Dishonest Majority Multi-Party Computation for Binary Circuits

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart

Dept. Computer Science, University of Bristol, United Kingdom
Enrique.LarraiadeVega@bristol.ac.uk,Emmanuela.Orsini@bristol.ac.uk,nigel@cs.bris.ac.uk

Abstract. We extend the Tiny-OT two party protocol of Nielsen et al (CRYPTO 2012) to the case
of n parties in the dishonest majority setting. This is done by presenting a novel way of transferring
pairwise authentications into global authentications. As a by product we obtain a more efficient manner
of producing globally authenticated shares, which in turn leads to a more efficient two party protocol
than that of Nielsen et al.

1 Introduction

In recent years actively secure MPC has moved from a theoretical subject into one which is becoming
more practical. In the variants of multi-party computation which are based on secret sharing the
major performance improvement has come from the technique of authenticating the shared data
and/or the shares themselves using information theoretic message authentication codes (MACs).
This idea has been used in a number of works: In the case of two-party MPC for binary circuits in
[13], for n-party dishonest majority MPC for arithmetic circuits over a “largish” finite field [47], and
for n-party dishonest majority MPC over binary circuits [§]. All of these protocols are in the pre-
processing model, in which the parties first engage in a function and input independent offline phase.
The offline phase produces various pieces of data, often Beaver style [2] “multiplication triples”,
which are then consumed in the online phase when the function is determined and evaluated.

In the case of the protocol of [13], called Tiny-OT in what follows, the authors use the technique
of applying information theoretic MACs to the oblivious transfer (OT) based GMW protocol [10] in
the two party setting. In this protocol the offline phase consists of producing a set of pre-processed
random OTs which have been authenticated. The offline phase is then executed efficiently using a
variant of the OT extension protocol of [I12]. For a detailed discussion on OT extension see [II2]13].
In this work we shall take OT extension as a given sub-procedure.

One can think of the Tiny-OT protocol as applying the authentication technique of [4] to
the two party, binary circuit case, with a pre-processing which is based on OT as opposed to
semi-homomorphic encryption. For two party protocols over binary circuits practical experiments
show that Tiny-OT far out-performs other protocols, such as those based on Yao’s garbled circuit
technique. This is because of the performance of the offline phase of the Tiny-OT protocol. Thus
a natural question is to ask, whether one can extend the Tiny-OT protocol to the n-party setting
for binary circuits.

Results and Techniques. In this paper we mainly address ourselves to the above question, i.e.
how can we generalize the two-party protocol from [I3] to the n-party setting?

We first describe what are the key technical difficulties we need to overcome. The Tiny-OT
protocol at its heart has a method for authenticating random bits via pairwise MACs, which itself
is based on an efficient protocol for OT-extension. In [I3] this protocol is called aBit. Our aim is
to use this efficient two-party process as a black-box. Unfortunately, if we extend this procedure

naively to the three party case, we would obtain (for example) that parties P; and P, could execute
the protocol so that P; obtains a random bit and a MAC, whilst P, obtains a key for the MAC
used to authenticate the random bit. However, party Ps; obtains no authentication on the random
bit obtained by P;, nor does it obtain any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown global random key
and where each party holds a share of this key. Then by executing the pairwise aBit protocol, we are
able to obtain a secret shared value, as well as a shared MAC, by all n-parties. This resulting MAC
is identical to the MAC used in the SPDZ protocol from [6]. This allows us to obtain authenticated
random shares, and in addition to permit parties to enter their inputs into the MPC protocol.

The online phase will then follow similarly to [6], if we can realize a protocol to produce “mul-
tiplication triples”. In [13] one can obtain such triples by utilizing a complex method to produce
authenticated random OTs and authenticated random ANDs (called aOTs and aANDs)!. We notice
that our method for obtaining authenticated bits also enables us to obtain a form of authenticated
OTs in a relatively trivial manner, and such authenticated OTs can be used directly to implement
a multiplication gate in the online phase.

Our contribution is twofold. First, we generalize the two-party Tiny-OT protocol to the n-party
setting, using a novel technique for authentication of secret shared bits, and completely new offline
and online phases. Thus we are able to dispense with the protocols to generate aOTs and aANDs
from [13], obtaining a simple and efficient online protocol. Second, and as a by product, we obtain
a more efficient protocol than the original Tiny-OT protocol, in the two party setting when one
measures efficiency in terms of the number of aBit’s needed per multiplication gate. The security
of our protocols are proven in the standard universal composability (UC) framework [5] against a
malicious adversary and static corruption of parties.

Related Work. For the case of n party protocols, where n > 2, there are three main techniques
using such MACs. In [4] each share of a given secret is authenticated by pairwise MACs, i.e. if
party P; holds a share a;, then it will also hold a MAC M; ; for every j # i, and party P; will
hold a key K;;. Then, when the value a; is made public, party P; also reveals the n —1 MAC
values, that are then checked by other parties using their private keys K; ;. Note that each pair of
parties holds a separate key/MAC for each share value. In [7] the authors obtain a more efficient
online protocol by replacing the MACs from [4] with global MACs which authenticate the shared
values a, as opposed to the shares themselves. The authentication is also done with respect to a
fixed global MAC key (and not pairwise and data dependent). This method was improved in [6],
where it is shown how to verify these global MACs without revealing the secret global key. In [§]
the authors adapt the technique from [7] for the case of small finite fields, in a way which allows
one to authenticate multiple field elements at the same time, without requiring multiple MACs.
This is performed using a novel application of ideas from coding theory, and results in a reduced
overhead for the online phase.

Future Directions. We end this introduction by describing two possible extensions to our work.
Firstly, each bit in our protocol is authenticated by an element in a finite field Fa~. Whilst such
values are never transmitted in our online phase due to our MACCheck protocol, they do provide
an overhead in the computation. In [§] the authors show how to reduce this overhead using coding

! In fact the paper [13] does not produce such multiplication triples, but they follow immediately from the presentation
in the paper and would result in a more efficient online phase than that described in [13]

theory techniques. It would be interesting to see how such techniques could be applied to our
protocol, and what advantage if any they would bring.

Secondly, our protocol requires n - (n — 1)/2 executions of the aBit protocol from [I3]. Each
pairwise invocation requires the execution of an OT-extension protocol, and hence we require
O(n?) such OT-channels. In [I1], in the context of traditional MPC protocols, the authors present
techniques and situations in which the number of OT-channels can be reduced to O(n). It would
be interesting to see how such techniques could be applied in practice to the protocol described in
this paper.

2 Notation

In this section we settle the notation used throughout the paper. We use k to denote the secu-
rity parameter. We let negl(x) denote some unspecified function f(x), such that f = o(k=¢) for
every fixed constant ¢, saying that such a function is negligible in k. We say that a probability is
overwhelming in « if it is 1 — negl(k).

We consider the sets {0, 1} and F5 endowed with the structure of the fields Fy and Fax, respec-
tively. Let IF = Fox, we will denote elements in F with greek letters and elements in Fo with roman
letters.

We will additively secret share bits and elements in F, among a set of parties P = { P, ..., P,},
and sometimes abuse notation identifying subsets Z C {1,...,n} with the subset of parties indexed
by i € Z. We write (a)? if a is shared amongst the set Z = {iy,...,i;} with party P;; holding a
value a;;, such that Zijez ai; = a. Also, if an element x € Fy (resp. § € F) is additively shared
among all parties we write (z) (resp. (8)). We adopt the convention that if a € Fy (resp. 8 €)
then the shares a; € Fa (resp. §; € F).

(Linear) arithmetic on the (-)Z sharings can be performed as follows. Given two sharings (z)%* =
{zi,}i,ez, and (y)™ = {yi, }i,ez, We can compute the following linear operations

a- (o)™ = {a- 2 }ier,,
a+ (@)’ = {a+a,} U{ei e gy
(@) + ()™ = (x +y)=

={zi, Yijer\z, YUY, biser,\z. Y i, + yis bijezanz, -

Our protocols will make use of pseudo-random functions, which we will denote by PRFf’t(-)
where for a key s and input m € {0,1}* the pseudo-random function is defined by PRF2X!(m) € X,

where X is some set and t is a non-negative integer.

Authentication of Secret Shared Values. As described in the introduction the literature gives
two ways to authenticate a secret globally held by a system of parties, one is to authenticate the
shares of each party, as in [4], the other is to authenticate the secret itself, as in [7]. In addition we
can also have authentication in a pairwise manner, as in [4/13], or in a global manner, as in [7]. Both
combinations of these variants can be applied, but each implies important practical differences, e.g.,
the total amount of data each party needs to store and how checking of the MACs is performed.
In this work we will use a combination of different techniques, indeed the main technical trick is a
method to pass from the technique used in [I3] to the technique used in [7].

Our main technique for authentication of secret shared bits is applied by placing an information
theoretic tag (MAC) on the shared bit z. The authenticating key is a random line in F, and the
MAC on z is its corresponding line point, thus, the linear equation us(z) = vs(x) + = - 6 holds,
for some ps(z),vs(z),8 € F. We will use these lines in various operations?, for various values of
0. In particular, there will be a special value of §, which we denote by « and assume to be <04)P
shared, which represents the global key for our online MPC protocol. This will be the same key
for every bit that needs to be authenticated. It will turn out that for the key a we always have
vo(z) = 0. By abuse of notation we will sometimes refer to a general § also as a global key, and
then the corresponding vgs(x), is called the local key.

Distinguishing between parties, say Z, that can reconstruct bits (together with the line point),
and those parties, say J, that can reconstruct the line gives a natural generalization of both ways
to authenticate, and it also allows to move easily from one to another. We write [x]g 7 if there exist
us(z), vs(z) € F such that:

ps(x) = vs(x) +x -9,

where we have that x and pus(z) are (-)% shared, and vs(x) and § are ()7 shared, i.e. there are
values x;, 113, and vj, ¢;, such that

a::in, s () :ZM, vs(x) = Zyj, 5225]-.

i€l i€l JET €T

Notice that us(z) and vs(x) depend on ¢ and x: we can fix 6 and so obtain key-consistent represen-
tations of bits, or we can fix = and obtain different key-dependant representations for the same bit
x. To ease the reading, we drop the sub-index J if J = P, and, also, the dependence on § and x
when it is clear from the context. We note that in the case of Z, = J, then we can assume v; = 0.

When we take the fixed global key a and we have 7, = 7, = P, we simplify notation and write
[z] = [x]fp By our comment above we can, in this situation, set v; = 0 3, this means that a [z]
sharing is given by two sharings (<$>P, (,u}P). Notice that the [-]-representation of a bit x implies
that x is authenticated with the global key « and that it is (-)-shared, i.e. its value is actually
unknown to the parties.

This notation does not quite align with the previous secret sharing schemes used in the literature,
but it is useful for our purposes. For example, with this notation the MAC scheme of [4] is one
where each data element x is shared via [xz]zaj ; sharings. Thus the data is shared via a (z) sharing
and the authentication is performed via [37%]3]] sharings, i.e. we are using two sharing schemes
simultaneously. In [7] the data is shared via our [z] notation, except that the MAC key value v is
set equal to v = v//«, where /' being a public value, as opposed to a shared value. Our [z] sharing
is however identical to that used in [6], bar the differences in the underlying finite fields.

Looking ahead we say that a bit [z] is partially opened if (x) is opened, i.e. the parties reveal
the shares of =, but not the shares of the MAC value pq ().

Arithmetic on [z] Shared Values. Given two representations [x]gf% =((z), (us (@), (vs(x))7")
and [y]f@y =(y)*v, (us(y))*, (vs(y))7v), under same the §, the parties can locally compute [z +
2 For example, we will also use lines to generate OT-tuples, i.e. quadruples of authenticated bits which satisfy the

algebraic equation for a random OT.
3 Otherwise one can subtract v; from puj, before setting v; to zero.

Ui as (@)% +), (s (@))% + (us ()%, (vs(2))7 + (vs(y))7*) using the arithmetic on ()7

sharings above.

Let [z] =((z), (u(z))) and [y] =((y), (u(y))) be two different authenticated bits. Since our
sharings are linear, as well as the MACs, it is easy to see that the parties can locally perform linear
operations:

[] + [w] =(() + (v), (u(=)) + (u(y)))=[= + ¥]
a-Te] =(a- (@), o (u(a)) = fa-al,
a+ [z] =(a+ (z), (ula+z)))= [a+ z].

where (u(a + x)) is the sharing obtained by each party i € P holding the value «; - a + p;(x).
This means that the only remaining question to enable MPC on [-]-shared values is how to
perform multiplication and how to generate the [-]-shared values in the first place. Note, that a
party P; that wishes to enter a value into the MPC computation is wanting to obtain a [x]éyp
sharing of its input value z, and that this is a [x[-representation if we set z; = z and z; = 0 for

J# i
3 MPC Protocol for Binary Circuit

We start presenting a high level view of the protocols that allow us to perform multi-party com-
putation for binary circuits. We assume synchronous communication and authentic point-to-point
channels. Our protocol is in the pre-processing model in which we allow a function (and input)
independent pre-processing, or offline, phase which produces correlated randomness. This enables
a lightweight online phase, that does not need public-key machinery.

In the following sections we will describe a
protocol, Ilonjine, implementing the actual func-
tion evaluation in the (Fcomm,Fprep)-hybrid [Online Eval.]
model; a protocol, Ilp.p, implementing the Seo 0
offline phase in the (Fcomm, FBootstrap)-hybrid
model; and a novel way to authenticate bits to
more than two parties, which takes as starting
point the aBit command of [13], and which we [
model with the Fgootstrap functionality. 4

The online phase implements the standard
functionality Fonline (see Appendix for de-
tails). It is based on the [-]J-representation of
bits described in Section [2| and it is very simi-
lar to the online phase of other MPC protocols
[6/7U813]. We compute a function represented
as a binary circuit, where private inputs are [
additively shared among the parties, and cor-
rectness is guaranteed by using additive secret Figure 1 Overview of Protocols Enabling MPC
sharings of linear MACs with global secret key
a. For simplicity we assume one single input
for each party and one public output. The on-
line protocol, presented in Section [5| uses the

App. C.2

Preprocess
Sec 6

App. C.3

fComm 5 PRFfi

Bootstrap

App. C.1 [13]
otstrs]<— Fagit <— Fot

linearity of the [-]-sharings to perform additions and scalar multiplications locally. For general
multiplications we need utilize data produced during the offline phase, in particular the output
of the GaOT (Global authenticated OT) command of Section [6] Refer to Figure [2] for a complete
description of the functionality for preprocessing data. The aforementioned command GaOT builds
upon Ilggotstrap Protocol, described in Section , to generate random authenticated OTs and, as we
noted above, we skip the less efficient procedures of [13].

The Functionality Fprep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality samples random «; for each i ¢ A. It waits for
the environment to input corrupt shares {a;}jea If any j € A outputs abort, then the functionality aborts
and returns the set of j € A which returned abort. Otherwise the functionality sets &« = a1 + - - - + an, and
outputs aj to honest P.

Share: On input (¢, x, Share) from party P;, and (i,Share) from all other parties. The functionality produces
an authentication [z] = ((z), (u)). It sets x; = 0 if j # 4. Also, the MAC might be shifted by a value Ay,
ie. p=x-a+ An, where Ay is an Fo-linear combination of {ax}r¢a not known to the environment. It
proceeds as follows:

- Set u =z -a. Ifi € A, the environment specifies x.

- Wait for the environment to specify MAC shares {j;};jc, and generate () where the portion of honest
shares is consistent with the adversarial shares, but otherwise random.

- Set xx, =01if k #4, k ¢ A. If the environment inputs shift-Py set pur = pr + ak.

- Output (zk, ux) to honest Py

GaOT: On input (GaOT) from the parties, the functionality waits for the environment to input “Abort” or
“Continue”. If it is told to abort, it outputs the special symbol @ to all parties.

Otherwise it samples three random bits e, zo, 1, and sets z = z.. Then, for every bit y € {e, z, o, z1} the
functionality produces an authentication [y] = ({y), (u(y))), but let the environment to specify shares for
corrupt P;. It proceeds as follows:
- Set p(y) =y a.
- Wait for the environment to input bit shares {y;};eca, and MAC shares {y;};ca, and creates sharings
(y), (1) where the portion of honest shares is consistent with adversarial shares.
- Output (yk, ux) to honest Py.

Figure 2 Ideal Preprocessing

Notice that, as in [67/8I13], during the online computation of the circuit we do not know
if we are working with the correct values, since we do not check the MACs of partially opened
values during the computation. This check is postponed to the end of the protocol, where we call
the MACCheck procedure as in [6] (see Appendix [B| for details). Note this procedure enables the
checking of multiple sets of values partially opened during the computation without revealing the
global secret key «, thus our MPC protocol can implement reactive functionalities.

The MAC checking protocol is called in both the offline and the online phases, it requires access
to an ideal functionality for commitments Fcomm, also given in Appendix [B| and it is not intended
to implement any functionality. Also, note that the algebraic correctness of the output of the GaOT
command in the offline phase is checked in the offline phase and not in the online phase.

4 From Tiny-OT aBit’s to [-]-Sharings

At the heart of our MPC protocol is a method to translate from the two party aBits produced by
the offline phase of the Tiny-OT protocol in [I3], to the [-]-sharings under some global shared key

a from Section [2| We note that the protocol to produce aBit’s is the only sub-protocol from [13]
which we use in this paper, and thus the more complex protocols in [13] for producing aOT’s and
aAND’s we discard. We first deal with the underlying two party sub-protocols, and then we use
these to define our multi-party protocols.

4.1 Two-party [-]-representations.

Thus throughout we assume access to an ideal functionality F,gjt, given in Figure 3| that produces
a substantially unbounded number of (oblivious) authenticated random bits for two parties, under
some randomly chosen key ¢; known by one of the parties. This functionality can be implemented
assuming a functionality Fot and using OT-extension techniques as in [I3]. For ease of exposition
we present the functionality as returning single bits for single requests. In practice the functionality
is implemented via OT-extension and so one is able to obtain many aBits on each invocation of the
functionality, for a given value of J;. Adapting our protocols to deal with multiple aBit production
for a single random fixed d; chosen by the functionality is left to the reader?.

The Functionality Fagit

Authenticated Bit(P;, P;): This functionality selects a random ¢; € F and a random bit r, and returns a
sharing [r]fgj g

- On input (aBit, 4, j) from honest P; and P;, the functionality samples a random §; and a random sharing
[r]f;j,j = (7, s, vj), such that p; = v; +r - d;. It then outputs {r, u;} to P; and {4;,v,} to P;.

- If P; is corrupted, the functionality waits for the environment to input the pair {r,u;} and it sets
v; = p; + 1 - 6; for some randomly chosen §;, and {J;,v;} is returned to party P;.

- If P; is corrupted, the functionality waits for the environment to input the pair {d;,v;}, r is selected at
random and p; is set to be v; — r - §;. The pair {r, u;} is returned to party P;.

Figure 3 Two-party Bit Authentication [13]

Using the protocol II5 share, described in Protocol[d] we can obtain a “two-party” representation
[r]gj ; of a random bit known to F;, under the key chosen by P;. This extension is needed because
we need to adapt the aBit command to the multi-party case. For example, if two parties, P; and
P;, run the command aBit(7, j), they obtain a random [r]g;_’j, with respect to &7; when P; calls

aBit(k, j) with a different party Py, k # j, then they obtain a random [s]lg_ i with a different Sj.
Thus allowing the parties to select their own values of J; means that we can obtain key-consistent
[-]-representations, in which each party P; use the same fixed d;. The security of the protocol
IT share follows from the security of the original aBit in [I3]: intuitively the changes required to
obtain a consistent [-]-representation do not compromise security, because d; is one-time-padded
with the random ¢} produced by Fpit- See for details.

Notice that the command 2-Share takes ¢; as the input of P;. In particular the value §; may
not be used to authenticate bits. Thus we could use the protocol Ily ghae to obtain a sharing of
the scalar product r - §;, where P; obtains the random bit 7, and the other party decides what field
element §; € F gets multiplied in. Then party P; obtains the result ;; masked by a one-time pad

4 Note, that in this situation we (say) produce 1,000,000 aBits per invocation with a fixed random value of §;, then
on the next invocation we obtain another 1,000,000 aBits but with a new random §; value. This is not explicit in
the ideal functionality description of aBit presented in [13], but is implied by their protocol.

The Subprotocol 1> share

2Share(i, j;6;): On input (2-Share,, j,d;), where P; has 6; € F as input, this command produces a [r]gj’j
sharing of a random bit r.
1. P; and P; call Fugir on input (aBit, 4, j): The box samples a random 5; and then produces

[T]V(L‘S}’j = (7’7 M"u Vj)a
such that p; = v; +r - 8}, and outputs {r, u;} to P; and {&},v;} to P;.

2. P; computes o; = §; + 0} and sends o; to party P;.
3. Pysets pi = pj+r-0j =vj+r-0;.

Protocol 4 Switching to Fixed §-shares

value v; known only to P;. This application of the subprotocol Il share is going to be crucial in
our method to obtain authenticated OT’s in our pre-processing phase. As a consequence we do not
always see §; as an authentication key.

4.2 Multiparty [-]-representation

The Functionality Fgootstrap

Let A be the indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality activates and waits for the environment to
input a set of shares {0;};ea. It samples random 6 € F and prepares sharing (), where the portions of
honest shares are consistent with the adversarial shares, but otherwise random. If any j € A outputs abort,
then the functionality aborts and returns the set of j € A which returned abort, otherwise it continues.

Share: On input (7, z, Share) from party P;, and (¢, Share) from all other parties. The functionality produces a
representation [z]5 = ((x)?, ()%, (1)7), except that v might be shifted by a value A, i.e. p=z-6+v+ Ag,
where Ay is an Fa-linear combination of {5k}k¢ A, which is not known to the environment. It proceeds as
follows:

- It samples random p € F. If : € A waits for the environment to input (u, z).

- The functionality sets v =z - § + p.

- The functionality waits for the environment to input shares {v;}je a, and prepares sharing (v)* consistent
with the adversarial shares. The portion of honest shares are otherwise random.

- If the environment inputs shift-Py, the functionality sets vy = vi, + 0k, k € A.

- It outputs (v, dr) to honest Py.

Figure 5 Ideal Generation of [~]f;,7;—representations

Here we show how to generalize the I15_ghare protocol in order to obtain an n-party representation
[:U]f; of a bit & chosen by F;. This is what the functionality Fgootstrap models in Figure It bootstraps
from a two party authentication to a multi-party authentication of the shared bit. As before for
II5 share, we can see the outputs of Fpootstrap as the shares of scalar products x -, where one party
P; chooses the scalar (bit) x, but now the field element § is unknown and additively shared among
all the parties. An interesting feature of this functionality is that the adversary can only influence
honest outputs in a small way, that we model with the shift-P, flag. Additionally, we can not prevent
corrupt parties from outputting what they wish, this is reflected on the fact that the functionality
leaves their outputs undefined. The main difference between this functionality and the equivalent in

the SPDZ protocol [7], is that in [7] the functionality takes as input an offset known to the adversary
who adjusts his shares to obtain an invalid MAC value by this linear amount. We do not model
this in our functionality, instead we allow the adversary to choose his shares arbitrarily (which
obtains the same effect). However, in our protocol the adversary can also introduce an unknown (to
the adversary) error into the MAC values. In particular the adversary can decide whether to shift
honest shares, but he cannot choose the shifting, namely, an element on the Fo-span of secrets d; of
honest parties Pj. Later, we manage to determine whether there are any errors (both adversarially
known and unknown ones) using an information-theoretic MACCheck procedure that we borrow
from [6]. See Appendix B| for details.

The protocol Ilggetstrap, described in Protocol |§|, realizes the ideal functionality Fgootstrap in @
hybrid model in which we are given access to F,git. It permits to obtain [z]§ and it is implemented
by sending to each Pj,j # i, a mask of z using the random bits given by 2-Share(i,j;d;) as
paddings, and then allowing P; to adjust his share to the right value. In total the protocol needs
to execute n — 1 aBit per scalar product.

The Protocol Ilgootstrap

Initialize: Each party P; samples a random d;. Define 6 = §1 + -+ - + 0n,.
Share: On input (4, z,Share) from P; and (4, Share) from all other parties, do:
1. For each j # i, call IT>.share with (2-Share, i, 7, ;). Party P; obtains {r; ;, i ; } j: whilst party P; obtains
Vi j, such that Wi = Vi + 75" (Sj.
Party P; samples € at random and sets p; = € + Z].#i wi; and v; = €+ x - d;.
Party P; sends d;j = x + r;,; to party P; for all j # 1.
For j # i, Pj sets v; = v;,; +dj . 53'.
Output (14, vi,0:) to P; and (v;,d;) to party Pj, for j # i. The system now has [z]5.

U W

Protocol 6 Transforming Two-party Representations onto [-}f;’p—representations

Lemma 1. In the Fgiti-hybrid model, the protocol Ilggotstrap implements Fpootstrap With perfect
security against any static adversary corrupting up to n — 1 parties.

Proof. See Appendix

5 The Online Phase

In this section we present the protocol Ilgnjine, described in Protocol |7, which implements the
online functionality in the (Fcomm, Fprep)-hybrid model. The basic idea behind our online phase is
to use the set of GaOTs output in the offline phase to evaluate each multiplication gate. To see how
this is done, consider that we want to multiply two authenticated bits [a], [0]. The parties take a
GaOT tuple {[e], [z], [zo], [x1]} off the pre-computed list. Recall we have for such tuples z = ..
It is then relatively straightforward to compute authenticated shares of [c]], where ¢ = a - b, as
follows: First, the parties partially open [f] = [b] + [e] and [g] = [zo] + [z1] + [a], and then set
[c] = [xo]+ f-[a]+g-[e] +[z]- To see why this is correct, note that since, x.+xzo+e-(xg+x1) =0,
we have c=x0+ (b+¢€)-a+ (xo+21+a)-e+2z=a-b.

Theorem 1. In the (Fcomm, Frrep)-hybrid model, the protocol Ionjine securely implements Fonline
against any static adversary corrupting up to n — 1 parties, assuming protocol MACCheck utilizes a
secure pseudo-random function PRFEL(.).

Protocol Ioniine

Initialize: The parties call Init on the Fprp functionality to get the shares a; of the global MAC key «. If
Frrep aborts outputting a set of corrupted parties, then the protocol returns this subset of A. Otherwise the
operations specified below are performed according to the circuit.

Input: To share his input bit x, P; calls Fprep with input (7, z, Share) and party P; for ¢ # j calls Fprep with
input (¢, Share). The parties obtain [z] where the z-share of P; is set to zero if j # 1.

Add: On input ([a], [b]), the parties locally compute [a + b] = [a] + [b]-

Multiply: On input ([a], [0]), the parties call Fprp on input (GaOT), obtaining a random GaOT tuple
{[el, [=], [zo]l, [x1] }- The parties then perform:

1. The parties locally compute [f] = [b] + [e] and [g] = [zo] + [=1] + [a]-
2. The shares [f] and [g] are partially opened.
3. The parties locally compute

[e] = [wo] + f - [a] + g - [e] + [=]-

Output: This procedure is entered once the parties have finished the circuit evaluation, but still the final
output [y] has not been opened.

1. The parties call the protocol IImaccheck 0n input of all the partially opened values so far. If it fails, they
output @ and abort. @ represents the fact that the corrupted parties remain undetected in this case.

2. The parties partially open [y]] and call ITuaccheck On input y to verify its MAC. If the check fails, they
output @ and abort, otherwise they accept y as a valid output.

Protocol 7 Secure Function Evaluation in the Fcomm, Frrep-hybrid Model

Proof. See Appendix

6 The Offline Phase

Here we present our offline protocol IIpye, (Protocol . The key part of this protocol is the GaOT
command. In [I3] the authors give a two-party protocol to enable one party, say A, to obtain two
authenticated bits e, z, and the other party, say B, to obtain two authenticated secret bits z,
x1, such that z = z. and e, x¢p and x; are chosen at random. We generalize such a procedure to
many parties and we obtain sharings [e], [z], [zo], [x1], subject to z = z.. Notice that the values
e, z,xp,x1 are not known so they can be used in the online phase to implement multiplication gates.

The idea behind the GaOT command it is to exploit the relation between “affine functions” and
“selector functions”, in which a bit e selects one of two elements (xo, x1) in F. This connection was
already noted in [?] on the context of garbling arithmetic circuits via randomized encodings. Thus,
on one hand we have authentications, that are essentially evaluations of affine functions, and on the
other we have OT quadruples, that can be seen as selectors. Seeing both as the same object means
that a way to authenticate bits also gives us a way to generate OTs, and the other way around.
The procedure is broken into three steps, Share OT, Authenticate OT and Sacrifice OT. We
examine these three stages in turn.

To produce bit quadruples (e, z, xg, 1), such that z = z., the parties will use a (secret) affine
line in F parametrized by (¢, 7). Note that with our functionality Fgootstrap We get [ei]ﬁ], where e; is
known to P;, and an additive sharing (n) is held by the system. We denote this concrete execution
of the functionality as Fpootstrap (7)), since we shall use fresh copies of Fgootstrap t0 generate more OT
quadruples and also for authentication purposes. Note, that 7 is not an input to the functionality but
a shared random value produced when initialising the functionality. Now, performing n independent
queries of Share command on this copy Fgootstrap(7)), the parties can generate

[el}y = [e1]

" pt o+ lealy (1)

10

The Protocol Ilprep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties and adversary, the system runs a copy of Fgootstrap Which is de-
noted Fpootstrap(). Then it calls Init on Fpootstrap (). If Frootstrap () aborts, outputting a set of corrupted par-
ties, then the protocol returns this subset of A and aborts. Otherwise, the values §; returned by Fgootstrap(t)
are labelled as «;. Set a = a1 + - - - + an, and output «; to honest parties P;.

Share: On input (4, z, Share) from party 7 and (j, Share) from all parties j # 7. The protocol calls Share command
of Fiootstrap () to obtain [z]%,, given by {(u)?, (1)T'}. Then, for j # i, party P; sets his share of = to be zero,
and pj;(z) = v;. Party P; sets pi(xz) = p + v;. Thus, the parties obtain [z].

GaOT: On input (GaOT) from all P;, execute the following sub-procedures:

Share OT. This generates sharings ({e), (z), (xo), (z1)) such that xo, z; and e are random bits. If all parties
are honest then it holds z = z..

1. The system runs a fresh copy of Footstrap 011 Init command getting an additive sharing (n) for some
random 7 € F. Denote this copy as Fgootstrap(7)-

2. Each party samples a random bit e;. Define e =e; + -+ + en.

3. For each i = 1,...,n, the system calls Fgootstrap(17) o1 input (%, e;, Share) from party P; and input
(i,Share) from any other P;, to obtain [e;];,. That is, (in an honest execution) P; gets (; € F, and
the parties gets an additive sharing (¢;) of some unknown ¥; € F, such that {; = ¢; + e; - n. The
parties compute [e]7 = [e1]; + -+ + [en]n.

4. At this point of the protocol, the system holds sharings (e}, (), (¢), (n), so it can derive (xo) = (),
and (x1) = (¢) + (n). Note that (for an honest execution) (= ¢ + e - 1, or in other words ¢ = xe.

5. Each party P; sets z;, o,i, 1,; to be the least significant bits of (;, x0,:, X1,; respectively, so as to
obtain sharings (z), (zo) and (z1).

Authenticate OT. This step produces authentications on the bits previously computed.
For every bit y € {e, z,z0,z1} it does the following:

6. Call Faootstrap(r) on input (i, y;, Share) from P; and (j, Share) for party P; to obtain [yz}fl

7. Compute [y] by forming Y, 5[yil4, and then subtracting v(y) from p(y).

Sacrifice OT. This step checks that the authenticated OT-quadruples are correct. Let [e], [2], [zo], [=1],
be the quadruple to check, and k a security parameter:

8. Every party P; samples a seed s; and asks Fcomm to broadcast 7, = Comm(s;).

9. Every party P; calls Fcomm with Open(7;) and all parties obtain s; for all j. Set s = s1 4+ -+ + $n.

10. Parties sample a random vector t = PRFE2"(0) € F5. Note all parties obtain the same vector as
they have agreed on the seed s.
11. Fori=1,...,k, repeat the following:
- Take one fresh quadruple [e;], [2:], [zo,], [%1,:], and partially open the values
pi = ti - ([xo] + [z1]) + [wo.i] + [1.:] and g = [e] + [e:].
- Locally evaluate c¢; such that

[ei] = ti - ([2] + [wo]) + [2:] + [wo.s] +pi - [e] + @i - ([wos] + [z1.:])s

and check it partially opens to zero. If it does not, then abort.
12. The parties call ITyaccheck On the values partially opened in step 11.
13. If no abort occurs, output [e], [z], [zo], [x1] as a valid quadruple.

Protocol 8 Preprocessing: Input Sharing and Creation of OT Quadruples in the Fgootstrap-hybrid Model

Thus, the system obtains two (secret) elements (e), (¢), such that (= 9 + e - n, for line ((J), (n)).
Define xo = ¢ and x1 = ¥ + 1, so it holds { = xe. The quadruple (e, z, 2o, z1) is then given by the
least significant bits of the corresponding field elements (e, {, xo, x1). This conclude the Share OT

step.

To add MAC:s to each bit of the quadruple that the parties just generated, the protocol uses the
FBootstrap(¢) instance to obtain a sharing (a) of the global key. Each party can now authenticate
his shares of (e, z, 2o, x1) querying Share command and obtaining [e], [z], [zo], [x1]. We emphasize

11

that the same « is used to authenticate all OT quadruples, thus Fgootstrap(¥) is fixed once and for
all.

After the Authenticate OT step the parties have sharings [e], [z], [xo], [z1], which could
suffer from two possible errors induced by the corrupted parties: Firstly the algebraic equation
z = x, may not hold, and second the MAC values may be inconsistent. For the latter problem
we will check all the partially opened values using the MACCheck procedure at the end of the
offline phase. For the former case we use the Sacrifice OT step. We use the same methodology
as in [476], i.e. one quadruple is checked by “sacrificing” another quadruple. The idea involving
sacrificing can be seen as follows: We associate to each pair of quadruples a polynomial S(t) over
the field of secrets (Fo in our case), which is the zero polynomial only if both quadruples are correct.
Thus, proving correctness of quadruples is equivalent to proving that S(¢) is the zero polynomial.
This is done by securely evaluating S(¢) on a random public challenge bit ¢ via a combination
of addition gates and two openings (plus one extra opening to check the evaluation), and then
checking that the result of the evaluation partially opens to zero. In this way we would waste k
quadruples to check one quadruple, to get security of 27"; we refer the reader to Appendix |A| for
a more efficient sacrifice procedure.

Theorem 2. Let k be the security parameter andt € N. In the (Fcomm, FBootstrap) -hybrid model, the
protocol Ilpre, securely implements Fprep with statistical security on k against any static adversary
corrupting up to n — 1 parties, assuming the existence of PRFf’m(-) with domain X =F (resp. Fy)
and m =1t (resp. k).

Proof. See Appendix

7 Efficiency Analysis

As it stands our protocol is not that efficient, mainly due to the naive sacrificing step performed in
the offline phase so as to check the GaOTs for correctness. In Appendix [A] we present a much more
efficient sacrifice step, which for reasonable parameters means that the ratio of required GaOT’s for
each used one can be between four and six. Let this ratio be denoted r.

We examine the cost of a multiplication in terms of the number of aBits required in the case of
two parties. We notice that each GaOT requires us to consume ten aBits; we need to execute the
Share OT step to determine e, z, xg, z1 (which requires one aBit consumption per player, i.e. two
in total when n = 2); in addition each of these four bits needs to be authenticated in Authenticate
OT in Protocol |8 (which again requires one aBit consumption per player, i.e. eight in total when
n = 2). Since we need one checked GaOT to perform a secure multiplication, and we sacrifice r — 1
GaOT to obtain a checked one; this means we require r - 10 aBits per secure multiplication in the
two party case. Depending on the parameters we use for our sacrifice step in Appendix [A] this
equates to 40, 50 or 60 aBits per secure multiplication, setting ¢t = 220, 214,210 respectively, and an
error probability of 2740,

We now compare this to the number of aBits needed in the Tiny-OT protocol [I3]. In this
protocol each secure multiplication requires two aBits, two aANDs and two aOTs. Assuming a
bucket size T in the protocols to generate aANDs and aOTs; each aAND (resp. aOT) requires four
LaANDs (resp LaOTs). Each LaAND requires four aBits and each LaOT requires three aBits. Thus
the total number of aBits per secure multiplication is 2- (1+7 -4+ 17 -3) = 14 - T + 2. To achieve
the same error probability of 2740, with same values of ¢t = 229,214 210 they need 44,58 and 72

12

aBits, respectively. We see therefore that we can make our protocol (in the two party case) more
efficient than the Tiny-OT protocol, when we measure efficiency in terms of the number of aBits
consumed.

8 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO,
by EPSRC via grant EP/I03126X and by research sponsored by Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL) under agreement num-
ber FA8750-11-2-0079. The US Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious transfer and extensions for faster
secure computation. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM Conference on Computer and
Communications Security, pages 535-548. ACM, 2013.

2. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigenbaum, editor, CRYPTO,
volume 576 of Lecture Notes in Computer Science, pages 420-432. Springer, 1991.

3. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a
dishonest minority. In CRYPTO, pages 663—-680, 2012.

4. R. Bendlin, I. Damgard, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty computation.
In K. G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science, pages 169—188.
Springer, 2011.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages
136-145, 2001.

6. I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical covertly secure mpc for
dishonest majority - or: Breaking the spdz limits. In J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS,
volume 8134 of Lecture Notes in Computer Science, pages 1-18. Springer, 2013.

7. 1. Damgard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Safavi-Naini and Canetti [15], pages 643-662.

8. I. Damgard and S. Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing. In
A. Sahai, editor, TCC, volume 7785 of Lecture Notes in Computer Science, pages 621-641. Springer, 2013.

9. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi. Minilego: Efficient secure
two-party computation from general assumptions. In FUROCRYPT, pages 537-556, 2013.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In A. V. Aho, editor, STOC, pages 218-229. ACM, 1987.

11. D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed for secure multiparty com-
putation? In A. Menezes, editor, CRYPTO, volume 4622 of Lecture Notes in Computer Science, pages 284—302.
Springer, 2007.

12. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers efficiently. In D. Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 145-161. Springer, 2003.

13. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to practical active-secure two-party
computation. In Safavi-Naini and Canetti [15], pages 681-700.

14. J. B. Nielsen and C. Orlandi. Lego for two-party secure computation. In TCC, pages 368-386, 2009.

15. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Con-
ference, Santa Barbara, CA, USA, August 19-28, 2012. Proceedings, volume 7417 of Lecture Notes in Computer
Science. Springer, 2012.

13

A Batching the Sacrifice Step

This technique (an adaptation of a technique to be found originally in [14J6]9]) permits to check a
batch of OT quadruples for algebraic correctness using a smaller number of “sacrificed” quadruples
than the basic version we described in Section [6] Recall, the idea is to check that an authenticated
OT-quadruple GaOT; = ([e;], [2i], [zi], [yi]) verifies the “multiplicative” relation m; = z; + z; +
ei - (vi +yi) = 0.

At a high level, Protocol@ essentially consists of two different phases. Let (GaOTy,...,GaOTy)
be a set of OT quadruples, in the first phase a fixed portion of these GaOTs are partially opened
as in a classical cut-and-choose step. If any of the opened OT quadruples does not satisfy the
multiplicative relation the protocol aborts. Otherwise it runs the second phase: the remaining
GaOTs are permuted and uniformly distributed into ¢ buckets of size T'. Then, for each of the
buckets, the protocol selects a BucketHead, i.e. the first (in the lex order) GaOT in the bucket (as in
[9]), and uses the remaining GaOTs in the same bucket to check that BucketHead correctly satisfies
the multiplicative relation. If any BucketHead does not pass the test, then we know that some
parties are corrupted and the protocol aborts. If all the checks pass then we obtain ¢ algebraically
correct BucketHeads, i.e. t OT quadruples, with overwhelming probability.

Bucket Cut-and-Choose Protocol

Input : Let N = (T + h) - t be the number of input GaOTs and T the size of the buckets, with T" > 2. We let
1 < h < T denote an additional parameter controlling how much cut-and-choose we perform.
Phase-1 Cut-And-Choose :

1. Every party P; samples a seed s; and asks Fcomm to broadcast 7, = Comm(s;).

2. Every party P; calls Fcomm with Open(7;) and all parties obtain s; for all j. Set s = s1 + - - - + sp.

3. Using a PRFE2Y | parties sample a random vector v € FY, such that the number of its non-zero entries
is h -t (i.e. the Hamming weight of v is h - t).

4. Let J be the set of indices j such that v; # 0, and, Vj € J, the parties partially open GaOT; and check
that it satisfies the algebraic relation z; + z; = ¢; - (z; + y;). If there exists an algebraically incorrect
GaOT; quadruple, then the protocol aborts.

Phase-11 Bucket-Sacrifice :

5. Permute the unopened GaOTs according to a random permutation 7w on T -¢ indices, again using a PRF;.
Then renumber the permuted unopened GaOTj, such that j = 1,...,T -¢, and, for i = 1,...,¢, create
the ith bucket as {GaOT; };LT,TH.

6. Parties compute a BucketHead(7) for each ¢ = 1,...,¢, i.e. return the first (in the lex order) element in
the ¢th bucket.

7. For i = 1,...,t, parties check that BucketHead(:) = GaOT; = ([ei], [2], [=:], [y:]) is correct using the
other GaOTs in the bucket: For j =T — T +2,...,iT do

— Set CheckGaOT; = GaOT; = ([3;], [b;], [¢;] [g;])-
— Parties open (e; +¢;) and (x; + i + b; + g;)-
— Parties locally compute

leii] = [z + @] + [35 + 950 + (ei + ¢5)[b; + 8] + (xi +yi + b + gn)[es],

and check it partially opens to zero.
— If all checks go through output GaOT, as valid quadruples; otherwise abort.
8. The parties execute the protocol Ilumaccheck to check all partially opened values.

Protocol 9 Bucket Cut-and-Choose Protocol

14

Theorem 3. ForT > ”fglgfégt) the previous protocol provide t correct GaOTs with error probability
27k,

Proof (sketch). It is easy to check that the protocol is correct and secure in the semi-honest model,
i.e. if all the OT quadruples are honestly generated, according to the GaOT command in Ilpyep,
then ¢; = 0, Vi.

The argument for active security is as follows. A badGaOT, i.e. a OT quadruple which does not
satisfy the multiplicative relation, passes the test if and only if all the partially opened GaOTs in the
cut-and-choose phase are correct and then it ends up in a bucket containing only badGaOTs. This is
because if we combine two badGaOTs, say GaOT; and GaOT}, we obtain ¢; ; = m;+m; =141 =0,
and the test passes. We show that this happens with negligible probability with an appropriate
choice of the parameters. We argue this in two steps: first we prove that when a bucket contains
at least one goodGaOT (a OT satisfying the multiplicative relation) a badGaOT will be always
detected, and then we bound the probability of having buckets containing only badGaOTs.

If parties misbehaved in any previous step yielding a badGaOT;, when we combine it with a
goodGaOTj, then ¢; ; = m; +m; = 1 and the check fails. Notice that the protocol always abort if
there is a bucket with both bad and good GaOTs. More precisely the protocol checks the algebraic
correctness of the BucketHeads, but indirectly also that of any other GaOTs (We use the BucketHead
notation so that each GaOT is only once paired with a different GaOT).

Let

— PasslCheck be the event that the protocol does not abort in the cut-and-choose step
— mbadGaOT be the event that m GaOTs are bad. Note that we fix m here.
— NoMixedBucket the event that there are no buckets containing both goodGaOTs and badGaOTs.

We bound the probability that both PasslCheck and NoMixedBucket occur. To do this we prove:

1. Pr[E;] = Pr[PassICheck A mbadGaOT] < (747)™-
2. Pr[Es] = Pr[E; A NoMixedBucket] < 2(ce2(0)(1=T),

The first point is straightforward. First note that if m > h - ¢ then Pr[Pass|Check] = 0 and the
protocol aborts; similarly, if m < T, then Pr[NoMixedBucket] = 0, so we can suppose T < m < h-t
(in particular m > 1). Moreover as a bad BucketHead will be always detected if a bucket contains
both good and bad GaOTs, we add the condition m =k -T, k= 1,...,t. In this way if m denotes
the number of badGaOTs, and PassICheck is true, then the h -t GaOTs that are opened in the
cut-and-choose step are sampled from the N — m good GaOTs. It holds:

= () () - (TR ()
(T+h)-t—m)e(het+1)- (T (T-1)- (Tt —m+1)- (Tt —m)!

(T-t+h-t)---(ht+1)(Tt —m)! (Tt+ht)---(Tt+ht —m+1)- (Tt —m)! —
< (rem) = (w)”
- \Tt+hnt/) \T+h/ "~
Now we compute the probability of NoMixedBucket A 1. Recall that the cardinality of each of the
t buckets is T' and that we are assuming m = k - T bad GaOTs. It is easy to see that

pre = () (1) () ®

15

-1
This probability is maximized in k = 1. Intuitively we can see this as follows: the term (,i) . (kT ;)
-1 —1
is symmetric with respect to the value k = ¢/2, as (i) . (,;‘F}) = (tfk) . (TtTZ-T) yk=1,...,t—1,

and it strictly decreases for 1 < k < ¢/2, with minimum in k = ¢/2; the term (TLHJ is less than 1

and it strictly decreases when k grows. So when we multiply the two terms we have that the above
probability for values of k in [1,...,¢/2[is bigger than the same probability for “symmetric” values
in Jt/2,...,t[. Finally, for k = ¢, Pr[Es]j;— = (TL_HL)t'T and, for big values of ¢, this probability is
less that Pr[FEa]jp—1.

By substituting the value k =1 in we get:

Pr[Es] = (TTHL)T ct - <7;>_1

() . 4(1=T) _ ology (1)) (1=T)+T (logy (T/(T+h))
T+h

IN

9 (logy (1)) (1-T)

Thus for T' > %gégt) we obtain Pr[Fy] < 27F.
O

We can replace the Sacrifice OT step in Ilpe, with the above Bucket-Cut-and-Choose Protocol
and, for an appropriate choice of the parameters, Theorem [2| (and relative proof) still holds.

Notice, how the value h has little effect on the final probability (we suppressed the effect in
the statement of the Lemma since it is so low). This means we can take h = 1 to obtain the most
efficient protocol, which means the amount of cut-and-choose performed is relatively low.

To measure the efficiency of this protocol we can consider the ratio r = % =T+ h: it
measures the number of GaOTs that we need to produce one actively secure OT quadruple. We
obtain the following table, all with A = 1 and an error probability of 2740,

rilT=r—h|t 40+1log, (©)
logz(t)

4 3 220 3

5 4 214 3.85

6 5 210 5

B Information Theoretic Tags for Dishonest Majority

In the online phase, parties work with representations with information-theoretic message authen-
tication codes. The key properties of the MACs is that are homomorphic, and hold enough entropy
to convince an honest party that local computation has been done correctly. The homomorphic
property allows us to postpone the check of the correctness in the MACs until the very end of the
circuit evaluation (where the circuit can be the one implicitly used in the preprocessing or the tar-
get online circuit). In [6] it was shown how to do the check on partially open values whilst keeping
secret the key, hence enabling support for reactive online evaluations, and this is the one we use.
See Protocol for details. The procedure utilizes an ideal functionality Fcomm for commitments
given in Figure [II} An implementation of Fcomm in the random oracle model can be found in the
Appendix of [6].

16

Protocol ITmaccheck

Usage: The parties have a set of [a;], sharings and public bits b;, for i = 1,..., ¢, and they wish to check that
a; = b, i.e. they want to check whether the public values are consistent with the shared MACs held by the
parties.

As input the system has sharings ({(a), {bi, (a:), (1(a:))}i=1). If the MAC values are correct then we have
that p(a;) = b; - «, for all i.
MACCheck({b1,...,b¢}):
1. Every party P; samples a seed s; and asks Fcomm to broadcast 7, = Comm(s;).

Every party P; calls Fcomm with Open(7;) and all parties obtain s; for all j.

Set s=51+ -+ Sn.

Parties sample a random vector x = PRFL*(0) € F*; note all parties obtain the same vector as they

have agreed on the seed s.

e

5. Each party computes the public value b = 22:1 xi - bi € F.

6. The parties locally compute the sharings (u(a)) = x1-{u(a1))+---+x¢-(u(ar)) and (o) = (u(a)) —b-{a).

7. Party i asks Fcomm to broadcast his share 7; = Comm(a;).

8. Every party calls Fcomm with Open(7;), and all parties obtain o; for all j.

9. If 01 + -+ + 0, # 0, the parties output @ and abort, otherwise they accept all b; as valid authenticated
bits.

Protocol 10 Method to Check MACs on Partially Opened Values

Game: Security of the MACCheck procedure assuming pseudorandom functions

1: The challenger samples random sharing (a) € F. It sets (u(a;)) = a;-(a) and sends bits ax, .. ., a; to the adversary.
2: The adversary sends back bits b1, ..., b;.

3: The challenger generates random values x1,...,x: € F and sends them to the adversary.

4: The adversary provides an error A € F.

5: Set b= >"'_, xi - bs, and sharings (u(a)) = >-'_; xi - (1(as)), and (o) = (u(a)) — b (a). The challenger checks

that o = A.

In order to understand the probability of an adversary being able to cheat during the execution
of Protocol the authors in [6] used a security game approach, which in turn was an adaptation
of the one in [7]. For completeness, we state here both the protocol and the security game.

The adversary wins the game if there is an ¢ € {1,...,¢} for which b; # a;, and the check goes
through. The second step in the game, where the adversary sends the b;’s, models the fact that
corrupted parties can choose to lie about their shares of values opened on the execution of the
parent protocol. The offset A models the fact that the adversary is allowed to introduce errors on
the MACs. A formal proof of Theorem |4 can be found in the Appendix of [76].

Theorem 4 ([6]). The protocol MACCheck is correct, i.e. it accepts if all the public values b;, and
the corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except with
probability W2| in case at least one value, or MAC, is not correctly computed.

C Security Proofs

C.1 Proof of the Bootstrap Step (Lemma 1)

We show that an environment Z corrupting up to n — 1 parties, playing with I/gyetstrap attached to
Fgit or with the simulator S attached to Fpootstrap, Sees transcripts that are identically distributed.
We assume authenticated communication between parties, that is, they are given access to a func-
tionality Far, which on input (m, s, s’) from Ps, it gives message m to Py and also leak it to Z. In

17

Commit: On input (Comm,v,4,7,) by P; or the adversary on his behalf (if P; is corrupt), where v is either in
a specific domain or L, it stores (v,4,7,) on a list and outputs (¢, 7,) to all parties and adversary.

Open: On input (Open,i,7,) by P; or the adversary on his behalf (if P; is corrupt), the ideal functionality
outputs (v,14,7y) to all parties and adversary. If (NoOpen, i, 7,) is given by the adversary, and P; is corrupt,
the functionality outputs (L,4,7,) to all parties.

The Functionality Fcomm

Figure 11 Ideal Commitments

a nutshell, the simulator runs a copy of IIggotstrap acting on behalf of honest parties. Let A be the
set of indices of corrupted parties, parties in A are indexed with j, and parties not in A with k.

We start describing the behaviour of §. The corruption is static, so we can distinguish the two

cases:

a) P

W

is honest.

. In step 1, for s € P, S engages in a run of Il share(2-Share, i, s,05) with Z, acting on behalf

of P; and honest Py: It sets an internal copy of F,git to generate representations [ri,j]g,_ on
J

dummy bits 7; ;. It answers queries from Z by sending him {v; ;, (5;- }jca. S also gives random
oy to Z, for k ¢ A, and gets back o} for j € A (acting as Far). It then sets 07 = o7 + J7.

. S sends {5;‘ }jea t0 FBootstrap a8 part of Initialize.

. In step 3, S acting as Far gives random ds to Z, Vs # i. Note that VJ’-‘ =v;j+d;- 5;-‘ is the

purported share that corrupt P; should come up with.

. S sends {V;}jeA to ~FBootstrap'

; is dishonest (Z specifies input bit x).

. In step 1, for s € P, S engages in a run of Il share(2-Share, i, s,05) with Z, acting on behalf

of honest Py. It sets an internal copy of F,gj; to generate representations [7’@5]3, on dummy
bits 7; ¢, for s # i. S answers queries from Z by sending him {r; s, pas}sep, and {v; j, 53-}]-@1.
Acting as Far, S gives random oy, to Z and it gets back o7. It then sets corrupt 67 = o7 +5§».
§ also extracts v} = v;; + (x+75j)- o7, for j € A, and p; = ZS# tis and v =x - 6.

. S sends {5; }iea t0 FBootstrap a8 part of Initialize.

. In step 3, S gets bits d} for s # i via Far, and for each k ¢ A sets the flag shift-Py to true

if d # rig + 2.
S sends {Shift'Pk}k¢A7 {V;}jeAa Hi, T, to fBootstrap-

Case honest P;. First, we show that IIggotstrap and Fgootstrap Output identically distributed values
if Z is honest-but-curious. In ITgootstrap, the parties obtains a sharing (d), (v), and party P; provides

18

input bit x and also obtains a field element u. Then, we have

S veta-d=(e+z-6)+(D (Vis+ds-65))+a -0,
scP S#£14

= (et @ 0)F (D ((iss + 70+ 8) + (w4 7i5) - 8))+ - 6,
s#£1

=(e+az- 51‘)4—(2(///1',5 +x-85))+x -6,
s#£i

=€+ Zﬂi,&

s#£i

For what Z sees during the execution, either o or ds, leaked by Far, look random since they
are paddings of 5 and = with fresh pads 0;, and r;,, given by F,git to P;. Now, denote by oy
the sum of the portion of é-shares that honest parties generated in Initialize of IIggotstrap, and
let 0% = > ;calo} + 8%). That is, 6% should match the sum of the corrupt portion of J-shares
generated in Initialize. Now, say P; inputs bit @ to IIgootstrap, then, shares {vy}r¢4 are such that
ZkgéA v, = ZjeA Vit (0% + 6m). In other words, honest vy, is consistent with both, §% (that the
adversary imposes via the o;-”s) and V;‘ (that the adversary is suppose to derive from the bits d;),
and these shares are extracted by S in steps 1 and 3 respectively.

Case dishonest P;. In this case, S sends random o) to Z on behalf of honest Pj,. This is
indistinguishable from what is sent in a real run, as Py is using a padding given by F,gj;. For what
ITgootstrap OUtputs to honest parties, we note again that, if Z gave correct dj, to S using Far, the
sum of the honest portion of v-shares is equal to >, 4(vij + (x +1ij) - 67) + - 6 + D2 4 Hags
which is extracted by & in step 1. And if Z does not send correct dj, namely dj = = +r;; + 1,
it would cause honest P, to compute shifted vy, + J3, which is exactly what S tells to Fgootstrap tO
output in step 3. O

C.2 Functionality and Proof of the Online Phase (Theorem 1)

We construct a simulator § such that an environment Z corrupting up to n — 1 parties cannot
distinguish whether it is playing with IIonjine attached with Fpyep and Fcomm, or with the simulator
S and Fonline- We start describing the behaviour of the simulator S:

— The simulation of the Initialize procedure is performed running a copy of Fprep on query Init.
All the data of the corrupted parties are known to the simulator. If Z inputs Abort to the copy
of Fprep, then the simulator does the same to Foniine and forward the output of Fopline to 2:
If Foniine outputs Abort, the simulator waits for input a set of corrupted parties from Z and
forward it to Fonline, and aborts; otherwise it uses the Z’s inputs as preprocessed data.

— In the Input stage the simulator does the following. For the honest parties this step is run
correctly with dummy inputs; it reads the inputs of corrupted parties specified by Z. Then the
simulator runs a copy of Share command of Fpep sending back sharings [z]?,, for i € A, where
A is the set of corrupted parties. When Z writes the outputs corresponding to the corrupted
parties, the simulator writes these values on the influence port of Fopjine as inputs.

— The procedure Add, Multiply are performed according to the protocol and the simulator calls
the respective procedure to Fonline-

19

Functionality Fonline

Initialize: On input (init) the functionality activates and waits for an input from the environment. Then it
does the following: if it receives Abort, it waits for the environment to input a set of corrupted parties,
outputs it to the parties, and aborts; otherwise it continues.

Input: On input (input, P;, varid, z) from P; and (input, P;, varid, ?) from all other parties, with varid a fresh
identifier, the functionality stores (varid,x).

Add: On command (add, varidi, varids, varids) from all parties (if varidi,varids are present in memory and
varids is not), the functionality retrieves (varidi,x), (varids,y) and stores (varids, z + y).

Multiply: On input (multiply, varidi, varidz, varids) from all parties (if varidi, varids are present in memory
and varids is not), the functionality retrieves (varidi,x), (varids,y) and stores (varids, - y).

Output: On input (output,varid) from all honest parties (if varid is present in memory), the functionality
retrieves (varid,y) and outputs it to the environment. The functionality waits for an input from the en-
vironment. If this input is Deliver then y is output to all players. Otherwise it outputs @ is output to all
players.

Figure 12 Secure Function Evaluation

— In the Output step, the functionality Fonine outputs 4 to the S. Now the simulator has to
provide shares of honest parties such that they are consistent with y. It knows an output value
y' computed using the dummy inputs for the honest parties, so it can select a random honest
player and modify its share adding y — ¢’ and modify the MAC adding a(y — y'), which is
possible for the simulator, since it knows «. After that the simulator opens y as in the protocol.
If y passes the check, the simulator sends Deliver to Fonine-

All the steps of the protocol are perfectly simulated: during the initialization the simulator acts
as Fprep; addition does not involve communication, while multiplication implies partial opening: in
the protocol, as well as in the simulation, this opening reveals uniform values. Also, MACs have
the same distributions in both the protocol and the simulation.

Finally, in the output stage, Z can see y and the shares from honest parties, which are uniform
and compatible with y and its MAC. Moreover it is a correct evaluation of the function on the inputs
provided by the parties in the input stage. The same happens in the protocol with overwhelming
probability, since the probability that a corrupted party is able to cheat in a MACCheck call is 2/|F|
(see Theorem). O

C.3 Proof of the Preprocessing (Theorem 2)

The description of the simulator, denoted by S, is provided in Figure [I3] Define Treq to be the
set of messages sent or received from corrupt parties together with the inputs and outputs of the
parties, in an execution of Ilprep, With Fpootstrap and Fcomm. Likewise define T74eq; for an execution
of Fprepwith S. To prove UC security, we see Z as a distinguisher between the two systems, and
our aim is to show that

P[0 < Z(Theat)] — Pr[0 < Z(Tiaeat)] — %| < negl().

For this to hold, it is enough to show that Z receives as inputs transcripts Tgreal, Trdea; that are
statistically indistinguishable. We argue as follows.

First note that transcripts generated on calls to Initialize and Share in both executions, are
perfectly indistinguishable, as they are nothing but calls to Fpgotstrap in the real case, with identical
behaviour of Share command in Fpyep, (and S only forwards queries to the Fpyep).

20

The Simulator of Ipep

The set of corrupt parties is denoted with A.

Initialize: S forwards to Fprep the query (Init) together with {a;}jca that Z does to Fgootstrap- Then samples
random o € F, and a set of sharings {ax}rga consistent with {a;}jea and «, but otherwise random. It
stores the complete sharing for later use.

Share: S forwards to Fprep the query (i,Share) of Z to Feootstrap- S also gets flags {shift-Pi}rga, and MAC
shares {y;}jea from Z. If i € A, Z specifies input bit z. S sends shift flags, MAC shares and (possibly)
input & to Fprep.-

GaOT:

1. In steps 1 and 3, when Z thinks is querying Fgootstrap, 011 commands Init and Share, respectively, S
discards all the values received from Z.

2. Steps 2, 4, 5 are local, and S does nothing.

3. Steps 6-7, are repeated four times, one for each symbol y € {e, z, zo,z1}. In each invocation S does:

— During the i-th query to Share command of Fgootstrap, S receives from Z MAC shares {v;(y;) € F}jea,
and flags {shift—Pkm}kgA; it also receives bit y;, and p;(y;) € F, if i € A.

— After the n queries are done, S sets the data of each representation [y;]% corresponding to honest
parties exactly as Fgootstrap would do. Thus, if ¢ ¢ A, S samples y; € F2, and ui(y;) € F at random,
otherwise uses Z’s choice. It sets v(y;) = wi(yi) + yi - o and prepares sharings (v(y;)), where the
honest shares v (y;) are consistent with Z’s shares. Finally, S shifts honest share vk (y;) = v}, (i) +ax
if shift-(Pk)(i> is true. The honest data on the joint representation [y] is generated as one expects,
where y = >, 5 ¥i-

4. The above steps are repeated at least x + 1 times, as in Iprep.

5. Steps 8-12 are performed as in ITprp, where S acts on behalf of honest parties using the dummy quadru-
ples generated in the executions of step 3. It also answers queries from Z to Comm and Open commands
of Fcomm. Openings on behalf of honest parties are set to random seed values.

6. If some iteration in the previous step result in abort, S inputs Abort to Fprep. Otherwise, inputs Continue,
and for each bit y € {e, z, zo, z1} of the checked quadruple, S discards the shift flags, and gives bit shares
{yj}ica, and MAC shares {p;(y)};jca derived in step 3, to Fprep.

Figure 13 The Simulator of Ilpep

We turn now to GaOT command. Let OToue = {[€], [2], [xo], [z1]} be the quadruple that
honest parties are hoping to output if no abort occurs. Define the “multiplicative relation” m =
z+x9+ e (xo+ x1), and say that OTeyt is bad if m = 1. Thus, bad quadruples are those that
implement the multiplication gate incorrectly. Additionally, say that quadruple is noauth if Z sent
to FBootstrap () flag shift-Py set to true for at least one honest party Pj, during the execution of
AuthenticateOT.

Indistinguishability of transcripts. First notice that Treq and Trgeq truncated up to the point
where the parties output the quadruple are perfectly indistinguishable (steps 12 and 5 respectively):
looking at Figure we see that S sacrifices quadruples exactly as Ilprp. More precisely, step 5
of § mimics steps 8-12 of Ilprp. Moreover, S uses quadruples generated in step 3, and honest
parties use quadruples generated in steps 6-7. These quadruples are identically distributed because
S proceeds exactly as Fpootstrap does. Also, notice that in Ilpye, the output quadruples are those that
parties choose to authenticate, and hence S skips the simulation of ShareOT (besides accepting
Z’s queries) since no outgoing communication from either FBootstrap OT party-to-party is done.

Output indistinguishability. If Z is honest-but-curious, then a run with Ilp., outputs a quadru-
ple that is neither bad nor noauth. This follows from the correctness of ShareOT and Authenti-
cateOT steps. Also, in step 3, S is able to extract the portion of shares of OTyy corresponding to
corrupt parties, and give them to Fprep. We therefore conclude that the outputs in both worlds are

21

identically distributed. On the other hand, if Z misbehaves in an arbitrary way, it suffices to show
the following to conclude the proof:

OTout is bad V noauth = Ipe, outputs @ with probability 1 — negl(x).

We argue as follows: the sacrifice step is run by the honest parties. Therein, in the ith iteration,
a fresh check quadruple OTj; is taken and honest parties reveal a linear combination on their portion
of the shares of OT,,: and OT;, that open to p;, ¢; and ¢;. If Z started with input shares that render
an OT,yt that is noauth, or chooses to reveal something different, say wlog, the first opening gives
wrong p; Then he managed to either pass IIpaccheck on the open values with p; not authenticated,
or he managed to authenticate p; and feed it to II\accheck- The former happens with probability %

by Theorem (assuming PRFE(.)), and the latter is equivalent to have Z holding the field element
WH+Df o = E%A(uk(pf) +p! - o), and this happens with probability Tll’ since py +p; - ap is
only derivable from the private transcripts of honest parties (thus, Z must guess it). We conclude
that, if IIpmaccheck passes, then Z misbehaves in the sacrifice step, or it inputs shares that render
an OTyy: that is noauth, with probability bounded by % = 27%*t1 Now, it is easy to see that if Z
follows the sacrifice step, then we can write ¢; = m - t; +m}, where m/, is the multiplicative relation
of OT;. Therefore, if Z misbehaved in any previous step, yielding bad OTgyt, then ¢; = t; + m).
In this way if the sacrifice step passes, we can write t = m’, where t is the challenge vector. This
vector is randomly sampled from F%§, assuming PRFE2%(.), thus the probability of having t fixed to
m’ is 27°%.

Summing up, bad or noauth output quadruples will pass both tests with probability at most
2%+ This concludes the proof of the theorem. O

22

	Dishonest Majority Multi-Party Computation for Binary Circuits

