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Abstract. We propose the first general framework for designing actively
secure private function evaluation (PFE), not based on universal circuits.
Our framework is naturally divided into pre-processing and online stages
and can be instantiated using any generic actively secure multiparty
computation (MPC) protocol.
Our framework helps address the main open questions about efficiency
of actively secure PFE. On the theoretical side, our framework yields the
first actively secure PFE with linear complexity in the circuit size. On
the practical side, we obtain the first actively secure PFE for arithmetic
circuits with O(g · log g) complexity where g is the circuit size. The best
previous construction (of practical interest) is based on an arithmetic
universal circuit and has complexity O(g5).
We also introduce the first linear Zero-Knowledge proof of correctness of
“extended permutation” of ciphertexts (a generalization of ZK proof of
correct shuffles) which maybe of independent interest.

Keywords. Secure Multi-Party Computation, Private Function Evalu-
ation, Malicious Adversary, Zero-Knowledge Proof of Shuffle

1 Introduction

Private Function Evaluation (PFE) is a special case of Multi-Party Computation
(MPC), where the parties compute a function which is a private input of one
of the parties, say party P1. The key additional security requirement is that
all that should leak about the function to an adversary, who does not control
P1, is the size of the circuit (i.e. the number of gates and distinct wires within
the circuit). Clearly, PFE follows immediately from MPC by designing an MPC
functionality which implements a universal machine/circuit; thus the only open
questions in PFE research are those of efficiency. Using universal circuits one can
achieve complexity of O(g5) in case of arithmetic circuits [23] and O(g · log g)
for boolean circuits [26]. For ease of exposition we ignore the factors depending
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on the number of parties and the security parameters as they depend on the
particular underlying MPC being used. We still provide some numbers for the
specific SPDZ instantiation in section 5.

A number of previous work [1,2,4,12,14,15,16,17,22,24] have considered the
design and implementation of more efficient general- and special-purpose private
function evaluation. A major motivation behind these solutions (and PFE in
general) is to hide the function being computed since it is proprietary, private
or contains sensitive information. Some applications of interest considered in
the literature are software diagnostic [4], medical applications [2], and intrusion
detection systems [20].

But all prior solutions are in the semi-honest model and fail in the presence
of an active adversary who does not follow the steps of the protocol (with the
exception of the generic approach of applying an actively secure MPC to uni-
versal circuits). For example, a malicious party who does not own the function
can cheat to learn the proprietary function or modify the outcome of compu-
tation without the function-holders’ knowledge. Or a malicious function-holder,
can learn information about honest parties’ inputs.

One may question the need for actively secure PFE as the function-holder
can cheat and use a malicious function, which reveals information about the
other party’s input. While we consider the general scenario in our protocols,
there are common practical scenarios where the function-holder has no output
in the computation, and therefore maliciously changing the function still does
not let him learn anything even if he is actively cheating.

1.1 Our Contribution

In this work, we present the first general framework for designing actively se-
cure PFE, not based on universal circuits. Our framework can be instantiated
upon a generic actively secure MPC protocol satisfying quite general properties;
namely that they are secret sharing based, actively secure (either robust or with
aborts), can implement reactive functionalities, and have an ability to open vari-
ous sharings securely, as well as generate (efficiently) sharings of random values.
Suitable actively secure MPC protocols include BDOZ [3] and SPDZ [8] (for the
case of arithmetic circuits and an arbitrary number of players with a dishonest
majority), Tiny-OT [19] (for binary circuits and two players), or protocols such
as that implemented in VIFF [7] utilizing Shamir secret sharing with a threshold
of t < n/3.

Our framework helps address the main open questions about efficiency of
actively secure PFE. On a theoretical note, we use it to show that actively secure
PFE with linear complexity (in circuit size) is indeed feasible while avoiding
strong primitives such as fully-homomorphic encryption (FHE).4 On a practical

4 Note that with the use of the right circuit-private FHE scheme [21], and appropriate
ZK proofs for correctness of the computation on encrypted data, it is likely possible
to achieve linear PFE based on FHE, but we are interested in the use of much weaker
primitives such as singly homomorphic encryption.



note, we obtain a practical actively secure PFE for arithmetic circuit with O(g ·
log g) complexity (a significant reduction from O(g5) [23]), and the first actively
secure PFE in the information-theoretic setting.

Our Framework. Our framework can be seen as an extension of the new
framework of [17] which is only secure against passive adversaries. The key idea
in [17] is to divide the problem into two sub-problems, the problem of hiding
the topology of the wiring between individual gates (topology hiding), and the
problem of hiding exactly what gate is evaluated (gate hiding), i.e. an addition
or a multiplication (or AND/OR/XOR in case of boolean circuits).

This framework yields better asymptotic and practical efficiency for passively
secure PFE compared to the universal circuit approach (see [17] for a detailed
efficiency comparison). An important open question is then how to extend their
solution to the case of active adversaries efficiently. In this paper we do exactly
that by providing a recipe for turning any actively secure MPC protocol that
satisfies our general requirements into an actively secure PFE protocol.

Our framework operates in two phases, an offline phase and an online phase.
As in the case of standard MPC in the pre-processing model, our offline phase is
input independent but it depends on the function. The offline phase is use-once,
in the sense that the data produced cannot be reused for multiple invocations
of the online phase. We note that a similar function-dependent pre-processing
model (referred to as dedicated pre-processing) was recently considered in [9].
Dedicated pre-processing is particularly natural in PFE applications where the
sensitive/proprietary function stays fixed for a period of time and is used in mul-
tiple executions (clearly in the latter case we need to execute the pre-processing
multiple times, but this can be done in advance). Of course, if one is not willing
to count a function-dependent offline phase as valid, then our complexities would
be the combination of the two phases. It maybe the case that our underlying
MPC protocol is itself in the pre-processing model (e.g. [3,8,19]), in which case
that pre-processing will be essentially independent of the input and function
being evaluated. Our framework shows the feasibility of offline computation in-
dependent of inputs, which was not the case in [17]. We elaborate on the two
phases next:

Offline Phase. Roughly speaking, our offline phase generates two vectors of ran-
dom values, maps the second to a new vector using a mapping that captures the
topology of the circuit (referred to as extended permutation in [17]), and sub-
tracts the result from the first. The result of the subtraction (difference vector)
is opened while the two original vectors are shared among the parties. The two
random vectors are used as one-time pads of all the intermediate values in the
circuit, while the “difference vector” is used by the function-holder to connect
the output of one gate to the input of another without learning the values or
revealing the circuit topology. The offline phase also generates one-time MACs
of all the components of the “difference vector” computed above, using a fixed
global MAC key. These MACs are used to check the function-holder’s work in the



online phase of the protocol. These steps commit P1 privately to the topology of
the circuit. We also privately commit P1 to gate types, hence fully committing
him to the function being computed.

Online Phase. Our online, or circuit evaluation, phase is very distinct from that
deployed in the underlying MPC protocol we use. In existing instantiations of
our underlying MPC protocol, parties evaluate gates on values whose secrecy is
maintained due to the fact that one is working on secret shared values only. In
our protocol the parties have public one-time pad encryptions of the values being
computed on, but the encryption keys, which are the random values generated in
the offline phase, remain secret-shared. Party P1 (the function holder) then uses
the random vectors computed in the offline phase to transform the encrypted
output of one gate to the encrypted input of the upcoming gate while maintaining
one-time MACs of all the values he computes. These MACs allow all other parties
to check P1’s work without learning the circuit topology. These operations are
carried out securely using the underlying MPC protocol.

In both the online and the offline phase, all parties check P1’s work by check-
ing the MACs of the values he computes locally. If any of the MACs fail, in
case of security with abort, parties can simply end the protocol. But in case of
robust MPC (e.g. t < n/3 for robust information theoretically secure protocols)
the protocol needs to continue without P1. To achieve this, honest parties jointly
recover P1’s function and play his role in the remainder of the protocol.

In our protocols, if any adversary deviates from the protocol then, except with
negligible probability, the honest parties will either abort, or be able to recover
from the introduced error. The exact response depends on the underlying MPC
protocol on which our PFE protocol is built. In all cases the privacy of the
honest players inputs is preserved, bar what can be obtained from the output
of the private function chosen by player P1. Note that P1 may or may not be a
recipient of output, but many application of PFE are concerned with scenarios
where the function-holder has no output.

Efficient Instantiations. One can efficiently instantiate our online phase with
a linear complexity, using any actively secure MPC satisfying our requirements.
The main challenge, therefore, lies in efficient instantiation of the offline phase.
It is possible to implement our offline phase using any actively secure MPC
sub-protocol as well (by securely computing a circuit that performs the above
mentioned task) but the resulting constructions would neither be linear nor
constant-round.

– We introduce a instantiation with O(g) complexity, proving the feasibility of
linear actively secure PFE for the first time. Our main new technical ingredi-
ent is a linear zero-knowledge (ZK) proof of “correct extended permutation”
of ElGamal ciphertexts. While linear ZK proofs of shuffles are well-studied, it
is not clear how to extend the techniques to extended permutation (see our
incomplete attempt in the full version [18]) Instead, we propose a generic
and linear solution that uses ZK proof of a correct shuffle in a black-box



manner, and may be of independent interest. Our solution is based on the
switching network construction of EP [17]. This construction consists of three
components, two of which are permutation networks. Instead of evaluating
switches, we use singly homomorphic encryption to evaluate each compo-
nent, and then re-randomize. We use existing ZK proofs of shuffle to prove
the correctness of first and third components which perform permutation.
The middle component requires a separate compilation of ZK protocols. Note
that generically applying ZK proofs to UC circuit evaluation does not pro-
vide a linear solution, and applying ZK proofs for the EP component also
does not work. Our customized linear ZKEP gets around these problems.

– We introduce a constant-round instantiation with O(g · log g) complexity
(contrast with O(g5) complexity for universal arithmetic circuits) that is
also of practical interest. Our technique is itself an extension of ideas from
[17]. In particular the basic algorithm is that of [17] for oblivious evaluation
of a switching network, but some care needs to be taken to make sure the
protocol is actively secure. This is done by applying MACs to the data being
computed on. However, instead of having the MAC values being secret shared
(as in SPDZ) or kept secret (as in BDOZ and Tiny-OT), the MAC values are
public with the keys remaining secret shared. Nevertheless, the MACs used
are very similar to those used in the BDOZ and Tiny-OT protocols [3,19],
since they are two-key MACs in which one key is a per message key and one
is a global key. While using MAC’s is quite standard for ensuring consistency
of data, our efficient deployment in the framework is non-trivial and novel.
For example, while addition of MACs in the offline phase is done using a
generic MPC, the circuit evaluation (online phase) does not use an MPC.
This is different from [17]’s approach and previous MPC work. General active
security techniques can not be directly employed in this context. It is not
clear how to use cut-and-choose in case of PFE, e.g. it is not clear how not
to reveal the function in the opening, and there are additional components
(i.e. EP) in a PFE protocol which cut-and-choose does not seem to resolve.

Efficiency Discussion. We emphasize that our linear complexity solution is a
feasibility result at it was an open question whether active PFE with linear
complexity in circuit size is possible given simple crypto primitive such as singly
homomorphic encryption (as opposed FHE). Our “efficient” arithmetic PFE
only requires O(g log g) multiplication gates and it is a significant improvement
in comparison with applying of arithmetic MPC to universal arithmetic circuit
of size O(g5) [23]. If we apply active secure MPC for arithmetic circuits to this
universal circuit the complexity cannot get better than O(g5). One can turn an
arithmetic circuit into a boolean circuit and use Valiant’s boolean UC [26] to
obtain a PFE. But this is highly inefficient, and therefore we do not discuss this
in detail.



2 Notation and the Underlying MPC Protocol

We assume our function f to be evaluated will eventually be given by player
P1 as an arithmetic circuit over a finite field Fp; note p may not necessarily be
prime. We let g(f) denote the number of gates in the circuit representing f .
For gates with fan-out greater than one, we count each seperate output wire as
a different wire. We also select a value k such that pk > 2sec, where sec is the
security parameter; this is to ensure security of our MAC checking procedure in
the online phase.

We assume n parties P1, . . . , Pn, of which an adversary may corrupt (stati-
cally) up to t of them; the value of t being dependent on the specific underlying
MPC protocol. The corrupted adversaries could include party P1. The MPC
protocol should implement the functionality described in Figure 1. This func-
tionality is slightly different from standard MPC functionalities in that we try to
capture both the honest majority and the dishonest majority setting; and in the
latter setting the adversary can force the functionality to abort at any stage of
the computation and not just the output. We also introduce another operation
called Cheat which will be useful in what follows.

It is clear that modern actively secure MPC protocols such as [7,8,19], im-
plement this functionality in different settings. Thus various different settings
(i.e. different values of n, p and t) will be able to be dealt with in our resulting
PFE protocol by simply plugging in a different underlying MPC protocol. To
ease exposition later we express our MPC protocol as evaluating functions in
the finite field Fpk . Clearly such an MPC protocol can be built out of one which
evaluates functions over the base finite field Fp.

To ease notation in what follows we shall let [varid ] denote the value stored
by the functionality under (varid , a); and will write [z] = [x]+[y] as a shorthand
for calling Add and [z] = [x] · [y] as a shorthand for calling Multiply. And by
abuse of notation we will let varid denote the value, x, of the data item held in
location (varid , x).

3 Our Active PFE Framework

In this section we describe our active PFE framework in detail. We start by
describing the offline functionality which pre-processes the function/circuit the
parties want to compute (Section 3.1). Then, in Section 3.2, we show that given
a secure implementation of FOffline, one can efficiently (linear complexity) con-
struct an actively secure PFE based on any actively secure MPC. We postpone
efficient instantiations of FOffline to later sections.

3.1 The Function Pre-Processing (Offline) Phase

In this section we detail the requirements of our pre-processing step once player
P1 has decided on the function f to be evaluated. P1 is only required to enter
a valid circuit, equivalent to his function f into the protocol. Each non-output



Functionality FMPC

The functionality consists of seven externally exposed commands Initialize,
Cheat, Input Data, Random, Add, Multiply, and Output and one internal
subroutine Wait.

Initialize: On input (init , p, k,flag) from all parties, the functionality activates
and stores p and k; and a representation of Fpk . The value of flag is assigned
to the variable dhm, to signal whether the MPC functionality should operate
in the dishonest majority setting. The set of “valid” players is initially set to
all players. In what follows we denote the set of adversarial players by A.

Cheat: This is a command which takes as input a player index i, it models the
case of (most) robust MPC protocols in the honest majority case. On execution
the functionality aborts if dhm is set to true. Otherwise the functionality waits
for input from all players. If a majority of the players return OK then the
functionality reveals all inputs made by player i, and player i is removed from
the list of “valid” players (the functionality continues as if player i does not
exist).

Wait: This does two things depending on the value of dhm.
– If dhm is set to true then it waits on the environment to return a

GO/NO-GO decision. If the environment returns NO-GO then the func-
tionality aborts.

– If dhm is set to false then it waits on the environment. The environment
will either return GO , in which case it does nothing, or the environment
returns a value i ∈ A, in which case Cheat(i) is called.

Input Data: On input (input , Pi, varid , x) from Pi and (input , Pi, varid , ?) from
all other parties, with varid a fresh identifier, the functionality stores (varid , x).
The functionality then calls Wait.

Random: On command (random, varid) from all parties, with varid a fresh iden-
tifier, the functionality selects a random value r in Fpk and stores (varid , r).
The functionality then calls Wait.

Add: On command (add , varid1, varid2, varid3) from all parties (if varid1, varid2

are present in memory and varid3 is not), the functionality retrieves (varid1, x),
(varid2, y) and stores (varid3, x+ y). The functionality then calls Wait.

Multiply: On input (multiply , varid1, varid2, varid3) from all parties (if
varid1, varid2 are present in memory and varid3 is not), the functionality re-
trieves (varid1, x), (varid2, y) and stores (varid3, x · y). The functionality then
calls Wait.

Output: On input (output , varid) from all honest parties (if varid is present in
memory), the functionality retrieves (varid , x) and outputs it to the environ-
ment. The functionality then calls Wait, and only if Wait does not abort then
it outputs x to all players.

Fig. 1: The required ideal functionality for MPC



wire w in the circuit is connected at one end (which we shall call the outgoing
wire or left point) to a source, this is either the output of a (non-output) gate
or an input wire. Conversely each non-output wire is connected at the other
end (which we shall call the incoming wire or right point) to a destination point
which is always an input to a gate. We denote the number of distinct Incoming
Wires on the right by iw(f). We let ow(f) denote the number of Outgoing Wires
on the left. Note that iw(f) = 2g and ow(f) = n+g−o where o is the number of
output gates in the circuit. Since we are dealing with arbitrary fan out we have
that ow(f) ≤ iw(f).

Functionality FOffline

Initialize: As for FMPC.
Wait: As for FMPC.
Input Data: As for FMPC.
Cheat: As for FMPC.
Random: As for FMPC.
Add: As for FMPC.
Multiply: As for FMPC.
Output: As for FMPC.
Input Function: On input (inputfunction, π, f) from player P1 the functionality

performs the following operations
– The functionality calls (random,K).
– If f is not a valid arithmetic circuit then the functionality aborts.
– For i ∈ {1, . . . , iw(f)} the functionality calls (random, ri) and (random, si).
– For j ∈ {1, . . . , ow(f)} the functionality calls (random, lj) and (random, tj).
– The functionality then computes, for all i ∈ {1, . . . , iw(f)}

[pi] = [ri]− [`π(i)], [qi] = ([si]− [tπ(i)]) + ([ri]− [`π(i)]) · [K]

– The functionality then outputs (pi, qi) to all players, for i ∈ {1, . . . , iw(f)},
by calling (output , pi) and (output , qi).

– For i ∈ {1, . . . , g} the functionality calls (input , P1, Gi, 0) if gate i in the
description of f is an addition gate, and (input , P1, Gi, 1) if gate i is a
multiplication gate.

Fig. 2: The required ideal functionality for the Offline Phase

To fully capture the topology of the circuit we give each outgoing wire and
incoming wire in the circuit a unique label. The labels for the outgoing wires will
be {1, . . . , ow(f)} starting from the input wires and then moving to the output
wires of each gate in a topological order decided by P1, whilst the labels for the
incoming wires will be {1, . . . , iw(f)} labelling the input wires to each gate in
the same topological order. The topology is then defined by a mapping from
outgoing wires to incoming wires and is called an “extended permutation” in
[17]. We denote the inverse of this mapping by a function π from {1, . . . , iw(f)}



onto {1, . . . , ow(f)}. If w is a wire in the circuit with incoming wire label i, then
it’s outgoing wire label is given by j = π(i).

To execute the function pre-processing, player P1 on input of f determines a
mapping π corresponding to f . The offline phase functionality FOffline which is
described in Figure 2, extends the FMPC functionality of Figure 1 by adding an
additional operation Input Function. The Input Function generates a vector
of random (but correlated) values and their one-time MACs using a fixed global
MAC key K. In particular, the functionality first stores a vector of random
values (ri) for each incoming wire and another vector of random values (`i) for
the outgoing wires in the circuit. These random values will play the role of “pads”
for one-time encryption of the computed wire values in the online phase. The
functionality then computes pi, the difference between each outgoing wire’s value
ri and the corresponding incoming wires’ value `π(i), and reveals pi to all parties.
This difference vector will allow P1 to maintain one-time encryption of each
wire value in the online phase without revealing the circuit topology. Additional
random values (si, ti) and the global MAC key K are used to compute one-time
MACs of each pi, namely qi. These MACs will be used to check P1’s actions in
the online phase. The Input Function also commits P1 to the function of each
gate in his circuit by storing a bit (0 for addition and 1 for multiplication) for
each gate.

3.2 The Function Evaluation (Online) Phase

We can now present our framework for actively secure PFE. We wish to imple-
ment the functionality in Figure 3. We express the functionality as evaluating a
function f provided by P1 which takes as input n inputs in Fpk , one from each
player. Again we present the functionality in both the honest majority and the
dishonest majority settings.

Realizing FOnline Given FOffline and FMPC A generic instantiation of
FOffline based on any MPC is give in Figure 5. The idea is to work with one-time
pad encryptions of the values for all intermediate wires and the corresponding
one-time MACs. Here, the pads (r, `, s, t values), as well as the MAC Key K are
generated by the offline functionality, and shared among the parties so no party
can learn intermediate values or forge MACs on his own.

In more detail, the protocol proceeds as follows. Initially, parties compute
one-time encryption of the input values to the circuit (pads are the corresponding
` values). Then, the following process is repeated for every gate in the circuit
until every gate is processed. Parties then open the outcome of the output gates
as their final result.

For each gate, party P1 uses the “difference vectors” (pi values) from the
offline phase to transform the one-time encryption of output of the previous gate
to the one-time encryption of input of the current gate (the result is denoted by
di0 , di1 for the i-th gate.), without revealing the topology or learning the actual
wire values. This is diagrammatically presented in Figure 4 to aid the reader. A



Functionality FOnline

Initialize: On input (init , p, k,flag) from all players, the functionality activates
and stores p and k; and a representation of Fpk . The value of flag is assigned to
the variable dhm, to signal whether the underlying MPC functionality should
operate in the dishonest majority setting.

Wait: If dhm is set to false then this does nothing. Otherwise it waits on the envi-
ronment to return a GO/NO-GO decision. If the environment returns NO-GO
then the functionality aborts.

Input Function: On input (inputfunction, f) from player P1 the functionality
stores (function, f). The functionality now calls Wait.

Input Data: On input (input , Pi, xi) from player Pi the functionality stores
(input , i, xi). The functionality now calls Wait.

Output: On input (output) from all honest players the functionality retrieves the
data xi stored in (input , i, xi) for i ∈ {1, . . . , n} (if all do not exist then the
functionality aborts). The functionality then retrieves f from (function, f) and
computes y = f(x1, . . . , xn) and outputs it to the environment (or aborts if
(function, f) has not been stored). The functionality now calls Wait. Only on
a successful return from Wait will the functionality output y to all players.

Fig. 3: The required ideal functionality for PFE

similar transformation is done on MACs of the wire values (using qi values) in
order to keep P1 honest in his computation (denoted by mi0 ,mi1).

`π(i)

ri

pi = ri − `π(i)POffline

uπ(i) = xπ(i) + `π(i)

POnline

di = uπ(i) + pi

1. Prepare outgoing wire

2. P1 computes the incomming wires’

di = xπ(i) + `π(i) + ri − `π(i)

di = xπ(i) + ri
π

Fig. 4: Transformation of one-time encryption of an outgoing wire to the one-time
encryption of an incoming wire using the values computes in POffline protocol.

Then, the protocol proceeds by jointly removing the one-time pads for the two
inputs of the current gate and evaluating it together in order to compute a shared
output zi. Note that in this gate evaluation the gate type Gi is secret and shared
among the players. This step can be performed using the FMPC operations. Then,
parties compute a one-time encryption of zi using the corresponding ` value as
the pad, and denote the result by uj , just a relabeling where j is the outgoing
wire’s label of the output wire of the gate (note that j = n+ i since the outgoing



wires are labeled starting with the n input wires and then the output wire of
each gate).

Note, that if P1 tries to deviate from the protocol in his local computation
(i.e. when he connects outgoing wires to incoming wires) the generated MACs
will not pass the jointly performed verifications and he will be caught. In that
case, either the protocol aborts (in the case of dishonest majority) or his input
(i.e. the function) is revealed (in the case of honest majority).

This leads to the following theorem, whose proof is given in full version [18].

Theorem 1. In the FOffline-hybrid model the protocol in Figure 5 securely im-
plements the PFE functionality in Figure 3, with complexity O(g).

4 Implementing FOffline with Linear Complexity

In this section we give a linear instantiation of the offline phase of the framework.
Since our online phase has linear complexity, a linear offline phase implementa-
tion leads to a linear actively secure PFE. The main challenge in obtaining a
linear solution is to design a linear method for applying the extended permuta-
tion π to values {[`i]} and {[ti]} to produce shared values {[`π(i)]} and {[tπ(i)]}. In
the semi-honest case [17], linear complexity solution for this problem is achieved
by employing a singly homomorphic encryption. The shared values are jointly
encrypted; P1 applies the extended permutation to the resulting ciphertexts and
re-randomizes them in order to hide π; parties jointly decrypt in order to obtain
the shares of the resulting plaintexts. To obtain active security, we need to make
each step of the following computation actively secure:

1. Players encrypt the shared input (all of which lie in Fpk) using an encryption
scheme, with respect to a public key for which the players can execute a
distributed decryption protocol. The resulting ciphertexts are sent to P1.

2. Player P1 applies the EP and re-randomizes the ciphertexts and sends them
back. He then uses the ZKEP protocol to prove his operation has been done
correctly.

3. The players then decrypt the permuted ciphertexts and recover shares of the
plaintexts.

To implement the first and last steps we use an an instantiation based on El-
Gamal encryption, see full version [18]. The middle step is more tricky, and we
devote the rest of this section to describing this. For the middle step we need
a linear zero-knowledge protocol to prove that P1 applied a valid EP to the ci-
phertexts. Proof of a correct shuffle is a well studied problem in the context of
Mix-Nets, and linear solutions for it exist [11]. As discussed in full version[18]
, however, extending these linear proofs to the case of extended permutations
faces some subtle difficulties which we leave as an open question. Instead we
aim for a more general construction that uses the currently available proofs of
shuffling, in a black-box way.



Protocol POnline

The protocol is described in the FOffline-hybrid model.
Input Function: Player P1 given f selects the switching network mapping π and

then calls (inputfunction, π, f) on the functionality FOffline.
Input Data: On input (input , Pi, xi) from player Pi the protocol executes the

(input , i, xi) operation of the functionality FOffline.
Output: The evaluation of the function proceeds as follows; where for ease of

exposition we set xπ(h) = yh for all h, i.e. if a wire has input xi on the left (as
outgoing wire) then it has the same value yh on the right (as incoming wire)
where i = π(h)
– Preparing Inputs to the Circuit:
• For each input wire i (1 ≤ i ≤ n) the players execute [ui] = [xi] + [`i],

where i is the outgoing wire’s label corresponding to that input wire,
and [vi] = [ti] + ([xi] + [`i]) · [K] using the FMPC functionality available
via FOffline.

• Parties then call (output , ui) and (output , vi) to open [ui] and [vi].
– Evaluating the Circuit: For every gate 1 ≤ i ≤ g in the circuit players

execute the following (here we assume that the gates are indexed in the
same topological order P1 chose to determine π):
• P1 Prepares the Two Inputs for Gate i.
∗ Note that the two input wires for gate i have incoming wire labels
i0 = 2i−1 and i1 = 2i, and the (u, v) value for their corresponding
outgoing wire labels are already determined, i.e. uπ(ij) and vπ(ij)

are already opened for j ∈ {0, 1}.
∗ Player P1 computes, for j = 0, 1,

dij = uπ(ij) + pij
.
= (yij + `π(ij)) + (rij − `π(ij))
.
= yij + rij ,

mij = vπ(ij) + qij
.
= (tπ(ij) + (yij + `π(ij)) ·K)

+
`
(sij − tπ(ij)) + (rij − `π(ij))) ·K

´
.
= sij + (yij + rij ) ·K.

∗ Player P1 then broadcasts the values dij and mij to all players.
• Players Check P1’s Input Preparation.
∗ All players then use the FMPC operations available (via the in-

terface to the FOffline functionality) so as to store in the FMPC

functionality the values [nij ] = [sij ] + (yij + rij ) · [K]. The value
is then opened to all players by calling (Output , nij ).

∗ If nij 6= mij then the players call Cheat(1) on the FMPC function-
ality. This will either abort, or return the input of P1 (and hence
the function), in the latter case the players can now proceed with
evaluating the function using standard MPC and without the need
for P1 to be involved.

• Players Jointly Evaluate Gate i.
∗ The players store the value [yij ] = dij − [rij ] in the FMPC func-

tionality.
∗ The FMPC functionality is then executed so as to compute the

output of the gate as

[zi] = (1− [Gi]) · ([yi0 ] + [yi1 ]) + [Gi] · [yi0 ] · [yi1 ].

∗ Note that the outgoing wire label corresponding to the output wire
of the ith gate is j = n+ i so we just relabel [zi] to [zj ].

∗ If Gi is an output gate, players call (Output , zi) to obtain zi, dis-
regard next steps and continue to evaluate next gate.

∗ The players compute via the MPC functionality [uj ] = [zj ] + [`j ].
∗ The players call (Output , uj) so as to obtain uj .
∗ The players then compute via the MPC functionality

[vj ] = [tj ] + uj · [K]
.
= [tj + (zj + `j) ·K].

∗ The players call (Output , vj) so as to obtain vj .

Fig. 5: The Protocol for implementing PFE



4.1 Linear ZKEP Protocol

After players compute the encryption of the shared inputs, P1 knowing the cir-
cuit topology, applies the corresponding extended permutation to the cipher-
texts. He then re-randomizes the ciphertexts and then “opens” the ciphertexts.
Next, we give a linear zero-knowledge protocol ZKEP, which enables P1 to prove
the correctness of his operation (i.e final ciphertexts are the result of P1 apply-
ing a valid EP to the input ciphertexts). As our first attempt we considered the
possibility of extending existing linear proofs of shuffle to get linear proofs of
extended permutation. While plausible there are subtle difficulties that need to
be addressed. For more details regarding our attempt on extending the method
of Furukawa [11,10], refer to full version[18]. We leave this approach as an open
problem. Instead we give a more general construction which makes black-box
calls to proof of shuffle. This construction is inspired by the switching network
construction of EP given in [17]. We first revisit the extended permutation con-
struction of [17].

Assume the EP mapping represented by the function: π : {1...n} → {1...m}
(Which maps m input wires to n output wires (n ≥ m)). Note that in this
section we use n and m to denote the size of EP. In a switching network, the
number of inputs and outputs are the same, therefore, the construction takes m
real inputs of the EP and n−m additional dummy inputs. The construction is
divided into three components. Each component takes the output of the previous
one as input. Instead of applying the EP in one step, P1 applies each component
separately and uses a zero-knowledge protocol to prove its correctness. Figure 6
demonstrates the components. Next, we describe each component and identify
the required ZK proof.

Dummy Placement

ct
(1)
2

PermutationReplication
Phase Phase Phase

ZKShuffleZKShuffle

ct
(1)
1

ct
(1)
3

ct
(1)
4

ct
(2)
2

ct
(2)
1

ct
(2)
3

ct
(2)
4

ct2

ct1

ct3

ct4

ct′2

ct′1

ct′3

ct′4

ZKRep

Fig. 6: EP construction. Components’ names are written underneath. The zero-
knowledge protocol for each component is written inside it’s component box.

Table 1 lists the zero-knowledge protocols that we make a black-box use in
our ZKEP protocol. Note that we use P and Q for our EC instantiation instead
of g and h.

– Dummy-value placement component: This takes the real and dummy
ciphertexts as input and for each ciphertexts of a real value that is mapped



ZK Protocol Relation/Language Ref.

ZKShuffle({cti}, {ct′i}) RShuffle = {(G, g, h, {cti}, {ct′i})|∃π, st. [11]

C′1
(i)

= griC1
(π(i)) ∧ C′2

(i)
= hriC2

(π(i)) ∧ π is perm.}
ZKEq(ct1, ct2) REq = {(G, g, h, cti = 〈αi, βi〉i∈{1,2})|∃(m1,m2), st. [5]

αi = gri ∧ βi = mih
ri ∧m1 = m2}

ZKno(ct) Lno = {(G, g, h, ct = 〈α, β〉)|∃(m1 6= 1), st. [13]
α = gr ∧ β = m1h

r}
Table 1: List of zero-knowledge protocols used in our ZKEP protocol. Generator
g and public key h = gsk.

to k different outputs according to π, outputs the real ciphertexts followed
by k − 1 dummy ciphertexts. This is repeated for each real ciphertext. The
resulting output ciphertexts are all re-randomized. The dummy replacement
step can be seen as a shuffling of the input ciphertexts. We use a proof of
correct shuffle, ZKShuffle, for correctness of this component.

– Replication component: This takes the output of the previous component
as input. It directly outputs each real ciphertext but replaces each dummy
ciphertext with an encryption of the real input that precedes it. At the end
of this step, we have the necessary copies for each real input and the dummy
inputs are eliminated. Naturally, all the ciphertexts are re-randomized. To
prove correctness of this step, we need ZK proofs that the i-th output ci-
phertext has a plaintext equal to that of either the i-th input ciphertext
or (i− 1)-th output ciphertext (these can be achieved using protocol ZKEq

defined in Table 1 as a building block). But this is not sufficient to guar-
antee a correct EP, as we also have to make sure that after the replication
component there are no dummy ciphertexts left. For this, we assume that all
dummy ciphertexts are encryptions of one. Then for each output ciphertext
in the replication component we use a protocol ZKno, i.e. a ZK proof that
the underlying plaintext is not one. The ZKRep zero-knowledge protocol, is
a compilation of three ZK protocols, two checking for equality of ciphertexts
and one checking the inequality of plaintext to one.

– Permutation component: This takes the output of the replication compo-
nent as input and permutes each element to its final location as prescribed by
π. We again use the proof of correct shuffle, ZKShuffle. for this component.

ZKEP Protocol description We assumed the inputs to the ZKEP, to be the
outputs of our encryption functionality. Prover applies the extended permutation
to the ciphertexts (ct1, . . . , ctn), where cti = (C(i)

1 , C
(i)
2 ). The prover obtains a re-

randomized (ct′1, . . . , ct
′
n), where ct′i = (C ′(i)1 , C

′(i)
2 ). We employ the techniques

of Cramer et al. [6], to combine HVZK proof systems corresponding to each
component, at no extra cost, into HVZK proof systems of the same class for any
(monotonic) disjunctive and/or conjunctive formula over statements proved in
the component proof systems. Figure 7 shows the complete description of our



ZKEP protocol. Note that we can choose dummy values from any set of random
values Sd and substitute the ZKno(x) with ∨∀y∈Sd

(ZKEq(x, y)).

Protocol ZKEP({cti}, {ct′i})

Shared Input: Ciphertexts (ct1, . . . , ctn)
P1’s Input: Extended permutation π
P1 Evaluates the components.

– Player P1 finds the corresponding permutation π1, and π2 for Dummy-
placement component and permutation components.

– P1 applies the Dummy-placement component to (ct1, . . . , ctn), and re-

randomizes to find (ct
(1)
1 , . . . , ct

(1)
n ).

– P1 applies the Replication component to (ct
(1)
1 , . . . , ct

(1)
n ), and re-

randomizes them to find (ct
(2)
1 , . . . , ct

(2)
n ).

– P1 applies the permutation component to (ct
(2)
1 , . . . , ct

(2)
n ), and re-

randomizes them to find (ct′1, . . . , ct
′
n).

P1 Computes the ZK proofs and sends everything
– Player P1 uses the ZKShuffle({cti}, {ct(1)i }) and ZKShuffle({ct(2)i }, {ct

′
i})

protocols to produce proof of correctness for his evaluation of Dummy-
placement component and permutation component.

– Player P1 used the ZKRep({ct(1)i }, {ct
(2)
i }) to produce proof of correctness

for his evaluation of Replication component as follows(using [6] for combi-

nation) (and ZK1
Rep = ZKno

“
ct

(2)
1

”
∧ ZKEq(ct

(1)
1 , ct

(2)
1 )):

• For 2 ≤ i ≤ n:

ZKiRep =
“
ZKEq(ct

(1)
i , ct

(2)
i ) ∨ ZKEq(ct

(2)
i−1, ct

(2)
i )

”
∧ ZKno

“
ct

(2)
i

”
.

• ZKRep = ∧i=1,...,n(ZKiRep)

– Player P1 sends (ct
(1)
1 , . . . , ct

(1)
n ), (ct

(2)
1 , . . . , ct

(2)
n ), (ct′1, . . . , ct

′
n) and all

proofs to other players.
Players verify P1 operations

– Players verify P1’s operations by verifying the the proofs sent by P1.

Fig. 7: The protocol for zero-knowledge proof of extended permutation.

Theorem 2. The protocol described in Figure 7 is HVZK proof of an extended
permutation π, (ct1, . . . , ctn) and (ct′1, . . . , ct

′
n) in the ZKShuffle, ZKEq, ZKno

hybrid model, for the following relation:

REP = {(G, g, h, {cti}, {ct′i})|∃π, st.

C ′1
(i) = griC1

(π(i)) ∧ C ′2
(i) = hriC2

(π(i)) ∧ π is EP.}

Proof. Refer to the full version [18] for proof.



Offline Protocol Having all the parts of the puzzle, we can give the complete
O(g) protocol for the offline phase. Figure 8 shows the description, with the
proof of security given in full version [18].

Linear Implementation of Protocol POffline-Linear

The protocol is described in the FMPC-hybrid model, thus the only operation we
need to specify is the Input Function one.
Input Function:
P1 Shares his Circuit/Function.

– Player P1 calls (input , Gj) for all j ∈ {1, . . . , g}.
– Players evaluate and open [Gj ] · (1 − [Gj ]) for j ∈ {1, . . . , g}. If any of

them is not 0, players abort (since in this case P1 has not entered a valid
function).

Players Generate Randomness for inputs and outputs of EP.
– Players call (random, ·) of FMPC to generate shared random values for

inputs ` = ([`1], . . . , [`ow(f)]) and outputs ([r1], . . . , [riw(f)]) of EP.
– Players call (random, ·) of FMPC to generate shared random values for

the MAC value corresponding to inputs t = ([t1], . . . , [tow(f)]) and outputs
([s1], . . . , [siw(f)]) of EP.

P1 applies the EP to ` and t.
– The players call KeyGen on the EncElg functionality.
– The playes call Encrypt on the EncElg functionality with the plaintexts

([`1], . . . , [`ow(f)]) and the plaintexts ([t1], . . . , [tow(f)]), to obtain ciphertexts

ct1, . . . , ctow(f) and ct†1, . . . , ct
†
ow(f).

– Player P1 applies the extended permutation to (ct1, . . . , ctow(f)) and re-

randomize to get (ct′1, . . . , ct
′
ow(f)), the same is done with (ct†1, . . . , ct

†
ow(f))

to obtain (ct′†1 , . . . , ct
′†
ow(f)).

– Player P1 uses the ZKEP to prove that he has used a valid extended per-
mutation.

– Players call the Decrypt on the EncElg functionality (given in full ver-
sion [18]) with ciphertexts (ct′1, . . . , ct

′
ow(f)) and (ct′†1 , . . . , ct

′†
ow(f)) so as to

obtain ([`π(1)], . . . , [`π(ow(f))]) and ([tπ(1)], . . . , [tπ(ow(f))]).
Players Compute pi, qi.

– For i ∈ {1, . . . , iw(f)} players call FMPC to compute:

[pi] = [ri]−[`π(i)]
.
= [ri−`π(i)], [qi] = [si]−[tπ(i)]+pi·[K]

.
= [si−tπ(i)+pi·K]

Fig. 8: The protocol for linear implementation of the Offline Phase

5 A practical Implementation of FOffline with O(g · log g)
Complexity

A O(g · log g) protocol to implement FOffline is given in full version [18], and
is in the FMPC-hybrid model. Following the ideas in [17], we implement the



functionality via secure evaluation of a switching network corresponding to the
mapping πf .

Switching Networks. A switching network SN is a set of interconnected switches
that takes N inputs and a set of selection bits, and outputs N values. Each
switch in the network accepts two `-bit strings as input and outputs two `-bit
strings. In this paper we need to use a switching network that contains two
switch types. In the first type (type 1), if the selection bit is 0 the two inputs
remain intact and are directly fed to the two outputs, but if the selection bit is
1, the two input values swap places. In the second type (type 2), if the selection
bit is 0, as before, the inputs are directly fed to outputs but if it is 1, the value
of the first input is used for both outputs. For ease of exposition, in our protocol
description we assume that all switches are of type 1, but the protocol can be
easily extended to work with both switch types.

The mapping π : {1 . . . N} → {1 . . . N} corresponding to a switching network
SN is defined such that π(j) = i if and only if after evaluation of SN on the N
inputs, the value of the input wire i is assigned to the output wire j (assuming
a standard numbering of the input/output wires). In [17] it is shown how to
represent any mapping with a maximum of N inputs and outputs via a network
with O(N · logN) type 1 and 2 switches (We refer the reader to [17] for the
details). This yields a switching network with O(g · log g) switches to represent
the mapping for a circuit with g gates.

High Level Description. It is possible to implement the FOffline by securely
computing a circuit for the above switching network using the FMPC. But for all
existing MPC that meet our requirements, this would require O(log g) rounds
of interaction which is the depth of the circuit corresponding to the switching
network. We show an alternative constant-round approach with similar compu-
tation and communication efficiency. It follows the same idea as the OT-based
protocol of [17] where the OT is replaced with an equivalent functionality imple-
mented using FMPC. The main challenge in our case is to achieve active security
and in particular to ensure that P1 cannot cheat in his local computation. We
do so by checking P1’s actions using one-time MACs of the values he computes
on, and allow the other parties to learn his input and proceed without him, if
he is caught cheating (or aborting).

Next we give an overview of the protocol. The protocol has four main compo-
nents (as described in full version [18]). In the first step, P1 converts his mapping
π to selection bits for the switching network (i.e. bis) and shares them with all
players. He also shares a bit Gi indicating the function of gate i, with other
players. In the second step, players generate random values for every wire in
the network. P1, based on his selection bit for the switch, learns two of the four
possible “subtractions” of the random values for two output wires from those of
the input wires i.e. u`,i0 and u`,i1 . A similar process is performed for the t values
to obtain ut,i0 and ut,i1 (Figure 9 shows this process in a diagram). These sub-
tractions enable P1 to transform a pair of values blinded with the random values
of input wires, to the same pair of values permuted (based on the selection bit)



and blinded with the random values of the output wires. All of the above can
be implemented using the operations provided by the FMPC.

bi

in`,id,0

in`,id,1

out`,id,0

out`,id,1

u`,i0 = out`,id,0 − in`,id,0

bi = 0

u`,i1 = out`,id,1 − in`,id,1

u`,i0 = out`,id,1 − in`,id,0

bi = 1

u`,i1 = out`,id,0 − in`,id,1

Fig. 9: The i-th switch. (superscripts: label of value subject to permute (` or t),
and switch index i) (subscripts: d refers to data, m refers to MAC, wire index 0
denotes the top wire in switch and 1 the bottom wire in switch)

In the third step, P1 obtains the blinded ` and t values where the blinding for
each is the random value for the corresponding input wire to the network (these
are h`,id , h

t,i
d , etc). Party P1 can now process each switch as discussed above using

the subtraction values in order to evaluate the entire network. At the end of this
process, P1 holds blinded values of the outputs of the switching network (blinded
with randomness of the output wires).

In the final step, parties check that P1 has not cheated during his evaluation,
since he performed this step locally and not through the FMPC operations. We
use one-time MACs to achieve this goal. In particular, besides mapping blinded
values through the network, P1 also maps the corresponding one-time MACs
(generated using the fixed-key K). This is done using a similar process described
above and via the v`,ij , v

t,i
j values. At the end of this process, P1 holds one-time

MACs for the blinded outputs of the switching network, in addition to the values
themselves. Players then use the MPC functionality to jointly verify that the
MACs indeed verify the values P1 shared with them (i.e. n`,i and m`,i are the
same, etc). As a result, P1 can only cheat by forging the MACs which only
happens with a negligible probability. If the MACs pass, parties compute and
open the “difference vectors” by subtracting the mapped ` and t-value vectors
from the r and s-value vectors. Refer to full version [18] for more details. If one
instantiates the FMPC by SPDZ [8], which has the m. log(pk) complexity, then
our complexity would be m (10(2g log 2g − 2g + 1) + 4g) . log(pk). Refer to full
version [18] for the proof of the following theorem.

Theorem 3. In the FMPC-hybrid model the protocol POffline in full version [18]
securely implements the functionality in Figure 2, with complexity O(g · log g).
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