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Abstract We built and tested the first hardware implemen-
tation of Phatak’s Quotient-First Scaling (QFS) algorithm
in the reduced-precision residue number system (RP-RNS).
This algorithm is designed to expedite division in the Residue
Number System for the special case when the divisor is known
ahead of time (i.e., when the divisor can be considered to be
a constant, as in the modular exponentiation required for the
RSA encryption/decryption). We implemented the QFS al-
gorithm using an FPGA and tested it for operand lengths
up to 1024 bits. The RP-RNS modular exponentiation algo-
rithm is not based on Montgomery’s method, but on quotient
estimation derived from the straightforward division algo-
rithm, with substantial amount of precomputations whose
results are read from look-up tables at run-time.

Phatak’s preliminary analysis indicates that under rea-
sonable assumptions about hardware capabilities, a single
modular multiplication’s (or QFS’s) execution time grows
logarithmically with respect to the operand word length. We
experimentally confirmed this predicted growth rate of the
delay of a modular multiplication with our FPGA imple-
mentation. Though our implementation did not outperform
the most recent implementations such as that by Gandino,
et al., we determined that this outcome was solely a conse-
quence of tradeoffs stemming from our decision to store the
lookup tables on the FPGA.

C.D. Nguyen
E-mail: cnl @umbc.edu

D.S. Phatak
E-mail: phatak @umbc.edu

S.D. Houston
E-mail: stevenh2 @umbc.edu

A.T. Sherman

Cyber Defense Lab

University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250
E-mail: sherman @umbc.edu

Dhananjay S. Phatak - Steven D. Houston -

Alan T.

Our work provides useful design information for future
hardware implementations and we interpret our results as
promising for the RP-RNS algorithms.
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1 Introduction

Modular exponentiation is a key operation in many of to-
day’s public-key cryptography and digital signature algo-
rithms. Recently, Phatak has introduced a new modular ex-
ponentiation algorithm based on a reduced-precision residue
number system (RP-RNS) [10-13]. RP-RNS is attractive for
its inherent parallelism and time-space tradeoff achieved by
augmenting computation with pre-stored approximations in
intermediate calculations. To quickly perform the modular
multiplications of the RP-RNS modular exponentiation al-
gorithm, Phatak developed a novel method for dividing by
a constant in RP-RNS called Quotient-First Scaling (QFS)
[11]. Using an FPGA, we implemented Phatak’s RP-RNS
QFS algorithm and experimentally confirmed the logarith-
mic growth of its execution time with respect to the operand
word length. For additional background and explanation about
our work, see Nguyen [8].

Residue number systems (RNSs) represent integers as
residues with respect to a set of pair-wise coprime integers
called moduli. In the RNS, Addition/Subtraction and multi-
plication are parallel operations, i.e., they can be performed
in each residue-channel independent all other channels. On
the other hand, magnitude comparison or a sign-detection
and consequently a division are slower and more complex
in RNSs than in the binary number system. The promis-
ing speed of RNSs, together with this curious Area(Lookup-
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Table 1 Algorithm Notation

X approximation of x

m; ith modulus

K number of moduli

M {myi,my,...,mg}; the RNS base

M [T, mi

1t Y mi/K

N lgM; word size of the operands
po, Rez reconstruction coefficient of Z

V4 Z in RP-RNS form
Z, (2], ith residue of Z

M,‘ M / m;

M; ! inverse of M; modulo m;
Pi ZM i ! mod m;
fi pi/mi

tables) vs. speed tradeoff (which can yield further speedup
beyond currently known methods), makes modular expo-
nentiation in RNSs an interesting subject of research.

Currently, there are two approaches to RNS-based mod-
ular exponentiation. Most approaches are based on Mont-
gomery’s method [7], and have focused on improving the
speed of the base extension operation [1-4,6,9,5] since that
is the limiting step in the algorithm when deployed in RNSs.

Alternatively, Phatak’s RP-RNS approach uses reduced
precision to perform a fast scaling [11] without resorting to
base extensions or Montgomery’s method (as long as the
RP-RNS moduli are chosen properly). As detailed in Sec-
tion 3, Phatak’s RP-RNS approach requires fewer residue
operations but uses additional precomputed storage.

We experimentally verify Phatak’s preliminary analysis
of the RP-RNS Quotient-First Scaling algorithm, claimed to
run in O (IgN) cycles, where N is the word length of the
operands. Since QFS is performed in each of the O (N) it-
erations of the RP-RNS modular exponentiation algorithm,
evidence of the QFS algorithm’s run-time will give credence
to the claimed O (N1gN) run-time for the modular exponen-
tiation algorithm [12].

We adopt notation consistent with Phatak (see Table 1).
For clarity, we will sometimes use pg in lieu of Rcz. We refer
to the RNS moduli set as the RNS base.

An RP-RNS uses the RNS base consisting of K consecu-
tive prime numbers starting at either 2 or 3 together with an
additional 1- or 2-bit redundant modulus respectively, de-
noted m,. The RP-RNS has integer range [0, M — 1]. A num-
ber Z in RP-RNS form consists of its residues over M and
m,.. The RNS as defined motivates our need for custom hard-
ware since the number of moduli needed for cryptographic
purposes exceeds the parallelism offered by conventional
hardware. For example, the RP-RNS modular exponentia-
tion algorithm uses 234 moduli for 1024-bit divisors and
over 1500 moduli for 4096-bit divisors.

Our contributions include experimental data and analy-
ses, which support Phatak’s preliminary analyses; and the

lessons learned; which should benefit future hardware im-

plementations of the RP-RNS algorithms. Implementing Phatak’s

algorithms in hardware is non-trivial because the RP-RNS
base includes moduli of varying non-standard word lengths
(i.e., the smallest primes).

2 Algorithms

Assuming a fixed divisor D, instead of performing Mont-
gomery multiplication, the QFS algorithm performs regular
modular multiplication and directly uses the division algo-
rithm (Equation 1) to perform the reductions modulo D:

Z=0D+R, (1)

where Q and R are the quotient and remainder of Z divided
by D respectively. The quotient-first scaling (QFS) algorithm
(stated in full as “Algorithm 1” in the Appendix below; for

details see [11, 13]) computes a quotient estimate Qe {0-1,0}.

This calculation yields a remainder estimate R € {R,R + D}
respectively, which is congruent to Z mod D. The QFS algo-
rithm depends on the partial reconstruction algorithm [10,
13].

Phatak makes the following assumptions, which we sat-
isfy:

— choose M such that 9D? < M;

— beginning with 2 or 3, use K consecutive prime numbers
for M; and

- choose m, =2 if 2 ¢ M, and m, = 4 otherwise.

The reason for the first assumption is that if 9D < M then
we can chain modular multiplications using R without per-
forming magnitude comparison and correction until the very
end of a modular exponentiation.

The QFS algorithm lookup tables require O (N*1gIgN)
bits of storage where N is the word length of the operands.
Under Phatak’s hardware assumptions, the QFS algorithm
should run in O (IgN) time. We have replicated the algo-
rithm for reference in Appendix A; see Phatak [10-13] for
proofs of correctness and detailed analyses.

3 Performance Comparison

An analytical performance comparison of Phatak’s modular
exponentiation algorithm to other RNS modular exponenti-
ation algorithms is shown in Tables 2, 3, and 4. For each
of Phatak’s [11], Kawamura et al.’s [6], and Bajard et al.’s
[4,5] modular exponentiation algorithms, we compare the
number of residue multiplications, residue additions, small-
bit scalar additions, and pre-computation storage required.
The operation count given is the total operation count and
not the critical path length (with additional hardware, some
of the operations can be performed in parallel). The notation
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Table 2 Performance of Phatak’s ME algorithm [11] (without correc-
tion)

[ Operation | Total Count |
Residue multiplications O(NK)
Residue additions O(NK?)
Small-bit additions O(NK)
Precomputation storage (bits) O(NKm)

Table 3 Performance of Kawamura et al.’s ME algorithm [6] (without
correction)

[ Operation | Total Count |
Residue multiplications O(NK?)
Residue additions O(NK?)
Small-bit additions O(NK)
Precomputation storage (bits) O(NK)

Table 4 Performance of Bajard et al.’s ME algorithm [4,5] (without
correction)

[ Operation | Total Count |
Residue multiplications O(NK?)
Residue additions O(NK?)

Small-bit additions 0
Precomputation storage (bits) O(NK)

used in the performance tables is consistent with Table 1,
with K being the number of moduli, /2 being the average of
the modulli, and N being the word size of the operands. As
can be seen, Phatak’s RP-RNS approach, in theory, offers
a useful tradeoff by requiring fewer expensive residue mul-
tiplications at the expense of additional precomputed con-
stants.

The fastest implementation of RNS-based modular ex-
ponentiation to our knowledge is an optimized Cox-Rower
implementation by Gandino, et al. [5] (2012) using their
o (¢;) < 3 architecture. It executed an RNS Montgomery
multiplication in 78 cycles with a cycle delay of 1.12, which
approximates to 88 ns. In theory, by relying on additional
precomputations, a hardware implementation of Phatak’s QFS
algorithm should be faster.

4 RP-RNS Hardware

We developed our implementation on the Xilinx Spartan-3E
FPGA (XC3S500E) running with a 50 MHz clock. For de-
sign synthesis, we used the vendor’s toolchain, Xilinx ISE
v14.5. We did not create a gate-level VLSI design. To opti-
mize execution time, we specified the connections between
the arithmetic and memory components and left their instan-
tiation to the vendor’s synthesis tool. We used an FPGA for
our implementation fabric because it is lower risk and cost
compared to fabricating a custom ASIC.

4.1 Hardware Design Decisions

Phatak suggests a design that uses parallel-access storage
and adder trees. This yields a design optimized for speed.
We naively stored the lookup tables on the FPGA, which led
us to minimizing logic utilization as our design strategy. In
hindsight, we should have put the lookup tables in external
memory.

Since the parallel-access storage and adder trees used a
high number of logic cells, to allow more residue channels,
we replaced them with equivalent sequential hardware. This
carries a (relatively) hefty execution time penalty leading to
an execution delay of O (N) (instead of O (IgN)).

Implementing the design on an FPGA provided the ad-
vantage that we could test our hardware design using arbi-
trary divisor sizes.

4.2 Hardware Architecture

Our hardware architecture comprises four components: the
controller, the hardware channels, the redundant residue chan-
nel, and the fraction channel.

The controller contains logic for performing five oper-
ations: forward conversion, partial reconstruction, scaling,
modular exponentiation, and reverse conversion.

A hardware channel executes residue operations for each
residue channel — possibly multiple channels. We divided
the moduli equally across all hardware channels such that
each hardware channel supports at most [K /p] residue chan-
nels where p is the number of hardware channels. Each hard-
ware channel stores the lookup tables for its respective residue
channels. The redundant residue channel is roughly identical
to the hardware channels, but dedicated to the extra modulus
M.

The fraction channel is similar to the redundant residue
channel, except dedicated to the approximated fractional val-
ues. The channel’s arithmetic logic must support word lengths
of wr bits where wy = wy 4+ wp. The value w; = [IgK] sup-
ports the overflow of adding the truncated fractions. The
value wr is the fractional precision specified in the RP-RNS
algorithms.

5 Testing Methodology

We conducted our tests using three apparatuses: synthesized
hardware on the FPGA, hardware simulation using Xilinx
iSim v14.5, and software simulation written in Python [14].
We numerically validated the functional correctness of each
using 100 sets of random base, exponent, and divisor inputs
for all divisor lengths between 4 and 20 bits. For the simu-
lations, we were able to verify up to 256 bit divisors.
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Fig. 1 FPGA logic utilization exhibits a superlinear growth as a func-
tion of the RNS base size when it should be approximately linear. We
suspect the precomputed lookup tables (LUTs) are the factor.

The amount of testing we could conduct on the physical
FPGA was limited. The synthesized hardware was limited
to divisors no larger than 20 bits, which was a result of our
naive decision to store the lookup tables on the FPGA.

6 Results

We collected metrics on FPGA logic utilization and execu-
tion time. We tracked only logic utilization for the synthe-
sized hardware. We collected execution time as cycle counts
using all three test apparatuses. The results here summarize
data from Nguyen [8].

6.1 Logic Utilization

Figure 1 illustrates the dependence of logic utilization on
RNS base size. We consider the utilization to depend solely
on the size of the RNS base because the growth in moduli
size is negligible (= IglgM). For example, a 4096-bit divi-
sor requires 16-bit moduli at most. We expected the growth
to be linear in the RNS base size, but a regression using
the Levenberg-Marquardt algorithm found in most statisti-
cal packages yielded a superlinear growth rate:

#LUT (K) ~ 151.094K log (K) + 663.406. 2

Based on the toolchain’s synthesis report, we believe our
decision regarding the lookup table storage caused the su-
perlinear growth rate. When we excluded the lookup tables,
logic utilization grew at a rate approximately linear. Further-
more, the quantity of logic cells wasted for routing was neg-
ligible.
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Fig. 2 A graphical summary of our cycle count data. Cycle counts for
divisors up to 1024-bits using four varieties of parallelization.

6.2 Execution Time

We tested our hardware using divisors between 20 and 1024
bits. In contrast to the literature, we did not optimize our im-
plementation for a specific divisor nor did we optimize for
speed. As such, our cycle count data applies only to our im-
plementation and we feel our data are not suitable for direct
comparison against existing implementations.

Figure 2 summarizes our cycle count data for comput-
ing a single multiplication modulo-D (a single scaling by a
constant). The graph depicts four types of data pairs. Each
pair includes average-case and worst-case cycle counts. The
first three types represent different levels of parallelism: se-
quential, three hardware channels, and fully parallel. The
fourth type is a theoretical modification that attempts to in-
clude Phatak’s design decisions (see Section 4) into our soft-
ware simulation of the hardware. We accomplished this by
substituting the iterative table look-ups with a parallel ta-
ble look-up in our software simulation and iterative adders
with adder trees. For the average case data, the confidence
interval around the mean is quite small. The 95% confidence
interval around the mean was within £3 cycles for small di-
visors and no more than £10 cycles for 1024-bit divisors.

The sequential and semi-parallel implementations ex-
hibit a cycle count that grows quadratically. This growth
rate is due to our decision to forego Phatak’s assumptions
and our optimization choices. The full-parallel implementa-
tion, despite our design decisions, exhibits a trend that better
reflects the O (IgN) theoretical speed estimates (of a single
modular multiplication) taking into account Phatak’s design
decisions (see Figure 3).
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A RP-RNS Quotient-First Scaling Algorithm

This appendix states the RP-RNS quotient-first scaling algorithm for
reference purposes. See Phatak [10-13] for explanations and discus-
sions. Though the following design features have appeared separately
in other RNS algorithms, the novelty emerges in how RP-RNS com-
bines these features and the speed gained:

— the usage of approximation [6];

— the 1- or 2-bit redundant modulus [15,16];

— the usage of rational equations over integer equations [6];

— the precomputed lookup tables [1-3,6,15,16]; and

— the choice of many small moduli as the RNS base.
The precision of the approximations stored in the lookup tables is cho-
sen to bound the error such that the final result is one of two candidates.
Recently, it has come to our attention that Phatak’s sign-detection al-
gorithm contains an error. Since we did not implement the final sign-
detection step (used to choose among the two candidates), our imple-
mentation is unaffected.

The QFS algorithm is based on the following rational form of the

division algorithm:

0= 3

Z R
D D’
The algorithm determines a quotient estimate, Q, of Z divided by D.
Despite the fact that the output of the QFS algorithm is not always
exact, this poses no problem for the RP-RNS modular exponentiation
algorithm as noted by Phatak [11].

The QFS algorithm uses the RP-RNS partial reconstruction algo-
rithm which is described in detail in [10]. The partial reconstruction
algorithm is based on the following form of the Chinese Remainder
Theorem:

K
Z=Y piM;—Rc;M. @
i=1

Denoting the summation in Equation 4 as Zr, Phatak defines partial re-
construction as computation of the reconstruction coefficient Rcz with-
out fully computing Zr.

The QFS algorithm accepts as its input a number Z in RP-RNS
form and outputs the quotient estimate O in RP-RNS form and an ex-
actness flag. The algorithm asserts the flag only if O = Q. The QFS
algorithm uses two lookup tables. The first lookup table uses the p val-
ues from the partial reconstruction algorithm as its indices. The second
lookup table uses Rcy as its index. The equations for the lookup table
entries are

o- ]

o4

R = szw J
(5)
Rmzpw%ggwﬂ.

The QFS algorithm invokes the partial reconstruction algorithm to cal-
culate the lookup table indices. The Q; and Q,. values are the integer
part of the quotient. The R; and R,. values are the approximated frac-
tional part of the quotient. The chosen rounding modes lead to a quo-
tient underestimate, similar to the partial reconstruction algorithm. The
fractions are truncated to wr bits where wg > [IgK + 1]. Together the
tables require O (N3 lglgN) bits of storage.

Algorithm 1: RP-RNS QFS Quotient Estimation

Input : Aninteger z in RP-RNS form

Output: O in RP-RNS form and the exactness flag QExact. Q
is an approximation to Q = z/D mod N, where D is a
pre-defined fixed divisor. If QExact = True, then
Q = Q. Otherwise, if QExact = False, then either
0=QorQ=0+D.

1 begin

2 /* The QFS lookup tables have multiple
columns. Though we identify the columns,
we omit the structure and refer the
reader to [13,11]. The lookup tables are
populated based on the fixed divisor D.
The call to PartialReconstruction is used
to determine the reconstruction
coefficient and is described in detail by
Phatak [10]. */

3 Rz, (py,Py,---,Pk),n < PartialReconstruction(z);

4 /* Quotient integer part computation. */

5 Q; < QuotientTablel (i,p;,5) for 1 <i<K;

6 Oge. + QuotientTable2(Rc;,4);

K
7 QFZQi—QRcZ;

i=1
8 [Qi],y,, < QuotientTablel (i,p;,4) for | <i<K;
9 [Okc.],,, < QuotientTable2(Rc;,3);

K
10 [0, < Y[, = [Ore.],, 5
i=1

1 /* Quotient fractional part computation. */
12 R; < QuotientTablel(i,p;,6);
13 Rpe, <+ QuotientTable2(Rc;,5);
K
14 Qf « Y Ri—Rge.:
i=1
15 /* Quotient exactness assessment. */

16 Q1 < RightShift (Qf,wr);
17 Op + RightShift (Qr+n,wr);
18 QExact < (Qr. == 0n);

19 /* Combine to form the quotient estimate. */
20 0+ 0+0u;
a | (0], Q) +101),:

2 return (Q, [0] mE,QExact);




