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Abstract

Side-channel attacks are severe type of attack against implementation of cryptographic

primitives. Leakage-resilient cryptography is a new theoretical approach to formally address

the problem of side-channel attacks. Recently, the Continuous After-the-Fact Leakage

(CAFL) security model has been introduced for two-party authenticated key exchange (AKE)

protocols. In the CAFL model, an adversary can adaptively request arbitrary leakage of

long-term secrets even after the test session is activated. It supports continuous leakage even

when the adversary learns certain ephemeral secrets or session keys. The amount of leakage

is limited per query, but there is no bound on the total leakage. A generic leakage-resilient

key exchange protocol π has also been introduced that is formally proved to be secure in the

CAFL model. In this paper, we comment on the CAFL model, and show that it does not

capture its claimed security. Furthermore, we present an attack and counterproofs for the

security of protocol π which invalidates the formal security proofs of protocol π in the CAFL

model.

Keywords: Leakage-resilient cryptography, Cryptographic protocols, Key exchange, Security

models.

1 Introduction

Security of a cryptosystem is usually proven in a formal model of computation where proofs

rely on the assumption that the adversary has no information about secret keys. However,

the security must hold for the actual implementation of the algorithm in the real world where

the adversary might gain some information about those secrets, by observing the behavior of

the algorithm. Leakage of secret parameters are not usually captured by the mathematical

definition of the algorithm, but caused by its implementation. Side-channel, fault, probing, and

∗A shorter version of this article will be published in [19], DOI: 10.1145/2694805.2694811.
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memory attacks are different types of physical attacks to a cryptosystem [18]. Side-channel

attacks are low cost, realistic, and usually considered as the most dangerous type of physical

attacks. Computing devices leak information not just through input-output interaction, but

through physical characteristics of computation such as power consumption [14], timing [4, 11],

and electromagnetic radiation [9]. Such information leakage can break many cryptosystems in

common use, and are feasible when an adversary has access to the device, as it is often the case

for devices like smart-cards, TPM chips, mobile phones and laptops.

Most countermeasures to leakage attacks are ad-hoc, offer only partial remedy, and fail to

capture the problem in its entirety. Recently, the notion of Leakage Resilient Cryptography [18]

has been introduced to set the theoretical foundations to formally address the problem of

side-channel attacks. A leakage-resilient cryptosystem remains secure even if arbitrary, yet

bounded, information about the secret key and possibly other internal state information is leaked

to an adversary [10]. As AKE protocols are one of the most important cryptographic primitives,

it is important to construct leakage-resilient key exchange protocols.

Existing security models for two-party AKE protocols such as the CK [5] and the eCK [13]

have considered an adversary who can fully compromise some, but not all secret keys. However,

they do not capture the security with leakage of partial secret information. This motivates

development of leakage-resilient key exchange security models and protocols.

Alwen et al. [3] presented a leakage-resilient PKI-based AKE protocol in the random oracle

model, where they introduced the leakage-resilient security on the CK model. However, their

protocol is three-pass and signature-based. If the session state in the CK model contains random

coins to generate signatures, an adversary can obtain random coins for the underlying signature

scheme through a Session-State Reveal query. The protocol will be then insecure if the

underlying signature scheme is vulnerable by the random coin leakage [15]. Dodis et al. [7]

proposed a framework to construct a leakage-resilient AKE protocol on the CK model. However,

their protocol is three-pass, and does not capture the Key Compromise Impersonation (KCI)

attack.

In an attempt to construct two-party two-pass leakage-resilient AKE protocols based on the

eCK security model, three models and protocols have been proposed: The first formalization

was due to Moriyama and Okamoto [15] where they proposed a two-pass protocol. However,

total amount of allowed leakage is bounded in their model, and it does not provide security

against continuous leakage. Furthermore, the adversary cannot obtain leakage information after

the test session is activated. Alawatugoda et al. [2] tried to overcome the limitations of the

Moriyama-Okamoto (MO) model by proposing the ASB model which considers both continuous

and bounded leakage, and allows leakage after the test session is activated. However, their model
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is just accompanied with a generic construction of a two-pass protocol for the ASB bounded

leakage model. They did not propose any protocol for the ASB continuous leakage model, and

left it as an open problem. In an attempt to solve the mentioned open problem, they introduced

the Continuous After-the-Fact Leakage (CAFL) model [1] which is a weaker variant of the ASB

continuous leakage model. The CAFL is weaker in terms of the freshness condition, and aims

to capture the continuous leakage, even after the test session is activated. They proposed a

generic protocol π which was formally proved to be secure in the CAFL model. The protocol

π is instantiated using the CCLA2-secure public-key cryptosystem of Dziembowski et al. [8],

but can be instantiated using any CCLA2-secure public-key cryptosystem. They proved that

protocol π can achieve the same leakage tolerance as the underlying public-key cryptosystem

tolerates.

In this paper, we comment on the CAFL model, and show that it does not capture its

claimed security. Furthermore, we present counterproofs for the security of protocol π in the

CAFL model. This invalidates the formal security proofs in [1]. We present an attack to the

protocol π, and show that it is insecure in the CAFL, ABS, MO and eCK security models. The

rest of this paper is organized as follows. Leakage-resilient storage and CCLA2-security are

briefly introduced in Section 2 and Section 3, respectively. The CAFL model is presented and

commented in Section 4. The protocol π is reviewed in Section 5. An attack and counterproofs

for the security of protocol π is provided in Section 6.

2 Leakage-Resilient Storage

A leakage-resilient storage (LRS) Φ = (Encode, Decode) allows to store a secret S in an encoded

form such that even given leakage from the encoding, no adversary learns information about

the encoded values. Protocol π is instantiated using Dziembowski et al.’s public-key encryption

scheme [8] which uses the following LRS model:

The memory of the device is split into three parts L,R and C, where initially C is empty. L

and R are chosen uniformly so that 〈L,R〉 = S in which 〈.〉 denotes inner product of the vectors.

The leakage is modeled as a two-party protocol Π = (PL, PR), executed between PL and PR: PL

is controlling L, and PR holds R. C is only used to communicate information between L and R,

and to store messages exchanged between them.

Let λ ∈ N denotes total number of bits that an adversary can learn from each L,R ∈ {0, 1}s.

A λ-leakage game is played between an adaptive λ-limited adversary M and a leakage oracle

Ω(L,R) as follows: For some t ∈ N, the adversaryM can adaptively issue a sequence {(fi, xi)}ti=1

of requests to the oracle Ω(L,R), where xi ∈ {L,R}, and fi : {0, 1}s → {0, 1}λi . For the ith
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query, the oracle Ω replies with fi(xi). Let Out(M,Ω(L,R)) = (f1(x1), ..., ft(xt)) denotes the

output of M at the end of this game.

Let ∆(X0;X1) = 1
2

∑
x∈X |Pr(X0 = x)−Pr(X1 = x)| denotes the statistical distance between

random variables X0 and X1. An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈M and any

λ-limited adversary M, we have ∆(Out(M,Ω(L,R));Out(M,Ω(L′, R′))) ≤ ε , where (L,R) =

Encode(S) and (L′, R′) = Encode(S′). The following LRS Φn,m
F = (Encoden,mF , Decoden,mF ) is

(λ, ε)-secure, and allows to efficiently store elements S ∈ Fm [8]:

- Encode
n,m
F (S): Randomly select L ← Fn \ {(0n)}, sample R ← Fn×m such that L.R = S.

Output (L,R).

- Decode
n,m
F (L,R): Output S.

A probabilistic protocol (L′, R′) ← Refresh(L,R) has been presented in [8] that securely

refreshes (L,R) ← Encode(S), even when the adversary can continuously observe the com-

putation from the refreshing process. Refresh takes as input (L,R), and outputs a fresh

encoding (L′, R′) of S such that 〈L,R〉 = 〈L′, R′〉 = S. For correctness, we require that

Decode(L,R) = Decode(L′, R′).

The computation of Refresh will be structured into several rounds, where in each round only

(L,C) or (R,C) are touched, but never L and R at the same time. The adversary adaptively

leaks a bounded amount of information from (L,C) and (R,C). Initially, PL holds L and PR

holds R. At any point during the execution of the protocol, the adversary can interact with a

leakage oracle, and learn information about the internal state of PL and PR. The only way in

which the adversary can interact with the protocol is via the leakage oracle. At the end, the

players output the refreshed encoding (L′, R′), which is the new state of the protocol.

Definition 1. A (`, λ, ε)-refreshing protocol: For a LRS Φ = (Encode, Decode) with mes-

sage space M , a refreshing protocol (Refresh, Φ) is (`, λ, ε)-secure, if for every λ-limited adver-

saryM and any two secrets S, S′ ∈M , we have ∆(Exp(Refresh,Φ)(M, S, `); Exp(Refresh,Φ)(M, S′, `)) ≤

ε where Exp(Refresh,Φ)(M, S, `) denotes an experiment which runs the refreshing protocol for `

rounds, and lets the adversary play a leakage game in each round. The experiment is defined as

follows:

1. For a secret S, we generate the initial encoding as (L0, R0)← Encode(S).

2. For i = 1 to `, runM against the ith round of the refreshing protocol: M� (Refresh(Li−1, Ri−1)→

(Li, Ri)) in which current initial state of round i is (Li−1, Ri−1), and the next state of PL

and PR will be (Li, Ri).
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3. Return b ∈ {0, 1} that M outputs.

The Refreshn,mF protocol presented in [8] is (`, 0.15 ·n · log |F|−1, negl(n))-refreshing protocol

for the LRS Φn,m
F where n ∈ N is a security parameter, |F| = Ω(n), m = o(n), ` is a polynomial

in n, and negl(n) is a negligible function.

3 CCLA2-Security

Definition 2. Security Against Adaptively Chosen Ciphertext After-the-fact Leakage

Attacks (CCLA2-secure): Let k ∈ N be the security parameter. A public-key cryptosystem

PKE = (KG,Enc,Dec) is λ(k)-IND-CCLA2 secure if for any PPT λ(k)-limited adversary M,

the probability of winning distinguishing Game 1 is at most 1/2 + negl(k) [8]. KG(1k) denotes

the key generation algorithm which outputs a secret key sk, and a public key pk. Enc(.) is the

encryption algorithm which encrypts message m using pk, and outputs ciphertext c. Dec(.) is

the decryption algorithm which uses the secret key for decryption.

Game 1.

1. Sample b← {0, 1}, and (sk, pk)← KG(1k). Give pk to M.

2. Repeat until M(1k) outputs ((m0,m1): M(1k) � (Dec(sk, c)→ (sk′,m)), where for each

decryption query c, the adversary additionally retrieves up to λ(k) bits about the current

secret state sk. For the next round, update the secret state sk to sk′ (sk ← sk′).

3. The challenger computes c∗ ← Enc(pk,mb), and gives it to M.

4. Repeat until M(1k) outputs b′ :M(1k) � (Dec(sk, c)→ (sk′,m)), where for each decryp-

tion query c 6= c∗, the adversary additionally retrieves up to λ(k) bits about the current

secret state sk. For the next round, update the secret state sk to sk′.

5. If b = b′ then M wins.

Dziembowski et al. [8] constructed a λ-IND-CCLA2-secure public-key cryptosystem in the

random oracle model in which λ = 0.15 ·n · log p−1, if the DDH assumption holds. Their scheme

is based on the refreshing protocol presented in Section 2, and uses a simulation sound non-

interactive zero knowledge (SS-NIZK) system, (Prov, V er), for proving the equivalence of discrete

logarithms. A NIZK proof system is said to be simulation sound if any adversary has negligible

advantage in breaking soundness (i.e., forging an accepting proof for an invalid statement), even

after seeing a bounded number of proofs for (in)valid statements [16]. Dziembowski et al.’s

CCLA2-secure PKE [8] is as follows:
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• KG(1k): Let (p,G) ← G(1k), g1, g2 ← G, S = (x1, x2) ← Z2
p, and (L,R) ← Encode

n,2
Zp

.

Let sk = (L,R) and pk = (p, g1, g2, h = gx11 gx22 ).

• Enc(pk,m): Sample r ← Zp uniformly at random, and compute c = (u = gr1, v = gr2, w =

hrm). Run the NIZK prover Prov(u, v, r) to obtain a proof π for logg1(u) = logg2(v).

Return (c, π).

• Dec(sk, c): Input for decryption is sk = (L,R) where L is given to PL, and R is given to

PR . PL and PR obtain c, and parse it as (u, v, w, π). If V er(u, v, π) = reject then abort.

Otherwise, proceed as follows:

– PR computes the vector U = uR1 � vR2 in which � denotes componentwise multipli-

cation of vectors. U is sent to PL.

– PL computes V = U−L, and outputs w
∏
i Vi.

Leakage from the verification of the NIZK can be omitted as it only includes publicly known

values. At any time, the adversary can play a λ-leakage game against Ω((L,U);R) as mentioned

in Section 2.

4 The CAFL Model

In the CAFL model [1], each party Ui where i ∈ [1, NP ], has a pair of long-term public and

secret keys, (pkUi , skUi). Each party may run multiple instances of the protocol concurrently

or sequentially. The term principal refers to a party involved in a protocol instance. The term

session is used for identifying a protocol instance at a principal. The notation
∏s
U,V represents

the sth session at the owner principal U , with intended partner principal V . The principal which

sends the first protocol message of a session is the initiator of the session. The principal which

responds to the first protocol message is the responder of the session. A session
∏s
U,V enters an

accepted state when it computes a session key. A session may terminate without ever entering

into the accepted state. The information of whether a session has terminated with or without

acceptance is public.

Definition 3. Partner sessions: Two oracles
∏s
U,V and

∏s′

U ′,V ′ are said to be partners in

the CAFL model if all the following conditions are satisfied:

1.
∏s
U,V and

∏s′

U ′,V ′ have computed session keys.

2. Sent messages from
∏s
U,V = Received messages to

∏s′

U ′,V ′.
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3. Sent messages from
∏s′

U ′,V ′ = Received messages to
∏s
U,V .

4. U ′ = V and V ′ = U .

5. If U is the initiator, then V is the responder, or vise versa.

A protocol is said to be correct if two partner oracles compute identical session keys in

presence of a passive adversary.

Adversary: The adversary M is a probabilistic polynomial time (PPT) algorithm which

controls all interaction and communication between parties. M initiates sessions at parties,

and delivers protocol messages. M can create, change, delete, or reorder messages. M can

compromise certain short-term and long-term secrets. Specially for modeling leakage, whenever

a party performs an operation using its long-term key, M obtains some leakage information

about the long-term key.

Queries: Five queries are defined in the CAFL model: Send, SessionKeyReveal, EphemeralKeyReveal,

Corrupt, and Test. Send allowsM to run the protocol. SessionKeyReveal, EphemeralKeyReveal,

and Corrupt queries allow M to compromise certain session specific information from the pro-

tocol principals. The Test query is used to formalize the notion of semantic security of a key

exchange protocol. Once the oracle
∏s
U,V has accepted a session key, M attempts to distinguish

it from a random session key by asking the Test query. Definitions of queries are as follows [1]:

• Send(U, V, s,m, f) query: The oracle
∏s
U,V computes the next protocol message according

to the protocol specification on receipt of m, and sends it to the adversary M, along with

the leakage f(skU ). M can also use this query to activate a new protocol instance as an

initiator with blank m and f.

• SessionKeyReveal(U, V, s) query: M is given the session key of the oracle
∏s
U,V , if the

oracle
∏s
U,V is in the accepted state.

• EphemeralKeyReveal(U, V, s) query: M is given the ephemeral keys of the oracle
∏s
U,V .

• Corrupt(U) query: M is given the long-term secrets of the principal U . This query does

not reveal any session keys or ephemeral keys to M.

• Test(U, V, s) query: WhenM asks the Test query, the oracle
∏s
U,V first chooses a random

bit b← {0, 1}. If b = 1, then the actual session key is returned toM. Otherwise, a random

string chosen from the same session key space is returned toM. This query is only allowed

to be asked once across all sessions.

Definition 4. λ-CAFL-freshness: Let λ be the leakage bound per occurrence. An oracle∏s
U,V is said to be λ-CAFL-fresh if and only if:
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1. The oracle
∏s
U,V or its partner,

∏s′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner
∏s′

V,U exists, none of the following combinations have been asked:

• Corrupt(U) and Corrupt(V ).

• Corrupt(U) and EphemeralKeyReveal(U, V, s).

• Corrupt(V ) and EphemeralKeyReveal(V,U, s′).

• EphemeralKeyReveal(U, V, s) and

EphemeralKeyReveal(V,U, s′).

3. If the partner
∏s′

V,U does not exist, none of the following combinations have been asked:

• Corrupt(V ).

• Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For each Send(., U, ., ., f) query, the output of f is at most λ bits.

5. For each Send(., V, ., ., f) query, the output of f is at most λ bits.

The Security of a key exchange protocol in the CAFL model is defined using the following

security game, which is played by a PPT adversary M against the protocol challenger.

Game 2.

1. M may ask any of Send, SessionKeyReveal, EphemeralKeyReveal, and Corrupt queries

to any oracle at will.

2. M chooses a λ-CAFL-fresh oracle, and asks a Test query.

3. M continues asking Send, SessionKeyReveal, EphemeralKeyReveal, and Corrupt queries.

M may not ask a query that violates the λ-CAFL-freshness of the test session.

4. M outputs the bit b′ ← {0, 1} which is its guess of the value b on the test session. M wins

if b′ = b.

Definition 5. λ-CAFL-security: A protocol π is said to be λ-CAFL-secure if there is no

PPT algorithm M that can win the above game with non-negligible advantage. The advantage of

an adversary M is defined as AdvCAFLπ (M) =| 2 Pr(SuccM)− 1 |, where Succ(M) is the event

that M wins Game 2.
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4.1 Comments on the CAFL Model

Although the ASB and CAFL models are based on the eCK model, they use different names and

orders for queries than those of the eCK model. Instead of the Reveal query in the eCK model,

they have the SessionKeyReveal query. Instead of the Long-Term Key Reveal query in the

eCK model, they have the Corrupt query. The Corrupt query was defined in the CK model but

it has been removed from the eCK model as the adversary can reveal all the secret information

of the party using Long-Term Key Reveal, Ephemeral Key Reveal, and Reveal queries. The

CAFL model is a weaker variant of the ASB continuous model in terms of two aspects:

• The CAFL model does not provide even the weak-Perfect Forward Secrecy (weak-PFS)

that is an essential requirement for AKE protocols [12]. It is because the combination

“Corrupt(U) and Corrupt(V )” are excluded from the freshness condition for passive attacks

(condition 2 of Definition 4). It means that M cannot have static long-term secret keys of

both U and V , but just one of them. Then, it only allows partial weak forward secrecy

upon compromising the long-term secret key of only one participant.

• The combination “EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V,U, s′)” has

been excluded from freshness condition for passive attacks.

Those two combinations that are excluded from the CAFL model, are allowed in the eCK, ASB

and MO models. The eCK model considers weak-PFS instead of PFS due to a belief in the

security community that no two-pass AKE protocol can achieve PFS, and the best they can

achieve is the weak-PFS. The belief stems from an attack presented in [12], but is disputed and

considered as an incorrect belief in [6] where the eCK-PFS model is introduced.

In the CAFL model, the adversary is allowed to obtain leakage from the uncorrupted principal,

in addition to allowing the adversary to corrupt one of the protocol principals. The side channel

attacks and continuous leakage of long-term secrets are modeled through the leakage function f in

the Send query, assuming that the leakage happens when computations take place in principals.

If the Send query is used without f, we will have the non-leakage version of the CAFL model

which must address KCI attacks and partial weak forward secrecy.

It is claimed in [1] that the CAFL model addresses “most real world attack scenarios”

including active adversarial capabilities (via the Send query), cold-boot attacks (via the Corrupt

query), weak random number generators (through the EphemeralKeyReveal query), known key

attacks (via the SessionKeyReveal query), and malware attacks (via the EphemeralKeyReveal

or the Corrupt queries). It has also been claimed that the CAFL model addresses all the attack

scenarios which are addressed by the ASB model, except weak forward secrecy. A counterproof
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Alice (Initiator) Bob (Responder)

Initial Setup

(skA, pkA)← KG(1k) (skB, pkB)← KG(1k)

Protocol Execution

rA ← {0, 1}k

CA ← Enc(pkB, rA)

A,CA
−−−−−−−→

rB ← {0, 1}k

(sk′B, rA)← Dec(skB, CA)

skB ← sk′B

CB ← Enc(pkA, rB)

KAB ← KDF (A,B, rA, rB)

B,CB
←−−−−−−−

(sk′A, rB)← Dec(skA, CB)

skA ← sk′A

KAB ← KDF (A,B, rA, rB)

KAB is the session key

Figure 1: Protocol π [1]. Underline denotes operations to which leakage functions apply.

to two latest claims, i.e covering most real world attack scenarios, and covering all attacks

scenarios covered by the ASB model, is the following practical attack scenario that is allowed in

the eCK, ASB and MO models but not addressed by the CAFL model because of excluding

the combination of “EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V,U, s′)” from the

freshness condition in Definition 4: “Two honest parties execute matching sessions. Adversary

reveals the ephemeral secret keys of both parties, and tries to learn the session key” [13].

5 Review of the protocol

Figure 1 depicts the generic protocol π [1]. The protocol must be instantiated using a CCLA2-

secure public-key encryption scheme, e.g. the scheme presented in Section 3. In Figure 1, A

denotes Alice, B denotes Bob, and KDF is a secure key derivation function which generates the

session key. KG, Enc, and Dec are defined in Section 3.
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6 Counterproof for security of the protocol

Using the game hopping technique [17], it is proved in [1] that “The protocol π is λ-CAFL-secure,

whenever the underlying public key cryptosystem PKE is CCLA2-secure, and the key derivation

function KDF is secure with respect to a uniformly random key material.” However, we prove

that the protocol π is not λ-CAFL-secure. First, we prove that an ephemeral-KCI attack is

allowed in the CAFL model, and it does not violate the λ-CAFL-freshness of the test session.

Then, we show that protocol π is vulnerable to the ephemeral-KCI attack. Finally, we prove

that protocol π is not λ-CAFL-secure. This invalidates the security claims and proofs in [1].

The ephemeral-KCI attack is a variant of the KCI attack in public key-based key exchange

protocols. This attack has been considered in the eCK model, and is of practical importance. It

considers consequences of weak random number selections or when the attacker can affect the

random number generation at the user end, for example by some security holes in web browsers.

Resilience to the ephemeral-KCI attack means that M that knows ephemeral secret key of A

but does not know her long-term secret key, should not be able to impersonate B, and share a

session key with A.

Proposition 1. The ephemeral-KCI attack does not violate the λ-CAFL-freshness of the test

session.

Proof. It is sufficient to show that all conditions for the λ-CAFL-freshness are satisfied by an

ephemeral-KCI attack. The ephemeral-KCI attack is an active attack in which an adversary

reveals the ephemeral secret key of a party, and impersonates other parties to this party. It

can be accomplished using Send (without f) and EphemeralKeyReveal queries. As it does not

use SessionKeyReveal query, the first condition of the λ-CAFL-freshness is satisfied. As it is

an active attack, for an oracle
∏s
U,V , the corresponding partner

∏s′

V,U does not exist, and the

second condition of the λ-CAFL-freshness is not the case. As M does not ask Corrupt queries,

the third condition of the λ-CAFL-freshness is satisfied. The fourth and fifth conditions of the

λ-CAFL-freshness are not the case because the ephemeral-KCI attack deals with the non-leakage

variant of the CAFL model (Send query without f).

Proposition 2. The ephemeral-KCI attack is allowed in the CAFL model.

Proof. M performs a simplified variant of Game 2. Among allowed queries in Game 2, M

just uses the Test, Send (without f) and EphemeralKeyReveal queries. From Proposition 1,

the attack does not violate the λ-CAFL-freshness of the test session. If an ephemeral-KCI

attack is applicable to a protocol π, M can reach to a key agreement with the owner of

the EphemeralKeyReveal query with Pr(SuccM) = 1. According to Definition 5, we have
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AdvCAFLπ (M) = 1. The advantage of an adversary will be 1
2 if one uses the typical formula, and

defines the advantage as | Pr(SuccM)− 1
2 |.

Here is how M can win Game 2 with probability 1: By a successful ephemeral-KCI at-

tack which is a deterministic algorithm, M reaches to a key agreement with owner of the

EphemeralKeyReveal query. For stage 4 of Game 2,M looks to output of the Test query. If the

output of the Test query is equal to the computed session key which means b = 1,M outputs the

bit b′ = 1. Otherwise, M outputs the bit b′ = 0. Then, we have b = b′ with Pr(SuccM) = 1.

Proposition 3. The protocol π is vulnerable to the ephemeral-KCI attack.

Proof. The proof is by presenting an attack scenario in whichM that has learned the ephemeral

secret key rA, impersonates B and shares a session key with A.

- A selects random number rA, computes CA ← Enc(pkB, rA), and sends {A,CA} to M.

- M selects random number rM, computes CM ← Enc(pkA, rM) andKAM ← KDF (A,B, rA, rM),

and sends {B,CM} to A.

- A computes (sk′A, rM)← Dec(skA, CM), updates the secret key sk to sk′, and computes

KAM ← KDF (A,B, rA, rM). A and M reach to the same session key KAM. M could

successfully impersonate B.

Theorem 1. The protocol π is not λ-CAFL-secure.

Proof. From Proposition 2, we know that the ephemeral-KCI attack is allowed in the CAFL

model. According to Proposition 1, the ephemeral-KCI attack does not violate the λ-CAFL-

freshness of the test session. From Proposition 3, we know that protocol π is vulnerable to the

ephemeral-KCI attack. The protocol π is not λ-CAFL-secure because M wins Game 3 with

probability 1 as we will always have b′ = b.

Game 3.

1. M activates a new protocol instance by Send(A,B, s) query. The oracle
∏s
A,B sends

{A,CA} to M.

2. M asks EphemeralKeyReveal(A,B, s) query, and gets rA.

3. M selects random number rM, computes CM ← Enc

(pkA, rM) and KAM ← KDF (A,B, rA, rM). M issues Send(A,B, s, {B,CM}) query.

12



4. M asks Test(A,B, s) query. The oracle
∏s
A,B chooses a random bit b← {0, 1}. If b = 1,

then the actual session key KAM is returned to M. Otherwise, a random string chosen

from the same session keyspace is returned to M.

5. M compares the received string with its computed session key KAM. If they are equal, M

outputs b′ = 1. Otherwise, M outputs b′ = 0.

Theorem 1 is in contradiction with security claims and proofs in [1], and invalidates those

security proofs. The protocol π does not provide weak-PFS. It is not secure in the CAFL, ASB,

MO, and eCK security models because of its vulnerability to the ephemeral-KCI attack.

7 Conclusion

In this paper, we showed that the Continuous After-the-Fact Leakage (CAFL) security model [1]

does not capture its claimed security. Furthermore, we provided counterproofs for the security

of protocol π which was formally proved to be secure in the CAFL model [1]. We showed that

the ephemeral-KCI attack is allowed in the CAFL model, and any protocol that is vulnerable to

such an attack cannot be secure in the CAFL model. We showed that protocol π is vulnerable

to the ephemeral-KCI attack which invalidates the security proofs in [1]. Protocol π is also

insecure in the ASB, MO, and eCK security models.
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