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Abstract. We analyse the complexity of algebraic algorithms for solving systems of linear equations with noise.
Such systems arise naturally in the theory of error-correcting codes as well as in computational learning theory.
More recently, linear systems with noise have found application in cryptography. The Learning with Errors (LWE)
problem has proven to be a rich and versatile source of innovative cryptosystems, such as fully homomorphic
encryption schemes. Despite the popularity of the LWE problem, the complexity of algorithms for solving it is
not very well understood, particularly when variants of the original problem are considered. Here, we focus on
and generalise a particular method for solving these systems, due to Arora & Ge, which reduces the problem to
non-linear but noise-free system solving. Firstly, we provide a refined complexity analysis for the original Arora-
Ge algorithm for LWE. Secondly, we study the complexity of applying algorithms for computing Gröbner basis, a
fundamental tool in computational commutative algebra, to solving Arora-Ge-style systems of non-linear equations.
We show positive and negative results. On the one hand, we show that the use of Gröbner bases yields an exponential
speed-up over the basic Arora-Ge approach. On the other hand, we give a negative answer to the natural question
whether the use of such techniques can yield a subexponential algorithm for the LWE problem. Under a mild
algebraic assumption, we show that it is highly unlikely that such an improvement exists.
We also consider a variant of LWE known as BinaryError-LWE introduced by Micciancio and Peikert recently. By
combining Gröbner basis algorithms with the Arora-Ge modelling, we show under a natural algebraic assumption
that BinaryError-LWE can be solved in subexponential time as soon as the number of samples is quasi-linear, e.g.
m = O (n log logn). We also derive precise complexity bounds for BinaryError-LWE with m = O (n), show-
ing that this new approach yields better results than best currently-known generic (exact) CVP solver as soon as
m/n ≥ 6.6. More generally, our results provide a good picture of the hardness degradation of BinaryError-LWE
for a number of samples ranging from m = n

(
1 +Ω

(
1/log(n)

)
(a case for which BinaryError-LWE is as hard

as solving some lattice problem in the worst case) tom = O
(
n2

)
(a case for which it can be solved in polynomial-

time). This addresses an open question from Micciancio and Peikert. Whilst our results do not contradict the hard-
ness results obtained by Micciancio and Peikert, they should rule out BinaryError-LWE for many cryptographic
applications. The results in this work depend crucially on the assumption the algebraic systems considered systems
are not easier and not harder to solve than a random system of equations. We have verified experimentally such
hypothesis. We also have been able to prove formally the assumptions is several restricted situations. We empha-
size that these issues are highly non-trivial since proving our assumptions in full generality would allow to prove a
famous conjecture in commutative algebra known as Fröberg’s Conjecture.

1 Introduction

Whilst linear systems of polynomial equations can be solved very efficiently and with low data requirements, the
situation changes dramatically once we introduce some kind of error or noise to these equations. In this work we
consider the hardness of solving such systems of linear equations with noise, a problem that can be informally defined
as follows:

Definition 1 (Linear System with Noise). Let q be a prime. Given a matrix G ∈ Zn×mq and a vector c ∈ Zmq . The
LINEAR SYSTEM WITH NOISE problem is the task of finding a vector s ∈ Znq such that:

c = s×G+ e,where e ∈ Zmq is a “small” error-vector.
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A classical way to define smallness is to consider the Hamming weight of e ∈ Zmq , i.e. the number of non-zero
components of e. Equipped with this norm, the problem defined above is a classical NP-hard problem from coding
theory known as BOUNDED DISTANCE DECODING [10]. The hardness of this problem has been used by McEliece to
design the first public-key code-based encryption scheme [34]. The McEliece cryptosystem, which was proposed in
the late seventies, still belongs to the small group of public-key schemes that remain unbroken. The alphabet Zq in the
McEliece cryptosystem is usually small (typically, q = 2) and independent of the security parameter n.
More recently, Regev [38, 39] considered an alternative way of introducing errors. He suggested a larger modulus
q (typically, taken to be polynomial in n), and sample the components of the error-vector according to a discrete
Gaussian distribution χ on Z (considered modulo q) with mean 0 and standard deviation σ = α q/

√
2π, for some

α ∈ (0, 1). In this context, LINEAR SYSTEM WITH NOISE is better known as the LEARNING WITH ERRORS (LWE)
problem. The probability distribution used for error sampling implies that each of its components will have a small
norm (w.r.t. the size of the field) with high probability.
Since its introduction, LWE has proven to be a rich and versatile source of many innovative cryptosystems, such as the
oblivious transfer protocol by Peikert et al. [37], a cryptosystem by Akavia et al. [1] that is secure even if almost the
entire secret key is leaked, homomorphic encryption [2, 14, 31] and many others. Below we reproduce the definition
of LWE from [38, 39].

Definition 2 (LWE). Let n ≥ 1 be an integer, q be an odd integer, χ be a probability distribution on Zq and s ∈ Znq
be a secret vector. We denote by L(n)

s,χ the probability distribution on Zn×mq × Zmq obtained by choosing G ∈ Zn×mq

uniformly at random, sampling e according to χm, and returning (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq . LWE is

the problem of finding s ∈ Znq from (G, s×G+ e) sampled according to L(n)
s,χ.

In what follows, χα,q will denote a discrete Gaussian distribution over Z with standard deviation α q/
√
2π considered

modulo q. A typical setting for the standard deviation (std) is σ = nε, with 0 ≤ ε ≤ 1. It has been shown that as soon
as ε > 1/2, (worst-case) GAPSVP − Õ(n/α) classically reduces to (average-case) LWE [13, 36, 38, 39]. Thus, any
algorithm solving LWE (when ε > 1/2) can be used for GAPSVP− Õ(n/α). We note that it is widely believed that
only exponential (classical or quantum) algorithms exist for solving GAPSVP− Õ(n/α).

1.1 The Arora-Ge Algorithm for Solving LWE

In [3], Arora & Ge show that solving LWE can be reduced to solving a system of (error-free) high-degree non-
linear equations. The total complexity (time and space) of this approach is 2Õ(n2ε). Hence, it is sub-exponential when
ε < 1/2, but remains exponential when ε ≥ 1/2. As a corollary, this result also shows that Regev’s reduction in [38,39]
is tight. The strategy in [3] is to construct a non-linear but noise-free system of equations; from each noisy linear sample
a non-linear equation of degree 2T + 1 is formed, encoding the information that any noise value ei is in the interval
{−T, . . . , T}. If T < q/2 these equations still carry information and restrict the space of the secret. Hence, collecting
many such equations and solving the resulting system allows to recover the secret. In [3] linearisation is used to solve
this noise-free high-degree system of equations. Hence, O

(
n2T+1

)
equations are required. However, since χα,q is a

discrete Gaussian, requesting more samples also increases the probability that the noise of at least one sample falls
outside of the chosen interval {−T, . . . , T} implying that, as the number of samples grows, so does T , which then
requires a further increase in the number of samples. More samples make the problem easier but at the same time more
samples make the problem harder (cf. Section 3).
These opposing characteristics of the Arora-Ge algorithm naturally propose the application of algorithms for solving
non-linear systems of equations when the number of samples is restricted. Indeed, linearisation is a special case
of computing a Gröbner basis, a notion going back to the seminal work of Buchberger [15, 16, 19]. Gröbner basis
algorithms are fundamental tools in computational commutative algebra and allow to solve systems of equations in
degree d when less thanO

(
nd
)

equations are available – at the cost of increased computational complexity. Applying
the theory of Gröbner bases promises the following advantages over merely applying linearisation. We may hope
to reduce the complexity of solving the system even if we are given access to as many samples as we would like.
Since Gröbner basis algorithms need less than O

(
nd
)

equations to solve systems and since the number of equations
increases the required degree in the Arora & Ge modelling, we may hope to improve the complexity of solving LWE
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by reduction to non-linear polynomial system solving. After deriving a precise complexity of the basic Arora-Ge
algorithm (Section 4), we show that the use of Gröbner bases (cf. Section 2) does indeed yield an exponential speed-
up for solving LWE but is unlikely to yield a subexponential algorithm (Section 5).

1.2 LWE with Binary Errors

We then apply these ideas to a recent variant of LWE proposed by Micianccio and Peikert in [35]: LWE instances
where the components in the error vectors are sampled uniformly in a fixed interval. This generalises an earlier result
of Döttling and Müller-Quade [22] who first introduced a variant of LWE with uniform errors whilst keeping a strong
security reduction to lattice problems which we reproduce informally below:

Theorem 1 (UniformError-LWE [22]). Let n,m, q be in kO(1) and T ≥ n 1
2+ε for any constant ε > 0. Then, solving

LWE with parameters n,m, q and independent uniformly distributed errors in {−T, . . . , T} is at least as hard as
solving worst-case problems on (n/2)-dimensional lattices to within a factor mq

T · n
1
2+ε.

In [35], the authors further expand this result. They consider uniform errors in a much smaller interval, i.e. T is a
constant. For binary errors [35, Theorem 1.2], they obtain the following result.

Theorem 2 (BinaryError-LWE [35]). Let n,m = n
(
1 +Ω

(
1/log(n)

))
be integers, and q ≥ nO(1) be a sufficiently

large polynomially bounded (prime) modulus. Then, solving LWE with parameters n,m, q and independent uniformly
random binary errors is at least as hard as approximating lattice problems in the worst-case on Θ

(
n/log(n)

)
-

dimensional lattices within a factor Õ(
√
n · q).

From now on, we shall denote by BinaryError-LWE the problem of finding s ∈ Znq from (G, s×G+ e) sampled ac-

cording to L(n)
s,U(F2)

, i.e. LWE with uniform binary errors. Note, though, that the result of Theorem 2 can be generalised
to any uniform error in a bounded interval {−T, . . . , T} [35, Theorem 4.6].

We note that this problem instance immediately matches the assumption made in the Arora & Ge algorithm where
the noise is considered to be bounded by some T . Hence, it is clear that the complexity of solving with uniform error
is at most the cost of computing a Gröbner basis for m equations of degree 2T + 1 in n variables. In the binary
case, the approach of [3] yields a polynomial-time algorithm as soon as the number of samples m = O

(
n2
)
. This is

already acknowledged in [22, 35], which only show that BinaryError-LWE remains hard if the number of samples is
severely limited. As emphasized in [35], though, it is a natural open question to investigate the hardness of such LWE
variants when the number of sample is (strictly) smaller than the upper bound provided by the Arora & Ge approach.
Put differently, there is a gap between m = n

(
1 +Ω

(
1/log(n)

))
where the hardness reduces to standard LWE

and O(n2) where problem is known to be easy due to the Arora-Ge algorithm. Indeed, applications in lattice-based
cryptography typically require the provision of m = O (n) or m = Õ(n) samples, i.e. from within that gap.

In Section 6, we show – under a mild assumption, cf. Section 7 – that BinaryError-LWE can be solved in subexponen-
tial time as soon as the number of samples is quasi-linear, typically, m = O (n log log n). Precisely, for such number
of samples, there is an algorithm solving BinaryError-LWE with complexity:

O
(
m2 2

ω n log log logn
8 log logn

)
,

with ω, 2 ≤ ω < 3 being the linear algebra constant. Currently, the best known value for ω is 2.3728639 [18, 30]. We
also derive precise complexity bounds for BinaryError-LWE with m = O (n). Let

H2(x) = −x log2(x)− (1− x) log2(1− x)

be the binary entropy, and assume that m = C · n, with C ≥ 1. Then we show that there is an algorithm solving
BinaryError-LWE in

O
(
n2 2ω n(1+β)H2( β

1+β )
)

(time) and O
(
n2 22n(1+β)H2( β

1+β )
)

(memory)
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with β =
(
C − 1

2 −
√
C(C − 1)

)
.

More concretely, we can solve BinaryError-LWE in dimension n in time n2 · 20.344n using a memory n2 · 20.289n as
soon as m ≥ 6.6n. This is better than the best currently-known generic (exact) CVP solver [9] (time 20.377n using
memory 20.029n). As a consequence, our results provide a good picture of the hardness degradation of BinaryError-
LWE for a number of samples ranging from m = n

(
1 +Ω

(
1/log(n)

))
to m = O

(
n2
)

which addresses an open
question by Micciancio and Peikert. Whilst our results does not contradict the hardness result of [35], they certainly
rule out BinaryError-LWE for cryptographic applications requiring a quasi-linear number of samples.

1.3 Fröberg’s Conjecture and Arora-Ge Equations

The results in this work depend crucially on two algebraic assumptions on the algebraic systems considered. The
assumption is as follows for BinaryError-LWE:
Assumption 2. Let (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)

s,U(F2)
, and let P (x) =

X(X − 1). We define:

f1 = P
(
c1 −

n∑
j=1

sjGj,1
)
= 0, . . . , fm = P

(
cm −

n∑
j=1

sjGj,m
)
= 0.

It holds that 〈f1, . . . , fm〉 is semi-regular (Definition 3, Section 2).

For LWE, Assumption 1 is similar but we consider a polynomial P (X) = X
∏CGB·σ
i=1 (X + i)(X − i), where CGB

depends on the Gaussian distribution.
The motivation of these assumptions is that the complexity of computing the Gröbner basis of semi-regular sequences
is well mastered. One can compute a Gröbner basis (Proposition 1, Section 2) of a semi-regular sequence f1, . . . , fm ∈
Zq[x1, . . . , xn] in

O
(
mDreg

(
n+Dreg

Dreg

)ω)
, as Dreg →∞,

where Dreg can be computed explicitly from the Hilbert polynomial given in (1). Hence, semi-regular sequences are
a family of algebraic systems for which the complexity can be explicitly and easily computed [4–6, 8].
It is believed that semi-regular sequences capture rather precisely the behaviour of random system of equations. Our
semi-regularity assumptions essentially states that our systems are not easier and not harder to solve than a random
system of equations. We note that that in algebraic cryptanalysis efficient attacks are only reported in the case that the
degree of regularity for the systems considered is much smaller than the degree of regularity of semi-regular systems
(for instance, see the attack against HFE [27]). If Arora-Ge-style systems were easier than random systems this would
imply that the analysis of Section 5 could be much improved and lead to progress towards a subexponential classical
algorithm for solving GAPSVP.
Furthermore, to verify that Assumption 1 and 2 hold, we experimentally confirmed that they hold for reasonably large
parameters in Section 7.1. For BinaryError-LWE, we have checked the assumption for n up to 53. In LWE, we can
only check our assumption up to n = 8 due to the high degree of equations (n = 8 already requires 65GB of RAM).
We note that the fact that semi-regular sequences captures the behaviour of random sequences of polynomials is
related to a famous conjecture in algebraic geometry known as Fröberg’s conjecture [28] which states that semi-
regular sequences form a dense subset among the set of all sequences. More precisely, the Fröberg conjecture states
that a property – i.e. the rank of some linear map associated to Macaulay matrices (the matrices occurring in a Gröbner
basis computation) is maximal – holds generically.
A property is said to be generic if it holds on a Zariski open subset ZO when the characteristic of K is 0. In Zariski’s
topology, a close subset is defined defined as the vanishing set of algebraic equations. Hence, we can find a polynomial
h(a) in Z[a] which does not depend on the field K such that h(a) 6= 0 ⇒ a ∈ ZO. The main difficulty in Fröberg’s
conjecture is to prove that the polynomial h is not identically zero or that ZO is not empty (see [29]).
To prove Fröberg’s conjecture, it is then sufficient to find one explicit family of polynomials which can be proven
semi-regular for any m and n. Proving Assumption 1 or 2 would provide such family and hence solve Fröberg’s
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conjecture. Furthermore, any non-trivial partial results on our assumptions would lead to progress on the general
Fröberg’s conjecture.

Fröberg’s conjecture is proved in very few cases: bi-variate sequences, and tri-variate sequences in characteristic 0 or
over a sufficiently big finite field, sequences with the same number of polynomials (m) and same number of variables
(n), m = n + 1 in characteristic 0, m polynomials of degree 2 with n ≤ 11, and m polynomials of degree 3 with
n ≤ 8 [20, 28, 29].

We note that Fröberg and Hollman [29] already investigated the question of semi-regularity for powers of generic
linear forms. In characteristic 0, [29, Lemma 2.1] proves that a sequence of n + 1 squares of generic linear forms
in n variables is generically semi-regular. Assumption 1 and 2 state that powers of random affine forms behave as
semi-regular sequences.

A technical difficulty for proving results towards Fröberg’s conjecture is that over a finite field, the notion of Zariski
open set is meaningless due to the field equations. However, the notion of genericity can be understood via the classical
Schwartz-Zippel-DeMillo-Lipton [21, 40, 44].

Lemma 1 (Schwartz, Zippel, DeMillo, Lipton [21, 40, 44]). Let K be a field and P ∈ K[x1, . . . , xn] be a non-
zero polynomial. Select r1, . . . , rn uniformly at random from a finite subset X of K. Then, the probability that
P (r1, . . . , rn) = 0 is less than deg(P )/|X |.

The Fröberg conjecture, being related to rank defects of certain matrices, can be easily interpreted algebraically as the
vanishing of some determinants. The difficult task is to prove that these determinants are non-zero. The determinant
polynomials involved being of high degree, they can not be expanded symbolically. But, these determinant polynomials
can be efficiently evaluated. So, a classical strategy to prove that such polynomials are non-zero is to find an explicit
family for which the determinants can be proven to be non-zero. This allows to understand why a core difficulty of
Fröberg’s conjecture is to find only one explicit example.

In this paper, we report some progress towards proving Fröberg conjecture by investigating our assumptions. The first
step to prove our assumptions is to show that the algebraic equations constructed are linearly independent. In Theorem
9 (Section 7.2), we prove that the equations f1, . . . , fm generated for BinaryError-LWE are linearly independent with
high probability. Another necessary condition implies by Assumption 2 is that the sequence f1, . . . , fm is semigeneric
(Definition 4), i.e. {xi · fj}1≤j≤n1≤i≤n spans a vector space of maximal dimension. For BinaryError-LWE, we prove that
such algebraic independence at low degree holds with m ≤ n + bn−22 c (Theorem 13, Section 7.2). This improves
on a result of [29, Theorem 2.2] where Fröberg and Hollman proved that the squares of m generic linear forms are
semigeneric as long as m ≤ n + 15 and n ≤ 6. In Section 7.2, we finally consider algebraic independence at higher
degree. We have been able to prove that the assumption for BinaryError-LWE for m = n + 1 (Theorem 12, Section
7.2) for a field which is big enough.

2 Preliminaries

Algorithms for computing Gröbner bases are a fundamental tool in computational commutative algebra and one of
the main tools for solving systems of non-linear polynomial equations over finite fields. Lazard [33] showed that
computing the Gröbner basis for a system of homogeneous polynomials f1 . . . , fm is equivalent to perform Gaussian
elimination on the Macaulay matricesMacaulay

d,m for d, min
(
deg(f1), . . . ,deg(fm)

)
≤ d ≤ D for some integer D.

The Macaulay matrixMacaulay
d,m (f1 . . . , fm) is defined as the coefficient matrix of (ti,j · fi) where 1 ≤ i ≤ m and ti,j

runs through all monomials of degree d− deg(fi). It can be shown that Macaulay matrices up to degree d can be used
to compute a partial Gröbner basis, called d-Gröbner basis. For d big enough, a d-Gröbner basis is a Gröbner basis
and we have the following result:

Theorem 3 ( [33]). Let q be a prime and let f = (f1, . . . , fm) ∈ (Zq[x1, . . . , xn])m be homogeneous polyno-
mials and ≺ be a monomial ordering. There exists a positive integer D for which Gaussian elimination on all
Macaulay

d,m (f1, . . . , fm) matrices for d, 1 ≤ d ≤ D computes a Gröbner basis of 〈f1, . . . , fm〉 w.r.t. to ≺.
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It follows that the complexity of computing a Gröbner basis is bounded by the complexity of performing Gaussian
elimination on the Macaulay matrices up to some degree D. In general, computing the maximum degree occurring
in a Gröbner computation is a difficult problem. However, this degree is precisely known for a specific family of
polynomial systems [4–6, 8].

Definition 3 (Semi-regular Sequence [6, 8]). Let m ≥ n, and f1, . . . , fm ∈ Zq[x1, . . . , xn] be homogeneous poly-
nomials of degrees d1, . . . , dm respectively and I the ideal generated by these polynomials. The system is said to be a
semi-regular sequence if the Hilbert polynomial [19] associated to I w.r.t. the grevlex order is:

HP(z) =

[∏m
i=1(1− zdi)
(1− z)n

]
+

, (1)

with [S]+ being the polynomial obtained by truncating the series S before the index of its first non-positive coefficient.
We shall call degree of regularity of a semi-regular sequence the quantity :

1 + deg
(
HP(z)

)
.

This degree of regularity is the degree D involved in Theorem 3 for a semi-regular sequence.
Finally, let f1, . . . , fm ∈ Zq[x1, . . . , xn] be a sequence of affine polynomials. We denote by fH1 , . . . , f

H
m ∈ Zq[x1, . . . , xn]

the corresponding homogeneous components of highest degree. We shall say that f1, . . . , fm is semi-regular if the se-
quence fH1 , . . . , f

H
m is semi-regular.

In this paper, we will use the assumptions that the algebraic equations considered in our approaches behave as semi-
regular sequences. Throughout this paper, we use intensively the following complexity results about semi-regular
sequences.

Proposition 1 (adapted from [7]). Let f = (f1, . . . , fm) ∈ (Zq[x1, . . . , xn])m be affine polynomials with m > nn.
If f1, . . . , fm is semi-regular, then the number of operations in Zq required to compute a Gröbner basis for any
admissible order is bounded by:

O
(
mDreg

(
n+Dreg

Dreg

)ω)
, as Dreg →∞, (2)

where 2 ≤ ω < 3 is the linear algebra constant and Dreg is the degree of regularity of 〈f1, . . . , fm〉.

Note that (2) is actually the cost of computing a Gröbner basis with a grevlex ordering. To change the ordering, we
have also to use FGLM [26] whose complexity is polynomial in the degree of the ideals. For semi-regular sequences,
this is equal to the number of solutions counted with multiplicities. This part can be ignored for m > n (see for
instance [11]).
Note that the complexity bound (2) is rather pessimistic as we do not take into account the particular structure of the
matrices involved. Typically, the Macaulay matrices considered have huge rank defects which correspond to useless
computations. More recent algorithms such as F4 and F5 [23, 24]) are actually trying to take advantage as much as
possible of the structure of Macaulay matrices. This leads to considerable speed-up for practical applications [25, 27]
and in theory as well [7]. However, to simplify the asymptotical analysis we will consider Lazard’s algorithm (Theorem
3) which performs row reductions on Macaulay matrices.
Finally, the following classical approximation of the binomial coefficient due to Stirling will be useful to prove some
of our results below.

Lemma 2. Let H2(x) = −x log2(x)− (1− x) log2(1− x) be the binary entropy. For n and k large enough, we have
log2

(
n
k

)
≈ nH2

(
k
n

)
.

Similarly, we have the following lemma.

Lemma 3.

log

(
n+D

D

)
≈

D log(n/D), if D ∈ o(n),

n log(D/n), if n ∈ o(D).

This follows easily from Stirling’s expansion of the binomial.
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3 Arora & Ge

The Arora & Ge algorithm proceeds by generating a non-linear noise-free system of equations from LWE samples. In
the construction of such a system, it makes use of the following well-known fact about the Gaussian distribution.

Lemma 4. Let χ denote the Gaussian distribution with standard deviation σ. Furthermore, for x > 0, we denote
Q(x) = 1

2

(
1− erf

(
x√
2

))
. Then, for all C > 0, it holds that:

Pr[e $← χ : |e| > C · σ] ≈ 2×Q(C) ≤ 2

C
√
2π
e−C

2/2 ∈ eO(−C
2).

That is, for a C > 0, elements sampled from a Gaussian distribution take only values on the interval [−C ·σ, . . . , C ·σ]
of Zq with probability at least 1− eO(−C

2) if we represent elements in Zq as integers in [−b q2c, . . . , b
q
2c]. Moreover,

if e $← χ then P (e) = 0 for

P (X) = X

C·σ∏
i=1

(X + i)(X − i),

with probability at least 1− eO(−C
2). Clearly P is of degree 2C · σ + 1 ∈ O (C · σ).

It follows that if (ai, bi) = (ai, 〈ai, s〉+ ei) ∈ Znq × Zq , and ei
$← χ, then

P
(
− b+

n∑
j=1

(ai)(j)xj
)
= 0, (3)

with probability at least 1− eO(−C
2). Each sample (ai, 〈ai, s〉+ ei) = (ai, bi) ∈ Znq × Zq allows to generate a non-

linear equation of degree 2C · σ + 1 in the n components of the secret s which holds with probability 1− eO(−C
2).

The Arora & Ge algorithm then proceeds by generating MAG independent equations of the form (3), to be then solved
by linearisation. However, a value for C – denoted by CAG – occurring in Lemma 4 has to be chosen sufficiently large
so that all errors ei lie with high probability in the interval [−CAG · σ, . . . , CAG · σ] ⊆ Zq , i.e. such that the secret s
is indeed a common solution of the MAG equations. To this end, let SAG be the system of equations generated from
MAG equations as in (3) and bound the probability of failure by the union bound:

pf =MAG × Pr[e $← χα,q : |e| > CAG · σ] ≤
MAG

eO(C
2
AG)

.

Hence, pf is the probability of failure of the Arora & Ge algorithm, i.e. it is an upper bound on the probability that the
secret s ∈ Znq is not a solution to SAG . Let also DAG = 2CAG σ+1 be the degree of the equations occuring in SAG.
It is shown in [3] (cf. Section 4) that taking CAG ∈ Õ(σ) allows us to make the probability of failure negligible.
In summary, the Arora & Ge algorithm reduces solving LWE to linearisation of a system of MAG equations of degree
DAG = 2CAG σ + 1 ∈ Õ(σ2). In particular, the following theorem holds:

Theorem 4 ( [3]). LetDAG < q. The system obtained by linearizingMAG = O
((
n+DAG

DAG

)ω
σ q log q

)
= nO(DAG) =

2Õ(DAG) equations as in (3) has at most one solution with high probability.

Note that O
((
n+DAG

DAG

))
equations is sufficient to linearise the system. The extra factor σ q log q allows to prove that

the linearised system has at most one solution with high probability [3]. The overall complexity of the Arora-Ge
algorithm is the cost of performing Gaussian elimination on a matrix of size MAG ×

(
n+DAG

DAG

)
, i.e.

CplxAG = nO(DAG) = 2Õ(σ2) = 2Õ(n2ε).

Note also that, if we have the standard deviation σ = nε, then the algorithm requires 2Õ(n2ε) LWE samples for
performing the linearisation step. It follows that the Arora & Ge algorithm is subexponential when ε < 1/2.
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4 Refined Analysis of Arora & Ge

However, the above analysis and the analysis in [3] leaves room for improvements as it hides not only constants
in the exponent but also logarithm factors. In this section we address this issue so we can then compare potential
improvements due to the application of Gröbner bases in Section 5.
As established in the previous section, the overall complexity of solving an LWE instance with the Arora & Ge
algorithm is that of executing Gaussian elimination on a matrix of size MAG ×

(
n+DAG

DAG

)
. Gaussian elimination on an

m× n matrix of rank r has complexity O
(
mnrω−2

)
[32]. The Arora & Ge algorithm hence has a complexity of

O

(
MAG ·

(
n+DAG

DAG

)ω−1)
= O

(
MAG ·

(
n+ 2CAG σ + 1

2CAG σ + 1

)ω−1)
.

Hence, we need to bound CAG.

Lemma 5. Let n, q, σ = α·q be parameters of an LWEχα,q instance where q = poly(n). Let p′f ∈ [0, 1] be a constant
upper bound on the probability of failure and

CAG ≤ 2σ log n+ a1/2 ≈ 4σ log n,

with a = 4(σ log n)2 + 2 log(σ q log q) − 2 log p′f + 2 log n. Finally, let also DAG = 2CAG σ + 1. Then, the system
obtained by linearizing

(
n+DAG

DAG

)
σ q log q equations of degree as in (3) is correct, i.e. the secret is a zero of all the

polynomials, with probability bigger than 1− p′f .

Proof. The probability of failure is upper bounded by by:

pf =MAG × Pr[e $← χα,q : |e| > CAG · σ] ≈
2
(
n+DAG

DAG

)
σ q log q

√
2π CAG eC

2
AG/2

<

(
n+DAG

DAG

)
σ q log q

CAG · eC
2
AG/2

.

We bound
(
n+DAG

DAG

)
by nDAG . While this approximation is rather loose, it allows to simplify our expression sufficiently

to recover a closed form of the complexity. With this simplification, our goal is to find CAG such that:

0 ≤ nDAG · σ q log q
CAG · eC

2
AG/2

= p′f ≤ 1.

That is:
elog

(
σ q log q

)
e(2CAG σ+1) logn

elog p
′
f ·
(
elogCAG · eC2

AG/2
) = 1.

Namely, we want to solve

0 = log(σ q log q) + 2CAG σ log n+ log n− logCAG − log p′f − C2
AG/2

> log(σ q log q) + 2CAG σ log n+ log n− log p′f − C2
AG/2

for CAG. The last line has 2 roots:

[R1 = 2σ · log(n)− a1/2, R2 = 2σ · log(n) + a1/2],

with a = 4(σ log n)2 + 2 log(σ q log q)− 2 log p′f + 2 log n.

Note that a1/2 > 2σ log(n) and hence R1 < 0. Thus, the smallest possible value for CAG is R2. Now, assume that
q ∈ poly(n), i.e. q ≈ nc. Also, recall that p′f is a constant. Thus, for n big enough:

a = 4(σ log n)2 + 2 log(σ q log q)− 2 log p′f + 2 log n

= 4(σ log n)2 + 2c log(σ n c log n)− 2 log p′f + 2 log n

≈ 4(σ log n)2.
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So, we have
CAG ≤ 2σ log n+ a1/2 ≈ 4σ log n.

ut

We hence arrive at the following theorem:

Theorem 5. Let n, q, σ = α · q be parameters of an LWEχα,q instance. If DAG(= 8σ2 log n + 1) ∈ o(n) then the
Arora & Ge algorithm solves the computational LWE problem in time complexity

O
(
2
ω·DAG log n

DAG · σ q log q
)
= O

(
2 8ω σ2 logn(logn−log(8σ2 logn)) · poly(n)

)
and memory complexity

O
(
2
2·DAG log n

DAG · σ q log q
)
= O

(
2 16σ2 logn(logn−log(8σ2 logn)) · poly(n)

)
.

If n ∈ o(σ2 log(n)) then the Arora & Ge algorithm solves the computational LWE problem in time complexity

O
(
2ω·n log

DAG
n · σ q log q

)
= O

(
2ω n log(8σ2 logn)−n logn · poly(n)

)
and memory complexity

O
(
2 2n log

DAG
n · σ q log q

)
= O

(
2 2n log(8σ2 logn)−n logn · poly(n)

)
.

Proof. The result follows immediately from plugging the Lemmata 3 and 5 into Theorem 4.

This establishes a baseline to compare any potential improvements due to the application of Gröbner basis algorithms
with.

5 Solving LWE with Gröbner Bases

We are now ready to address the question if the complexity of the basic Arora & Ge algorithm can be improved by
using Gröbner bases instead of linearisation. Let the notation be as in Section 4. The motivation for this section is
that the constant CAG (and hence the degree of the equations) depends on the number of equations MAG considered.
Hence, on the one hand, we may lower the number of equations to a value smaller than Õ(n2 ε) whilst keeping the
probability of failure small enough. On the other hand, this means that the cost of solving the resulting system will
grow compared to that of linearisation. The optimisation target is then to find a tradeoff allowing to improve upon
linearisation.
We assume that σ = nε, with ε, 0 ≤ ε ≤ 1. Let also θ, 0 ≤ θ ≤ ε ≤ 1. We consider a number of samples of the
following form:

MGB = eγθ , with γθ = n2·(ε−θ).

Note that θ = 0 corresponds up to polylog factors to the basic Arora-Ge approach. To explain the rational for the
choosing this form for MGB the number of samples we state below a simple lemma which relates the number of
samples considered to the degree of the multivariate equations:

Lemma 6. Let (a1, b1), . . . , (am, bm) be elements of Fnq × Fq sampled according to LWEχα,q . If C =
√

2 log(m)
then, the equations generated as in (3) vanish with probability at least:

pg = 1−

√
1

π · log(m)
.



10

Proof. By Lemma 4, the probability of failure verifies

≤ 2m

C
√
2π
e−C

2/2 =
2m√

4π · log(m)
e−
(√

2 log(m)
)2
/2 =

m√
π · log(m)

e− log(m) =
1√

π · log(m)
.

From this the probably of success pg ≥ 1− pf follows. ut

Remark 1. If m ∈ O (n) then it holds that pg ∈ 1− o(1).

We can then deduce the degree DGB required for MGB = eγθ equations. From Lemma 6, we have to fix CGB =√
2 · log(MGB) =

√
2 · γθ. Thus:

DGB = 2
√

2 · log(MGB) · σ + 1 ∈ O
(√

log(MGB) · σ
)
= O (

√
γθ · σ) = O

(
n2ε−θ

)
= O

(
γθ · nθ

)
.

But to ease the analysis below, we further simplify DGB to:

DGB ≈ γθ · nθ = log(MGB) · nθ.

Furthermore, we restrict our attention to the case σ =
√
n/
√
2π. Now, in order to analyse the complexity of the

Gröbner basis computation, we need to make the following assumption about the structure of the generated equations:

Assumption 1 Let (a1, b1), . . . , (aMGB
, bMGB

) be elements of Fnq ×Fq sampled according to LWEχα,q . Let P (X) =

X
∏CGB·σ
i=1 (X + i)(X − i). We define:

fi = P
(
− b+

n∑
j=1

(ai)(j)xj
)
= 0,∀i, 1 ≤ i ≤MGB. (4)

Then, 〈f1, . . . , fm〉 is semi-regular.

We justify this assumption in Section 7.
From DGB and MGB we now need to establish the degree of regularity. Whilst there are classical results on the degree
of regularity in the literature, these do not apply here. In particular, we need to consider systems of equations having
a non-constant degree. For brevity and due to the fact a detailed analysis is beyond the scope of this paper, we only
provide the general statement which allows to derive the result below in Appendix A (Proposition 3).

Lemma 7. Let A ≥ 1, and f1, . . . , fm ∈ Zq[x1, . . . , xn] be semi-regular polynomials of degree n
A , and Dreg be the

degree of regularity of these polynomials. If m = e
π·n
4·A2 , then3 it holds that Dreg behaves asymptotically as

CA · n,where CA is a constant which depends on A.

The constant CA in the Lemma can be computed explicitly for any value of A as explained in Proposition 3. For
A = 1, we get in particular that Dreg = 1.41 ·n, for n big enough. Putting all these results together we can now derive
the complexity of solving LWE using a Gröbner basis algorithm.

Theorem 6. Let A ≥ 1, ω, CA be as defined in Lemma 7, ω, 2 ≤ ω < 3, be the linear algebra constant, and
H2(x) = −x log2(x)− (1− x) log2(1− x). Let (ai, bi)i≥1 be elements of Fnq × Fq sampled according to LWEχα,q

with a standard deviation σ =
√
n√
2π

and A ≥ 1. There is an algorithm recovering the secret in

O
(
2
n
(
ω (1+CA)H2

(
CA

1+CA

)
+
π·log2(e)

4·A2

))
(time) and O

(
2
n
(
2 (1+CA)H2

(
CA

1+CA

)
+
π·log2(e)

4·A2

))
(memory), (5)

The algorithm has success probability ≥ 1− 2
π
√
n
= 1− o(1).

3 We will see that the constant π/4 in the exponent allows to adjust the success probability in Theorem 6.
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Proof. Let MGB = e
π·n
4·A2 and DGB = n/A. We generate a system of MGB non-linear equations of degree DGB as

(4). Under our regularity assumption 1, the complexity of computing a Gröbner basis for this system is:

O
(
n e

π·n
4·A2

(
n(1 + CA)

CA n

)ω)
, (6)

Combining this with Lemma 2 gives the complexity. By Lemma 4, the probability of failure verifies is≤ 2m
C
√
2π
e−C

2/2.

In our case, C ≈
√
2πn
2 which gives a failure probability ≤ 2

π
√
n

. ut

Note that the complexities in Theorem 6 are minimized by taking a constant A = 1. So, we get a complexity of

O
(
2n
(
2.35ω+1.13

))
(time) andO

(
25.85n

)
(memory). As a consequence we have that using Gröbner bases yields an

exponential speed-up (for σ =
√
n/
√
2π and under Assumption 1) over the basic Arora-Ge approach (cf. Theorem

5). On the other hand, our results also give a negative answer to the natural question whether the combination of
Gröner basis techniques with the Arora-Ge modelling can yield a subexponential algorithm for the LWE problem.
From Lemma 7, one can notice that there is no choice of A (constant, log n, . . . ) which makes the number of samples
sub-exponential whilst keeping the degree of regularity sub-linear.

6 Solving LWE with Bounded Errors

We now turn to studying the complexity of solving BinaryError-LWE using the modelling of Arora & Ge [3] and
applying a Gröbner basis algorithm for solving the resulting system of equations. As discussed earlier, BinaryError-
LWE is an LWE instance over Zq but with errors restricted to the binary field, as in [35]. Generating noise-free
non-linear equations is straightforward in this case: if e = (e1, . . . , em) ∈ {0, 1}m and P (X) = X(X − 1), then we
have P (ei) = 0, for all i, 1 ≤ i ≤ m.

Now, let (G, s×G+ e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)
s,U(F2)

. Then

ei = ci −
n∑
j=1

sjGj,i, for 1 ≤ i ≤ m.

It follows that the secret s ∈ Znq is a solution of the following algebraic system:

f1 = P
(
c1 −

n∑
j=1

sjGj,1
)
= 0, . . . , fm = P

(
cn −

n∑
j=1

sjGj,n
)
= 0. (7)

This is an algebraic system of m quadratic equations in Zq[x1, . . . , xn]. As already pointed out in [3, 35], this system
can be solved using linearization ifm = O

(
n2
)
. However the casem < O

(
n2
)

remained untreated. Here, we address
this problem of evaluating the complexity of solving the algebraic system (7) with an arbitrary numberm of equations.
As discussed in Section 2, answering this question in general is hard. But for one particular class of systems, namely
semi-regular systems of equations, this question has in fact been settled. In particular, the following result [4–6, 8]
allows us to classify the complexity of solving polynomial systems with respect to the number of equations.

Theorem 7. (i) Let m = C · n, with C > 1, and let f1, . . . , fm ∈ Zq[x1, . . . , xn] be a semi-regular system of
equations. The degree of regularity of f1, . . . , fm behaves asymptotically as

Dreg =

(
C − 1

2
−
√
C(C − 1)

)
n− a1

2
(
C(C − 1)

)1/6 n 1
3

−

(
2− 2C − 1

4
(
C(C − 1)

)1/2
)

+O
(

1

n
1
3

)
,

where a1 ≈ 2.3381 is the largest zero of the classical Airy function.
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(ii) Let m = n · log1/ε(n), for any constant ε > 0, orm = n log log n. The degree of regularity of f1, . . . , fm behaves
asymptotically as:

Dreg =
n2

8m
(1 + o(1)) .

A proof of i) can be found, for instance, in [8, Theorem 1]. A proof similar to the case of ii) can be found in [5].
However, there is slight difference between [5] (binary fields) and our case (generic prime fields). In Appendix A we
briefly sketch a proof for ii) of Theorem 7.
Hence, under the assumption that the system (7) behaves like a semi-regular system of equations, Theorem 7 allows
one to compute an upper bound on the complexity for solving it with Gröbner basis algorithms. While no proof
currently exists that would demonstrate that the system (7) does indeed behave like a semi-regular system, we make
the following assumption based on the discussion in Section 7.

Assumption 2 Let (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)
s,U(F2)

, and let P (x) =

X(X − 1). We define:

f1 = P
(
c1 −

n∑
j=1

sjGj,1
)
= 0, . . . , fm = P

(
cn −

n∑
j=1

sjGj,m
)
= 0. (8)

It holds that 〈f1, . . . , fm〉 is semi-regular.

Based on Assumption 2, we can now state the main result of this section. We classify the hardness of our approach with
various number of samples. The first one corresponds to the number of equations required in the security proof [35,
Theorem 1.2]. We then consider a slightly larger number of equations than what is required in the security proof, i.e.
m = 2n equations. In addition we give the results for a quasi-linear number of equations.

Theorem 8. Let ω, 2 ≤ ω < 3, be the linear algebra constant, and H2(x) = −x log2(x) − (1 − x) log2(1 − x).
Under Assumption 2, we have the following.

(i) If m = n
(
1 + 1

log(n)

)
, then there is an algorithm solving BinaryError-LWE with a time complexity:

O
(
n2 21.37ω n

)
. (9)

(ii) If m = 2 · n, then there is an algorithm solving BinaryError-LWE with a time complexity

O
(
n2 20.43ω n

)
. (10)

(iii) More generally, if m = C · n, with C > 1, there is an algorithm solving BinaryError-LWE in:

O
(
n2 2ω n(1+β)H2( β

1+β )
)

(time) and O
(
n2 22n(1+β)H2( β

1+β )
)

(memory), (11)

with β =
(
C − 1

2 −
√
C(C − 1)

)
.

(iv) If m = O (n log log n), then there is a subexponential algorithm solving BinaryError-LWE with complexity

O
(
m2 2

ω n log log logn
8 log logn

)
(time), O

(
m2 2

2n log log logn
8 log logn

)
(memory). (12)

(v) Finally, if m = n · log1/ε(n), for any ε > 0, then there is a subexponential algorithm solving BinaryError-LWE
whose complexity is:

O

m2 2
ω n log

(
log1/ε(n)

)
8 log1/ε(n)

 (time), O

m2 2
2n log

(
log1/ε(n)

)
8 log1/ε(n)

 (memory). (13)
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Proof. As explained Section 2, the complexity of computing a Gröbner basis is:

O
(
mDreg

(
n+Dreg

Dreg

)ω)
(time), O

(
mDreg

(
n+Dreg

Dreg

)2
)

(memory). (14)

Under our semi-regularity assumption, Theorem 7 gives: Dreg = 0.5 · n + o(n) for m = n
(
1 + 1

log(n)

)
, Dreg =

0.08 · n+ o(n) for m = 2 · n and more generally Dreg =
(
C − 1

2 −
√
C(C − 1)

)
n+ o(n) for m = C · n, for any

constant C > 1. In these cases, the binomial coefficient in (14) has the following form:(
α · n
β · n

)
, for some α > β > 0.

We obtain (9) – (11) by taking β =
(
C − 1

2 −
√
C(C − 1)

)
by applying Lemma 2. For (12) and (13), we combine

Lemma 3 and Theorem 7. ut

It follows from Theorem 8 that we can solve BinaryError-LWE in dimension n in time n2 20.344n using memory
n2 20.289n as soon as as soon as m ≥ 6.6n. We note that this is better than the best currently-known generic (exact)
CVP solver [9]. Theorem 8 also provides a good picture of the hardness degradation of BinaryError-LWE for the
number of available samples ranging from m = n

(
1 +Ω

(
1/log(n)

))
, a case for which BinaryError-LWE is as hard

as solving some lattice problem in the worst case (as shown in [35]) tom = O
(
n2
)
, the case for which it can be solved

in polynomial-time. In view of items (iv)-(v) of Theorem 8, we conclude that BinaryError-LWE should be ruled out
for cryptographic applications that require a quasi-linear number of samples.

7 Justifications of our Assumptions

The results in this work depend crucially on two assumptions, namely that all systems of equations occurring in this
work are semi-regular. While no proof currently exists that would demonstrate either Assumption 1 or 2, we argue
below why we believe these assumptions do indeed hold. As already mentioned, we note that each semi-regularity
assumption essentially states that our systems are not easier and not harder to solve than a random system of equa-
tions. If Arora-Ge-style systems were easier than random systems this would imply that the analysis of Section 5
could be much improved and lead to progress towards a subexponential classical algorithm for solving Bounded Dis-
tance Decoding. Furthermore, this subexponential classical algorithm would work despite ignoring the particular error
distribution and would consist of applying a generic Gröbner basis algorithm. We consider this case to be unlikely.
Furthermore, we note that Arora & Ge essentially showed in [3] that Assumption 1 holds form = 2Õ(σ2) (Theorem 4).
Following [3], we prove in Section 7.2 that Assumption 2 holds for m = O

(
n2
)
. We also prove in 7.2 several partial

results regarding our assumptions. Before this, we report in Section 7.1 on experimental results confirming that our
assumptions hold for reasonably large parameters.

7.1 Experimental Verification

We experimentally confirmed that our assumptions hold for reasonably large parameters. Namely, we verified As-
sumption 1 for systems up to n = 8 variables. In particular we computed for n = 8 and m = 256, α · q/

√
2π = 1

using MAGMA [12] (V2.20-4) and Sage [41]. The generated system of equations has degree 9 and the degree of
semi-regularity is 13. The highest degree reached was indeed degree 13.

While n ≤ 8 might seem rather small, we point out that it is the last n for which we can reasonably expect to run
experiments on current hardware. Theorem 6 bounds the memory complexity by O

(
25.85n

)
. We note that for n = 8,

our computation required 65GB of memory and 68 hours to complete. Hence, we would require about 25.85 · 65GB of
memory to perform this computation for n = 9 which is beyond our reach.
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Also, to verify Assumption 2, we have generated systems as in (8) with m = bn log2(n)c equations and n ∈
{5, . . . , 45} variables. We take q as the next prime larger than n (or n2 in some instances). We then computed a
Gröbner basis of the equations using MAGMA. Below we report the maximal degree reachedDreal in our experiments,
and the theoretical degree of regularity Dreg, as given by Assumption 2. We note that the largest of these experiments
took 7 days to complete.

Dreg Dreal

n ∈ {5, . . . , 25} 3 3
n ∈ {26, . . . , 53} 4 4

7.2 Formal Proofs in Limited Cases

In this part we provide formal proofs of some statements implied by Assumption 2 as first steps towards proving the
assumption itself.

Linear Independence Assumption 2 for BinaryError-LWE implies in particular that the equations (8) are linearly
independent. Below, we prove that this indeed holds with high probability for any 1 ≤ m ≤

(
n+1
2

)
.

Theorem 9. Let (G, s×G+e) = (G, c) ∈ Zn×mq ×Zmq be sampled according to L(n)
s,U(F2)

, and let P (x) = X(X−1).
Assume that q > 2m. Then, for all 1 ≤ m ≤

(
n+1
2

)
, the equations

f1 = P
(
c1 −

n∑
j=1

xjGj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjGj,m
)
, (15)

are linearly independent with probability ≥ 1 − 2m
q . More precisely, the homogeneous components fH1 , . . . , f

H
m of

degree 2 are linearly independent with probability ≥ 1− 2m
q .

Proof. The coefficients of the fis can be viewed as polynomials of degree ≤ 2 in the components of the matrix G. We
denote by N be the number of monomials of degree 2, and by Mac2 the m×N matrix whose rows are the coefficients
of the fHi s. This the Macaulay matrix of the fHi s at degree 2. We assume that the monomials are sorted with respect
to a graded reverse lexicographical order. Let Mat2 be a m ×m sub-matrix of Mac2. We can view Det(Mat2) as a
polynomial p of degree 2m whose variables are the components of G. According to Lemma 9 (Appendix A.2), the
polynomial p is non-zero for all 1 ≤ m ≤

(
n+1
2

)
. The Schwartz-Zippel-DeMillo-Lipton Lemma (Lemma 1) yields

that p(G) 6= 0 with probability ≥ 1− 2m
q . ut

One can remark that the notion of semi-genericity only depends on the homogeneous components of highest degree.
Thus, the polynomial P in Theorem 9 could be replaced by X2 and the proof will remain the same (also, the constants
cis are irrelevant in the proof). This illustrates that it is equivalent to consider the semi-regularity of the systems as in
Assumption 2 or the semi-regularity of the square of linear forms as done by Fröberg and Hollman [29].
A consequence of Theorem 9 is:

Corollary 1. Let q > 2m. There is a polynomial-time algorithm solving BinaryError-LWE with probability 1 − 2m
q

as soon as n < m ≤
(
n+1
2

)
.

In [35], it was mentioned without a proof that BinaryErrors-LWE can be solved in polynomial-time as soon as the
number of samples is O

(
n2
)
. Precisely, a direct adaptation of [3, Theorem 3.1] to binary noise gives:

Theorem 10. Let (G, s×G+e) = (G, c) ∈ Zn×mq ×Zmq be sampled according toL(n)
s,U(F2)

, and let P (x) = X(X−1).
The system obtained by linearizing the fi’s, as defined in (15), has unique solution with probability≥ 1−2m ·qN2−m,
with N2 =

(
n+2
2

)
. The bound is then non-trivial (< 1) if m ≥ cN2, for some constant c > 0.
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Proof. We know that s ∈ Znq is a solution of f1, . . . , fm. Given s′ 6= s, the idea is to bound the probability that s′

vanishes simultaneously the linearized system corresponding to f1, . . . , fm.

By definition, c = (s×G) + e. So, we can write:

fi = P
(
ei −

n∑
j=1

(sj − xj)Gj,i
)
.

Now by setting x∗j = (sj − xj), we have:

f∗i (x
∗
1, . . . , x

∗
n) = fi(s1 − x∗1, . . . , sn − x∗n) = P

(
ei −

n∑
j=1

x∗jGj,i
)
.

Thus, ∃s′ 6= s such that fi(s′) = 0 ⇐⇒ ∃ a non-zero s∗ ∈ Znq such that f∗i (s
∗) = 0. We can view f∗i (s

∗) has
a multivariate polynomial of degree 2 in the components of G. Thus, assuming that f∗i (s

∗) is non-identically zero, it
holds that:

Pr
(G,c)←$L

(n)

s,U(F2)

(
f∗i (s

∗) = 0 | ei = b
)
≤ 2/q, with b ∈ {0, 1}.

The fact that the f∗i (s
∗) is a non-zero polynomial – viewed as a polynomial whose variables in the components of G

follows easily from [3, Lemma 3.4].

The same result holds if you replace f∗i by its linearization Lf∗i . Thus, for any S′ = s′ ⊗ s′ ∈ ZN2
q with s′ 6= s ∈ Znq ,

it holds that:

Pr
(G,c)←$L

(n)

s,U(F2)

(
Lf1(S

′) = 0, . . . , Lfm(S
′) = 0

)
=

m∏
i=1

Pr
(G,c)←$L

(n)

s,U(F2)

(
Lfi(S

′) = 0
)
.

We then have Pr
(G,c)←$L

(n)

s,U(F2)

(
Lfi(S

′) = 0
)
=

1

2
Pr

(G,c)←$L
(n)

s,U(F2)

(
Lfi(S

′) = 0 | ei = 0
)
+

1

2
Pr

(G,c)←$L
(n)

s,U(F2)

(
Lfi(S

′) = 0 | ei = 1
)
≤ 2/q.

Finally, we consider the event ES′ = ”Lf1(S
′) = 0, . . . , Lfm(S

′) = 0”. The probability that the linearized system
has more than one solution is the probability of the event ∪S′ES′ which is:

Pr
(G,c)←$L

(n)

s,U(F2)

(linearized system has not unique solution) ≤ 2m · qN2−m.

ut

Linearization (Theorem 10) requires a number of samples which is a constant times the number of monomials of
degree≤ 2 in n variables≥ c

(
n+2
2

)
whilst a Gröbner basis approach (Corollary 1) requires a number of samples equal

to the number of monomials of degree exactly 2 in n variables, i.e.
(
n+1
2

)
. So, Gröbner bases already require a smaller

number of samples than linearization to solve BinaryError-LWE in polynomial-time (we compute a Gröbner basis by
performing a row reduction on the Macaulay matrix at the degree of the equations).

Algebraic Independence at Low Degree. Semigenericity. We consider algebraic independence at the degree of the
equations plus 1. More precisely, following the terminology as in [29], we consider the notion of semigenericity.

Definition 4. Let f1, . . . , fm ∈ Zq[x1, . . . , xn] be homogeneous equations of degree d. We shall say that a sequence
of polynomials f1, . . . , fm is semigeneric if {xi · fj}1≤j≤n1≤i≤n spans a vector space of maximal dimension, i.e. min

(
n ·

m,
(
d−1+n

d

))
. For affine polynomials f1, . . . , fm ∈ Zq[x1, . . . , xn], we shall say that the sequence f1, . . . , fm is

semigeneric if fH1 , . . . , f
H
m is semigeneric.



16

For BinaryError-LWE, this corresponds to investigate Assumption 2 for a Macaulay matrices at degree 3. In [29,
Theorem 2.2], the authors prove that the square of m generic linear forms are semigeneric as long as m ≤ n+ 15 and
n ≤ 6. Here, we prove that system (15) is semigeneric for m ≤ n+ bn−22 c ≈ ( 32 )n; improving then towards [29].

Theorem 11. We assume q = Ω(n2). Let (G, s×G+ e) = (G, c) ∈ Zn×mq ×Zmq be sampled according to L(n)
s,U(F2)

.
For any m, 1 ≤ m ≤ n+ bn−22 c, the sequence (15) is semigeneric with probability ≥ 1− 2mn

q .

Proof. The strategy is similar to the proof of Theorem 9. Now, let N be the number of monomials of degree 3 and let
Mat3 be a sub-matrix of size m · n×m · n of the Macaulay matrix fH1 , . . . , f

H
m at degree 3. We can view Det(Mat3)

as a polynomial p of degree 2mn whose variables are the components of G. According to Lemma 11, p is non-zero.
Hence, Lemma 1 yields that p(G) 6= 0 with probability ≥ 1− 2mn

q . ut

We have a found a particular example which could allow to extend Theorem 13 up to m ≈ n2/ log n (Remark 2).
However, although we verified experimentally that the example is semi-generic, we have not been able to prove it
formally. Still, a first difficulty in this type of proof is to actually to describe a particular example. The second step is
of course to make the proof.

Full Proof of Assumption 2 for m = n + 1. We conclude this part by proving that Assumption 2 holds for
m = n+ 1 equations. The proof requires however to have field size big enough.

Theorem 12. We assume q = O (exp(n)). Let (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according

to L(n)
s,U(F2)

, and let P (x) = X(X − 1). With probability ≥ 1 − o(1), it holds that the sequence f1 = P
(
c1 −∑n

j=1 xjGj,1
)
, . . . , fn+1 = P

(
cn+1 −

∑n
j=1 xjGj,n+1

)
is semi-regular.

Proof. It is well known that the degree of regularity of a semi-generic sequence of m = n + 1 equations is dn+1
2 e.

So, we need to prove that the Macaulay matrices associated to fH1 , . . . , f
H
n+1 of degree 2 to n+1

2 are of maximal
possible rank. That is, the only linear dependencies occurring in the Macaulay matrices are the one induces by the
trivial syzygies, i.e. fHi f

H
j = fHj f

H
i . Until now, we investigated degrees 2 and 3 for which there is no trivial syzygies.

Let [td]HP(z) be the dth coefficient of the Hilbert polynomials (1). This coefficient gives the rank defects, and then the
expected rank, of the Macaulay matrix of fH1 , . . . , f

H
m at degree d ≥ 2. As in the previous proofs, we can write easily

that Macaulay matrix of fH1 , . . . , f
H
m at each degree d has the expected rank if a minor is non-zero. The degree of this

minor is O
(
nd−1

)
. We then conclude the proof by providing an explicit example of a sufficiently generic system of

m = n+ 1 equations. This is the purpose of the next Lemma.

Lemma 8. Let P (x) = X(X − 1). We consider a matrix G∗ ∈ Zn×n+1
q such that all coefficients are zero except:

– G∗[i, i] = 1, for all i, 1 ≤ j ≤ n.
– G∗[i, n+ 1] = 1, for all i, 1 ≤ i ≤ n.

Let c = s×G∗+ e, s ∈ Znq be chosen uniformly at random, e ∈ {0, 1}n+1 be sampled uniformly. Then, the sequence
P
(
c1 −

∑n
k=1 xkG

∗
k,1

)
, . . . , P

(
cn+1 −

∑n
k=1 xkG

∗
k,n+1

)
∈ Zq[x1, . . . , xn] is semi-regular.

The proof of this result is exactly the proof of [29, Lemma 2.1]. ut

Example 1 For n = 5, the matrix G∗ in Lemma 8 is as follows:


1 1 1 1 1
0 1 0 0 1
0 0 1 0 1
0 0 0 0 1
0 0 0 1 1

 .
To conclude this part, we mention that we can adapt all the results of Section 7.2 on BinaryError-LWE to UniformError-
LWE (for instance, we have Theorem 14).
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A Appendix

A.1 Degree of Regularity

The proof of Theorem 7-ii) is derived from the following more general result.

Proposition 2. Let ε > 0, and F (n) ∈ {log1/ε(n), log log n}. Assuming m = F (n)n, then the degree of regularity
of a system of quadratic semi-regular equations f1, . . . , fm ∈ Zq[x1, . . . , xn] behaves asymptotically as:

Dreg =
(
F (n)− 1/2−

√
F 2(n)− F (n)

)
n =

1

8

n

F (n)
+O

(
n

F 2(n)

)
.

http://crypto.stanford.edu/craig
http://crypto.stanford.edu/craig
http://www.sagemath.org
http://www.sagemath.org
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Proof. We assume that we have m quadratic equations in n variables. In this case, we have to consider the Hilbert
series:

Hm,n(z) =

(
1− z2

)m
(1− z)n

=

∞∑
d=0

hd z
d.

The degree of regularity is the index Dreg such that hDreg
< 0. We try to find Dreg = `(n)n = ` n such that h` n < 0.

To do so, we consider :

h` n =

∮
Hm,n(z)

z` n
dz =

∮
ef(z)ndz,

where the contour is a circle centered in 0 whose radius is smaller than 1.
In our context:

f(z) =
log(Hm,n(z))

n
=
m log

(
1− z2

)
− n log (1− z)− n ` log (z)

n
.

Laplace’s Method gives then:
h` n ≈

∑
{a|f ′(a)=0}

ef(a)n.

More details about this preliminary part can be found in the literature, for instance [4–6,8]. As n increases, the integral
concentrates in the neighbourhood of one or several saddle points, i.e. the solutions of f ′ = 0.

When the equation f ′(z) = 0 has two solutions, we have h` n ≈ ef(z
−)n + ef(z

+)n → ∞. Hence, since when
d = Dreg = ` n we must have hd = 0 this implies that the equation f ′(z) = 0 has a multiple root.
In our case, we have:

f ′(z) =
1

1− z
− 2m z

n(1− z2)
− `

z
.

Now, we set m = nF (n). We have multiple root if the discriminant of f ′ is 0. As a consequence, ` = `(n) is the
smallest real root of :(
4n3 F (n)2 + 4n3 − 8n3 F (n)

)
`2 +

(
− 8n3 F (n)3 − 16n3 F (n) + 20n3 F (n)2 + 4n3)`− 2n3 F (n) + n3 F (n)2 + n3.

This yields :

`(n) =
(
F (n)− 1/2−

√
F 2(n)− F (n)

)
n =

1

8

n

F (n)
+O

(
n

F 2(n)

)
.

ut

In Section 5, we use the following result.

Proposition 3. Let α and β be constants> 0, and f1, . . . , fm ∈ K[x1, . . . , xn] be semi-regular polynomials of degree
αn. We define the function F (X, `) =

log(1+`)−` log(`)+` log(1+`)− log(1+`−X)+log(`−X)`− log(`−X)α− log(1+`−X)`+log(1+`−X)α− log(β ).

Assuming m = βn, then it holds that:

Dreg

n
≈
{
α if α < α0

PositiveRealRoot
(
F (α, `)

)
, if α0 ≤ α < 6,

and α0 is the real value such that F (α0, α0) = 0.

We give below the value of α0 for various β.

β α0

eπ/4 0.3595671731
2 0.293815373
3 0.641794121
1.1 0.019208159
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For β = eπ/4, the degree of regularity is then for instance ≈ 1.41n. Below, we compare the theoretical degree of
regularity obtained from Proposition 3 for various β and α with the degree of regularity obtained by computing the
generic Hilbert series (Definition 3).
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The proof of this result is beyond the scope of this paper. The first step is similar to the the previous Proposition 2,
i.e. we use Laplace’s method to approximate the coefficient h` n in the Hilbert series. The next step requires different
tools that the ones used classically to cancel the coefficient asymptotically. The proof will be presented in an extended
version of this paper.
To simplify the analysis, it is possible to upper bound uniformly the degree of regularity; that is:

Proposition 4. Let α and β be constants> 0, and f1, . . . , fm ∈ K[x1, . . . , xn] be semi-regular polynomials of degree
αn. If m = βn:

Dreg ≤ n ·
β

β − 1

For β = e
π
4 , we have β

β−1 = 1.83.

A.2 Formal Proof in Limited Cases

The example below is used in Theorem 9 to show that the determinant considered is non-zero.

Lemma 9. For all i, 1 ≤ i ≤ n, construct a n×
(
n− (i− 1)

)
matrix Gi as follows. All the coefficients of Gi are zero

except:

– Gi[i, j] = 1, for all j, 1 ≤ j ≤
(
n− (i− 1)

)
.

– Gi[j + (i− 1), j] = 1, for all j, 1 ≤ j ≤
(
n− (i− 1)

)
.

Now, let G∗ = G1‖G2‖ · · · ‖Gn be a block matrix, s ∈ Znq chosen uniformly at random, and e ∈ {0, 1}m sampled
uniformly. We set c = s×G∗ + e and P (x) = X(X − 1) and define:

f1 = P
(
c1 −

n∑
j=1

xjG
∗
j,1

)
, . . . , fm = P

(
cm −

n∑
j=1

xjG
∗
j,m

)
.

Then, the homogeneous components fH1 , . . . , f
H
m of degree 2 are linearly independent.

Proof. Let fi,j be the the jth equation derived from the matrix Gi (the equation corresponding to the jth column of
the ith matrix Gi) . We start with the simple case m = n where G∗ = G1. The monomial of highest degree in f1,1 =
P (c1 − x1) is simply x21. More generally, for all i, 1 ≤ j ≤ n, the monomials of degree 2 in f1,j = P (cj − x1 − xj)
are x21, x1xj and x2j . Remark then that the system

F1 := [f̃1,1 = f1,1, f̃1,2 = −f1,1 + f1,2, . . . , f̃1,n = −f1,1 + f1,n]

has a triangular shape: the leading monomial of f̃1,j is x1 · xj (all the terms of degree 2 divisible by x1) and hence
distinct.
More generally, let G∗ = G1‖G2‖G3‖ · · · ‖Gn. We consider, for all i, 1 ≤ i ≤ n:

Fi := [f̃i,1 = fi,1, f̃i,2 = −fi,1 + fi,2, . . . , f̃i,n−i+1 = −fi,1 + fi,n−i+1]. (16)

All these equations are in triangular form, and leading monomials of Fi are the monomials xixj , with j ≥ i. Conse-
quently the set of equations

⋃
1≤i≤n Fi are linearly independent. Finally, the numbers of rows of G∗ is n+ (n− 1) +

(n− 2) + · · · (n− (n− 1)) = n2 − n(n− 1)/2 = n(n+ 1)/2 =
(
n+1
2

)
. ut

Example 2 For n = 4, and m = n(n+ 1)/2 = 10 the matrix G∗ is as follows:


1 1 1 1 0 0 0 0 0 0
0 1 0 0 1 1 1 0 0 0
0 0 1 0 0 1 0 1 1 0
0 0 0 1 0 0 1 0 1 1

 .
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The equations fi,j corresponding are then

[x21 + 15 · x1 + 5, x21 + 2 · x1 · x2 + x22 + 4, x21 + 2 · x1 · x3 + x23 + 10 · x1 + 10 · x3 + 12, x21 + 2 · x1 · x4 + x24 + 9 · x1 + 9 · x4 + 3,

x22 + 5 · x2 + 6, x22 + 2 · x2 · x3 + x23 + 4, x22 + 2 · x2 · x4 + x24 + 16 · x2 + 16 · x4,

x23 + 13 · x3 + 8, x23 + 2 · x3 · x4 + x24 + 7 · x3 + 7 · x4 + 12,

x24 + 14 · x4 + 2].

By performing the reductions as in (16), we get:

[x2
1 + 15 · x1 + 5,2 · x1 · x2 + x22 + 2 · x1 + 16,2 · x1 · x3 + x23 + 12 · x1 + 10 · x3 + 7,2 · x1 · x4 + x24 + 11 · x1 + 9 · x4 + 15,

x2
2 + 5 · x2 + 6,2 · x2 · x3 + x23 + 12 · x2 + 15,2 · x2 · x4 + x24 + 11 · x2 + 16 · x4 + 11,

x2
3 + 13 · x3 + 8,2 · x3 · x4 + x24 + 11 · x3 + 7 · x4 + 4,

x2
4 + 14 · x4 + 2].

In order to prove Theorem 13, we first consider the case where m = n as an intermediate step.

Theorem 13. We assume q = Ω(n2). Let (G, s×G+ e) = (G, c) ∈ Zn×mq ×Zmq be sampled according to L(n)
s,U(F2)

,
and let P (x) = X(X − 1). For any m, 1 ≤ m ≤ n, the equations

f1 = P
(
c1 −

n∑
j=1

xjGj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjGj,m
)
,

are semigeneric with probability ≥ 1− 2mn
q .

Proof. The strategy is similar to the proof of Theorem 9. Let N be the number of monomials of degree 3 and let Mat3
be a sub-matrix of size m ·n×m ·n of the Macaulay matrix at at degree 3 of fH1 , . . . , f

H
m. We can view Det(Mat3) as

a polynomial p of degree 2mn whose variables are the components of G. The next result shows that the determinant
polynomial considered is not identically zero.

Lemma 10. Let P (x) = X(X − 1). Let G∗ = G1 be as defined in Lemma 9. We set c = s×G∗ + e, s ∈ Znq chosen
uniformly at random, m = n and e ∈ {0, 1}m sampled uniformly. We define:

f1 = P
(
c1 −

n∑
k=1

xkG
∗
k,1

)
, . . . , fm = P

(
cm −

n∑
k=1

xkG
∗
k,m

)
.

Then, the polynomials f1, . . . , fm are semi-generic.

Proof. We first perform a simple reduction on the fj , that is:

f̃2 = f̃2 − f1, . . . , f̃n = f̃n − f1, f̃1 = 2f1.

From now on, we consider a degree ordering for which x1 > x2 > . . . > xn. It holds that

LT(f̃j) = 2 · x1 · xj ,∀j, 1 ≤ j ≤ n.

We can see that the terms of degree 3 in xi · f̃1 is equal to T (1)
i,1 := {2x21xi}1≤i≤n. Similarly, we have that T (1)

i,j :=

{2 · x1xixj , xix2j}
2≤j≤n
1≤i≤n are terms of degree 3 in xi · f̃j (with j 6= 1).

We consider a matrixM (1) := {M (1)[i, j] = xi·f̃j}1≤j≤m1≤i≤n and define r(1)i,j as the function which returns LT(M (1)[i, j]).

For all (i, j) ∈ [1, . . . , n] × [1, . . . , n], we have: r(1)i,j = 2 · x1 · xi · xj . Hence, r(1)i,j = r
(1)
j,i for all (i, j) ∈

[1, . . . , n] × [1, . . . , n]. So, M (1)[i, j] and M (1)[j, i] have the same leading terms. Our goal is to perform suitable
linear combinations on the polynomials of M (1)[i, j] such that all components have distinct leading terms.
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We first process the first column and first row of M (1). We define C1 := {(i, 1) | i ∈ [1, . . . , n]}, and R1 := {(1, j) |
j ∈ [2, . . . , n]}. For all (i, j) = (i, 1) ∈ C1, we have LT(M (1)[i, 1]) = 2 · x21 · xi. For all (i, j) = (1, j) ∈ R1, we
have also LT(M (1)[1, j]) = 2 · x21 · xj . Thus, for all (1, j) ∈ R1, we update M (1)[1, j] as follows:

M (1)[1, j] =M (1)[1, j]−M (1)[j, 1].

After this step, for all (1, j) ∈ R1, the term of degree 3 in M (1)[1, j] is now T
(1)
1,j := {x1x2j} and then r(1)1,j := x1x

2
j .

For all (i, 1) ∈ C1, we still have r(1)i,1 := 2x21 · xi and T (1)
i,1 := {2x21xi}.

Now, we consider the set L1 := {(i, j) ∈ [2, . . . , n] × [2, . . . , n] | i − j ≥ 0} This is the lower diagonal part. For all
(i, j) ∈ L1, with i 6= j, we update the matrix M (1) as follows:

M (1)[i, j] =M (1)[i, j]−M (1)[j, i]

For (i, i) ∈ L1, we have that r(1)i,i = 2x1x
2
i . However, x21xi = r

(1)
1,i /2, we then update the elements of the diagonal as

follows:
M (1)[i, i] =M (1)[i, i]− 2 ·M (1)[1, i].

After this step, for all (i, j) ∈ L1, with i 6= j, the terms of degree 3 in M (1)[i, j] is T (1)
i,j = {x2jxi,−xjx2i } and we set

r
(1)
i,j := x2jxi. For i = j > 1, T (1)

i,i reduces to {x3j}.

For all (i, j) ∈ L1, the terms r(1)i,j are distinct. Indeed, given (i, j) ∈ L1, the only solution (i′, j′) ∈ L1 to r(1)i,j = r
(1)
i′,j′

is trivial, i.e. (i = i′, j = j′).

Now, let U1 := {(i, j) ∈ [2, . . . , n] × [2, . . . , n] | i − j < 0}. For all (i, j) ∈ U1, we have r(1)i,j = 2x1xixj . For

all (i, j) ∈ U1, the terms r(1)i,j are distinct. Indeed, given (i, j) ∈ U1, the only non-trivial solution (i′, j′) ∈ U1 to

r
(1)
i,j = r

(1)
i′,j′ is (i′ = j, j′ = i). Since (i, j) ∈ U1, this implies that i′ − j′ > 0 and then (i′, j′) 6∈ U1. For all,

(i, j) ∈ U1, the terms of degree 3 of M (1)[i, j] remains T (1)
i,j := {2x1xixj , xix2j}

2≤j≤n
1≤i≤n .

To summarize:

– r
(1)
i,1 := rC1

i,1 = 2x21xi, for all i, 1 ≤ i ≤ n,

– r
(1)
1,j := rR1

1,j = x1x
2
j , for all j, 2 ≤ j ≤ n,

– r
(1)
i,j := rU1

i,j = 2x1xixj , for all (i, j) ∈ U1,

– r
(1)
i,j := rL1

i,j = x2jxi, for all (i, j) ∈ L1.

ut

Example 3 For n = 4, G∗ = G1 is as follows:


1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 .

The equations f̃j corresponding are:

[2 · x21 + 14 · x1 + 7, 2 · x1 · x2 + x22 + 16 · x1 + 6 · x2 + 1, 2 · x1 · x3 + x23 + 13 · x1 + 3 · x3 + 7,

2 · x1 · x4 + x24 + 14 · x1 + 4 · x4 + 13].
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By performing the reductions as in the previous lemma, we get:

[2 · x3
1 + 14 · x21 + 7 · x1,2 · x2

1 · x2 + 14 · x1 · x2 + 7 · x2,2 · x2
1 · x3 + 14 · x1 · x3 + 7 · x3,2 · x2

1 · x4 + 14 · x1 · x4 + 7 · x4,

x1 · x2
2 + 16 · x21 + 9 · x1 · x2 + x1 + 10 · x2,2 · x1 · x2 · x3 + x2 · x23 + 13 · x1 · x2 + 3 · x2 · x3 + 7 · x2,

2 · x1 · x2 · x4 + x2 · x24 + 14 · x1 · x2 + 4 · x2 · x4 + 13 · x2,x1 · x2
3 + 13 · x21 + 6 · x1 · x3 + 7 · x1 + 10 · x3,

2 · x1 · x3 · x4 + x3 · x24 + 14 · x1 · x3 + 4 · x3 · x4 + 13 · x3,

x1 · x2
4 + 14 · x21 + 7 · x1 · x4 + 13 · x1 + 10 · x4,x3

2 + 2 · x2
1 + 15 · x1 · x2 + 6 · x22 + 15 · x1 + 15 · x2,

x2
2 · x3 + 16 · x2 · x23 + 4 · x1 · x2 + 16 · x1 · x3 + 3 · x2 · x3 + 10 · x2 + x3,

x2
2 · x4 + 16 · x2 · x24 + 3 · x1 · x2 + 16 · x1 · x4 + 2 · x2 · x4 + 4 · x2 + x4,

x3
3 + 8 · x21 + x1 · x3 + 3 · x23 + 3 · x1 + 4 · x3,x2

3 · x4 + 16 · x3 · x24 + 3 · x1 · x3 + 13 · x1 · x4 + 16 · x3 · x4 + 4 · x3 + 7 · x4,

x3
4 + 6 · x21 + 4 · x24 + 8 · x1 + 10 · x4].

Finally, this is the example used in Theorem 13.

Lemma 11. Let P (x) = X(X − 1). Let G1 be defined as in Lemma 10. We consider a n × m2 matrix G2, with
m2 = bn−22 c. The coefficients are zero except for:

– G2[2, j] = 1, for all j, 1 ≤ j ≤ m2.
– G2[2j + 1, j] = G2[2j + 2, j] = 1, for all j, 1 ≤ j ≤ m2.

Let m = n+m2, G∗ = G1‖G2 be a block matrix of size n×m. We set c = s×G∗ + e, s ∈ Znq chosen uniformly at
random, and e ∈ {0, 1}m sampled uniformly. We define:

f1 = P
(
c1 −

n∑
k=1

xkG
∗
k,1

)
, . . . , fm = P

(
cm −

n∑
k=1

xkG
∗
k,m

)
.

Then, the sequence f1, . . . , fm is semigeneric.

Proof. Let M (1) be the matrix constructed as in Lemma 10. The matrix is such that:

– ∀(1, j) ∈ R1, the term of degree 3 in M (1)[1, j] is T (1)
1,j := {x1x2j}.

– ∀(i, 1) ∈ C1, the term of degree 3 in M (1)[i, 1] is T (1)
i,1 := {2x21xi}.

– ∀(i, j) ∈ U1, the terms of degree 3 of M (1)[i, j] is T (1)
i,j := {2x1xixj , xix2j}

2≤j≤n
1≤i≤n .

– ∀(i, j) ∈ L1, i 6= j, the terms of degree 3 in M (1)
i,j is T (1)

i,j := {x2jxi,−xjx2i }.
– The terms of degree 3 in M (1)

i,i (i > 1) is T (1)
i,i := {x3i }.

The leading terms of the polynomials in M (1) are then divided by a square or divided by x1. In fact, all the terms of
degree 3 divisible by x1 appear as leading terms.
For all j, 1 ≤ j ≤ m2, we denote by f2,j = fm1+j the equations derived from G2. This is the polynomial constructed
from the jth column of G2. We define by

T
(2)
i,j := {xix22, xix22j+1, xix

2
2j+2, 2xix2x2j+1, 2xix2x2j+2, 2xix2j+1x2j+2}1≤j≤m2

1≤i≤n

the terms of degree 3 in xi · f2,j . We also consider a matrix M (2) := {M (2)[i, j] = xi · f2,j}1≤j≤m2

1≤i≤n . The first step of
the proof is to perform all possible reductions of the polynomials in M (2) modulo the polynomials M (1)[i, j].
The term xix

2
2 can always be reduced by the leading term of a polynomial in the second column of M (1). For all

(i, j) ∈ [1, . . . , n]× [1, . . . ,m2], we cancel this term as follows:

M (2)[i, j] =M (2)[i, j]−M (1)[i, 2].
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After such reductions, the terms of degree 3 in M (2)[i, j] is updated as:

T
(2)
i,j = {x2x2i , xix22j+1, xix

2
2j+2, 2xix2x2j+1, 2xix2x2j+2, 2xix2j+1x2j+2}, for i > 2.

For i = 1, 2 the only difference is that the term x2x
2
i not appear in T (2)

i,j .

We consider the particular case of the first row M (2):

T
(2)
1,j = {2x1x2x2j+1, 2x1x2x2j+2, x1x

2
2j+1, 2x1x2j+1x2j+2, x1x

2
2j+2}.

We can see that all these terms can be reduced by the leading terms of a suitable M (1)[i, j]. More precisely, x1x22j+1,
and x1x22j+2 can be reduced by M (1)[1, 2j + 1] and M (1)[1, 2j + 2] respectively. Thus, for all j, 1 ≤ j ≤ m2, we
update the matrix as follows:

M (2)[1, j] =M (2)[1, j]−M (1)[1, 2j + 1]−M (1)[1, 2j + 2].

The corresponding reductions will only yield new terms of degree < 3.
Similarly, x1x2x2j+1, x1x2x2j+2, x1x2j+1x2j+2 can be reduced by a M (1)[i′, j′] with (i′, j′) ∈ U1. Thus, for all
j, 1 ≤ j ≤ m2, we update the matrix as follows:

M (2)[1, j] = −M (2)[1, j] +M (1)[2, 2j + 1] +M (1)[2, 2j + 2] +M (1)[2j + 1, 2j + 2].

After this step, we have:

T
(2)
1,j = {x2x22j+1, x2x

2
2j+2, x2j+1x

2
2j+2} and LT(M (2)[1, j]) = x2x

2
2j+1.

We consider then the second row of M (2) whose terms of degree 3 are:

T
(2)
2,j = {2x22x2j+1, 2x

2
2x2j+2, x2x

2
2j+1, 2x2x2j+1x2j+2, x2x

2
2j+2}.

We can again reduce x22x2j+1 and x22x2j+2 by the leading terms of polynomials of M (1). However, the reduction will
create new elements x2x22j+1 and x2x22j+2 which are irreducible modulo LT(M (1)). For all j, 1 ≤ j ≤ m2, we set:

M (2)[2, j] =M (2)[2, j]− 2M (1)[2j + 1, 2]− 2M (1)[2j + 2, 2].

After this step, we have

T
(2)
2,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2x

2
2j+2} and LT(M (2)[1, j]) = 3x2x

2
2j+1.

T
(2)
2,j and T (2)

2,j can not be further reduced by LT(M (1)).

Let U2 := {(i, j) ∈ [4, . . . , n] × [1, . . . ,m2] | i > 2j + 2}. In this case, we can cancel the terms x22j+1xi and
x22j+2xi by M (1). However, the reduction will create new terms x2j+1x

2
i and x2j+2x

2
i which are irreducible modulo

LT(M (1)). More precisely, for all (i, j) ∈ U2, we update the matrix M (2) as follows:

M (2)[i, j] =M (2)[i, j]−M (1)[i, 2j + 2]−M (1)[i, 2j + 1].

The terms of degree 3 of M (2)[i, j] are then:

T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, ∀(i, j) ∈ U2.

The terms of T (2)
i,j are clearly no divisible by x1. We have that x2x2i is irreducible modulo LT(M (1)). The others terms

are divisible by a square only if i = 2j+2. However, x2x22j+2 and x2j+1x
2
2j+2 can not be reduced modulo LT(M (1)).

Again, x2j+1x
2
i and x2j+2x

2
i can not be reduced by LT(M (1)). Thus, ∀(i, j) ∈ U2, the set T (2)

i,j is irreducible modulo
LT(M (1)).
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For i = 2j + 2, we have a rather similar situation. The only difference is that the reduction of x32j+2 will only yield
terms of degree < 3. We have then:

T
(2)
2j+2,j = {2x2x2j+1x2j+2, 3x2x

2
2j+2, 3x2j+1x

2
2j+2}.

Similarly, for i = 2j + 1, we have:

T
(2)
i,j = {3x2x22j+1, 2x2x2j+1x2j+2, x

3
2j+1, 2x

2
2j+1x2j+2, x2j+2x

2
2j+1}.

Using LT(M (1)), we can reduce x22j+1x2j+2 and x32j+1. So, we compute:

M (2)[2j + 1, j] =M (2)[2j + 1, j]− 2M (1)[2j + 2, 2j + 1]−M (1)[2j + 1, 2j + 1].

This yields:
T

(2)
2j+1,j = {3x2x

2
2j+1, 2x2x2j+1x2j+2, 3x2j+1x

2
2j+2}.

Finally, we define L2 := {(i, j) ∈ [3, . . . , n]× [1, . . . ,m2] | 2 < i < 2j + 1}. For all, (i, j) ∈ L2, it holds that:

T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2, 2xix2j+1x2j+2}.

All in all, after these steps, no term of M (2) can be reduced by LT(M (1)).
We have then:

– T
(2)
1,j = {x2x22j+1, x2x

2
2j+2, x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
2,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2, 2xix2j+1x2j+2} ,∀(i, j) ∈ L2,

– T
(2)
2j+1,j = {3x2x22j+1, 2x2x2j+1x2j+2, 3x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
2j+2,j = {2x2x2j+1x2j+2, 3x2x

2
2j+2, 3x2j+1x

2
2j+2}, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, ∀(i, j) ∈ U2.

We now proceed the polynomials M (2) to have distinct leading monomials.
We first reduce polynomials of the second row. That is, for all j, 1 ≤ j ≤ m2:

M (2)[2, j] =M (2)[2, j]− 3M (2)[1, j].

This gives:
T

(2)
2,j = {2x2x2j+1x2j+2,−3x2j+1x

2
2j+2}.

Also, for all j, 1 ≤ j ≤ m2, we compute:

M (2)[2j + 2, j] =M (2)[2j + 2, j]−M (2)[2, j].

This gives:
T

(2)
2j+2,j = {3x2x

2
2j+2, 6x2j+1x

2
2j+2}.

For all j, 1 ≤ j ≤ m2, we compute:

M (2)[2j + 1, j] =M (2)[2j + 1, j]− 3M (2)[1, j].

This gives:
T

(2)
2j+1,j = {2x2x2j+1x2j+2,−3x2x22j+2}.

Finally, for all j, 1 ≤ j ≤ m2:

M (2)[2j + 1, j] =M (2)[2j + 1, j]−M (2)[2, j].
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This gives:
T

(2)
2j+1,j = {−3x2x

2
2j+2, 3x2j+1x

2
2j+2}.

Finally, for all j, 1 ≤ j ≤ m2:

M (2)[2j + 1, j] =M (2)[2j + 1, j] +M (2)[2j + 2, j].

This gives
T

(2)
2j+1,j = {9x2j+1x

2
2j+2}.

To summarize, we have:

– T
(2)
1,j = {x2x

2
2j+1, x2x

2
2j+2, x2j+1x

2
2j+2}, and r(2)1,j = x2x

2
2j+1, for all j, 1 ≤ j ≤ m2,

– T
(2)
2,j = {2x2x2j+1x2j+2,−3x2j+1x

2
2j+2}, and r(2)2,j = 2x2x2j+1x2j+2, for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {x2x2i , 2x2xix2j+1, 2x2xix2j+2, xix

2
2j+1, xix

2
2j+2,2xix2j+1x2j+2}, and rU2

i,j = 2xix2j+1x2j+2,∀(i, j) ∈
L2,

– T
(2)
2j+2,j = {3x2x

2
2j+2, 6x2j+1x

2
2j+2}, and and r(2)2j+2,j = 3x2x

2
2j+2, for all j, 1 ≤ j ≤ m2,

– T
(2)
2j+1,j = {9x2j+1x

2
2j+2}, and r(2)2j+2,1 = 9x2j+1x

2
2j+2 for all j, 1 ≤ j ≤ m2,

– T
(2)
i,j = {2x2x2j+1xi, 2x2x2j+2xi, x2x

2
i , 2x2j+1x2j+2xi, x2j+1x

2
i , x2j+2x

2
i }, and rU2

i,j = 2x2x2j+1xi,∀(i, j) ∈
U2

By inspecting the terms in bold, it can be noticed that they are all distinct. ut

Example 4 For n = 5, G∗ = G1‖G2 is as follows:


1 1 1 1 0
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 1 0

 .

The initial system – after a first simple reduction on the equations of G1 – is:

[2 · x21 + 16 · x1 + 17, 2 · x1 · x2 + x22 + 5 · x1 + 13 · x2 + 19, 2 · x1 · x3 + x23 + 3 · x1 + 11 · x3 + 7, 2 · x1 · x4 + x24 + 27 · x1 + 6 · x4 + 22,

2 · x1 · x5 + x25 + 15 · x1 + 23 · x5 + 22, x22 + 2 · x2 · x3 + 2 · x2 · x4 + x23 + 2 · x3 · x4 + x24 + 3 · x2 + 3 · x3 + 3 · x4 + 2].

We give below homogeneous components of degree 3 of the polynomials of M (2) after all the operations described in
the previous proof.

[x2 · x2
3 + x2 · x24 + x3 · x24,2 · x2 · x3 · x4 + 26 · x3 · x24,9 · x3 · x2

4,

3 · x2 · x2
4 + 6 · x3 · x24,2 · x2 · x3 · x5 + 2 · x2 · x4 · x5 + x2 · x25 + 2 · x3 · x4 · x5 + x3 · x25 + x4 · x25].

Remark 2. We emphasize that we have found an example which extends Lemma 11. We construct a matrix G :=

G1‖G2‖ · · · ‖Gn. The matricesG1 andG2 are defined as in Lemma 11. Each blockGb, b > 2 will be of size n×
⌊
n−b
b+1

⌋
and such that all the coefficients are zero except for :

– G2[b, j] = 1, for all j, 1 ≤ j ≤ m2.
– G2[j(b+ 1), j] = G2[b · j + 2, j] = 1, · · · , G2[j(b+ 1) + b, j], for all j, 1 ≤ j ≤

⌊
n−b
b+1

⌋
.

We perform experiments to verify that suchG yields semigeneric systems. We have been able to verify the assumption
up to n = 100. However, we have not been able to prove that such family is semigeneric. This would allow to prove
semigenericity for m ≈ n2/ log n.
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We can generalize for instance Theorem 9 to UniformError-LWE.

Theorem 14. Let T > 0, and (G, s × G + e) = (G, c) ∈ Zn×mq × Zmq be sampled according to L(n)
s,U([−T ...,T ]). Let

also P (x) = X
∏T
i=1(X − i). We assume that q > (2T + 1) ·m. For all 1 ≤ m ≤

(
n+1
2

)
, we define:

f1 = P
(
c1 −

n∑
j=1

xjGj,1
)
, . . . , fm = P

(
cm −

n∑
j=1

xjGj,m
)
.

It holds that fH1 , . . . , f
H
m are linearly independent with probability ≥ 1− (2T+1)m

q .

Proof. Let N be the number of monomials of degree ≤ 2T + 1. We define Mac as m×N matrix whose rows are the
coefficients of the fis. Let p = Det(Mat) be the determinant of a m ×m sub-matrix Mat of Mac. If p is non-zero,
Schwartz-Zippel-DeMillo-Lipton Lemma yields the result stated. The fact that p is non-zero follows from a similar
argument than Lemma 9. ut
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