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Abstract

We give a new framework for obtaining signatures with a tight security reduction from standard
hardness assumptions. Concretely, we show that any Chameleon Hash function can be transformed
into a (binary) tree-based signature scheme with tight security. The transformation is in the standard
model, i.e., it does not make use of any random oracle. For specific assumptions (such as RSA,
Diffie-Hellman and Short Integer Solution (SIS)) we further manage to obtain a more efficient flat-
tree construction. Our framework explains and generalizes most of the existing schemes as well as
providing a generic means for constructing tight signature schemes based on arbitrary assumptions,
which improves the standard Merkle tree transformation. Moreover, we obtain the first tightly
secure signature scheme from the SIS assumption and several schemes based on Diffie-Hellman in
the standard model.

Some of our signature schemes are also structure-preserving and can (using known techniques) be
combined with Groth-Sahai proof methodology to yield tightly secure and efficient simulation-sound
NIZK proofs of knowledge and CCA-secure encryption in the multi-user/-challenge setting under
classical assumptions.

1 Introduction

Digital Signatures are one of the most fundamental cryptographic primitives. They are used as a building
block in numerous high-level cryptographic protocols. Their security is commonly proven in terms of a
security reduction showing that any successful adversary A attacking the scheme can be transformed into
a successful adversary B breaking the underlying hard intractability assumption. Naturally, we would
desire that B’s success εB is approximately the same as A’s success εA in attacking the system. Such a
scheme is said to have a tight security reduction and does not require to compensate reduction’s security
loss with increased parameters.

Signature schemes with a tight security reduction are known based on standard intractability assump-
tions such as the RSA [5] or the (bilinear) Computational Diffie-Hellman (CDH) assumption [23]. However,
their security can only be proven in the random oracle model [4] with all its limitations (e.g., [12, 19]).

Standard Model Signatures. We now discuss signature schemes in the standard model (i.e., without
using random oracles). On the one hand, there exist signature schemes with a tight security reduction
(e.g., [16, 42]) but they usually rely on specific relatively strong “q assumptions,” such as the Strong
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Figure 1: Schematic overview of our constructions from the assumption level (left) over two-tier signatures
(middle) to signatures (right). All implications have a tight security reduction, except the dotted line
which loses a factor of d.

(or, Flexible) RSA assumption [18] and the q-Diffie-Hellman Inversion Assumption (q-CDHI) [8].1 On
the other hand, known signature schemes from “standard assumptions” (i.e., general assumptions such
as the one-wayness of trapdoor permutations [41, 25, 20] or more specific assumptions such as the RSA
assumption [30, 29] , the CDH assumption [43], or the Short Integer Solution (SIS) assumption [13, 36])
have non-tight security reductions, meaning their security reduction loses a multiplicative factor of q,
which is the maximal number of established signatures. Since q can be as large as 240, this security loss
can have a dramatic impact on the scheme’s parameters.

To the best of our knowledge, there are only a few exceptions to the above. The flat d-ary tree-based
signature scheme by Cramer and Damg̊ard [17] from almost two decades ago is based on a standard as-
sumption (the RSA assumption) and (even though not explicitly mentioned in [17]) the security reduction
is tight. In follow-up papers [14] and [11] extend their methods to an assumption related to factoring and
CDH, respectively. Hofheinz and Jager [28] proposed a binary tree-based construction from the Linear
(LIN) assumption. More recently, works on identity-based encryption [7, 15] imply tight signatures from
LIN.

1.1 Our contributions

Overview. In this work we revisit the question of construction standard-model signatures with a tight
security reduction. Our main result shows that, surprisingly, tightly-secure signatures can be constructed
from any Chameleon Hash function CHF. Our transformation is based on binary trees and hence a
signature contains λ Chameleon Hashes plus λ elements from the randomness space of CHF, where λ
is the security parameter. As Chameleon Hash functions exist from generic primitives such as claw-free
permutations [33], Σ protocols [38] and specific assumptions such as the RSA [30], the factoring (FAC)
[33], and the discrete logarithm (DLOG) [33], we immediately obtain a number of new signature schemes
with tight security reductions. We improve the well-known Merkle tree construction [35] and its variant
[39] in the sense that our signature size is the same as the original Merkle tree construction, but our
security loss is independent of the number of signing queries.

In fact, our transformation can be generalized to flat-tree signatures with improved efficiency. From a
general primitive called d-time two-tier signatures TTSig (a generalization of two-tier signatures [6] to any
d ≥ 1), we build flat d-ary (instead of binary, 2-ary) trees via our second transformation d-Tree, such that
a signature only contains O(λ/ log d) many elements. Whereas Chameleon Hash functions only imply
one-time two-tier signatures, for specific assumptions such as RSA, CDH and SIS we are able to construct
efficient d-time two-tier signatures, hence also d-ary tree signatures. Our reduction loses a factor of d
which is still (almost) tight as d is generally assumed to be small and, in particular, is independent of
the number of signing queries. See Figure 1 for a schematic overview of our transformations.

We stress that while all our schemes are only secure in a non-adaptive sense (a.k.a. weak security),
they can be transformed into adaptively secure signature schemes using a Chameleon Hash or a one-
time signature, without losing efficiency or tightness (such transformations have been used several times
[33, 9, 31, 38]).

Interestingly, our framework also offers a theoretical explanation of almost all known tightly secure
signature schemes. Our d-ary transformation d-Tree instantiated with an RSA-based d-times two-tier
signature essentially equals the scheme by Cramer and Damg̊ard [17]. The scheme by Hofheinz and
Jager [28] can be obtained by using a Chameleon Hash function based on the LIN assumption (which,
for completeness, is given in Appendix B), it can in fact be generalized by building a chameleon hash

1In q-assumptions an adversary is provided with q (polynomially many) random “solved instances” and has to compute
a new solved instance. Examples are the strong RSA and the q-Diffie-Hellman Inversion assumptions. Both are considerably
stronger than their “non-q” counterparts.
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Scheme Origin Assumption pk Signature size Loss Structure
preserving

BinTree+CHFDLOG new DLOG O(1)×G O(λ)× (G + Zp) O(1) (
√

)
BinTree+CHFFAC new FAC O(1)× ZN O(λ)× ZN O(1) −−
BinTree+CHFLIN [28] LIN O(1)×G O(λ)× (G + Zp) O(1)

√

d-Tree+TTSigf-CDHI new f -CDHI O(d/f)×G O(λ/ log(d))× (G + Zp) O(d)
√

d-Tree+TTSigRSA [17] RSA O(d)× ZN O(λ/ log(d))× ZN O(d) −−
d-Tree+TTSigSIS new SIS O(d)× Z(λ×λ log(p))

p O(λ/ log(d))× Zλ log(p)
p O(d) −−

Table 1: Comparison between known tightly-secure signature schemes from standard (non-q) assumptions,
where λ is the security parameter. Our DLOG-based scheme can be lifted to G to be structure preserving.

based on any of the matrix assumptions from [21]. The CDH-based signature scheme from [11] is a less
efficient version of our construction from the f -CDHI assumption with the parameters f = 1. Table 1
gives an overview over all known tightly secure signature schemes from standard assumptions. Some of
our schemes are also structure preserving, a property with important applications, which we will discuss
later.

Details. First, we transform a Chameleon Hash into a two-tier signature and then, we show how to
transform the latter into a binary tree-based signature scheme.

The concept of d-time two-tier signatures is a natural generalization of (one-time, d = 1) two-tier
signatures introduced by Bellare and Shoup [6]. A two-tier signature scheme is like a standard signature
scheme except that the public (secret) key is split into fixed primary part ppk (psk) and a variable
secondary part spk (ssk). In terms of security we require that an adversary possessing the primary public
key and having access to an oracle generating q independent secondary public keys, together with d
signatures for each of oracle queries, cannot forge a fresh signature relative to one of the established
public keys. The challenge will be to construct a d-time two-tier signature scheme with a tight (i.e.,
independent of q) security reduction from a standard assumption.

• Any Chameleon Hash implies a 1-time two-tier signature scheme. While it is well-known that a
Chameleon Hash implies a (standard) 1-time signature [38], the novelty of our observation lies in
the tight security reduction for two-tier signatures.

• We give constructions of d-time two-tier signatures for any d ≥ 2 with a tight security reduction
from a number of standard number theoretic assumptions such as the RSA, the SIS, the CDH and
the f -CDHI2 (1 ≤ f ≤ d) assumption. The important feature of our new constructions is the
constant number of elements in the secondary public key while maintaining the tight reduction.

• We show that d-time two-tier signatures imply d-ary tree-based signatures with a tight security
reduction. In our construction the verification/signing keys are the primary public/secret key of
the d-times two-tier signature scheme. The signer implicitly maintains a d-ary authenticated tree of
height k = λ/ log(d), where λ is the security parameter. Each internal node is assigned a secondary
public/secret key, the secret key is used to authenticate the key of the d distinct children via a
signature. To sign a message, the signer picks the next unused leaf and outputs the authenticated
path to the leaf plus a signature of the message under the leaf’s secret key.

Applications. We remark that some of our tightly secure signature schemes are structure preserving
[2] (cf. Table 1) and, following Hofheinz and Jager [28], these schemes can be used to build tightly-
secure simulation-sounds NIZK and tightly-secure encryption in the multi-user/multi-challenge setting.
A discussion of this can be found in Appendix D. We also note that our results can be used to improve
the Key Agreement of Bader et al. [3].

Open Problems. Since our signature schemes contain O(λ/ log d) many group elements, they cannot
be considered to be practical. More recently, Blazy, Kiltz and Pan [7] and Chen and Wee [15] proposed

2The f -CDHI assumption is a generalization of CDH and states that given g, gx, . . . gx
f

, it is hard to compute g1/x. Note
that f is small (constant) in our applications and does not depend on the number of signing queries.
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tightly secure identity-based encryptions from the LIN assumption independently, which imply tightly
secure signature schemes with constant signature size. However, it is not clear how to extend their
methods to constructing tight signatures based on the RSA assumption or any lattice assumption. Thus,
obtaining a tightly secure signature scheme from the standard RSA assumption or any lattice assumption
whose signatures only contain a constant number of group elements remains an open problem.

2 Preliminaries

2.1 Notation

We denote our security parameter as λ. For all n ∈ N, we denote by 1n the n-bit string of all ones.
For any element x in a set S, we use x ∈

R
S to indicate that we choose x uniformly random in S. All

algorithms may be randomized. For any algorithm A, we define x ←$ A(a1, . . . , an) as the execution of
A with inputs a1, . . . , an and fresh randomness and then assigning the output to x.

A list of classical security definitions and assumptions (CDH, f -CDHI, SIS, RSA) that we require for
our results can be found in Appendix A.

2.2 Signatures

We first recall the definition of a digital signature scheme.

Definition 2.1 [Signature scheme] A digital signature scheme Sig with message space M is defined as
a triple of probabilistic polynomial time (PPT) algorithms Sig = (Gen,Sign,Verify):

• Gen takes as an input the unary representation of our security parameter 1λ and outputs a signing
key sk and verification key pk.

• Sign takes as input a signing key sk, message m and outputs a signature σ.

• Verify is a deterministic algorithm, which on input of a public key and a message-signature pair
(m,σ) outputs 1 (accept) or 0 (reject).

Sig is perfectly correct if for any λ ∈ N, all (pk, sk) ←$ Gen(1λ), all m ∈ M, and all σ ←$ Sign(sk,m)
that Verify(pk,m, σ) = 1.

Some of the signature schemes we present are stateful. This means that the signer maintains a state
that is updated after each execution of the signing algorithm. Fortunately, our stateful schemes can be
transformed to be stateless by using the technique from [24].

Definition 2.2 [Security of signatures] Signature scheme Sig is (t, ε, q)-existential unforgeable under
non-adaptive chosen-message attacks (EUF-NCMA) iff

Pr[Exp EUF-NCMA
Sig,F,q (λ) = 1] ≤ ε

holds for any PPT adversary F with running time t, where Exp EUF-NCMA
Sig,F,q (λ) is defined in Table 2. The

existential unforgeability under chosen-message attacks is defined in the similar way.

We also consider a stronger security notion than EUF, namely strong unforgeability, SUF. In the strong
unforgeability experiment, the adversary is allowed to forge a new signature on a message for which he
has already seen a signature on. To accommodate this, we adjust our list Q := {(m1, σ1), . . . , (mq, σq)}.
Furthermore for the valid forgery, we require (m∗, σ∗) 6∈ Q. This stronger notion applies for both adaptive
and non-adaptive definitions, which we refer to as SUF-CMA and SUF-NCMA respectively.
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Experiment Exp EUF-NCMA
Sig,F,q (λ) Experiment Exp EUF-CMA

Sig,F,q (λ)
Q := (m1, . . . ,mq)←$ F(1λ); (pk, sk)←$ Gen(1λ);
(pk, sk)←$ Gen(1λ); (m∗, σ∗)←$ FOSign(·)(pk), where the oracle
σi ←$ Sign(sk,mi) for i = 1, . . . , q; OSign(·) := Sign(sk, ·)
(m∗, σ∗)←$ F(pk, σ1, . . . , σq); If Verify(pk,m∗, σ∗) = 1 and m∗ /∈ Q := {m1, . . . ,mq}
If Verify(pk,m∗, σ∗) = 1 and m∗ /∈ Q where mi is the i-th query, then return 1;
then return 1, else return 0. else return 0.

Table 2: EUF-NCMA and EUF-CMA experiments for the signature scheme.

2.3 Two-Tier Signatures

We now present a generalization of two-tier signature schemes, due to Bellare and Shoup [6]. In a two-tier
signature scheme, the key generation algorithm is split into two algorithms, the primary and secondary
key generation algorithms. The primary key is static and used for all signatures. The secondary key is
ephemeral and used for only one or many messages. To generate the signature, we need both a primary
and secondary key. In the original definition [6], each secondary key was allowed to be used to sign
exactly once. We generalize to allow each secondary key to be used to sign at most d messages. We
refer to this generalization as the d-time two-tier signature, the constructions presented in [6] are 1-time
two-tier signatures.

Definition 2.3 [d-time two-tier signature scheme] A two-tier signature TTSig is defined as a quadruple
of probabilistic algorithms (PriGen,SecGen,TTSign,TTVerify):

• PriGen(1λ, d) outputs a primary signing key psk and primary verification key ppk.

• SecGen(ppk, psk) outputs a fresh secondary verification and signing key pair (spk, ssk).

• TTSign(psk, ssk,m) outputs a signature σ. We denote the stateful variant by TTSign(psk, ssk,m; j)
where j is the state.

• TTVerify(ppk, spk,m, σ) deterministically outputs 1 (accept) or 0 (reject). We denote the stateful
variant by TTVerify(ppk, spk,m, σ; j) where j is the state.

Correctness is defined in a natural way as in Definition 2.1.

Definition 2.4 [Security of two-tier signatures] A two-tier signature TTSig is (t, q, d, ε)-existential un-
forgeable under non-adaptively chosen-message attacks (TT-EUF-NCMA) iff

Pr[Exp TT-EUF-NCMA
Sig,F,q (λ, d) = 1] ≤ ε

holds for any PPT adversary F with running time t, where Exp TT-EUF-NCMA
Sig,F,q (λ, d) is defined in Table 3.

The existential unforgeability under (adaptively) chosen-message attacks (TT-EUF-CMA) is defined in
the similar way.

We also define the strong unforgeability of two-tier signatures, in both the adaptive case, TT-SUF-CMA,
and the non-adaptive case, TT-SUF-NCMA, analogously as to how we defined it for standard signatures.

2.4 Chameleon Hash Functions

A Chameleon Hash Function is defined as CHF = (CHGen,CHash,Coll):

• CHGen(1λ) outputs the hash key chk and the trapdoor td.

• CHash(chk,m, r) outputs the hash value h.

• Coll(td, (m, r), m̂) outputs a randomness r̂ such that CHash(chk,m, r) = CHash(chk, m̂, r̂).
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Experiment Exp TT-EUF-NCMA
TTSig,F,q (λ, d) Experiment Exp TT-EUF-CMA

Sig,F,q (λ, d)
(ppk, psk)←$ PriGen(1λ, d); (ppk, psk)←$ PriGen(1λ, d);
(m∗, σ∗, i∗)←$ FNTTSign(·)(ppk); (m∗, σ∗, i∗)←$ FOSKey(),TTSign(·,·)(ppk);
If TTVerify(ppk, spki∗ ,m

∗, σ∗) = 1 and m∗ /∈ Qi∗ If TTVerify(ppk, spki∗ ,m
∗, σ∗) = 1 and m∗ /∈ Qi∗

then return 1, else return 0. then return 1, else return 0.
Oracle OSKey()
i = i+ 1 and ji = 0;
(spki, sski)←$ SecGen(ppk, psk);

Oracle NTTSign(m1, . . . ,md) Return spki.
i = i+ 1 and (spki, sski)←$ SecGen(ppk, psk); Oracle TTSign(i′,m)
σj ←$ TTSign(psk, sski,mj) for j = 1, . . . , d; ji′ = ji′ + 1; mji′ := m
Store (m1, . . . ,md) in the list Qi; If ji′ > d or (spki′ , sski′) is undefined then return ⊥;
Return (spki, σ1, . . . , σd). σ ←$ TTSign(psk, sski′ ,mji′ ) and store mji′ in Qi′ ;

Return σ.

Table 3: TT-EUF-NCMA and TT-EUF-CMA experiments for the two-tier signature scheme.

The standard security notion for Chameleon Hashes is collision resistance (coll). Formally, CHF is (t, ε)-coll
if for the adversary A running in time at most t we have:

Pr

[
(chk, td)←$ CHGen(1λ); ((m1, r1), (m2, r2))←$ A(chk)

∧CHash(chk,m1, r1) = CHash(chk,m2, r2) ∧ (m1, r1) 6= (m2, r2)

]
≤ ε.

However, any user in possession of the trapdoor td is able to find a collision using Coll. Additionally,
Chameleon Hash functions have the uniformity property, which means the hash value leaks nothing
about the message input. Formally, for all pair of messages m1 and m2 and the randomly chosen
r, the probability distributions of the random variables CHash(chk,m1, r) and CHash(chk,m2, r) are
computationally indistinguishable.

3 Constructions of Two-Tier Signatures

In this section we show different constructions of d-time two-tier signatures for d = 1 (Section 3.1) and
d ≥ 2 (Section 3.2).

3.1 Construction from any Chameleon Hash function

We construct a non-adaptively strongly secure one-time two-tier signature TTSigCHF = (PriGen,SecGen,
TTSign,TTVerify) from any Chameleon Hash CHF = (CHGen,CHash,Coll) with message space M and
randomness space R.

• PriGen(1λ): Generate a Chameleon Hash key and the corresponding trapdoor (chk, td)←$ CHGen(1λ).
Define ppk = chk and psk = td.

• SecGen(ppk, psk): Pick random σ̂ ∈
R
R and compute h = CHash(ppk, m̂, σ̂), for an arbitrary public

m̂ ∈M (possibly m̂ = 0). Define spk = h and ssk = σ̂.

• TTSign(psk, ssk,m): The signer uses the trapdoor of the chameleon hash to compute a collision as
σ = Coll(psk, m̂, σ̂,m), which means CHash(ppk,m, σ) = spk. The signature on m is σ ∈ R.

• TTVerify(ppk, spk,m, σ): Check if CHash(ppk,m, σ) = spk.

Correctness of the scheme follows by correctness of the Chameleon Hash function.

Theorem 3.1 If CHF is a (t, ε)-coll Chameleon Hash function, then for any q ∈ N, TTSigCHF is a
(t′, q, 1, ε′)-TT-SUF-NCMA signature where ε′ = ε and t′ = t−O(q).
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Proof: Let F be a ppt adversary that (t′, q, 1, ε′)-breaks the TT-SUF-NCMA security of TTSigCHF. Then
we construct an adversary B that (t, ε)-breaks the collision resistance of CHF. Formally, B is given the
challenge Chameleon Hash key chk and asked to come up with two distinct inputs (m, r) 6= (m′, r′) such
that CHash(chk,m, r) = CHash(chk,m′, r′).

Simulation. B simulates PriGen(1λ) as follows: it sets ppk = chk and returns ppk to F . Now B does
not have the Chameleon Hash trapdoor and psk is empty.

Upon receiving the ith message mi from F , B simulates NTTSign(mi) as follows: it picks a random
σi ∈R R and computes hi = CHash(ppk,mi, σi). Define the secondary public key spki = hi and return
spki and the signature σi.

The simulation is identical to the real execution. Firstly, chk is from the Chameleon Hash challenge
and, thus, the simulation of PriGen is identical to the definition. Secondly, in the original definition
spki = CHash(ppk, 0, ri), while spki = CHash(ppk,mi, σi) in the simulation. These two distributions are
identical based on the uniformity property of CHF. Thirdly, it is easy to see the simulated signatures are
well-formed.

Extracting the collision. Once F outputs a forgery (m∗, σ∗, i∗), B aborts if spki∗ is undefined.
Otherwise, B checks if CHash(ppk,mi∗ , σi∗) = spki∗ = CHash(ppk,m∗, σ∗). If that is the case, then
B returns the collision ((m∗, σ∗), (mi∗ , σi∗)). By the strong unforgeability of TTSigCHF, (m∗, σ∗) 6=
(mi∗ , σi∗). Thus, if F outputs a successful forgery then B finds a collision for the Chameleon Hash with
probability ε = ε′.

3.2 Direct Constructions of d-time Two-Tier Signatures

The construction from Section 3.1 can be extended to yield a d-time two-tier signature scheme for any
d ≥ 1 but the size of the secondary public-key is linear in d which is not useful for constructing efficient
flat-tree signatures. In this section, we present stateful d-time two-tier signature schemes with constant
size secondary key, from the f -CDHI, and SIS assumptions. Two more constructions from RSA and
factoring are given in Appendix C.

3.2.1 Construction from f-CDHI

The construction from this section has an additional parameter 1 ≤ f ≤ d which offers a trade-off between
the size of ppk (O(d/f) group elements) and the underlying hardness assumption f -CDHI relative to a
pairing group generator algorithm PGroupGen. (See Appendix A for a formal definition of f -CDHI.)
We now present the stateful d-time two-tier signature scheme TTSigf-CDHI = (PriGen,SecGen,TTSign,
TTVerify) from f -CDHI with message space Zp. For simplicity we assume there exists an integer c such
that c · f = d.

• PriGen(1λ, d): generates a pairing group PG = (G, g, p,GT , e) ←$ PGroupGen(1λ), picks random
scalars x1, . . . , xc ∈R Zp and computes hi = gxi for i = 1, . . . , c and defines psk = (x1, . . . , xc), ppk =
(PG, (h1, . . . , hc)).

• SecGen(psk, ppk): picks a random u ∈
R
G, and defines spk = u, the secondary signing key is empty.

• TTSign(psk, ssk,mj ; j): to sign the j = α · f + β-th message mj (j ∈ J1, dK, α ∈ J1, cK, β ∈ J1, fK),
compute σj = (gmju)1/(xα+β).

• TTVerify(ppk, spk,mj , σj ; j): checks if e(σ, hαg
β) = e(gmju, g).

It is easy to verify correctness.

Theorem 3.2 If the f -CDHI assumption is (t, ε)-hard, then for any q ∈ N, TTSigd,f-CDHI is a (t′, q, d, ε′)-
TT-EUF-NCMA signature scheme where ε′ = dε and t′ = t−O(dq).
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We stress that f is a fixed small parameter of the scheme. In particular, as 1-CDHI is equivalent to
CDH, TTSig1-CDHI is secure under the standard CDH assumption, which is equivalent to the scheme from
[11].

Proof: Let F be an adversary that (t′, q, d, ε′)-breaks the TT-EUF-NCMA security of TTSigf-CDHI. Then
we construct an adversary B that (t, ε)-breaks the f -CDHI Assumption. Adversary B takes as input a

pairing group description P̂G = (G,GT , ĝ, p, e) and a f -CDHI-challenge (ĝ, ĝx, . . . , ĝx
f

). Its goal is to

compute ĝ
1
x .

• To simulate PriGen, B picks a random j′ ∈
R

J1, dK, which defines uniquely α′, β′ as the quotient

and modulo in the euclidean division of j′ by f . B computes g = ĝ
∏
b 6=β′ (x+b−β′) (b ∈ J1, fK) from

f -CDHI-chanllenge and chooses c− 1 random scalars (x1, . . . , xα′−1, xα′+1, . . . , xc) ∈R Zc−1
p , where

c = d/f as defined in the scheme, and for all α ∈ J1, cK computes:

hα =

{
gx−β

′
if α = α′ (Implicitely, xα′ := x− β′)

gxα otherwise

The primary public-key is ppk = (PG = (G, g, p,GT , e, g), (h1, . . . , hc)).

• When receiving the i-th NTTSign query (i ∈ J1, qK) on ~mi = (mi,1, . . . ,mi,d):

1. SecGen: B picks a random scalar ri ∈R Zp and defines spki = ui = ĝ
ri

f∏
b=1

(x+b−β′)
h
−mi,j′
α′ .

2. TTSign: B then computes the signature vector ~σi = (σi,1, . . . , σi,d) on ~mi via

σi,j = (ui · hmi,jα )
1

xα+β =


gri if j = j′

ĝ
ri

∏
b 6=β

(x+b−β′)
ĝ

(mi,j−mi,j′ )(x−β
′)

∏
b 6=β,β′

(x+b−β′)
if α = α′ ∧ β 6= β′

u
1/(xα+β)
i h

mi,j/(xα+β)
α otherwise

where j = α · f + β and α ∈ J1, cK and β ∈ J1, fK. Since xα is chosen by B, the last equation can be
computed. It is easy to see the simulated distribution is identical to the real scheme, since ĝ from f -CDHI
challenge is a random generator of G.

Eventually, the adversary F outputs a forgery σ∗ on a message m∗ for some previously established spki∗
(i∗ ∈ J1, qK). With probability 1/d the forgery is for the j′-th index. As σ∗ is valid we have

σ∗ = (ui∗h
m∗

α′ )1/(xα′+β
′) = ĝ

ri∗
∏
b 6=β′

(x+b−β′)
(ĝ

(x−β′)·(m∗−mi,j′ )·
∏
b 6=β′

(x+b−β′)
)1/x

As we know m∗,mi,j′ , ri, and m∗ 6= mi,j′ this allows to compute the helper value

(σ∗/gri∗ )1/(m∗−mi,j′ ) = (ĝ
(x−β′)

∏
b 6=β′

(x+b−β′)
)1/x.

The helper value can be written as ĝ
poly(x)
x , where poly(x) admits {β′ − b : b ∈ J1, fK ∧ β 6= β′} ∪ {β′} as

roots. Using partial fraction decomposition, it can be rewritten as ĝpoly′(x)ĝ
β′

∏
b6=β′ (β

′−b)
x where poly′ is

a polynomial of degree f − 1. Due to its degree, ĝpoly′(x) can be efficiently computed from the challenge,
so B can recover g

1
x to solve the f -CDHI challenge with probability ε = ε′/d.

3.2.2 Construction from SIS

Useful facts about lattice are recalled in Appendix A. Our scheme is defined as follows:
Let k = dlog pe = O(log λ), m̄ = O(λk) and m = m̄+ λk be the dimension of the signature. Let D =

DZm̄×λk,ω(
√

log λ) be the Gaussian distribution over Zm̄×λk with parameter ω(
√

log λ) and let s = O(
√
λk)

be a Gaussian parameter. Then the signature scheme TTSigSIS = (PriGen,SecGen,TTSign,TTVerify) with
message space {0, 1}` is defined as follows:
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• PriGen(1λ, d): pick a random matrix A0 ∈R Zλ×`p . For i = 1, . . . , d, sample (Ai,Ri)←$ GenTrap
D(1λ, 1m, p).

Define ppk = (A0,A1, . . . ,Ad) and psk = (R1, . . . ,Rd).

• SecGen(psk, ppk, d): choose a random vector u ∈
R
Zλp . Define spk = u and ssk = {} is empty.

• TTSign(psk, ssk,mj ; j): to sign the j-th message mj ∈ {0, 1}`, compute the syndrome yj = u −
A0mj . Then sample σσσj ∈ Zm from DΛ⊥yj

(Aj),s·ω(
√

log λ), σσσj ←$ SampleD(Rj ,Aj ,yj , s).

• TTVerify(ppk, spk,mj ,σσσj ; j): accept if ‖σσσj‖ ≤ s ·ω(
√

log λ) ·
√
m and Ajσσσj = u−A0mj ; otherwise,

reject.

Correctness of the scheme follows by Lemmas A.2 and A.1.

Theorem 3.3 If SISp,β is (t, ε)-hard for β =
√
`+ s2 · ω(log λ) ·m), then for any q ∈ N, TTSigSIS is a

(t′, q, d, ε′)-TT-SUF-NCMA signature scheme where ε′ = dε+ negl(λ) and t′ = t−O(d · q).

Proof: Let F be a ppt adversary that (t′, q, d, ε′)-breaks the TT-SUF-NCMA security of TTSigSIS. Then
we construct an adversary B that (t, ε)-breaks the SISp,β problem. B is given a SISp,β instance A =

[A′|A′′] ∈
R
Zλ×m′p where m′ = `+m and A′ ∈

R
Zλ×`p and A′′ ∈

R
Zλ×mp .

Simulation. B simulates PriGen(1λ, d): it guesses a random i∗ ∈
R
{1, . . . , d} and defines A0 = A′ and

Ai∗ = A′′. For i 6= i∗, B generates Ai and Ri as in the real scheme. Then B sends ppk = (A0, . . . ,Ad)
to F .

Upon receiving the d messages (m1, . . . ,md) from F , B simulates the corresponding signatures and
the secondary verification key: it samples a σσσi∗ from the Gaussian DZm,s·ω(

√
log λ) and computes u =

[A0|Ai∗ ] ·
[
mi∗

σσσi∗

]
and defines spk = u. B uses Ri to compute σσσi as in the real scheme for i 6= i∗. Then B

responds F with the signatures {σσσ1, . . . ,σσσd} and the secondary verification key spk.

The simulation is statistically close to the real execution. By Lemma A.1, the simulated Ai∗ is negl(λ)-far
from the real distribution. It is easy to see the signatures σσσi for i 6= i∗ are identical to the scheme definition.
It remains to show the simulated joint distribution {spk,σσσi∗} is statistically close to the real distribution.
Firstly, in the real scheme, spk is uniformly random over Zλp . In the simulation, spk = u = A0mi∗+Ai∗σσσi∗ ,

where σσσi∗ ∈ DZm,s·ω(
√

log λ) and s · ω(
√

log λ) = O(
√
λk)ω(

√
log λ) > ω(

√
logm). By Lemma A.3, for all

but a 2p−λ fraction of all Ai∗ ∈ Zλ×mp , Ai∗σσσi∗ is statistically close to uniform over Zλp , which implies spk is
statistically close to the real distribution. Secondly, in the real scheme, σσσi∗ is sampled from the Gaussian
DΛ⊥yi∗

(Ai∗ ),s·ω(
√

log λ) where yi∗ = u−A0mi∗ . In the simulation, σσσi∗ is sampled from DZm,s·ω(
√

log λ) and

it is easy to see σσσi∗ ∈ Λ⊥yi∗ (Ai∗), since Ai∗σσσi∗ = u−A0mi∗ = yi∗ . Thus, the simulated σσσi∗ is identical
to the real scheme.

Extracting SISp,β solution. Once F outputs a forgery (m∗,σσσ∗), B aborts if (m∗,σσσ∗) is not valid
under Ai∗ . Otherwise, since (m∗,σσσ∗) is valid signature, we have

[A0|Ai∗ ] ·
[
m∗

σσσ∗

]
= u = [A0|Ai∗ ] ·

[
mi∗

σσσi∗

]
.

Define z =

[
m∗

σσσ∗

]
−
[
mi∗

σσσi∗

]
. By the strong unforgeability of TTSigSIS, (m∗,σσσ∗) 6= (mi∗ ,σσσi∗) and thus

z 6= 0. We claim z is the solution to the SISp,β problem instance A, since

A · z = A · (
[
m∗

σσσ∗

]
−
[
mi∗

σσσi∗

]
) = [A0|Ai∗ ] · (

[
m∗

σσσ∗

]
−
[
mi∗

σσσi∗

]
) = 0.

and ‖z‖2 ≤ ` + s2ω(
√

log λ)2m = β2 by the triangle inequality. The successful probability of B is

ε = ε′

d − negl(λ) and its running time is t = t′ +O(d · q).
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4 Generic Constructions of Non-Adaptive Signatures

In this section, we give two constructions of non-adaptively secure signature scheme Sig from any non-
adaptively secure two-tier signature TTSig. The first construction is from a one-time two-tier signature
scheme and the second construction is from a d-time two-tier signature scheme. Both constructions have
tight security. The basic idea behind our constructions is as follows.

Basic Idea. In our constructions, the signer implicitly holds a tree. Each node has an out-degree d and
the depth of the tree is h. Every node, including the leaves, v ∈ {1, . . . , d}≤h has a label Lv which is a
secondary public key of TTSig. All nodes can be computed “on the fly.” Each leaf is used to sign a single
message. We have dh = 2λ (or, equivalently, h log d = λ), where the scheme can sign up to 2λ messages.

When signing message m, the signer takes the leftmost unused leaf vh ∈ {1, . . . , d}h in the tree and
generates the label Lvh ←$ SecGen(ppk, psk). Define Lvh+1

= m. Then the path from the root v0 to vh
is computed. For each undefined node vi on the path, the signer assigns label Lvi ←$ SecGen(ppk, psk).
After that, every node on the path is signed using the label (i.e., the secondary secret key) of its parent.
In this step, we have different signing methods depending on whether d = 1 or d ≥ 2.

• d = 1: The signer holds a binary Merkle tree. When signing the nodes on the path, the signer
takes the node vi in the top-down manner and signs both children of vi under Lvi , σi+1 ←$

Sign(psk, sskvi ,Childl||Childr) where sskvi is the secondary secret key associated with node vi, and
Childl and Childr are the left and right children of node vi respectively. This construction can be
viewed as a generalization of the tree-based signature by Hofheinz and Jager [28].

• d ≥ 2: The signer holds a flat-tree with out-degree d. When signing the nodes on the path, the
signer takes the node vi in the top-down manner. Assume the jth child Childj of vi is on the path.
Then the signer uses sskvi to sign Childj , σi+1 ←$ Sign(psk, sskvi ,Childj).

The signer outputs the path and the two-tier signatures on the path as the signature of m. Details are
given in the definitions of the schemes.

Note that both of our schemes are stateful. One can use the technique of Goldreich [24] to make them
stateless. Precisely, the randomness used to generate secondary secret key sskvi for each node vi will be
derived by a pseudo-random function. Another pseudo-random function will be used to determine the
leaf used to sign a given message. As this technique is quite standard for Merkle-tree-based signatures,
we skip the details here and refer the reader to Section 3.2.3 of [32].

Moreover, it is well-known that a non-adaptively secure signature can be tightly transferred to be an
adaptively secure signature by using a Chameleon Hash [33]. This is explicitly proven in the full version
of [31].

4.1 Construction from any One-Time Two-Tier Signature

Let TTSig = (PriGen,SecGen,TTSign,TTVerify) be a one-time two-tier signature scheme with message
space {0, 1}∗. The stateful signature scheme BinTree[TTSig] = (Gen,Sign,Verify) is based on a binary tree
of height h = λ and is defined as follows. Figure 2 shows the nodes involved in signing the i-th message
m.

• Gen(1λ): Generate a primary key (ppk, psk) ←$ PriGen(1λ, 1). The label of the root node ε is
also generated (spkε, sskε) ←$ SecGen(ppk, psk) and Lε = spkε. Define the verification key pk =
(ppk, spkε) and the signing key sk = (psk, sskε).

• Sign(sk,m): To sign a message m, the signer proceeds in two steps:

– Node generation step: The signer takes the leftmost unused leaf vh ∈ {0, 1}h and searches
the binary path (v0, v1, v2, . . . , vh) from the root v0 = ε to vh, i.e., vi is the i-th prefix of vh.
For each node vi on the path (including the leaf vh), if vi’s label Lvi is not defined, then the
signer generates (spkvi , sskvi)←$ SecGen(ppk, psk) and assigns Lvi = spkvi . For the sibling v̄i
of vi, the corresponding secondary public key and secret key are generated in the same way,
(spkv̄i , sskv̄i)←$ SecGen(ppk, psk) and Lv̄i = spkv̄i .
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Figure 2: Nodes in black are used in the i-th Signature with BinTree[TTSig], left and d-Tree[TTSig], right.

– Path authentication step: Define Mh = m. For each node vi (i = h − 1, . . . , 0) on the path,
define the message associated with vi by Mi = Lvi||0||Lvi||1, where Lvi||0 and Lvi||1 are labels
of the left and right children of vi respectively. Then the signer computes the signatures on
the path as σi = TTSign(psk, sskvi ,Mi) for i = 0, . . . , h.

The signer returns σ = (vh,M0, . . . ,Mh−1, σ0, . . . , σh) as the signature of m.

• Verify(pk,m, σ): A signature σ = (vh,M0, . . . ,Mh−1, σ0, . . . , σh) on the message m is verified in the
natural way. Define Mh = m. Note that each Mi−1 (i = 1, . . . , h) contains the secondary public
keys of vi−1’s children, Lvi−1||0 and Lvi−1||1. Hence, we check if TTVerify(ppk, Lvi ,Mi, σi) = 1. If
that is true for i = 0, . . . , h, then it outputs 1, otherwise 0.

The following theorem shows the non-adaptively security of BinTree[TTSig] is tightly reduced to the
security of the one-time two-tier signature TTSig.

Theorem 4.1 If TTSig is (t, q, 1, ε)-TT-EUF-NCMA secure, then Sig = BinTree[TTSig] is (t′, ε′, q′)-
EUF-NCMA secure, where t′ = t−O(hq′), ε′ = ε, and q′ = q

h+1 .

Proof: Let F ′ be a ppt adversary that breaks the EUF-NCMA-security of Sig with success probability ε′

and time complexity t′ and makes q′ times non-adaptive message queries. Then we construct an adversary
F to (t, q, 1, ε)-breaks the TT-EUF-NCMA security of TTSig with the parameters given above. First, F
is given a challenge TTSig primary public key ppk.

Simulation. Recall that F ′ is an adversary for non-adaptive security, which means F ′ will output q′

messages m1, . . . ,mq′ before seeing the verification key. In the following we explain how F generates the
signatures on each mi and the verification key of Sig without knowing the real signing key of TTSig.

F generates the binary tree in a bottom-up fashion by using the oracle NTTSign (note that the number
of leaves are the same as the number of the signing queries q′ and, thus, all the leaves are defined after
signing q′ messages). For each i-th query to NTTSign (1 ≤ i ≤ q′), F does the following:

• For a leaf v
(i)
h , F defines M

(i)
h = mi and queries (spk

v
(i)
h

, σ
(i)
h ) ←$ NTTSign(M

(i)
h ). Define L

v
(i)
h

=

spk
v

(i)
h

.

• For an internal node vj (for each 0 ≤ j ≤ h − 1), F defines M
(i)
j = Lvj−1||0||Lvj−1||1. F queries

(spkvj , σ
(i)
j )←$ NTTSign(M

(i)
j ). Define Lvj = spkvj .

• The signature σi on mi is (v
(i)
h ,M

(i)
0 , . . . ,M

(i)
h−1, σ

(i)
0 , . . . , σ

(i)
h ).

Finally, F returns the verification key pk = (ppk, spkε) and the signatures (σ1, . . . , σq′) to F ′.
Note that the simulation is identical to the real execution. Firstly, ppk is from the TTSig challenger,
which is distributed identically to the real distribution. Secondly, due to the correctness of NTTSign, the
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binary tree generated by F is identical to the real one and the same for the corresponding signatures on
the path. Thus, the simulated verification key and signatures for q′-messages are identical. Moreover, F
makes one NTTSign query per node and makes hence a total of q = q′(h+ 1) queries.

Extracting the forgery for TTSig. Let the set Good contain all the labels Lvj assigned by F .
Recall that a forgery (m∗, σ∗) consists of σ∗ = (v∗h,M

∗
0 , . . . ,M

∗
h−1, σ

∗
0 , . . . σ

∗
h) and M∗j contains the

labels of both children of node v∗j . Then, after F ′ outputs a forgery (m∗, σ∗) for Sig, F can search
the largest index δ ∈ {0, . . . , h} such that Lv∗δ is in set Good. Lv∗δ was previously defined by running
(spkv∗δ , σδ)← NTTSign(M ′) for some M ′. If (m∗, σ∗) is a valid EUF-NCMA forgery, F can find (M∗δ , σ

∗
δ )

such that TTVerify(ppk, spkv∗δ ,M
∗
δ , σ

∗
δ ) = 1 where M∗δ 6= M ′. Thus, F can break the TT-EUF-NCMA

security of TTSig with probability ε = ε′. A similar argument can be applied to prove the strong
EUF-NCMA security of Sig when TTSig is strongly TT-EUF-NCMA secure.

4.2 Construction from any d-Time Two-Tier Signature

Let TTSig = (PriGen,SecGen,TTSign,TTVerify) be a d-time two-tier signature with message space {0, 1}∗.
The stateful signature scheme d-Tree[TTSig] = (Gen,Sign,Verify) is defined as follows, once again you can
refer to Figure 2 to see the nodes involved:

• Gen(1λ): It generates a d-time primary key, (ppk, psk) ←$ PriGen(1λ, d). The label of the root
v0 = ε is also generated (spkε, sskε)←$ SecGen(ppk, psk) and Lε := spkε. Define the verification key
pk := (ppk, spkε) and the signing key sk := (psk, sskε).

• Sign(sk,m): To sign a message m, the signer proceeds in two steps:

– Nodes generation step: The signer takes the leftmost unused leaf vh ∈ {1, . . . , d}h and searches
the path (v0, . . . , vh) from the root v0 = ε to vh. Define Lvh := m and for each internal
node vi on the path, if vi’s label Lvi is not defined, then the signer generates (spkvi , sskvi)←$

SecGen(ppk, psk) and assigns Lvi := spkvi .

– Path authentication step: Each Lvi (i = 1, . . . , h) on the path is signed under Lvi−1
= spkvi−1

,
σi ←$ TTSign(psk, sskvi−1

, Lvi ; j) where vi = vi−1||j and 1 ≤ j ≤ d. The d-time TTSign is a
stateful algorithm and j is the state.

The signer returns σ = (vh, Lv1 , . . . , Lvh−1
, σ1, . . . , σh) as the signature of m.

• Verify(pk,m, σ): Parse σ = (vh, Lv1
, . . . , Lvh , σ1, . . . , σh). The verifier defines Lvh := m and checks

if TTVerify(ppk, Lvi−1
, Lvi , σi; j) = 1 for all i = 1, . . . , h, where vi+1 = vi||j (1 ≤ j ≤ d). If that is

true, then it outputs 1, otherwise 0. Here the d-time TTVerify is a stateful algorithm and j is the
state.

The following theorem tightly reduces the non-adaptively security of d-Tree[TTSig] to the one of the
d-time two-tier signature TTSig.

Theorem 4.2 If TTSig is (t, q, d, ε)-TT-EUF-NCMA secure, then Sig = d-Tree[TTSig] is (t′, ε′, q′)-EUF-NCMA
secure, where t′ = t−O(hq′), ε′ = ε, and q′ = q

h .

Proof: The security proof is a generalization of the proof of the Cramer-Damg̊ard scheme [17], and it is
rather similar to the proof of Theorem 4.1. Therefore we only sketch it. The major difference between Sig
and BinTree[TTSig] is that each internal node v in Sig uses a d-time signature to sign its d-many children
one by one, while in BinTree[TTSig] each internal node v can only sign its both children one-time.

Assume F ′ (t′, ε′, q′)-breaks EUF-NCMA-security of Sig. Then we construct F break TT-EUF-NCMA
security of TTSig:

Simulation. Similar to the proof of Theorem 4.1, given q′ messages, F can simulate all the tree nodes
and the signature on the path by asking the d-time signing oracle NTTSign in a bottom-up fashion. By

12



the correctness of NTTSign, it is easy to see the simulation is identical to the Sig definition. Moreover, F
makes one NTTSign query per node and makes hence a total of q = q′ · h queries.

Extracting the forgery for TTSig. After F ′ outputs a success forgery (m∗, σ∗), F defines Lv∗h+1
:=

m∗ and finds the forgery for TTSig following the same step in the proof of Theorem 4.1. Thus, ε = ε′.
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A Hardness Assumptions

We now define the hardness assumptions that we have used in our results.

Group generator algorithms. We define an algorithm GroupGen, that on input of 1λ gives us
G = (G, g, p), such that G = 〈g〉 is a multiplicative group of order p and log p = λ.

Let PGroupGen be an algorithm that on input 1λ outputs a description of a bilinear group PG =
(G,GT , g, p, e) such that G = 〈g〉 and GT are two cyclic groups of prime-order p and e : G×G→ GT is
a bilinear pairing satisfying the following properties:

1. GT = 〈e(g, g)〉 (in particular e(g, g) 6= 1).

2. ∀a, b ∈ Zp, e(ga, gb) = e(g, g)ab.
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We now discuss the computational assumptions that we use in this setting. All the assumptions below
are defined relative to either GroupGen or PGroupGen. For compactness, we use the Setup algorithm, which
can be in either setting.

Linear Assumption. The linear assumption, denoted by LIN, states that given three random generators
g, h, k of G and a tuple (gu, hv, kc) where u, v ∈

R
Zp and c = u + v or random in Zp, it is hard for the

adversary A to guess c = u+v or c is random. LIN is said to be (t, ε)-hard if for all adversaries A running
in time at most t, we have

Pr [A(g, h, k, (gu, hv, kc))$ → ‘c = u+ v’ or not] ≤ ε.

Computational Diffie-Hellman Assumption. The Computational Diffie-Hellman Assumption, de-
noted by CDH, states that given G = (G, g, p) and elements ga, gb, it is hard to compute gab. CDH is said
to be (t, ε)-hard if for all adversaries A running in time at most t, we have

Pr
[
G ←$ Setup(1λ), a, b ∈

R
Zp : gab ←$ A(G, ga, gb)

]
≤ ε.

f-Computational Diffie-Hellman Inversion Assumption. The f -Computational Diffie-Hellman

Inversion Assumption, denoted by f -CDHI, states that given G = (G, g, p) and elements gx, gx
2

, gx
3

, . . . gx
f

,

it is hard to compute (g
1
x ). f -CDHI is said to be (t, ε)-hard if for all adversaries A running in time at

most t, we have

Pr
[
G ←$ Setup(1λ), x ∈

R
Zp : g

1
x ←$ A(G, gx, gx

2

, gx
3

, . . . gx
f

)
]
≤ ε.

We note that 1-CDHI is tightly equivalent to CDH.

RSA Assumption. The RSA Assumptions, denoted by RSA, states that given (N, e, xe), where N is a
random λ-bit RSA modulus generated by an algorithm RSAGen(1λ) and x ∈

R
Z∗N , it is hard to compute

x. RSA is said to be (t, ε)-hard, if for all adversaries A running in time at most t, we have:

Pr
[
(N, e)←$ RSAGen(1λ), x ∈

R
Z∗N : x = A(N, e, xe)

]
≤ ε.

Lattices and SIS Assumption. for integers λ,m and for a prime p, let A ∈ Zλ×mp . The m-dimensional

integer lattice Λ⊥(A) is defined as

Λ⊥(A) := {z ∈ Zm : Az = 0 mod p}.

For any u ∈ Zλp , define the coset

Λ⊥u (A) := {z ∈ Zm : Az = u mod p}.

The short integer solution problem SISp,β (β > 0) is an average-case version of the approximate
shortest vector problem on Λ⊥(A). It states that, given a uniformly random A ∈ Zλ×mp for m = poly(λ),

find a non-zero z ∈ Λ⊥(A) and ‖z‖ ≤ β, where ‖ · ‖ is the Euclidean norm. SISp,β is (t, ε)-hard
if all adversaries with running time t have a success probability of at most ε. It has been shown if
p ≥ β

√
λ · ω(

√
log λ) then solving SISp,β is at least as hard as approximating the Shortest Independent

Vectors Problem within approximation factor Õ(β
√
λ) in worst case [37, 22].

Let DZm,s be the Gaussian distribution over Zm with center 0 and parameter s and, similarly, let
DΛ⊥(A),s be the Gaussian distribution over Λ⊥(A) with center 0 and parameter s.

The following lemmas are useful for the definition and the security proof of our scheme.

Lemma A.1 (Theorem 5.1 of [36]) There is an efficient randomized algorithm GenTrapD(1λ, 1m, p)
that, given any integers λ ≥ 1, p ≥ 2, and sufficiently large m = O(λ log p), outputs a parity-check matrix
A ∈ Zλ×mp and a trapdoor R such that the distribution of A is negl(λ)-far from uniform and R is sampled
from the Gaussian D.

Moreover, for any y ∈ Zλp and large enough s = O(
√
λ log p), there is an efficient randomized algorithm

SampleD(R,A,y, s) that samples from a distribution with negl(λ) statistical distance of DΛ⊥y (A),s·ω(
√

log λ).
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Lemma A.2 (Lemma 4.4 of [37]) Let x ← DΛ⊥(A),s where A ∈ Zλ×mp . Then the probability that
‖x‖ > s

√
m is negligible in λ.

Lemma A.3 (Corollary 5.4 of [22]) Let λ be a positive integer and p be a prime, and let integer
m ≥ 2λ log p. Then for all but a 2p−λ fraction of all A ∈ Zλ×mp and for any s ≥ ω(

√
logm), the

distribution of the syndrome y = Ax mod p is statically close to uniform over Zλp , where x is from
DZm,s.

B LIN-Based Chameleon Hash Function

We now present the Chameleon Hash function due to Hofheinz and Jager [28]. As noted by the authors,
the scheme presented in [28, Sect 3.1] is almost like a Chameleon Hash function, but does not fit the
syntactical definition. If we directly use their construction, we see that their algorithm T is the Chameleon
Hash algorithm and their signing algorithm is the collision finding algorithm. The hashing algorithm
uses 3 random values from Zp as the randomness, where as the collision algorithm returns 2 group
elements. It is exactly this syntactical mismatch that precludes this scheme from being a Chameleon
Hash function. It must be noted that despite this, one is still able to compute the hash given these two
group elements. We present a slight modification to the scheme, which makes it a chameleon hash. For
convenience, we adopt the following notation whereby given a vector of group elements ~a = (a1, . . . , an)
and a group element b, E(~a, b) denotes the vector resulting from component-wise pairing. That is to say
E(~a, b) = (e(a1, b), . . . , e(an, b)). We define “•” as the component-wise vector multiplication. We now
detail the scheme.

• CHGen(1λ): Generate a pairing group (G, g, p,GT , e) ←$ Pairing(1λ) and pick two additional gen-
erators h, k of G. Pick u, v ∈

R
Zp and set U = (gu, hv, ku+v). Return chk = U and td = (u, v).

• CHash(chk,m, s, t): Let G = (g, 1, k) and H = (1, h, k). Return E(U,m) • E(G, s) • E(H, t).

• Coll(td,m, s, t, m̃): Compute s̃ = smum̃−u, t̃ = tmvm̃−v. Return (s̃, t̃).

As stated in the introduction, this can be trivially generalized to any matrix assumption [21], which
gives us tightly secure signatures under any matrix assumption.

C Other Two-Tier Constructions

This section contains construction of tight two-tier signatures complementing those from Section 3.2. The
signatures here are closely related to existing schemes, but they were not necessarily viewed as two-tier
signatures, so we recall them for completeness and detail their proofs.

C.1 Construction from RSA

Cramer and Damg̊ard presented a tightly secure signature scheme based on the RSA assumption [17].
The signature scheme they present is implicitly based on a d-time 2-tier signature scheme. We detail the
scheme TTSigRSA = (PriGen,SecGen,TTSign,TTVerify) below. For a prime e and an integer N , we define
the function F (e) to be the smallest power of e such that F (e) > N , i.e., F (e) = min{ea; ea > N, a ∈ N}.

• PriGen(1λ, d): picks random primes p, q and set N = pq. Pick a random h ∈
R
Z∗N . Pick d random

primes ej , such that gcd(ej , ϕ(N)) = 1, j ∈ J1, dK. Return ppk = (N,h, e1, . . . , ed) and psk = (p, q).

• SecGen(psk, ppk, d): picks u ∈
R
Z∗N , and returns spk = u, ssk = {} is empty.

• TTSign(psk, ssk,mj ; j): to sign the j-th message mj (j ∈ J1, dK), compute σ = (uhmj )1/F (ej).

• TTVerify(ppk, spk,mj , σj ; j): checks if σ
F (ej)
j = uhmj .

It is easy to verify correctness.
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Theorem C.1 If RSA is (t, ε)-hard, then for any q ∈ N, TTSigRSA is a (t′, q, d, ε′)-TT-EUF-NCMA
signature scheme where

ε′ = dε and t′ = t−O(dq).

Proof: Let F be an adversary that (t′, q, d, ε′)-breaks the TT-EUF-NCMA security of TTSigRSA. Then we
construct an adversary B that (t, ε)-breaks the RSA Assumption. Adversary B inputs an RSA challenge
(N, e, y). Its goal is to compute x such that xe = y.

• To simulate PriGen, B picks a random j′ ∈
R

J1, dK, and sets ej′ = e. B then picks ej , for j 6= j′, as
a random prime such that gcd(e, ϕ(N)) = 1. The primary public key ppk is then (N, e1, . . . , ed, h =

y
∏
j 6=j′ F (ej))

• When receiving the i-th NTTSign query i ∈ J1, qK on ~mi = (mi,1, . . . ,mi,d):

1. SecGen: B picks a random scalar ai ∈R ZN and defines spki = ui = a
∏
j∈J1,dK F (ej)

i h−mj′ .

2. TTSign: B then computes the signature vector ~σi = (σi,1, . . . , σi,d) on ~mi via

σi,j =

{
a
∏
k 6=j′ F (ek) if j = j′

a
∏
k 6=j F (ek)y(

∏
k 6=j′,j F (ek))(mk−mj′ ) otherwise.

Eventually, the adversary F outputs a forgery σ∗ on a message m∗ valid under some previously established
spki (i ∈ J1, qK). With probability 1/d the forgery is for the j′-th index. As σ∗ is valid we have σ∗F (ej′ ) =

uih
m∗ = a

∏
j 6=j′ F (ej)

i y(
∏
j 6=j′ F (ej))(m

∗−mj′ ). We now define Z = σ∗ej′a
−

∏
j 6=j′ F (ej)

i = y
∏
j 6=j′ F (ej). As

we have F (ej′) coprime to
∏
j 6=j′ F (ej), and |m∗ − mj′ | < F (ej′), B can use Shamir’s trick to recover

y1/F (ej′ ), from which we can easily recover y1/ej′ = y1/e and solve the RSA challenge with probability
ε = ε′/d.

C.2 Construction from Factoring

The following construction is based on the flat-tree signature scheme due to Catalano and Genaro [14].
Its security is based on the following assumption related to factoring.

d-Factoring Assumption. Define d-FacGen be the algorithm on input 1λ and d outputs a Blum moduli:

• d-FacGen(1λ, d): randomly chooses d small odd primes ρ1, . . . , ρd and sets p̂ =
∏bd/2c
i=1 ρi and q̂ =∏d

i=bd/2c+1 ρi. Randomly chooses two distinct large primes p′ and q′ such that P = 2p′p̂ + 1 and

Q = 2q′q̂ + 1 are two primes. Returns N = PQ and (ρ1, . . . , ρd).

d-FAC is (t, ε)-hard iff the following holds for any PPT adversary A with running time at most t:

Pr[(N, (ρ1, . . . , ρd))←$ d-FacGen(1λ, d) : (P,Q)←$ A(N, ρ1, . . . , ρd) and N = PQ] ≤ ε.

The d-time two-tier signature TTSigd-FAC = (PriGen,SecGen,TTSign,TTVerify) with message space
{0, 1}`<λ/2 is defined as follows:

• PriGen(1λ, d): calls (N, (ρ1, . . . , ρd))←$ d-FacGen(1λ, d). Compute ei = ρ`ii where `i is the minimum

integer such that ρ`ii > 2`. Select h uniformly random from the E-residues modulo N where

E =
∏d
i=1 ρi. Define ppk = (N, e1, . . . , ed, h) and psk = (ρ1, . . . , ρd, p

′, q′).

• SecGen(ppk, psk): picks u uniformly random from the E-residues modulo N . Define spk = u and
ssk = {} is empty.

• TTSign(ppk, psk, spk, ssk,mj ; j): to sign the j-th message mj (j ∈ J1, dK), compute σj = (u·hmj )1/ej

mod N .
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• TTVerify(ppk, spk,mj , σj ; j): check if σ
ej
j = uhmj mod N .

Correctness is easy to be analysed.

Theorem C.2 If d-FAC is (t, ε)-hard, then for any q ∈ N, TTSigd-FAC is a (t′, q, d, ε′)-TT-EUF-NCMA
signature scheme where

ε′ ≤ 3d

2
ε and t′ = t−O(dq).

Proof: Let F be a PPT adversary that (t′, q, d, ε′)-breaks the TT-EUF-NCMA security of TTSigd-FAC.
Then we construct an adversary B that (t, ε)-breaks d-FAC. B queries d-FacGen(1λ, d) to get d-FAC
instance (N, (ρ1, . . . , ρd)).

• To simulate PriGen, B picks a random j′ ∈
R

J1, dK and computes e1, . . . , ed as in the real scheme.
Then it chooses a random α ∈

R
Z∗N , computes G = ρj′ ·

∏
j 6=j′ ej and h = αG mod N . B returns

the primary public-key ppk = (N, e1, . . . , ed, h).

• When receiving the i-th NTTSign query (i ∈ J1, qK) on ~mi = (mi,1, . . . ,mi,d):

1. SecGen: B picks a random βi ∈R Z∗N and computes spki = β
G·ρ

(`
j′−1)

j′

i h−mi,j′ mod N , where

ρ
`j′

j′ = ej′ .

2. TTSign: B computes the signatures (σi,1, . . . , σi,d) on ~mi via

σi,j = (spki · hmi,j )1/ej =

 β
G/ρj′
i if j = j′

(β
G·ρ

(`
j′−1)

j′

i · h(mi,j−mi,j′ ))1/ej otherwise.

Note that, by the definition of G, (β
G·ρ

(`
j′−1)

j′

i )1/ej and h1/ej are computable if j 6= j′.

We prove the simulated distribution is identical to the real distribution. As shown by [14], E-
residues are equal to G-residues. Thus, h is identical to the real scheme. In the simulation, spki
can be written as (β

ej′/ρj′
i · α−mi,j′ )G mod N and β

ej′/ρj′
i · α−mi,j′ is uniformly random over Z∗N ,

which implies spki is distributed identically to the real scheme. Condition on the simulated joint
distribution {h, spki}, the signatures distribution is same as the original distribution.

Extracting the solution. According to the TT-EUF-NCMA definition, once the adversary F
outputs a forgery (m∗, σ∗, i∗) (i∗ ∈ J1, qK), B aborts if (σ∗)ej′ 6= spki∗ ·hm

∗
mod N . Otherwise, we

have the equations:
(σ∗)ej′ = spki∗ · hm

∗
mod N

(σi∗,j′)
ej′ = spki∗ · hmi∗,j′ mod N

where the last equation is from the signing queries.

By dividing them, Y ej′ = h∆m = (α∆m)G mod N , where Y = σ∗/σi∗,j′ and ∆m = m∗ −mi∗,j′ .
Since ∆m 6= 0 and G 6 |ϕ(N), Y 6= 1. Hence, ∆m = ρwj′γ with γ ≥ 1 and gcd(γ, ρj′) = 1. Moreover

w < `j′ , because of ρwj′ · γ = ∆m ≤ 2` < ρ
`j′

j′ . We have Z = Y
ρ

(`
j′−w−1)

j′ is an ρj′ root of hγ , since

Y
ρ
`
j′
j′ = (α

γG
ρ
j′ )

ρw+1

j′ mod N.

Obviously, α
γG
ρ
j′ is another ρj′ root of hγ . From the simulation, the information about the α

γG
ρ
j′ is

never leaked out. Then, with probability 1 − 1/ρj′ , Z 6= α
γG
ρ
j′ , which implies we solve d-FAC by

Lemma 2 of [14]. As the smallest value for ρj′ is 3, B can solve d-FAC with probability at least 2
3dε
′.
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D Applications

In this appendix we show some applications in terms of our structure-preserving signature scheme
Sigd,f-CDHI = d-Tree[TTSigf-CDHI] and we get a more efficient tightly-secure CCA encryption in the multi-
user and multi-challenge setting.

A Structure-Preserving signature over a bilinear group [2] considers signatures fully compatible with
the Groth-Sahai methodology. Such signatures assume that messages, signatures and verification keys
are in the same space (G), or at least can be lifted into it; and that verification can be expressed as simple
pairing product equations

When someone wants to commit to a signature, the naive approach consists in computing the signa-
ture, and then committing individually to each component of the signature. However, in many signature
schemes, like ours, parts of the signature do not require the knowledge of the secret key and therefore do
not require to be committed.3 In the following, we relax the definition of structure preserving signatures
and consider signatures where the verification equation is a pairing product equation in the elements
that have to be committed. (To be more specific, we will allow hash values to appear in the verification
equation as long as it is a hash of an uncommitted/public value.)

In a symmetric bilinear group PG = (p,G, g,GT , e), a Pairing-Product Equation is an equation of the
form:

∏n
i=1 e(Xi, Ai) ·

∏n
i=1

∏n
j=i e(Xi, Xj)

γi,j = tT , where Ai are public group elements in G, γi,j are
public scalars in Zp, tT is a public element in the target group GT , and Xi are variables in G. In [27],
the authors have shown how to build Non-Interactive Zero-Knowledge Proofs of Knowledge of solutions
of such equations and have proven that their construction can be improved in the linear case (~γ = ~0).

D.1 Tight Simulation-Sound NIZK in Pairing Groups

In this subsection, we revisit a technique introduced in [34, 26] to obtain simulation-sound NIZK (also
used in [28]) and instantiate it with our new signature scheme Sigd,f-CDHI.

A Simulation-Sound Non-Interactive Zero-Knowledge (SSNIZK) Proofs of Knowledge, is a standard
NIZK where the soundness holds even if the simulator is given simulated proofs.

We build SSNIZK Proofs of Knowledge to prove that variables X verify a set of Pairing-Product
Equations S, for which we combine our non-adaptive signature scheme, a one-time two-tier signature (to
make it adaptively secure) and Groth-Sahai Proofs of Knowledge [27].

The verification of the validity of our signature can be viewed as several linear Pairing-Product
Equations. This will allow us to greatly improve the efficiency of the SSNIZK Proof of Knowledge.

D.1.1 Roadmap of the technique

To construct a Simulation-Sound proof that some variables X verify a set S of equations, one uses the
following roadmap assuming the crs contains crsGS, a verification key pk for the Structure-Preserving
Signature scheme Sig, and the prover already possesses a pair of primary keys psk, ppk for a one-time
two-tier signature scheme S1.

1. Generates a secondary signing/verification key pair (ssk, spk) for the one-time two-tier signature

2. Commits to a random tuple of elements R corresponding to a signature (the tuple should be random,
but the size and type of elements committed should be consistent with what is expected from a
signature).

3. Generates a Groth-Sahai proof π, that either X verifies this set S, or that R is a valid signature
under pk in the crs of the verification key spk of the one-time signature scheme.

4. He then sends this Groth-Sahai proof π, the verification key of the one-time signature, a one-time
signature under psk, ssk of everything.

3A good illustration consists in considering a Waters signature: σ1 = skF (m)s, σ2 = gs, committing σ1 into C1 is enough
to completely hide the signature. (C1, σ2) leaks no information on the validity of the signature.
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Referring to [28], it can be shown that this scheme is Zero-Knowledge under the indistinguishability
of the two types of Groth-Sahai crs, and that both the simulation-soundness and the soundness come
from the unforgeability of two kind of signatures. The reductions inherit the tightness of the underlying
signature schemes.

D.1.2 Instantiation from f-CDHI and efficiency comparison

We now use our non-adaptive structure-preserving signature scheme based on f -CDHI (obtained by
combining the d-time two-tier signature presented in Section 3.2.1, and the transformation from 4.2),
together with the Strong one-time two-tier signature based on DLOG (see Section 3.1 with a DLOG-based
Chameleon Hash), we obtain:

• ZK.Setup(1λ): generates a crs consisting of a bilinear group (p,G, g,GT , e), an extra generator g̃ for
the ppkS1

of the one-time signature scheme, a collision resistant Hash Function H, a Groth-Sahai
CRS crsGS and the verification key pk = gxi∈J1,cK for a Structure-Preserving Signature Scheme, which

is also strongly unforgeable. The prover possesses a pair (psk = α, ppk = g̃ = gα).

• ZK.Prove(crs,S, X): where X is a set of variables satisfying the set of equations S. First this
samples a fresh secondary key pair for the strong adaptive one-time two-tier signature scheme: a
pair (sskS1

= (η, µ), spkS1
= g̃ηgµ) for η, µ ∈

R
Zp.

It then computes a Groth-Sahai proof πGS stating that either X satisfies S, or that σ is a valid
signature on spkS1

, by picking a fresh leaf in the signature tree, and generating a commitment σ
of random values emulating a signature on the path (random group elements spki ∈R G for the
nodes of the tree on the path, reusing those already chosen on the shared path in previous proofs),
a random scalar t for the one-time signature of spkS1

on the leaf, and h+ 1 commitments to fictive
signature Si of spki+1 valid under spki. The proof consists of h+ 1 proofs of linear pairing product
equations, so 3h+ 3 group elements only where h is the depth of the tree (h = λ/ log(d)).

It then sends π = πGS, spkS1
, σspkS1

(πGS).

• ZK.Verify(crs,S, π), checks the validity of the one-time two-tier signature, and then the validity of
the Groth-Sahai proof.

The principal difference between this approach and the one in [28] resides in the signature scheme, in
particular the sizes thereof. Their signature requires 10 group elements per node; to hide the signature, 6
of them have to be committed, resulting in 22 elements per node. The verification equation is a quadratic
pairing product-equation, hence the sub-proof requires 9 group elements per node. The proof on the
committed signature requires overall roughly 31λ group elements.

Recently, Abe et al. [1] have presented an optimization on this initial construction. They evaluated
the cost of their corresponding part as roughly 21λ+ 27. (They presented several construction, but the
others are either less efficient and/or not tight)

On the other hand, our signature based on f -CDHI requires two group elements per node (the child
verification key and the signature itself) and one group element and a scalar for the last node. We need
to hide one of these elements for each node. This means that we need 4 elements per node, and 3 group
elements and a scalar for the last one. As explained previously, the verification equation can be viewed
in this case as a linear pairing-product equation so on each node the proof consists of 3 group elements.
We end up with a proof on the committed signature consisting of (7λ)/ log(d) + 7 group elements and 1
scalar. This is where, the trade-off comes into play, for a fair comparison to previous schemes, we need
a signature relying on an equivalent assumption, as they are based on LIN, we need to rely on CDH, so
f = 1-CDHI, we also want to have a reasonable sized CRS, so minimize d/f , and take d = 2. In the end,
we can show that by increasing the CRS size by one element, we manage to reduce the size of the proofs
by a factor 3.

D.2 Tight Multi-Challenge (and Multi-User) IND-CCA Scheme

IND-CCA encryption is a very useful primitive, but in some contexts, one may wish to give even more
power to the adversary, he might be allowed to give q challenge tuples and only answer on one of them, or
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he might ask the challenges to be run on µ encryption keys. There is a transformation based on the Naor-
Yung paradigm [40] which allows to create a (µ, q)-CCA-Encryption from a (µ, q)-Structure-Preserving
CPA-Encryption4, and a SSNIZK in pairing groups.

This technique is described in more details in [28], where they show how to obtain a tight reduction
to the CPA-encryption and the SSNIZK.

D.2.1 Roadmap of the technique

To encrypt a message M , one obeys the following roadmap (assuming a crs containing two encryption
keys ek1, ek2 for an IND-CPA scheme.):

1. Generates two CPA-encryptions of M , one under each two encryption keys in the CRS.

2. Uses the Simulation-Sound NIZK to generate a proof that those two ciphertexts C1 and C2 encrypt
the same message with respect to the encryption keys.

3. The CCA ciphertext then consists of the two ciphertexts and this proof.

To decrypt the message, one simply has to check the validity of the proof and to decrypt one of the
CPA encryptions.

D.2.2 Instantiations

The solution presented in [28] uses Linear Encryption [10] for the CPA-encryption. Our SS-NIZK con-
struction works on bilinear groups, so is also compatible with this encryption scheme.

The overall size of the CCA-Encryption is 6 group elements for the two encryptions, 2 for the ver-
ification key and the one-time signature, and several elements for the OR proof. The OR proof needs
4 commitments and 5 linear multiscalar multiplications proof to handle the equality of ciphertexts, an
extra commitment for the OR, and a commitment and proof of validity of the signature.

The signature and its proof of validity are the larger part of the encryption, and as explained before
our construction for that is at least 3 times more efficient than the original one. So our CCA-encryption
inherits this efficiency and is nearly 3 times more efficient than theirs while our construction is still tight.

4A structure-preserving encryption scheme has public keys, messages, and ciphertexts that consist entirely of group
elements, and both the encryption and decryption algorithms perform only group operations.
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