor, Bob’s client should whistleblow with the
temporary binding T B and signed commitment ST Rt+1,
along with an authentication path for Alice’s data. Client
software may want to indicate that a communication has
not been fully confirmed when a temporary binding is
used. However, we expect that temporary bindings are
not a particularly appealing attack vector for a malicious
identity provider, as they provide non-repudiable evidence
of misbehavior.

4.4 Multiple Security Options

CONIKS gives users the flexibility to choose the level of
security they want to enforce with respect to key lookups
and key change. For each functionality, we propose two
security policies: a cautious policy and a paranoid policy,
which have different tradeoffs of security and privacy
against usability. All security policies are denoted by
flags that are set as part of a user’s directory entry, and

the consistency checks allow users to verify that the flags
do not change unexpectedly.

Visibility of Public Keys. Our goal is to enable the same
level of privacy SMTP servers employ today, 6 in which
usernames can be queried (subject to rate-limiting) but it
is difficult to enumerate the entire list of names.

Users need to decide whether their public key(s) in
the directory should be publicly visible. The difference
between the cautious and the paranoid lookup policies is
whether the user’s public keys are encrypted with a secret
symmetric key known only to the binding’s owner and
any other user of her choosing. For example, if the user
Alice follows the cautious lookup policy, her public keys
are not encrypted. Thus, anyone who knows Alice’s name
alice@foo.com can look up and obtain her keys from her
foo.com’s directory. On the other hand, if Alice follows
the paranoid lookup policy, her public keys are encrypted
with a symmetric key only known to Alice and the users
of her choosing.

Under both lookup policies, any user can verify the
consistency of Alice’s binding as described in §4.2, but if
she enforces the paranoid policy, only those users with the
symmetric key learn her public keys. The main advantage
of the cautious policy is that it matches users’ intuition
about interacting with any user whose username they
know without requiring explicit “permission”. On the
other hand, the paranoid lookup policy provides stronger
privacy, but it requires additional action to distribute the
symmetric key which protects her public keys.

Key Change. Dealing with key loss is a difficult quandary
for any security system. Automatic key recovery is an

6The SMTP protocol defines a VRFY command to query the exis-
tence of an email address at a given server. To protect user’s privacy,
however, it has long been recommended to ignore this command (report-
ing that any usernames exists if asked) [38].

8

indispensable option for the vast majority of users who
cannot perpetually maintain a private key. Using pass-
word authentication or some other fallback method, users
can request that identity providers change a user’s public
key in the event that the user’s previous device was lost or
destroyed. If Alice chooses the cautious key change pol-
icy, her identity provider foo.com accepts any key change
statement which is signed with the key Alice’s client
is changing, as well as unsigned key change requests.
Thus, foo.com should change the public key bound to
alice@foo.com only upon her request. If Alice wishes to
permanently deactivate her binding, she can send a key
change request including a special null-marker telling the
server to place a tombstone on the directory entry. In both
cases, the server should reflect the update to Alice’s bind-
ing by including a key change statement in her directory
entry. The paranoid key change policy requires that the
Alice’s client sign all of her key change statements or
a tombstone with the key that is being changed. Thus,
Alice’s client only considers a new key or tombstone to be
valid if the key change statement has been authenticated
by one of her public keys.

While the cautious key change policy makes it easy
for users to recover from key loss and reclaim their user-
name, it allows an identity provider to maliciously change
a user’s key and falsely claim that the user requested the
operation. Only Alice can determine with certainty that
she has not requested the new key (and password-based
authentication means the server cannot prove Alice re-
quested it). Still, her client will detect these updates and
can notify Alice, making surreptitious key changes risky
for identity providers to attempt. Requiring authenticated
key changes, on the other hand, does sacrifice the ability
for a Alice to regain control of her username if her key is
ever lost. We discuss some implications for key loss for
paranoid users in §6.

5 Implementation and Evaluation

CONIKS provides a framework for integrating key verifi-
cation into communications services that support end-to-
end encryption. To demonstrate the practicality of CON-
IKS and how it interacts with existing secure communi-
cations services, we implemented a prototype CONIKS
Chat, a secure chat service based on the Off-the-Record
Messaging [7] (OTR) plug-in for the Pidgin instant mes-
saging client [1, 23]. We implemented a stand-alone
CONIKS server in Java (∼2.5k sloc), and modified the
OTR plug-in (∼2.2k sloc diff) to communicate with our
server for key management.

OTR. The OTR secure messaging protocol provides a
suitable foundation for a first prototype of a CONIKS-
based end-to-end secure communications application.

OTR makes strong security guarantees and is designed
to provide perfect forward secrecy and repudiability [56].
The vanilla OTR Pidgin plug-in already provides some
key management functionalities which we enhance in our
CONIKS Chat client to provide consistency:

Key generation: The plug-in automatically generates a
DSA key pair and stores it locally on the client.

Key exchange: When a user begins a private conversa-
tion with another user, OTR exchanges both users’ public
keys to facilitate authentication and verification of mes-
sage signatures. We do not consider this mechanism to be
secure since it is not coupled with key verification.

Key verification: The plug-in implements the social-
ist millionaires protocol [26], allowing users to securely
verify each others’ identities remotely through a shared
secret without having to manually compare public key fin-
gerprints. We consider this mechanism to be out-of-band
since it requires explicit user intervention.

5.1 Implementation Details
CONIKS Chat consists of an enhanced OTR plug-in for
the Pidgin chat client and a stand-alone CONIKS server
which runs alongside an unmodified Tigase XMPP server.
Clients and servers communicate using Google Protocol
Buffers [2], allowing us to define specific message for-
mats. We use our client and server implementations for
our performance evaluation of CONIKS.

Our implementation of the CONIKS server provides
the basic functionality of an identity provider. Every ver-
sion of the directory (implemented as a Merkle prefix
tree) as well as every generated STR are persisted in a
MySQL database. The server supports key registration
in the namespace of the XMPP service, and the directory
efficiently generates the authentication path for proofs
of binding consistency and proofs of absence, both of
which implicitly prove the proper construction of the di-
rectory. Our server implementation additionally supports
commitment exchanges between identity providers.

The CONIKS-OTR plug-in automatically registers a
user’s public key with the server upon the generation
of a new key pair and automatically stores information
about the user’s binding locally on the client to facili-
tate future consistency checks. To facilitate CONIKS
integration, we leave the key exchange protocol in OTR
unchanged, but replace the explicit key verification with
a public key lookup at the CONIKS server. If two users,
Alice and Bob, both having already registered their keys
with the coniks.org identity provider, want to chat, Alice’s
client will automatically request a proof of consistency
for Bob’s binding in coniks.org’s most recent version of
the directory. Upon receipt of this proof, Alice’s client
automatically verifies the authentication path for Bob’s
name-to-key binding as described in §4.2, and caches the

9

��
����
��
����
��
����
��
����

����� ����� �����

�
��
��
��
��
��
��
��
��
��
��
��

������������������������

Figure 7: Mean time to re-compute the tree for a new
epoch with 1K updated nodes. The x-axis is logarith-
mic and each data point is the mean of 10 executions.
Error bars indicate standard deviation.

newest information about Bob’s binding if the consistency
checks pass. If Bob has not registered his key with con-
iks.org, the client falls back to the original key verification
mechanism via the socialist millionaires protocol. Ad-
ditionally, Alice’s client and Bob’s clients automatically
perform all consistency checks for their respective bind-
ings upon every login and cache the most recent proofs.

CONIKS Chat currently does not support key changes.
Furthermore, our prototype only supports the cautious
lookup policy for name-to-key bindings, meaning that
clients cannot exchange proofs through messages to en-
force the paranoid lookup policy. Fully implementing
these features is planned for the near future.

5.2 Performance Evaluation
To understand the expected performance of CONIKS in
practice, we collect both theoretical and real performance
characteristics of our prototype implementation. We eval-
uate with the following parameters:

• A single provider might support N ≈ 232 users.
• Epochs occur roughly once per hour.
• Up to 1% of users change or add keys per day, mean-

ing n≈ 221 directory updates in an average epoch.
• Servers use a 128-bit cryptographic security level.
We simulated this scenario to measure both client and

server overheads. To provide a 128-bit security level, we
use SHA-256 as our hash function and ECDSA signa-
tures on the tree root using the P-256 curve [19]. We
use RSA-2048 as our signature scheme for determining
user’s indices in the tree; while this key size is estimated
to provide approximately 112 bits of security [4], this key
only ensures privacy and not non-equivocation.

Server overheads. To measure how long it takes for a
server to compute the changes for an epoch, we evaluated
our server prototype on a 2.4 GHz Intel Xeon E5620
machine with 64 GB of RAM allotted to the OpenJDK 1.7
JVM. We executed batches of 1000 insertions (roughly 3
times the expected number of directory updates per epoch)

approx.
VUFs sigs. hashes size

data binding proof 1 1 lgN +1 1376 B
monitor (epoch) 0 1 lgn 736 B
monitor (day) 1 k k lgn 19.1 kB
audit (epoch) 0 1 1 104 B
audit (day) 0 k k 2.5 kB

Table 2: Signatures, VUFs and hashes needed for a
full binding proof, daily and per-epoch monitoring,
and daily and per-epoch auditing. Sizes are given
assuming a N ≈ 232 total users, n ≈ 221 changes per
epoch, and k ≈ 24 epochs per day.

into a Merkle prefix with 10 M users, and measured the
time it took for the server to compute the next epoch.

Figure 7 shows the time to compute a new epoch with
1000 new entries as the size of the original namespace
varies. For a server with 10 M users, computing a new
epoch with 1000 insertions takes on average 2.6 seconds.
As epochs only need to be computed every hour, this is not
cumbersome for a large service provider. These numbers
indicate that even with a relatively unoptimized imple-
mentation, a single machine is able to quickly handle
the additional overhead imposed by CONIKS for work-
loads similar in scale to a medium-sized communication
providers (e.g., TextSecure) today.

While our prototype server implementation on a com-
modity machine comfortably supports 10M users, we note
that due to the statistically random allocation of users to
indices and the recursive nature of the tree structure, the
task parallelizes near-perfectly and it would be trivial
to scale horizontally with additional identical servers to
compute a directory with billions of users.

Auditing cost. For an auditor tracking all of a provider’s
STRs, assuming the policy field in changes rarely, the
only new data in an STR is the new timestamp, the new
tree root and one ECDSA signature (the previous root and
epoch number can be inferred and need not be transmit-
ted). The total size of each STR in minimal form is just
104 bytes (64 for the signature, 32 for the root and 8 for a
timestamp), or 2.5 kB per day to audit a specific provider.

Monitoring cost. In order for any client to completely
monitor the consistency of a binding, it needs to download
the current STR, a proof consisting of about lg2(N)+1
hashes plus one 256-byte RSA signature (proving the va-
lidity of the binding’s private index). This will require
downloading 32 · (lg2(N)+1)+256≈ 1376 bytes. Veri-
fying the proof will require up to lg2(N)+1 hash verifi-
cations on the authentication path as well as one RSA ver-
ification. On a 2 GHz Intel Core i7 laptop, verifying the
authentication path returned by a server with 10 million
users, required on average 159 microseconds (sampled

10

over 1000 runs, with σ = 30). Verifying the signature
takes approximately 400 µs, dominating the cost of veri-
fying the authentication path. While mobile-phone clients
would require more computation time, we do not believe
this overhead presents a significant barrier to adoption.

In addition to the computational overhead of verifying
other user’s key bindings, each client needs to fetch proof
that its own binding is validly included in each epoch.
Each epoch’s STR signature (64 bytes) must be down-
loaded and the client must fetch its new authentication
path. However, the server can significantly compress
the length of this path by only sending the hashes on
the user’s path which have changed since the last epoch.
Assuming n changes are made to the tree, only lg2(n)
nodes will change in each epoch. Therefore each epoch
requires downloading an average of 64+ lg2(n) ·32≈ 736
bytes. Verification time will be similar to verifying an-
other user’s proof, dominated by the cost of signature
verification. While clients need to fetch each STR from
the server, they are only required to store the most recent
STR (104 bytes).

To check every STR for a day, the client must down-
load a total of about 19.1 kB. Note that we have assumed
users update randomly throughout the day, but for a fixed
number of updates this is actually the worst-case scenario
for bandwidth consumption; bursty updates will actually
lead to a lower amount of bandwidth as each epoch’s
proof is lg2(n) for n changes. These numbers indicate
that neither bandwidth nor computational overheads pose
a significant burden for CONIKS clients.

Further bandwidth optimization. Bandwidth can be
reduced further using BLS short signatures [6], which
can replace both the RSA signatures used for index ver-
ification and the ECDSA signatures used for directory
STRs. BLS signatures require only 32 bytes at a 128-bit
security level. They also support aggregation, that is,
the server can combine the signatures on n consecutive
roots into a single signature for transmission. Together,
these optimizations reduce the size of an full data bind-
ing proof from 1376 bytes to 1088 bytes, and can reduce
the proofs required to verify the consistency of bindings
from 19.1 kB to 16.1 kB per day (transmitting only one
aggregated signature per day), a savings of about 19%.
We use traditional RSA and ECDSA in our current im-
plementation primarily because these schemes have more
mature library support, though they also offer slightly
faster signature generation and verification time.

6 Discussion

6.1 Coercion of Identity Providers
Government agencies or other powerful adversaries may
attempt to coerce identity providers into malicious behav-
ior. Recent revelations about government surveillance and
collection of user communications data world-wide have
revealed that the U.S. government uses mandatory legal
process to demand access to information providers’ data
about American citizens’ private communications and In-
ternet activity [8, 21, 22, 25, 45, 46]. A government might
demand that an identity provider equivocate about some
or all name-to-key bindings. Since the identity provider is
the entity actually mounting the attack, a user of CONIKS
has no way of technologically differentiating between a
malicious insider attack mounted by the provider itself
and this coerced attack [16]. Nevertheless, because of
the consistency and non-equivocation checks CONIKS
provides, users could expose such attacks, and thereby
mitigate their effect.

Furthermore, running a CONIKS server may provide
some legal protection for service providers under U.S.
law for providers attempting to fight legal orders, because
complying with such a demand will produce public ev-
idence that may harm the provider’s reputation. (Legal
experts disagree about whether and when this type of
argument shelters a provider[41].)

6.2 Key Loss and Account Protection
CONIKS clients are responsible for managing their pri-
vate keys. However, CONIKS can provide account pro-
tection for users who enforce the paranoid key change
policy and have forfeit their username due to key loss.
Even if Alice’s key is lost, her identity remains secure;
she can continue performing consistency checks on her
old binding. Unfortunately, if a future attacker manages
to obtain her private key, that attacker may be able to
assume her “lost identity”.

In practice, this could be prevented by allowing the
provider to place a tombstone on a name with its own
signature, regardless of the user’s key policy. The provider
would use some specific out-of-band authorization steps
to authorize such an action. Unlike allowing providers to
issue key change operations, though, a permanent account
deactivation does not require much additional trust in
the provider, because a malicious provider could already
render an account unusable through denial of service.

6.3 Protocol Extensions

Limiting the effects of denied service. Sufficiently pow-
erful identity providers may refuse to distribute STRs to

11

providers with which they do not collude. In these cases,
clients who query these honest providers will be unable to
obtain explicit proof of equivocation. Fortunately, clients
may help circumvent this by submitting observed STRs to
these honest identity providers. The honest identity pro-
viders can verify the other identity provider’s signature,
and then store and redistribute the STR.

Similarly, any identity provider might ignore requests
about individual bindings in order to prevent clients from
performing consistency checks or key changes. In these
cases, clients may be able to circumvent this attack by
using other providers to proxy their requests, with the
caveat that a malicious provider may ignore all requests
for a name. This renders this binding unusable for as
long as the provider denies service. However, this only
allows the provider to deny service, any modification to
the binding during this attack would become evident as
soon as the service is restored.

Obfuscating the social graph. As an additional privacy
requirement, users may want to conceal with whom they
are in communication, or providers may want to offer
anonymized communication. In principle, users could use
Tor to anonymize their communications. However, if only
few users in CONIKS use Tor, it is possible for providers
to distinguish clients connecting through Tor from those
connecting to the directly.

CONIKS could leverage the proxying mechanism de-
scribed in §6.3 for obfuscating the social graph. If Alice
would like to conceal with whom she communicates, she
could require her client to use other providers to proxy
any requests for her contacts’ bindings or consistency
proofs. Clients could choose these proxying providers
uniformly at random to minimize the amount of infor-
mation any single provider has about a particular user’s
contacts. This can be further improved the more pro-
viders agree to act as proxies. Thus, the only way for
providers to gain information about whom a given user is
contacting would be to aggregate collected requests. For
system-wide Tor-like anonymization, CONIKS providers
could form a mixnet [12], which would provide much
higher privacy guarantees but would likely hamper the
deployability of the system.

Randomizing the order of directory entries. Once a
user learns the lookup index of a name, this position in
the tree is known for the rest of time because the index is
a deterministic value. If a user has an authentication path
for two users bob@foo.com and alice@foo.com which
share a common prefix in the tree, the Bob’s authentica-
tion path will leak any changes to Alice’s binding if his
key has not changed, and vice-versa. foo.com can prevent
this information leakage by randomizing the ordering of
entries periodically by including additional data when
computing their lookup indices. However, such random-

ized reordering of all directory entries would require a
complete reconstruction of the tree. Thus, if done every
epoch, the identity provider would be able to provide en-
hanced privacy guarantees at the expense of efficiency.
The shorter the epochs, the greater the tradeoff between
efficiency and privacy. An alternative would be to reorder
all entries every n epochs to obtain better efficiency.

Key Expiration. To reduce the time frame during which
a compromised key can be used by an attacker, users may
want to enforce key expiration. This would entail includ-
ing the epoch in which the public key is to expire as part
of the directory entry, and clients would need to ensure
that such keys are not expired when checking the consis-
tency of bindings. Furthermore, CONIKS could allow
users to choose whether to enforce key expiration on their
binding, and provide multiple security options allowing
users to set shorter or longer expiration periods. When the
key expires, clients can automatically change the expired
key and specify the new expiration date according to the
user’s policies.

Support for Multiple Devices. Any modern communi-
cation system must support users communicating from
multiple devices. CONIKS easily allows users to bind
multiple keys to their username. Unfortunately, device
pairing has proved cumbersome and error-prone for users
in practice [28, 59]. As a result, most widely-deployed
chat applications allow users to simply install software to
a new device which will automatically create a new key
and add it to the directory via password authentication.

The tradeoffs for supporting multiple devices are the
same as for key change. Following this easy enrollment
procedure requires that Alice enforce the cautious key
change policy, and her client will no longer be able to
automatically determine if a newly observed key has been
maliciously inserted by the server or represents the addi-
tion of a new device. Users can deal with this issue by
requiring that any new device key is authenticated with
a previously-registered key for a different device. This
means that clients can automatically detect if new bind-
ings are inconsistent, but will require users to execute a
manual pairing procedure to sign the new keys as part of
the paranoid key change policy discussed above.

7 Related Work

Certificate validation systems. Several proposals for
validating SSL/TLS certificates seek to detect fraudulent
certificates via transparency logs [5, 29, 34, 35, 47], or
observatories from different points in the network [5, 29,
48, 51, 60]. Beyond CT and ECT, discussed in § 2.3, other
proposals include public certificate observatories such as
Perspectives [48, 51, 60], and more complex designs such

12

as Sovereign Keys [47] and AKI/ARPKI [5, 29] which
combine append-only logs with policy specifications to re-
quire multiple parties to sign key changes and revocations
to provide proactive as well as reactive security.

All of these systems are designed for TLS certificates,
which differ from CONIKS in a few important ways. First,
TLS has many certificate authorities sharing a single,
global namespace. It is not required that the different
CAs offer only certificates that are consistent or non-
overlapping. Second, there is no notion of certificate or
name privacy in the TLS setting,7 and as a result, they
use data structures making the entire name-space pub-
lic.Finally, stronger assumptions, such as maintaining
a private key forever or designating multiple parties to
authorize key changes, might be feasible for web admin-
istrators but are not practical for end users.

Key pinning. An alternative to auditable certificate sys-
tems are schemes which limit the set of certificate au-
thorities capable of signing for a given name, such as
certificate pinning [14] or TACK [40]. These approaches
are brittle, with the possibility of losing access to a do-
main if an overly strict pinning policy is set. Deployment
of pinning has been limited due to this fear and most web
administrators have set very loose policies [31]. These
problems with properly managing keys even experienced
by advanced users like web admins highlight how impor-
tant it is to require no key management by end users.

Identity and key services. As end users are accustomed
to interacting with a multitude of identities at various
online services, recent proposals for online identity ver-
ification have focused on providing a secure means for
consolidating these identities, including encryption keys.

Keybase [33] allows users to consolidate their online
account information while also providing semi-automated
consistency checking of name-to-key bindings by verify-
ing control of third-party accounts. Openname (formerly
known as OneName) [57] is a decentralized identity and
naming system which stores mappings of usernames to
online identity information (e.g., Bitcoin wallet address,
PGP key, Twitter username) in the Namecoin [3] block-
chain ensuring that names are globally unique. Before
registering a new binding on the blockchain, users link
their Openname username to accounts with third-party
services and may also include public key information in
their profile. Once in the blockchain, anyone can look up a
username in the Openname directory and obtain the asso-
ciated profile information. This system’s primary function
is to provide an easy means to consolidate online identity
information in a publicly auditable log. It is not designed

7Some organizations use “private CAs” which members manually
install in their browsers. Certificate transparency specifically exempts
these certificates and cannot detect if private CAs misbehave.

for automated key verification, and it does not integrate
seamlessly into existing communication applications.

Nicknym [50] is designed to be purely an end-user key
verification service, which allows users to register existing
third-party usernames with public keys. These bindings
are publicly auditable by allowing clients to query any
Nicknym provider for individual bindings they observe.
While equivocation about bindings can be detected in
this manner in principle, Nicknym does not maintain an
authenticated history of published bindings which would
provide more robust consistency checking as in CONIKS.

DNSSEC zone enumeration. DNSSEC [13] provides an
authenticated hierarchical mapping between domains and
signing keys. This is implemented via an authenticated
linked list, with each domain referencing its immediate
neighbors lexicographically, and two neighbors being
returned to provide a proof of non-existence for any record
lexicographically in between them. This initial design
was criticized for enabling an adversary to enumerate the
entire set of domains in a given zone via zone walking
(repeatedly querying neighboring domains).

In response, the NSEC3 extension [36] was added
which sorted records by hash of their domain name, pre-
venting trivial enumeration. However, this suffers a simi-
lar vulnerability to ECT in that likely domain names can
be found via a dictionary attack. Concurrent with our
work on CONIKS, Goldberg et al. [24] proposed NSEC5,
effectively using a verifiable unpredictable function (also
in the form of a deterministic RSA signature) to prevent
zone enumeration.

8 Conclusion

We have presented the design of CONIKS, a key verifica-
tion service for end users that provides consistency and
protects the privacy of users’ name-to-key bindings, all
without requiring explicit key management by the users.
CONIKS’s consistency checks allow clients to efficiently
self-monitor their bindings and quickly detect equivoca-
tion with high probability. CONIKS is highly scalable
incurring minimal overheads in terms of bandwidth, com-
putation and storage, and is backward compatible with
existing secure communication protocols such as OTR
messaging. We have built a prototype CONIKS system
which includes a prototype CONIKS server and a pro-
totype chat application. The client application performs
consistency checks in the background, and avoids any ex-
plicit user action except in the case of notifications that a
key change has occurred. Our prototype CONIKS service
is application-agnostic and supports millions of users on
a single commodity server.

13

References

[1] Pidgin. http://pidgin.im, Retrieved Apr. 2014.
[2] Protocol Buffers. https://code.google.com/
p/protobuf, Retrieved Apr. 2014.

[3] Namecoin. http://namecoin.info, Retrieved
Feb. 2015.

[4] E. Barker, W. Barker, W. Burr, W. Polk, and
M. Smid. Nist special publication 800-57 rev. 3.
NIST Special Publication, 800(57), 2012.

[5] D. Basin, C. Cremers, T. H.-J. Kim, A. Perrig,
R. Sasse, and P. Szalachowski. Arpki: attack re-
silient public-key infrastructure. In Proceedings
of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 382–393.
ACM, 2014.

[6] D. Boneh, B. Lynn, and H. Shacham. Short signa-
tures from the weil pairing. In Advances in Cryptol-
ogy - ASIACRYPT 2001. Springer, 2001.

[7] N. Borisov, I. Goldberg, and E. Brewer. Off-the-
record communication, or, why not to use pgp. In
Proc. WPES, Oct. 2004.

[8] S. Braun, A. Flaherty, J. Gillum, and M. Apuzzo.
Secret to Prism program: Even bigger data seizure.
http://bigstory.ap.org/article/secret-
prism-success-even-bigger-data-seizure,
Jun. 2013.

[9] P. Bright. Another fraudulent certificate raises the
same old questions about certificate authorities.
http://arstechnica.com/security/2011/
08/earlier-this-year-an-iranian/, Aug.
2011.

[10] P. Bright. Independent Iranian hacker
claims responsibility for Comodo hack.
http://arstechnica.com/security/2011/
03/independent-iranian-hacker-claims-
responsibility-for-comodo-hack/, Mar.
2011.

[11] J. Callas, L. Donnerhacke, H. Finney, and R. Thayer.
RFC 2440 OpenPGP Message Format, Nov. 1998.

[12] D. L. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Commun. ACM,
24(2):84–90, Feb. 1981.

[13] D. Eastlake. RFC 2535: Domain Name System
Security Extensions. 1999.

[14] C. Evans, C. Palmer, and R. Sleevi. Internet-Draft:
Public Key Pinning Extension for HTTP. 2012.

[15] P. Everton. Google’s Gmail Hacked This
Weekend? Tips To Beef Up Your Security.
http://www.huffingtonpost.com/paul-
everton/googles-gmail-hacked-this_b_
3641842.html, Jul. 2013.

[16] E. Felten. A Court Order is an In-
sider Attack. https://freedom-to-

tinker.com/blog/felten/a-court-order-
is-an-insider-attack/, Oct. 2013.

[17] E. F. Foundation. Secure messaging scorecard.
https://www.eff.org/secure-messaging-
scorecard, 2014.

[18] T. Fox-Brewster. WhatsApp adds end-to-
end encryption using TextSecure. http:
//www.theguardian.com/technology/2014/
nov/19/whatsapp-messaging-encryption-
android-ios, Nov. 2014.

[19] P. Gallagher and C. Kerry. Fips pub 186-4: Digital
signature standard, dss. NIST, 2013.

[20] S. Gaw, E. W. Felten, and P. Fernandez-Kelly. Se-
crecy, flagging, and paranoia: Adoption criteria in
encrypted email. In Proc. CHI, Apr 2006.

[21] B. Gellman. The FBI’s Secret Scrutiny.
http://washingtonpost.com/wp-
dyn/content/article/2005/11/05/
AR2005110505366.html, Nov. 2005.

[22] B. Gellman and L. Poitras. U.S., British in-
telligence mining data from nine U.S. Internet
companies in broad secret program. http://www.
washingtonpost.com/investigations/us-
intelligence-mining-data-from-nine-
us-internet-companies-in-broad-secret-
program/2013/06/06/3a0c0da8-cebf-11e2-
8845-d970ccb04497_story.html, Jun. 2013.

[23] I. Goldberg, K. Hanna, and N. Borisov. pidgin-
otr. http://sourceforge.net/p/otr/pidgin-
otr/ci/master/tree/, Retrieved Apr. 2014.

[24] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin,
S. Vasant, and A. Ziv. NSEC5: Provably Preventing
DNSSEC Zone Enumeration. In NDSS ’15: The
2015 Network and Distributed System Security Sym-
posium, 2015.

[25] G. Greenwald and E. MacAskill. NSA Prism
program taps in to user data of Apple, Google and
others. http://www.theguardian.com/world/
2013/jun/06/us-tech-giants-nsa-data,
Jun. 2013.

[26] M. Jakobsson and M. Yung. Proving without know-
ing: On oblivious, agnostic and blindfolded provers.
In CRYPTO. 1996.

[27] J. Jonsson and B. Kaliski. RFC 3447 Public-Key
Cryptography Standards (PKCS) #1: RSA Cryptog-
raphy Specifications Version 2.1, Feb. 2003.

[28] R. Kainda, I. Flechais, and A. W. Roscoe. Usabil-
ity and Security of Out-of-band Channels in Se-
cure Device Pairing Protocols. In Proceedings of
the 5th Symposium on Usable Privacy and Security,
SOUPS, 2009.

[29] T. H.-J. Kim, L.-S. Huang, A. Perring, C. Jackson,
and V. Gligor. Accountable key infrastructure (AKI):

14

http://pidgin.im
https://code.google.com/p/protobuf
https://code.google.com/p/protobuf
http://namecoin.info
http://bigstory.ap.org/article/secret-prism-success-even-bigger-data-seizure
http://bigstory.ap.org/article/secret-prism-success-even-bigger-data-seizure
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://arstechnica.com/security/2011/08/earlier-this-year-an-iranian/
http://arstechnica.com/security/2011/03/independent-iranian-hacker-claims-responsibility-for-comodo-hack/
http://arstechnica.com/security/2011/03/independent-iranian-hacker-claims-responsibility-for-comodo-hack/
http://arstechnica.com/security/2011/03/independent-iranian-hacker-claims-responsibility-for-comodo-hack/
http://www.huffingtonpost.com/paul-everton/googles-gmail-hacked-this_b_3641842.html
http://www.huffingtonpost.com/paul-everton/googles-gmail-hacked-this_b_3641842.html
http://www.huffingtonpost.com/paul-everton/googles-gmail-hacked-this_b_3641842.html
https://freedom-to-tinker.com/blog/felten/a-court-order-is-an-insider-attack/
https://freedom-to-tinker.com/blog/felten/a-court-order-is-an-insider-attack/
https://freedom-to-tinker.com/blog/felten/a-court-order-is-an-insider-attack/
https://www.eff.org/secure-messaging-scorecard
https://www.eff.org/secure-messaging-scorecard
http://www.theguardian.com/technology/2014/nov/19/whatsapp-messaging-encryption-android-ios
http://www.theguardian.com/technology/2014/nov/19/whatsapp-messaging-encryption-android-ios
http://www.theguardian.com/technology/2014/nov/19/whatsapp-messaging-encryption-android-ios
http://www.theguardian.com/technology/2014/nov/19/whatsapp-messaging-encryption-android-ios
http://washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110505366.html
http://washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110505366.html
http://washingtonpost.com/wp-dyn/content/article/2005/11/05/AR2005110505366.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://www.washingtonpost.com/investigations/us-intelligence-mining-data-from-nine-us-internet-companies-in-broad-secret-program/2013/06/06/3a0c0da8-cebf-11e2-8845-d970ccb04497_story.html
http://sourceforge.net/p/otr/pidgin-otr/ci/master/tree/
http://sourceforge.net/p/otr/pidgin-otr/ci/master/tree/
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
http://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data

a proposal for a public-key validation infrastructure.
In Proc. WWW, 2013.

[30] J. Kirk. Researchers challenge Apple’s claim
of unbreakable iMessage encryption. http:
//www.macworld.com/article/2055640/
researchers-challenge-apples-claim-of-
unbreakable-imessage-encryption.html,
Oct. 2013.

[31] M. Kranch and J. Bonneau. Upgrading HTTPS in
midair: HSTS and key pinning in practice. In NDSS

’15: The 2015 Network and Distributed System Se-
curity Symposium, February 2015.

[32] D. W. Kravitz. Digital signature algorithm, 1993.
US Patent 5,231,668.

[33] M. Krohn and C. Coyne. Keybase. https://
keybase.io, Retrieved Feb. 2014.

[34] B. Laurie and E. Kasper. Revocation Trans-
parency. http://sump2.links.org/files/
RevocationTransparency.pdf, Retrieved Feb.
2014.

[35] B. Laurie, A. Langley, E. Kasper, and G. Inc. RFC
6962 Certificate Transparency, Jun. 2013.

[36] B. Laurie, G. Sisson, R. Arends, and D. Black. RFC
5155: DNS Security (DNSSEC) Hashed Authenti-
cated Denial of Existence. 2008.

[37] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proc. OSDI,
Dec. 2004.

[38] G. Lindberg. RFC 2505 Anti-Spam Recommenda-
tions for SMTP MTAs, Feb. 1999.

[39] M. Madden. Public perceptions of privacy and secu-
rity in the post-snowden era. Pew Research Internet
Project, Nov. 2014.

[40] M. Marlinspike and T. Perrin. Internet-Draft: Trust
Assertions for Certificate Keys. 2012.

[41] J. Mayer. Surveillance law. Available at https:
//class.coursera.org/surveillance-001.

[42] S. Micali, M. Rabin, and S. Vadhan. Verifiable ran-
dom functions. In Foundations of Computer Science,
1999. 40th Annual Symposium on, pages 120–130.
IEEE, 1999.

[43] N. Perloth. Yahoo Breach Extends Be-
yond Yahoo to Gmail, Hotmail, AOL Users.
http://bits.blogs.nytimes.com/2012/07/
12/yahoo-breach-extends-beyond-yahoo-
to-gmail-hotmail-aol-users/, Jul. 2012.

[44] Anonymized for Review. CONIKS: Preserving Se-
cure Communication with Untrusted Identity Pro-
viders. Master’s thesis, Anonymized for Review,
Jun 2014.

[45] Electronic Frontier Foundation. National Se-
curity Letters - EFF Surveillance Self-Defense
Project. https://ssd.eff.org/foreign/nsl,
Retrieved Aug. 2013.

[46] Electronic Frontier Foundation. National Secu-
rity Letters. https://www.eff.org/issues/
national-security-letters, Retrieved Nov.
2013.

[47] Electronic Frontier Foundation. Sovereign Keys.
https://www.eff.org/sovereign-keys, Re-
trieved Nov. 2013.

[48] Electronic Frontier Foundation. SSL Observa-
tory. https://www.eff.org/observatory, Re-
trieved Nov. 2013.

[49] Internet Mail Consortium. S/MIME and OpenPGP.
http://www.imc.org/smime-pgpmime.html,
Retrieved Aug. 2013.

[50] LEAP Encryption Access Project. Nick-
nym. https://leap.se/en/docs/design/
nicknym, Retrieved Feb. 2015.

[51] Thoughtcrime Labs Production. Convergence.
http://convergence.io, Retrieved Aug. 2013.

[52] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–
126, 1978.

[53] M. D. Ryan. Enhanced certificate transparency and
end-to-end encrypted email. In Proc. NDSS, Feb.
2014.

[54] B. Schneier. Apple’s iMessage Encryp-
tion Seems to Be Pretty Good. https:
//www.schneier.com/blog/archives/2013/
04/apples_imessage.html, Retrieved Feb.
2015.

[55] C. Soghoian and S. Stamm. Certified lies: Detect-
ing and defeating government interception attacks
against ssl (short paper). In Financial Cryptography
and Data Security, pages 250–259. 2012.

[56] R. Stedman, K. Yoshida, and I. Goldberg. A user
study of off-the-record messaging. In Proc. SOUPS,
Jul. 2008.

[57] the openname system. Opename. https://
openname.org, Retrieved Feb. 2015.

[58] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl,
I. Goldberg, and M. Smith. SoK: Secure Messaging.
In 2015 IEEE Symposium on Security and Privacy,
May 2015.

[59] B. Warner. Pairing Problems. https://blog.
mozilla.org/warner/2014/04/02/pairing-
problems/, 2014.

[60] D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: improving SSH-style host authentication
with multi-path probing. In Usenix ATC, Jun. 2008.

[61] A. Whitten and J. D. Tygar. Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0. In Proc.
USENIX Security, Aug. 1999.

[62] P. R. Zimmermann. The official PGP user’s guide.
MIT Press, Cambridge, MA, USA, 1995.

15

http://www.macworld.com/article/2055640/researchers-challenge-apples-claim-of-unbreakable-imessage-encryption.html
http://www.macworld.com/article/2055640/researchers-challenge-apples-claim-of-unbreakable-imessage-encryption.html
http://www.macworld.com/article/2055640/researchers-challenge-apples-claim-of-unbreakable-imessage-encryption.html
http://www.macworld.com/article/2055640/researchers-challenge-apples-claim-of-unbreakable-imessage-encryption.html
https://keybase.io
https://keybase.io
http://sump2.links.org/files/RevocationTransparency.pdf
http://sump2.links.org/files/RevocationTransparency.pdf
https://class.coursera.org/surveillance-001
https://class.coursera.org/surveillance-001
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
http://bits.blogs.nytimes.com/2012/07/12/yahoo-breach-extends-beyond-yahoo-to-gmail-hotmail-aol-users/
https://ssd.eff.org/foreign/nsl
https://www.eff.org/issues/national-security-letters
https://www.eff.org/issues/national-security-letters
https://www.eff.org/sovereign-keys
https://www.eff.org/observatory
http://www.imc.org/smime-pgpmime.html
https://leap.se/en/docs/design/nicknym
https://leap.se/en/docs/design/nicknym
http://convergence.io
https://www.schneier.com/blog/archives/2013/04/apples_imessage.html
https://www.schneier.com/blog/archives/2013/04/apples_imessage.html
https://www.schneier.com/blog/archives/2013/04/apples_imessage.html
https://openname.org
https://openname.org
https://blog.mozilla.org/warner/2014/04/02/pairing-problems/
https://blog.mozilla.org/warner/2014/04/02/pairing-problems/
https://blog.mozilla.org/warner/2014/04/02/pairing-problems/

A Analysis of Equivocation Detection

CONIKS participants check for non-equivocation by con-
sulting auditors to ensure that they both see an identical
STR for a given provider P. Clients perform this cross-
verification by choosing uniformly at random a small set
of auditors from the set of known auditors, querying them
for the observed STRs from P, and comparing these ob-
served STRs to the signed tree root presented directly to
the client by P. If any of the observed STRs differ from
the STR presented to the client, the client is sure to have
detected an equivocation attack.

A.1 Single Equivocating Provider

Suppose that foo.com wants to allow impersonation of a
user Alice to hijack all encrypted messages that a user Bob
sends her. To mount this attack, foo.com equivocates by
showing Alice STR A, which is consistent with Alice’s
valid name-to-key binding, and showing Bob STR B,
which is consistent with a fraudulent binding for Alice.

If Bob is the only participant in the system to whom
foo.com presents STR B, while all other users and auditors
receive STR A, Alice will not detect the equivocation (un-
less she compares her STR directly with Bob’s). Bob, on
the other hand, will detect the equivocation immediately
because performing the non-equivocation check with a
single randomly chosen auditor is sufficient for him to
discover a diverging STR for foo.com.

A more effective approach for foo.com is to choose
a subset of auditors who will be presented STR A, and
to present the remaining auditors with STR B. Suppose
the first subset contains a fraction f of all auditors, and
the second subset contains the fraction 1− f . If Alice
and Bob each contact k randomly chosen providers to
check consistency of foo.com’s STR, the probability that
Alice fails to discover an inconsistency is f k, and the
probability that Bob fails to discover an inconsistency is
(1− f)k. The probability that both will fail is (f − f 2)k,
which is maximized with f = 1

2 . Alice and Bob therefore
fail to discover equivocation with probability

ε ≤
(

1
4

)k

In order to discover the equivocation with probability
1−ε , Alice and Bob must perform− 1

2 log ε

2 checks. After
performing 5 checks each, Alice and Bob would have
discovered an equivocation with 99.9% probability.

A.2 Colluding Auditors

Now suppose that foo.com colludes with auditors in an at-
tempt to better hide its equivocation about Alice’s binding.

��

����

����

����

����

��

�� �� �� �� �� ���

��
��
��
���
��
��
��

�
��
��
��
��
��
��
��
��
��
��
��
�

��������������������������

�����������������������
�����������������������
�����������������������

Figure 8: This graph shows the probability that Alice
and Bob will detect an equivocation after each per-
forming k checks with randomly chosen auditors.

The colluding auditors agree to tell Alice that foo.com
is distributing STR A while telling Bob that foo.com is
distributing STR B. As the size of the collusion increases,
Alice and Bob become less likely to detect the equivoca-
tion. However, as the number of auditors in the system
(and therefore, the number of auditors not participating
in the collusion) increases, the difficulty of detecting the
attack decreases.

More precisely, we assume that foo.com is colluding
with a proportion p of all auditors. The colluding auditors
behave as described above, and foo.com presents STR
A to a fraction f of the non-colluding providers. Alice
and Bob each contacts k randomly chosen providers. The
probability of Alice failing to detect equivocation within
k checks is therefore (p+(1− p) f)k and the probability
of Bob failing to detect equivocation within k checks is
(p+(1− p)(1− f))k. The probability that neither Alice
nor Bob detects equivocation is then

ε = ((p+(1− p) f)(p+(1− p)(1− f)))k

As before, this is maximized when f = 1
2 , so the proba-

bility that Alice and Bob fail to detect the equivocation
is

ε ≤
(

1+ p
2

)2k

If p = 0.1, then by doing 5 checks each, Alice and Bob
will discover equivocation with 99.7% probability.

Figure 8 plots the probability of discovery as p and k
vary. If fewer than 50% of auditors are colluding, Alice
and Bob will detect an equivocation within 5 checks with
over 94% probability. In practice, large-scale collusion
is unexpected, as today’s secure messaging services have
many providers operating with different business models
and under many different legal and regulatory regimes. In
any case, if Alice and Bob can agree on a single auditor
whom they both trust to be honest, then they can detect
equivocation with certainty if they both check with that
trusted auditor.

16

	Introduction
	System model and design goals
	Participants and Assumptions
	Design Goals
	Related proposals

	Core Data Structure Design
	Merkle Prefix Tree
	Signed Tree Roots
	Private Index Calculation

	CONIKS Operation
	Auditing Provider History
	Verifying Bindings
	Temporary bindings
	Multiple Security Options

	Implementation and Evaluation
	Implementation Details
	Performance Evaluation

	Discussion
	Coercion of Identity Providers
	Key Loss and Account Protection
	Protocol Extensions

	Related Work
	Conclusion
	Analysis of Equivocation Detection
	Single Equivocating Provider
	Colluding Auditors

