
Dishonest Majority Multi-Party Computation
for Binary Circuits

Enrique Larraia, Emmanuela Orsini, and Nigel P. Smart

Dept. Computer Science, University of Bristol, United Kingdom
Enrique.LarraiadeVega@bristol.ac.uk,Emmanuela.Orsini@bristol.ac.uk,

nigel@cs.bris.ac.uk

Abstract. We extend the Tiny-OT two party protocol of Nielsen et
al (CRYPTO 2012) to the case of n parties in the dishonest majority
setting. This is done by presenting a novel way of transferring pairwise
authentications into global authentications. As a by product we obtain a
more efficient manner of producing globally authenticated shares, in the
random oracle model, which in turn leads to a more efficient two party
protocol than that of Nielsen et al.

1 Introduction

In recent years actively secure MPC has moved from a theoretical subject into
one which is becoming more practical. In the variants of multi-party computa-
tion which are based on secret sharing the major performance improvement has
come from the technique of authenticating the shared data and/or the shares
themselves using information theoretic message authentication codes (MACs).
This idea has been used in a number of works: In the case of two-party MPC for
binary circuits in [14], for n-party dishonest majority MPC for arithmetic cir-
cuits over a “largish” finite field [4,7], and for n-party dishonest majority MPC
over binary circuits [8]. All of these protocols are in the pre-processing model,
in which the parties first engage in a function and input independent offline
phase. The offline phase produces various pieces of data, often Beaver style [3]
“multiplication triples”, which are then consumed in the online phase when the
function is determined and evaluated.

In the case of the protocol of [14], called Tiny-OT in what follows, the au-
thors use the technique of applying information theoretic MACs to the oblivious
transfer (OT) based GMW protocol [10] in the two party setting. In this pro-
tocol the offline phase consists of producing a set of pre-processed random OTs
which have been authenticated. The offline phase is then executed efficiently
using a variant of the OT extension protocol of [12]. For a detailed discussion on
OT extension see [2,12,14]. In this work we shall take OT extension as a given
sub-procedure.

c©IACR 2014, CRYPTO 2014. This article is the final version submitted by the
author(s) to the IACR and to Springer-Verlag on June 2nd 2014.



One can think of the Tiny-OT protocol as applying the authentication tech-
nique of [4] to the two party, binary circuit case, with a pre-processing which
is based on OT as opposed to semi-homomorphic encryption. For two party
protocols over binary circuits practical experiments show that Tiny-OT far out-
performs other protocols, such as those based on Yao’s garbled circuit technique.
This is because of the performance of the offline phase of the Tiny-OT protocol.
Thus a natural question is to ask, whether one can extend the Tiny-OT protocol
to the n-party setting for binary circuits.

Results and Techniques. In this paper we mainly address ourselves to the
above question, i.e. how can we generalize the two-party protocol from [14] to
the n-party setting?

We first describe what are the key technical difficulties we need to overcome.
The Tiny-OT protocol at its heart has a method for authenticating random
bits via pairwise MACs, which itself is based on an efficient protocol for OT-
extension. In [14] this protocol is called aBit. Our aim is to use this efficient two-
party process as a black-box. Unfortunately, if we extend this procedure naively
to the three party case, we would obtain (for example) that parties P1 and P2

could execute the protocol so that P1 obtains a random bit and a MAC, whilst
P2 obtains a key for the MAC used to authenticate the random bit. However,
party P3 obtains no authentication on the random bit obtained by P1, nor does
it obtain any information as to the MAC or the key.

To overcome this difficulty, we present a protocol in which we fix an unknown
global random key and where each party holds a share of this key. Then by
executing the pairwise aBit protocol, we are able to obtain a secret shared value,
as well as a shared MAC, by all n-parties. This resulting MAC is identical to the
MAC used in the SPDZ protocol from [6]. This allows us to obtain authenticated
random shares, and in addition to permit parties to enter their inputs into the
MPC protocol.

The online phase will then follow similarly to [6], if we can realize a protocol
to produce “multiplication triples”. In [14] one can obtain such triples by utiliz-
ing a complex method to produce authenticated random OTs and authenticated
random ANDs (called aOTs and aANDs)1. We notice that our method for ob-
taining authenticated bits also enables us to obtain a form of authenticated OTs
in a relatively trivial manner, and such authenticated OTs can be used directly
to implement a multiplication gate in the online phase.

Our contribution is twofold. First, we generalize the two-party Tiny-OT pro-
tocol to the n-party setting, using a novel technique for authentication of secret
shared bits, and completely new offline and online phases. Thus we are able to
dispense with the protocols to generate aOTs and aANDs from [14], obtaining
a simple and efficient online protocol. Second, and as a by product, we obtain
a more efficient protocol than the original Tiny-OT protocol, in the two party

1 In fact the paper [14] does not produce such multiplication triples, but they follow
immediately from the presentation in the paper and would result in a more efficient
online phase than that described in [14]



setting when one measures efficiency in terms of the number of aBit’s needed
per multiplication gate. The security of our protocols are proven in the stan-
dard universal composability (UC) framework [5] against a malicious adversary
and static corruption of parties. The definitional properties of an MPC protocol
are implicit in this framework: output indistinguishability of the ideal and the
real process gives correctness, and the fact that any information gathered by a
real adversary is obtainable by an ideal adversary gives privacy. Although not
explicitely stated, we work with the random oracle model, as we need to im-
plement commitments to check the correctness of the MACs, more precisely, we
work with programmable random oracles. See the Appendix of [6] for details.

Related Work. For the case of n party protocols, where n > 2, there are
three main techniques using such MACs. In [4] each share of a given secret is
authenticated by pairwise MACs, i.e. if party Pi holds a share ai, then it will
also hold a MAC Mi,j for every j 6= i, and party Pj will hold a key Ki,j . Then,
when the value ai is made public, party Pi also reveals the n − 1 MAC values,
that are then checked by other parties using their private keys Ki,j . Note that
each pair of parties holds a separate key/MAC for each share value. In [7] the
authors obtain a more efficient online protocol by replacing the MACs from [4]
with global MACs which authenticate the shared values a, as opposed to the
shares themselves. The authentication is also done with respect to a fixed global
MAC key (and not pairwise and data dependent). This method was improved
in [6], where it is shown how to verify these global MACs without revealing the
secret global key. In [8] the authors adapt the technique from [7] for the case
of small finite fields, in a way which allows one to authenticate multiple field
elements at the same time, without requiring multiple MACs. This is performed
using a novel application of ideas from coding theory, and results in a reduced
overhead for the online phase.

Future Directions. We end this introduction by describing two possible ex-
tensions to our work. Firstly, each bit in our protocol is authenticated by an
element in a finite field F2κ . Whilst such values are never transmitted in our
online phase due to our MACCheck protocol, they do provide an overhead in the
computation. In [8] the authors show how to reduce this overhead using coding
theory techniques. It would be interesting to see how such techniques could be
applied to our protocol, and what advantage if any they would bring.

Secondly, our protocol requires n · (n − 1)/2 executions of the aBit protocol
from [14]. Each pairwise invocation requires the execution of an OT-extension
protocol, and hence we require O(n2) such OT-channels. In [11], in the context
of traditional MPC protocols, the authors present techniques and situations in
which the number of OT-channels can be reduced toO(n). It would be interesting
to see how such techniques could be applied in practice to the protocol described
in this paper.



2 Notation

In this section we settle the notation used throughout the paper. We use κ to
denote the security parameter. We let negl(κ) denote some unspecified function
f(κ), such that f = o(κ−c) for every fixed constant c, saying that such a function
is negligible in κ. We say that a probability is overwhelming in κ if it is 1−negl(κ).

We consider the sets {0, 1} and Fκ2 endowed with the structure of the fields
F2 and F2κ , respectively. Let F = F2κ , we will denote elements in F with greek
letters and elements in F2 with roman letters.

We will additively secret share bits and elements in F, among a set of
parties P = {P1, . . . , Pn}, and sometimes abuse notation identifying subsets
I ⊆ {1, . . . , n} with the subset of parties indexed by i ∈ I. We write 〈a〉I if a
is shared amongst the set I = {i1, . . . , it} with party Pij holding a value aij ,
such that

∑
ij∈I aij = a. Also, if an element x ∈ F2 (resp. β ∈ F) is additively

shared among all parties we write 〈x〉 (resp. 〈β〉). We adopt the convention that
if a ∈ F2 (resp. β ∈ F) then the shares ai ∈ F2 (resp. βi ∈ F).

(Linear) arithmetic on the 〈·〉I sharings can be performed as follows. Given
two sharings 〈x〉Ix = {xij}ij∈Ix and 〈y〉Iy = {yij}ij∈Iy we can compute the
following linear operations

a · 〈x〉Ix = {a · xij}ij∈Ix ,
a+ 〈x〉Ix = {a+ xi1} ∪ {xij}ij∈Ix\{i1},

〈x〉Ix + 〈y〉Iy = 〈x+ y〉Ix∪Iy

= {xij}ij∈Ix\Iy ∪ {yij}ij∈Iy\Ix ∪ {xij + yij}ij∈Ix∩Iy .

Our protocols will make use of pseudo-random functions, which we will de-
note by PRFX,ts (·) where for a key s and input m ∈ {0, 1}∗ the pseudo-random
function is defined by PRFX,ts (m) ∈ Xt, where X is some set and t is a non-
negative integer.

Authentication of Secret Shared Values. As described in the introduction
the literature gives two ways to authenticate a secret globally held by a system
of parties, one is to authenticate the shares of each party, as in [4], the other
is to authenticate the secret itself, as in [7]. In addition we can also have au-
thentication in a pairwise manner, as in [4,14], or in a global manner, as in [7].
Both combinations of these variants can be applied, but each implies important
practical differences, e.g., the total amount of data each party needs to store and
how checking of the MACs is performed. In this work we will use a combination
of different techniques, indeed the main technical trick is a method to pass from
the technique used in [14] to the technique used in [7].

Our main technique for authentication of secret shared bits is applied by plac-
ing an information theoretic tag (MAC) on the shared bit x. The authenticating
key is a random line in F, and the MAC on x is its corresponding line point,
thus, the linear equation µδ(x) = νδ(x)+x ·δ holds, for some µδ(x), νδ(x), δ ∈ F.



We will use these lines in various operations2, for various values of δ. In partic-
ular, there will be a special value of δ, which we denote by α and assume to be
〈α〉P shared, which represents the global key for our online MPC protocol. This
will be the same key for every bit that needs to be authenticated. It will turn
out that for the key α we always have να(x) = 0. By abuse of notation we will
sometimes refer to a general δ also as a global key, and then the corresponding
νδ(x), is called the local key.

Distinguishing between parties, say I, that can reconstruct bits (together
with the line point), and those parties, say J , that can reconstruct the line gives
a natural generalization of both ways to authenticate, and it also allows to move
easily from one to another. We write [x]Iδ,J if there exist µδ(x), νδ(x) ∈ F such
that:

µδ(x) = νδ(x) + x · δ,

where we have that x and µδ(x) are 〈·〉I shared, and νδ(x) and δ are 〈·〉J shared,
i.e. there are values xi, µi, and νj , δj , such that

x =
∑
i∈I

xi, µδ(x) =
∑
i∈I

µi, νδ(x) =
∑
j∈J

νj , δ =
∑
j∈J

δj .

Notice that µδ(x) and νδ(x) depend on δ and x: we can fix δ and so obtain
key-consistent representations of bits, or we can fix x and obtain different key-
dependant representations for the same bit x. To ease the reading, we drop the
sub-index J if J = P, and, also, the dependence on δ and x when it is clear from
the context. We note that in the case of Ix = Jx then we can assume νj = 0.

When we take the fixed global key α and we have Ix = Jx = P, we simplify
notation and write JxK = [x]Pα,P . By our comment above we can, in this situation,

set νj = 0 3, this means that a JxK sharing is given by two sharings
(
〈x〉P , 〈µ〉P

)
.

Notice that the J·K-representation of a bit x implies that x is authenticated with
the global key α and that it is 〈·〉-shared, i.e. its value is actually unknown to
the parties.

This notation does not quite align with the previous secret sharing schemes
used in the literature, but it is useful for our purposes. For example, with this
notation the MAC scheme of [4] is one where each data element x is shared via
[xi]

i
αj ,j

sharings. Thus the data is shared via a 〈x〉 sharing and the authenti-

cation is performed via [xi]
i
αj ,j

sharings, i.e. we are using two sharing schemes

simultaneously. In [7] the data is shared via our JxK notation, except that the
MAC key value ν is set equal to ν = ν′/α, where ν′ being a public value, as
opposed to a shared value. Our JxK sharing is however identical to that used in
[6], bar the differences in the underlying finite fields.

Looking ahead we say that a bit JxK is partially opened if 〈x〉 is opened, i.e.
the parties reveal the shares of x, but not the shares of the MAC value µα(x).

2 For example, we will also use lines to generate OT-tuples, i.e. quadruples of authen-
ticated bits which satisfy the algebraic equation for a random OT.

3 Otherwise one can subtract νj from µj , before setting νj to zero.



Arithmetic on JxK Shared Values. Given two representations [x]Ixδ,Jx =(
〈x〉Ix , 〈µδ(x)〉Ix , 〈νδ(x)〉Jx

)
and [y]

Iy
δ,Jy =

(
〈y〉Iy , 〈µδ(y)〉Iy , 〈νδ(y)〉Jy

)
, under same

the δ, the parties can locally compute [x+y]
Ix∪Iy
δ,Jx∪Jy as

(
〈x〉Ix+〈y〉Iy , 〈µδ(x)〉Ix+

〈µδ(y)〉Iy , 〈νδ(x)〉Jx + 〈νδ(y)〉Jy
)

using the arithmetic on 〈·〉I sharings above.

Let JxK =
(
〈x〉, 〈µ(x)〉

)
and JyK =

(
〈y〉, 〈µ(y)〉

)
be two different authenticated

bits. Since our sharings are linear, as well as the MACs, it is easy to see that the
parties can locally perform linear operations:

JxK + JyK =
(
〈x〉+ 〈y〉, 〈µ(x)〉+ 〈µ(y)〉

)
= Jx+ yK

a · JxK =
(
a · 〈x〉, a · 〈µ(x)〉

)
= Ja · xK,

a+ JxK =
(
a+ 〈x〉, 〈µ(a+ x)〉

)
= Ja+ xK.

where 〈µ(a+ x)〉 is the sharing obtained by each party i ∈ P holding the value
αi · a+ µi(x).

This means that the only remaining question to enable MPC on J·K-shared
values is how to perform multiplication and how to generate the J·K-shared values
in the first place. Note, that a party Pi that wishes to enter a value into the MPC
computation is wanting to obtain a [x]iα,P sharing of its input value x, and that
this is a JxK-representation if we set xi = x and xj = 0 for j 6= i.

3 MPC Protocol for Binary Circuit

We start presenting a high level view of the protocols that allow us to per-
form multi-party computation for binary circuits. We assume synchronous com-
munication and authentic point-to-point channels. Our protocol is in the pre-
processing model in which we allow a function (and input) independent pre-
processing, or offline, phase which produces correlated randomness. This enables
a lightweight online phase, that does not need public-key machinery.

Online Eval.
Sec. 5

Preprocess
Sec 6

Thm. 1

Bootstrap
Sec. 4

Thm. 2

FaBit
Lemma 1 FOT

[14]

FComm , PRFX,ts

Figure 1 Overview of Protocols Enabling
MPC

In the following sections we will
describe a protocol, ΠOnline, imple-
menting the actual function eval-
uation in the (FComm,FPrep)-hybrid
model; a protocol, ΠPrep, imple-
menting the offline phase in the
(FComm,FBootstrap)-hybrid model; and
a novel way to authenticate bits to
more than two parties, which takes
as starting point the aBit command
of [14], and which we model with the
FBootstrap functionality.

The online phase implements the
standard functionality FOnline

It is based on the J·K-representation
of bits described in Section 2, and it



Functionality FOnline

Initialize: On input (init) the functionality activates and waits for an input from the environ-
ment. Then it does the following: if it receives Abort, it waits for the environment to input
a set of corrupted parties, outputs it to the parties, and aborts; otherwise it continues.

Input: On input (input, Pi, varid, x) from Pi and (input, Pi, varid, ?) from all other parties,
with varid a fresh identifier, the functionality stores (varid, x).

Add: On command (add, varid1, varid2, varid3) from all parties (if varid1, varid2 are present
in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y) and stores
(varid3, x+ y).

Multiply: On input (multiply, varid1, varid2, varid3) from all parties (if varid1, varid2 are
present in memory and varid3 is not), the functionality retrieves (varid1, x), (varid2, y)
and stores (varid3, x · y).

Output: On input (output, varid) from all honest parties (if varid is present in memory), the
functionality retrieves (varid, y) and outputs it to the environment. The functionality waits
for an input from the environment. If this input is Deliver then y is output to all players.
Otherwise it outputs ∅ is output to all players.

Figure 2 Secure Function Evaluation

is very similar to the online phase of
other MPC protocols [6,7,8,14]. We
compute a function represented as a
binary circuit, where private inputs
are additively shared among the parties, and correctness is guaranteed by using
additive secret sharings of linear MACs with global secret key α. For simplicity
we assume one single input for each party and one public output. The online
protocol, presented in Section 5, uses the linearity of the J·K-sharings to perform
additions and scalar multiplications locally. For general multiplications we need
utilize data produced during the offline phase, in particular the output of the
GaOT (Global authenticated OT) command of Section 6. Refer to Figure 4 for a
complete description of the functionality for preprocessing data. The aforemen-
tioned command GaOT builds upon ΠBootstrap protocol, described in Section 4,
to generate random authenticated OTs and, as we noted above, we skip the less
efficient procedures of [14].

Notice that, as in [6,7,8,14], during the online computation of the circuit we
do not know if we are working with the correct values, since we do not check
the MACs of partially opened values during the computation. This check is
postponed to the end of the protocol, where we call the MACCheck procedure as
in [6] (see Protocol 3). Note this procedure enables the checking of multiple sets
of values partially opened during the computation without revealing the global
secret key α, thus our MPC protocol can implement reactive functionalities.

The MAC checking protocol is called in both the offline and the online phases,
it requires access to an ideal functionality for commitments FComm in the random
oracle model (see full version), and it is not intended to implement any func-
tionality. Also, note that the algebraic correctness of the output of the GaOT
command in the offline phase is checked in the offline phase and not in the online
phase.



Protocol ΠMACCheck

Usage: The parties have a set of JaiK, sharings and public bits bi, for i = 1, . . . , t, and they
wish to check that ai = bi, i.e. they want to check whether the public values are consistent
with the shared MACs held by the parties.
As input the system has sharings

(
〈α〉, {bi, 〈ai〉, 〈µ(ai)〉}ti=1

)
. If the MAC values are correct

then we have that µ(ai) = bi · α, for all i.
MACCheck({b1, . . . , bt}):

1. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j.
3. Set s = s1 + · · ·+ sn.
4. Parties sample a random vector χ = PRFF,t

s (0) ∈ Ft; note all parties obtain the same
vector as they have agreed on the seed s.

5. Each party computes the public value b =
∑t
i=1 χi · bi ∈ F.

6. The parties locally compute the sharings 〈µ(a)〉 = χ1 · 〈µ(a1)〉+ · · ·+χt · 〈µ(at)〉 and
〈σ〉 = 〈µ(a)〉 − b · 〈α〉.

7. Party i asks FComm to broadcast his share τ ′i = Comm(σi).
8. Every party calls FComm with Open(τ ′i), and all parties obtain σj for all j.
9. If σ1 + · · · + σn 6= 0, the parties output ∅ and abort, otherwise they accept all bi as

valid authenticated bits.

Protocol 3 Method to Check MACs on Partially Opened Values

The Functionality FPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality samples random αi for each
i 6∈ A. It waits for the environment to input corrupt shares {αj}j∈A If any j ∈ A outputs
abort, then the functionality aborts and returns the set of j ∈ A which returned abort.
Otherwise the functionality sets α = α1 + · · ·+ αn, and outputs αk to honest Pk.

Share: On input (i, x, Share) from party Pi, and (i, Share) from all other parties. The function-
ality produces an authentication JxK = (〈x〉, 〈µ〉). It sets xj = 0 if j 6= i. Also, the MAC
might be shifted by a value ∆H , i.e. µ = x ·α+∆H , where ∆H is an F2-linear combination
of {αk}k/∈A not known to the environment. It proceeds as follows:

- Set µ = x · α. If i ∈ A, the environment specifies x.
- Wait for the environment to specify MAC shares {µj}j∈A, and generate 〈µ〉 where

the portion of honest shares is consistent with the adversarial shares, but otherwise
random.

- Set xk = 0 if k 6= i, k 6∈ A. If the environment inputs shift-Pk set µk = µk + αk.
- Output {xk, µk} to honest Pk

GaOT: On input (GaOT) from the parties, the functionality waits for the environment to input
“Abort” or “Continue”. If it is told to abort, it outputs the special symbol ∅ to all parties.
Otherwise it samples three random bits e, x0, x1, and sets z = xe. Then, for every bit
y ∈ {e, z, x0, x1} the functionality produces an authentication JyK = (〈y〉, 〈µ(y)〉), but let
the environment to specify shares for corrupt Pj . It proceeds as follows:

- Set µ(y) = y · α.
- Wait for the environment to input bit shares {yj}j∈A, and MAC shares {µj}j∈A,

and creates sharings 〈y〉, 〈µ〉 where the portion of honest shares is consistent with
adversarial shares.

- Output {yk, µk} to honest Pk.

Figure 4 Ideal Preprocessing

4 From Tiny-OT aBit’s to J·K-Sharings

At the heart of our MPC protocol is a method to translate from the two party
aBits produced by the offline phase of the Tiny-OT protocol in [14], to the
J·K-sharings under some global shared key α from Section 2. We note that the
protocol to produce aBit’s is the only sub-protocol from [14] which we use in
this paper, and thus the more complex protocols in [14] for producing aOT’s and



aAND’s we discard. We first deal with the underlying two party sub-protocols,
and then we use these to define our multi-party protocols.

4.1 Two-party [·]-representations.

Thus throughout we assume access to an ideal functionality FaBit, given in Fig-
ure 5, that produces a substantially unbounded number of (oblivious) authenti-
cated random bits for two parties, under some randomly chosen key δj known by
one of the parties. This functionality can be implemented assuming a function-
ality FOT and using OT-extension techniques as in [14]. For ease of exposition
we present the functionality as returning single bits for single requests. In prac-
tice the functionality is implemented via OT-extension and so one is able to
obtain many aBits on each invocation of the functionality, for a given value of
δj . Adapting our protocols to deal with multiple aBit production for a single
random fixed δj chosen by the functionality is left to the reader4.

The Functionality FaBit

Authenticated Bit(Pi, Pj): This functionality selects a random δj ∈ F and a random bit r,

and returns a sharing [r]iδj ,j
.

- On input (aBit, i, j) from honest Pi and Pj , the functionality samples a random δj and

a random sharing [r]iδj ,j
= (r, µi, νj), such that µi = νj+r ·δj . It then outputs {r, µi}

to Pi and {δj , νj} to Pj .
- If Pi is corrupted, the functionality waits for the environment to input the pair {r, µi}

and it sets νj = µi + r · δj for some randomly chosen δj , and {δj , νj} is returned to
party Pj .

- If Pj is corrupted, the functionality waits for the environment to input the pair {δj , νj},
r is selected at random and µi is set to be νj − r · δj . The pair {r, µi} is returned to
party Pi.

Figure 5 Two-party Bit Authentication [14]

Using the protocol Π2-Share, described in Protocol 6, we can obtain a “two-
party” representation [r]iδj ,j of a random bit known to Pi, under the key chosen
by Pj . This extension is needed because we need to adapt the aBit command
to the multi-party case. For example, if two parties, Pi and Pj , run the com-
mand (aBit, i, j), they obtain a random [r]iδ′j ,j

, with respect to δ′j ; when Pj calls

(aBit, k, j) with a different party Pk, k 6= j, then they obtain a random [s]k
δ̃j ,j

,

with a different δ̃j . Thus allowing the parties to select their own values of δj
means that we can obtain key-consistent [·]-representations, in which each party
Pj uses the same fixed δj . The security of the protocol Π2-Share follows from the
security of the original aBit in [14]: intuitively the changes required to obtain a

4 Note, that in this situation we (say) produce 1, 000, 000 aBits per invocation with a
fixed random value of δj , then on the next invocation we obtain another 1, 000, 000
aBits but with a new random δj value. This is not explicit in the ideal functionality
description of aBit presented in [14], but is implied by their protocol.



The Subprotocol Π2-Share

2Share(i, j; δj): On input (2-Share, i, j, δj), where Pj has δj ∈ F as input, this command

produces a [r]iδj ,j
sharing of a random bit r.

1. Pi and Pj call FaBit on input (aBit, i, j): The box samples a random δ′j and then
produces

[r]
i
δ′
j
,j = (r, µ

′
i, νj),

such that µ′i = νj + r · δ′j , and outputs {r, µ′i} to Pi and {δ′j , νj} to Pj .

2. Pj computes σj = δj + δ′j and sends σj to party Pi.

3. Pi sets µi = µ′i + r · σj = νj + r · δj .

Protocol 6 Switching to Fixed δ-shares

consistent [·]-representation do not compromise security, because δj is one-time-
padded with the random δ′j produced by FaBit. See [13] for details. Notice that
the command 2-Share takes δj as the input of Pj . In particular the value δj may
not be used to authenticate bits. Thus we could use the protocol Π2-Share to ob-
tain a sharing of the scalar product r ·δj , where Pi obtains the random bit r, and
the other party decides what field element δj ∈ F gets multiplied in. Then party
Pi obtains the result µi masked by a one-time pad value νj known only to Pj .
This application of the subprotocol Π2-Share is going to be crucial in our method
to obtain authenticated OT’s in our pre-processing phase. As a consequence we
do not always see δj as an authentication key.

4.2 Multiparty [·]-representation

The Functionality FBootstrap

Let A be the indices of corrupt parties.

Initialize: On input (Init) from honest parties, the functionality activates and waits for the
environment to input a set of shares {δj}j∈A. It samples random δ ∈ F and prepares
sharing 〈δ〉, where the portions of honest shares are consistent with the adversarial shares,
but otherwise random. If any j ∈ A outputs abort, then the functionality aborts and returns
the set of j ∈ A which returned abort, otherwise it continues.

Share: On input (i, x, Share) from party Pi, and (i, Share) from all other parties. The function-

ality produces a representation [x]iδ = (〈x〉i, 〈µ〉i, 〈ν〉P), except that ν might be shifted by
a value ∆H , i.e. µ = x · δ + ν + ∆H , where ∆H is an F2-linear combination of {δk}k/∈A,
which is not known to the environment. It proceeds as follows:

- It samples random µ ∈ F. If i ∈ A waits for the environment to input {µ, x}.
- The functionality sets ν = x · δ + µ.
- The functionality waits for the environment to input shares {νj}j∈A, and prepares

sharing 〈ν〉P consistent with the adversarial shares. The portion of honest shares are
otherwise random.

- If the environment inputs shift-Pk, the functionality sets νk = νk + δk, k 6∈ A.
- It outputs {νk, δk} to honest Pk.

Figure 7 Ideal Generation of [·]iδ,P -representations

Here we show how to generalize the Π2-Share protocol in order to obtain an
n-party representation [x]iδ of a bit x chosen by Pi. This is what the functionality



FBootstrap models in Figure 7. It bootstraps from a two party authentication to
a multi-party authentication of the shared bit. As before for Π2-Share, we can see
the outputs of FBootstrap as the shares of scalar products x ·δ, where one party Pi
chooses the scalar (bit) x, but now the field element δ is unknown and additively
shared among all the parties. An interesting feature of this functionality is that
the adversary can only influence honest outputs in a small way, that we model
with the shift-Pk flag. Additionally, we can not prevent corrupt parties from out-
putting what they wish, this is reflected on the fact that the functionality leaves
their outputs undefined. The main difference between this functionality and the
equivalent in the SPDZ protocol [7], is that in [7] the functionality takes as in-
put an offset known to the adversary who adjusts his shares to obtain an invalid
MAC value by this linear amount. We do not model this in our functionality,
instead we allow the adversary to choose his shares arbitrarily (which obtains
the same effect). However, in our protocol the adversary can also introduce an
unknown (to the adversary) error into the MAC values. In particular the adver-
sary can decide whether to shift honest shares, but he cannot choose the shifting,
namely, an element on the F2-span of secrets δk of honest parties Pk. Later, we
manage to determine whether there are any errors (both adversarially known
and unknown ones) using an information-theoretic MACCheck procedure that
we borrow from [6]. See full version for details.

The protocol ΠBootstrap, described in Protocol 8, realizes the ideal functional-
ity FBootstrap in a hybrid model in which we are given access to FaBit. It permits
to obtain [x]iδ and it is implemented by sending to each Pj , j 6= i, a mask of x
using the random bits given by 2-Share(i, j; δj) as paddings, and then allowing
Pj to adjust his share to the right value. In total the protocol needs to execute
n− 1 aBit per scalar product.

The Protocol ΠBootstrap

Initialize: Each party Pi samples a random δi. Define δ = δ1 + · · ·+ δn.
Share: On input (i, x, Share) from Pi and (i, Share) from all other parties, do:

1. For each j 6= i, call Π2-Share with (2-Share, i, j, δj). Party Pi obtains {ri,j , µi,j}j 6=i
whilst party Pj obtains νi,j , such that µi,j = νi,j + ri,j · δj .

2. Party Pi samples ε at random and sets µi = ε+
∑
j 6=i µi,j and νi = ε+ x · δi.

3. Party Pi sends dj = x+ ri,j to party Pj for all j 6= i.
4. For j 6= i, Pj sets νj = νi,j + dj · δj .
5. Output {µi, νi} to Pi and {νj} to party Pj , for j 6= i. The system now has [x]iδ.

Protocol 8 Transforming Two-party Representations onto [·]iδ,P -representations

Lemma 1. In the FaBit-hybrid model, the protocol ΠBootstrap implements FBootstrap

with perfect security against any static adversary corrupting up to n− 1 parties.

Proof. See full version.



5 The Online Phase

In this section we present the protocol ΠOnline, described in Protocol 9, which
implements the online functionality in the (FComm,FPrep)-hybrid model. The
basic idea behind our online phase is to use the set of GaOTs output in the offline
phase to evaluate each multiplication gate. To see how this is done, consider that
we want to multiply two authenticated bits JaK, JbK. The parties take a GaOT
tuple {JeK, JzK, Jx0K, Jx1K} off the pre-computed list. Recall we have for such
tuples z = xe. It is then relatively straightforward to compute authenticated
shares of JcK, where c = a · b, as follows: First, the parties partially open JfK =
JbK+JeK and JgK = Jx0K+Jx1K+JaK, and then set JcK = Jx0K+f ·JaK+g ·JeK+JzK.
To see why this is correct, note that since, xe + x0 + e · (x0 + x1) = 0, we have
c = x0 + (b+ e) · a+ (x0 + x1 + a) · e+ z = a · b.

Protocol ΠOnline

Initialize: The parties call Init on the FPrep functionality to get the shares αi of the global
MAC key α. If FPrep aborts outputting a set of corrupted parties, then the protocol returns
this subset of A. Otherwise the operations specified below are performed according to the
circuit.

Input: To share his input bit x, Pi calls FPrep with input (i, x, Share) and party Pj for i 6= j
calls FPrep with input (i, Share). The parties obtain JxK where the x-share of Pj is set to
zero if j 6= i.

Add: On input (JaK, JbK), the parties locally compute Ja+ bK = JaK + JbK.
Multiply: On input (JaK, JbK), the parties call FPrep on input (GaOT), obtaining a random

GaOT tuple {JeK, JzK, Jx0K, Jx1K}. The parties then perform:
1. The parties locally compute JfK = JbK + JeK and JgK = Jx0K + Jx1K + JaK.
2. The shares JfK and JgK are partially opened.
3. The parties locally compute

JcK = Jx0K + f · JaK + g · JeK + JzK.

Output: This procedure is entered once the parties have finished the circuit evaluation, but
still the final output JyK has not been opened.

1. The parties call the protocol ΠMACCheck on input of all the partially opened values so far.
If it fails, they output ∅ and abort. ∅ represents the fact that the corrupted parties
remain undetected in this case.

2. The parties partially open JyK and call ΠMACCheck on input y to verify its MAC. If the
check fails, they output ∅ and abort, otherwise they accept y as a valid output.

Protocol 9 Secure Function Evaluation in the FComm,FPrep-hybrid Model

Theorem 1. In the (FComm,FPrep)-hybrid model, the protocol ΠOnline securely
implements FOnline against any static adversary corrupting up to n − 1 parties,
assuming protocol MACCheck utilizes a secure pseudo-random function PRFF,t

s (·).

Proof. See full version.

6 The Offline Phase

Here we present our offline protocol ΠPrep (Protocol 10). The key part of this
protocol is the GaOT command. In [14] the authors give a two-party protocol



to enable one party, say A, to obtain two authenticated bits e, z, and the other
party, say B, to obtain two authenticated secret bits x0, x1, such that z = xe
and e, x0 and x1 are chosen at random. We generalize such a procedure to many
parties and we obtain sharings JeK, JzK, Jx0K, Jx1K, subject to z = xe. Notice that
the values e, z, x0, x1 are not known so they can be used in the online phase to
implement multiplication gates.

The idea behind the GaOT command it is to exploit the relation between
“affine functions” and “selector functions”, in which a bit e selects one of two
elements (χ0, χ1) in F. This connection was already noted in [1] on the context
of garbling arithmetic circuits via randomized encodings. Thus, on one hand we
have authentications, that are essentially evaluations of affine functions, and on
the other we have OT quadruples, that can be seen as selectors. Seeing both as
the same object means that a way to authenticate bits also gives us a way to
generate OTs, and the other way around. The procedure is broken into three
steps, Share OT, Authenticate OT and Sacrifice OT. We examine these
three stages in turn. To produce bit quadruples (e, z, x0, x1), such that z = xe,
the parties will use a (secret) affine line in F parametrized by (ϑ, η). Note that
with our functionality FBootstrap we get [ei]

i
η, where ei is known to Pi, and an

additive sharing 〈η〉 is held by the system. We denote this concrete execution of
the functionality as FBootstrap(η), since we shall use fresh copies of FBootstrap to
generate more OT quadruples and also for authentication purposes. Note, that
η is not an input to the functionality but a shared random value produced when
initialising the functionality. Now, performing n independent queries of Share
command on this copy FBootstrap(η), the parties can generate

[e]Pη = [e1]1η + · · ·+ [en]nη . (1)

Thus, the system obtains two (secret) elements 〈e〉, 〈ζ〉, such that ζ = ϑ+e·η, for
line (〈ϑ〉, 〈η〉). Define χ0 = ϑ and χ1 = ϑ+ η, so it holds ζ = χe. The quadruple
(e, z, x0, x1) is then given by the least significant bits of the corresponding field
elements (e, ζ, χ0, χ1). This conclude the Share OT step.

To add MACs to each bit of the quadruple that the parties just generated,
the protocol uses the FBootstrap(α) instance to obtain a sharing 〈α〉 of the global
key. Each party can now authenticate his shares of (e, z, x0, x1) querying Share
command and obtaining JeK, JzK, Jx0K, Jx1K. We emphasize that the same α is
used to authenticate all OT quadruples, thus FBootstrap(α) is fixed once and for
all.

After the Authenticate OT step the parties have sharings JeK, JzK, Jx0K, Jx1K,
which could suffer from two possible errors induced by the corrupted parties:
Firstly the algebraic equation z = xe may not hold, and second the MAC values
may be inconsistent. For the latter problem we will check all the partially opened
values using the MACCheck procedure at the end of the offline phase. For the
former case we use the Sacrifice OT step. We use the same methodology as
in [4,7,6], i.e. one quadruple is checked by “sacrificing” another quadruple. The
idea involving sacrificing can be seen as follows: We associate to each pair of
quadruples a polynomial S(t) over the field of secrets (F2 in our case), which is



The Protocol ΠPrep

Let A be the set of indices of corrupt parties.

Initialize: On input (Init) from honest parties and adversary, the system runs a copy of FBootstrap

which is denoted FBootstrap(α). Then it calls Init on FBootstrap(α). If FBootstrap(α) aborts, out-
putting a set of corrupted parties, then the protocol returns this subset of A and aborts.
Otherwise, the values δi returned by FBootstrap(α) are labelled as αi. Set α = α1 + · · ·+αn,
and output αi to honest parties Pi.

Share: On input (i, x, Share) from party i and (j, Share) from all parties j 6= i. The protocol

calls Share command of FBootstrap(α) to obtain [x]iα, given by {〈µ〉i, 〈ν〉P}. Then, for j 6= i,
party Pj sets his share of x to be zero, and µj(x) = νj . Party Pi sets µi(x) = µ+ νi. Thus,
the parties obtain JxK.

GaOT: On input (GaOT) from all Pi, execute the following sub-procedures:
Share OT. This generates sharings (〈e〉, 〈z〉, 〈x0〉, 〈x1〉) such that x0, x1 and e are random

bits. If all parties are honest then it holds z = xe.
1. The system runs a fresh copy of FBootstrap on Init command getting an additive

sharing 〈η〉 for some random η ∈ F. Denote this copy as FBootstrap(η).
2. Each party samples a random bit ei. Define e = e1 + · · ·+ en.
3. For each i = 1, . . . , n, the system calls FBootstrap(η) on input (i, ei, Share) from

party Pi and input (i, Share) from any other Pj , to obtain [ei]
i
η . That is, (in

an honest execution) Pi gets ζi ∈ F, and the parties gets an additive sharing
〈ϑi〉 of some unknown ϑi ∈ F, such that ζi = ϑi + ei · η. The parties compute

[e]Pη = [e1]1η + · · ·+ [en]nη .

4. At this point of the protocol, the system holds sharings 〈e〉, 〈ζ〉, 〈ϑ〉, 〈η〉, so it
can derive 〈χ0〉 = 〈ϑ〉, and 〈χ1〉 = 〈ϑ〉+ 〈η〉. Note that (for an honest execution)
ζ = ϑ+ e · η, or in other words ζ = χe.

5. Each party Pi sets zi, x0,i, x1,i to be the least significant bits of ζi, χ0,i, χ1,i

respectively, so as to obtain sharings 〈z〉, 〈x0〉 and 〈x1〉.
Authenticate OT. This step produces authentications on the bits previously computed.

For every bit y ∈ {e, z, x0, x1} it does the following:

6. Call FBootstrap(α) on input (i, yi, Share) from Pi and (j, Share) for party Pj to obtain

[yi]
i
α.

7. Compute JyK by forming
∑
i∈P [yi]

i
α, and then computing µ(y)− ν(y).

Sacrifice OT. This step checks that the authenticated OT-quadruples are correct. Let
JeK, JzK, Jx0K, Jx1K be the quadruple to check, and κ a security parameter:

8. Every party Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
9. Every Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s =

s1 + · · ·+ sn.
10. Parties sample a random vector t = PRFF2,κ

s (0) ∈ Fκ2 . Note all parties obtain the
same vector as they have agreed on the seed s.

11. For i = 1, . . . , κ, repeat the following:
- Take one fresh quadruple JeiK, JziK, Jx0,iK, Jx1,iK, and partially open the val-

ues pi = ti · (Jx0K + Jx1K) + Jx0,iK + Jx1,iK and qi = JeK + JeiK.
- Locally evaluate ci such that JciK = ti · (JzK + Jx0K) + JziK + Jx0,iK + pi ·

JeK + qi · (Jx0,iK + Jx1,iK), and check it partially opens to zero. If it does not,
then abort.

12. The parties call ΠMACCheck on the values partially opened in step 11.
13. If no abort occurs, output JeK, JzK, Jx0K, Jx1K as a valid quadruple.

Protocol 10 Preprocessing: Input Sharing and Creation of OT Quadruples in the
FBootstrap-hybrid Model

the zero polynomial only if both quadruples are correct. Thus, proving correct-
ness of quadruples is equivalent to proving that S(t) is the zero polynomial. This
is done by securely evaluating S(t) on a random public challenge bit t via a com-
bination of addition gates and two openings (plus one extra opening to check the
evaluation), and then checking that the result of the evaluation partially opens
to zero. In this way we would waste κ quadruples to check one quadruple, to



get security of 2−κ; we refer the reader to Section 7 for a more efficient sacrifice
procedure.

Theorem 2. Let κ be the security parameter and t ∈ N. In the (FComm,FBootstrap)-
hybrid model, the protocol ΠPrep securely implements FPrep with statistical secu-
rity on κ against any static adversary corrupting up to n− 1 parties, assuming
the existence of PRFX,ms (·) with domain X = F (resp. F2) and m = t (resp. κ).

Proof. See full version.

7 Batching the Sacrifice Step

This technique (an adaptation of a technique to be found originally in [15,6,9])
permits to check a batch of OT quadruples for algebraic correctness using a
smaller number of “sacrificed” quadruples than the basic version we described
in Section 6. Recall, the idea is to check that an authenticated OT-quadruple
GaOTi = (JeiK, JziK, JxiK, JyiK) verifies the “multiplicative” relation mi = zi +
xi + ei · (xi + yi) = 0.

At a high level, Protocol 11 essentially consists of two different phases. Let
(GaOT1, . . . ,GaOTN ) be a set of OT quadruples, in the first phase a fixed portion
of these GaOTs are partially opened as in a classical cut-and-choose step. If any
of the opened OT quadruples does not satisfy the multiplicative relation the
protocol aborts. Otherwise it runs the second phase: the remaining GaOTs are
permuted and uniformly distributed into t buckets of size T . Then, for each of
the buckets, the protocol selects a BucketHead, i.e. the first (in the lex order)
GaOT in the bucket (as in [9]), and uses the remaining GaOTs in the same bucket
to check that BucketHead correctly satisfies the multiplicative relation.

We call CheckGaOTs the GaOTs used to check the BucketHead, and we denote
them by CheckGaOT = (JeK, JzK, JhK, JgK), with z = h + e(h + g).

If any BucketHead does not pass the test, then we know that some parties
are corrupted and the protocol aborts. If all the checks pass then we obtain
t algebraically correct BucketHeads, i.e. t OT quadruples, with overwhelming
probability.

Theorem 3. For T ≥ κ+log2(t)
log2(t) the previous protocol provide t correct GaOTs

with error probability 2−κ.

Proof. See full version.

We can replace the Sacrifice OT step in ΠPrep with the above Bucket-Cut-
and-Choose Protocol and, for an appropriate choice of the parameters, Theorem
2 (and relative proof) still holds.

Notice, how the value h has little effect on the final probability (we suppressed
the effect in the statement of the Theorem since it is so low). This means we
can take h = 1 to obtain the most efficient protocol, which means the amount
of cut-and-choose performed is relatively low.



Bucket Cut-and-Choose Protocol

Input : Let N = (T + h) · t be the number of input GaOTs and T the size of the buckets,
with T ≥ 2. We let 1 ≤ h ≤ T denote an additional parameter controlling how much
cut-and-choose we perform.

Phase-I Cut-And-Choose :
1. Every Pi samples a seed si and asks FComm to broadcast τi = Comm(si).
2. Every party Pi calls FComm with Open(τi) and all parties obtain sj for all j. Set s =

s1 + · · ·+ sn.
3. Using a PRFF2,N

s , parties sample a random vector v ∈ FN2 , such that the number of its
non-zero entries is h · t (i.e. the Hamming weight of v is h · t).

4. Let J be the set of indices j such that vj 6= 0, and, ∀j ∈ J , the parties partially open
GaOTj and check that it satisfies the algebraic relation zj +xj = ej · (xj +yj). If there
exists an algebraically incorrect GaOTj quadruple, then the protocol aborts.

Phase-II Bucket-Sacrifice :
5. Permute the unopened GaOTs according to a random permutation π on T · t indices,

again using a PRFs. Then renumber the permuted unopened GaOTj , such that j =

1, . . . , T · t, and, for i = 1, . . . , t, create the ith bucket as {GaOTj}iTj=iT−T+1.

6. Parties compute a BucketHead(i) for each i = 1, . . . , t, i.e. return the first (in the lex
order) element in the ith bucket.

7. For i = 1, . . . , t, parties check that BucketHead(i) = GaOTi = (JeiK, JziK, JxiK, JyiK) is
correct using the other GaOTs in the bucket: For j = iT − T + 2, . . . , iT do

– Set CheckGaOTj = GaOTj = (JejK, JzjK, JhjK, JgjK).
– Parties open 〈ei + ej〉 and 〈xi + yi + hj + gj〉.
– Parties locally compute

Jci,jK = Jzi + xiK + Jzj + hjK + (ei + ej)Jhj + gjK + (xi + yi + hj + gj)JeiK,

and check it partially opens to zero.
– If all checks go through output GaOTi as valid quadruples; otherwise abort.

8. The parties execute the protocol ΠMACCheck to check all partially opened values.

Protocol 11 Bucket Cut-and-Choose Protocol

To measure the efficiency of this protocol we can consider the ratio r =
(T+h)· t

t = T +h: it measures the number of GaOTs that we need to produce one
actively secure OT quadruple. Setting h = 1 and an error probability of 2−40,
we obtain Table 1 for different values of t = 210, 214, 220 .

Table 1 Number of GaOTs we need to check t quadruples

r T = r − h t 40+log2(t)

log2(t)

4 3 220 3
5 4 214 3.85
6 5 210 5

8 Efficiency Analysis

Here we briefly examine the cost of a multiplication in terms of the number of
aBits required in the case of two parties. We use the Bucket-Cut-and-Choose
Protocol described in Section 7. We notice that each GaOT requires us to con-
sume ten aBits; we need to execute the Share OT step to determine e, z, x0, x1



(which requires one aBit consumption per player, i.e. two in total when n = 2);
in addition each of these four bits needs to be authenticated in Authenticate
OT in Protocol 10 (which again requires one aBit consumption per player, i.e.
eight in total when n = 2). Since we need one checked GaOT to perform a secure
multiplication, and we sacrifice r− 1 GaOT to obtain a checked one; this means
we require r ·10 aBits per secure multiplication in the two party case. Depending
on the parameters we use for our sacrifice step in Appendix 7, this equates to
40, 50 or 60 aBits per secure multiplication, setting t = 220, 214, 210, respectively,
and an error probability of 2−40.

We now compare this to the number of aBits needed in the Tiny-OT protocol
[14]. In this protocol each secure multiplication requires two aBits, two aANDs
and two aOTs. Assuming a bucket size T in the protocols to generate aANDs
and aOTs; each aAND (resp. aOT) requires four LaANDs (resp LaOTs). Each
LaAND requires four aBits and each LaOT requires three aBits. Thus the total
number of aBits per secure multiplication is 2 · (1 + T · 4 + T · 3) = 14 · T + 2. To
achieve the same error probability of 2−40, with same values of t = 220, 214, 210,
they need 44, 58 and 72 aBits, respectively. We see therefore that we can make
our protocol (in the two party case) more efficient than the Tiny-OT protocol,
when we measure efficiency in terms of the number of aBits consumed.

9 Acknowledgements

This work has been supported in part by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO, by EPSRC via grant EP/I03126X and by research sponsored
by Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL) under agreement number FA8750-11-2-00795.

References

1. B. Applebaum, Y. Ishai, and E. Kushilevitz. How to garble arithmetic circuits. In
R. Ostrovsky, editor, FOCS, pages 120–129. IEEE, 2011.

2. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In A.-R. Sadeghi, V. D.
Gligor, and M. Yung, editors, ACM Conference on Computer and Communications
Security, pages 535–548. ACM, 2013.

3. D. Beaver. Efficient multiparty protocols using circuit randomization. In J. Feigen-
baum, editor, CRYPTO, volume 576 of Lecture Notes in Computer Science, pages
420–432. Springer, 1991.

5 The US Government is authorized to reproduce and distribute reprints for Gov-
ernment purposes notwithstanding any copyright notation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of Defense Advanced Research Projects Agency (DARPA) or the U.S. Gov-
ernment.



4. R. Bendlin, I. Damg̊ard, C. Orlandi, and S. Zakarias. Semi-homomorphic en-
cryption and multiparty computation. In K. G. Paterson, editor, EUROCRYPT,
volume 6632 of Lecture Notes in Computer Science, pages 169–188. Springer, 2011.

5. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

6. I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart. Practical
covertly secure mpc for dishonest majority - or: Breaking the spdz limits. In
J. Crampton, S. Jajodia, and K. Mayes, editors, ESORICS, volume 8134 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2013.

7. I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Safavi-Naini and Canetti [16], pages
643–662.

8. I. Damg̊ard and S. Zakarias. Constant-overhead secure computation of boolean
circuits using preprocessing. In A. Sahai, editor, TCC, volume 7785 of Lecture
Notes in Computer Science, pages 621–641. Springer, 2013.

9. T. K. Frederiksen, T. P. Jakobsen, J. B. Nielsen, P. S. Nordholt, and C. Orlandi.
Minilego: Efficient secure two-party computation from general assumptions. In
T. Johansson and P. Q. Nguyen, editors, EUROCRYPT, volume 7881 of Lecture
Notes in Computer Science, pages 537–556. Springer, 2013.

10. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In A. V. Aho, editor,
STOC, pages 218–229. ACM, 1987.

11. D. Harnik, Y. Ishai, and E. Kushilevitz. How many oblivious transfers are needed
for secure multiparty computation? In A. Menezes, editor, CRYPTO, volume 4622
of Lecture Notes in Computer Science, pages 284–302. Springer, 2007.

12. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers effi-
ciently. In D. Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 145–161. Springer, 2003.

13. E. Larraia, E. Orsini, and N. P. Smart. Dishonest majority multi-party computa-
tion for binary circuits. Cryptology ePrint Archive, Report 2014/101.

14. J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A new approach to
practical active-secure two-party computation. In Safavi-Naini and Canetti [16],
pages 681–700.

15. J. B. Nielsen and C. Orlandi. Lego for two-party secure computation. In TCC,
pages 368–386, 2009.

16. R. Safavi-Naini and R. Canetti, editors. Advances in Cryptology - CRYPTO 2012
- 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23,
2012. Proceedings, volume 7417 of Lecture Notes in Computer Science. Springer,
2012.


	Dishonest Majority Multi-Party Computation for Binary Circuits

