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Abstract. In CCS’14, Cheon et al. proposed a new additive homomorphic encryption scheme
which is claimed to be the most efficient among the additive homomorphic encryption schemes.
The security is proved based on the hardness of a new problem, the (decisional) co-approximate
common divisor problem. In this paper, we cryptanalyze the scheme and investigate the hardness
of an aforementioned problem. Our first result shows that Cheon et al.’s scheme is insecure for
the range of parameters considered in the original paper [2]. Experiments show that the message
can be recovered in seconds for the proposed parameters. We also analyze the condition of the
parameters to thwart the proposed attack. As a second result, we show that the co-approximate
common divisor problem is easy for the similar range of parameters, in condition that the
modulus is known and is a product of two primes. In our estimate, to thwart the proposed attack,
the parameters should be enlarged many times. Apart from the scheme, the co-approximate
common divisor problem itself is interestingly related to the well-known hard problem, an
approximate common divisor problem. And further investigation on this relationship would be
desirable.

1 Introduction

Quite recently, Cheon et al. proposed a new additive homomorphic encryption scheme in
CCS’14 [2], which will be referred as a CLS scheme throughout this paper. This new scheme
is very fast. Especially, the decryption takes only few micro-seconds. Compared to other
additive homomorphic encryption schemes such as Paillier encryption [10] and Joye and Lib-
ert encryption [6], the CLS scheme is claimed to be the most efficient with similar security.
Although there exist some drawbacks regarding the public key size and the limited homo-
morphic additions, the CLS scheme is quite interesting and have simple construction similar
to the van Dijk et al.’s fully homomorphic encryption (FHE) scheme [5].

Let us briefly review the CLS scheme. Let N =
∏k
i=1 pi be a product of hidden primes.

In the symmetric CLS scheme, M ∈ ZQ is encrypted into a vector whose components are
(M+eQ mod pi) for i = 1, . . . , k, where e is chosen in a sufficiently large interval Z∩(−2ρ, 2ρ).
Addition can be done component-wise, and the Chinese remainder theorem ensures the
decryption. For the security, it is easy to see that M + eQ mod pi hides M when e � pi.
However, it is not clear whether (M + eQ mod p1,M + eQ mod p2) hides M since there may
exist information that can be extracted.

To overcome this difficulty, the authors of the CLS scheme introduced a new hard prob-
lem, co-approximate common divisor (co-ACD) problem. Then the security of the CLS
scheme is proved based on the hardness of the decisional co-ACD problem. Roughly speak-
ing, it is assumed that (eQ mod p1, . . . , eQ mod pk) is indistinguishable from the random
vectors in Zp1 × · · · × Zpk when e is sufficiently large. This reminds the strategy taken on
the ACD based FHE [1, 7] where the security is proved based on the new decisional ACD
problem, which is later proved to be equivalent to the computational ACD problem [4]. As
the name suggests, co-ACD problem has the similarity with the (extended) ACD problem.
Based on this similarity, known attacks against the ACD problem is considered in the original
paper [2].

Considering this similarity, the parameter choice in [2] is somewhat puzzling because it is
several orders of magnitude smaller than the ACD based FHEs. For example, the ciphertext
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size of the CLS scheme providing 128-bit security starts from 3 × 103-bits while the recent
(extended) ACD based FHE [4] suggest to use 15.8× 106-bit ciphertexts for 72-bit security.
Such a difference seems to be unnatural.

Our Contributions. In this paper, by cryptanalyzing the CLS scheme and investigating the
co-ACD problem, we close this gap and show that the parameter of the co-ACD problem
should be enlarged in the order of magnitude.

As our first contribution, we propose a message recovery attack against the CLS scheme
using an orthogonal lattice. Following the usual strategy, we show that a vector x in the
orthogonal lattice constructed from the ciphertexts yields a linear equation modulo N , and
the obtained equation holds over the integers if x is short. Viewing this integer linear equation
modulo Q, unknown errors can be removed and the message can be recovered. Our attack
succeeds for the range of parameters including suggested parameters. Experiments with
Sage [11] confirms that the proposed parameters are insecure. To thwart our attack, the
ciphertext size should be ω(λ2).

As a second contribution, we investigate the co-ACD problem when N(= p1p2) is known.
We remark that the threshold version of the CLS scheme publishes N whereas other ver-
sions do not. Combining a known attack against the ACD problem considered in [5] with
a Coppersmith algorithm finding small roots of a univariate modulo equation [3], we show
that the co-ACD problem is easy for the proposed parameters. Our analysis shows that this
attack would work for the similar range of parameters to the message recovery attack.

Organization. We first review the CLS scheme in Section 2. The CLS scheme is cryptanalyzed
in Section 3 when k = 2. General case is treated in Section 4. In Section 5, we show that
the co-ACD problem is easy for wide range of parameters when the modulus N(= p1p2) is
known.

2 Preliminary

Notation. We use lower-case bold letters for vectors, and usual inner product is denoted by
〈·〉. For a pairwise coprime integers p1, . . . , pk and N =

∏k
i=1 pi, we will use the following

notation [2]:

Φ(p1,...,pk) : ZN →
k∏
i=1

Zpi , x 7→ (x mod p1, . . . , x mod pk).

Note that Φ is an isomorphism and Φ−1 is well-defined.

Definition 1 (Orthogonal lattice). For vectors v1, . . . ,vn ∈ Zm, the orthogonal lattice
L⊥v1,...,vn consists of the integer vectors orthogonal to all vi’s. Namely,

L⊥v1,...,vn = {x ∈ Zm | 〈x,vi〉 = 0 for i = 1, ..., n}.

This lattice has a dimension m− n if vi’s are linearly independent.

2.1 Review of the CLS scheme

We first review the co-ACD problem.

Definition 2 (co-ACD problem). The (ρ, η, k;Q)-co-Approximate Common Divisor (co-
ACD) problem is defined as follows. Pick η-bit random hidden primes pi for i = 1, . . . , k.
Given polynomially many samples Φ(p1,...,pk)(eQ) where e is randomly selected in Z∩(−2ρ, 2ρ),

find a nontrivial factor of
∏k
i=1 pi.

2



Now we describe the symmetric version of the CLS scheme. Let Q be a positive integer
such that the message space is ZQ. The message M is added with an error, and reduced
modulo hidden moduli. The details follows.

– Setup(1λ): Generate two η-bit primes p1, p2 with the condition gcd(Q, pi) = 1. Set N =
p1p2. For each i = 1, 2, compute p̄i = pj(p

−1
j mod pi) mod N for j 6= i. Output the secret

key sk = {N, p1, p2, p̄1, p̄2}.
– Enc(sk,M): Choose e← Z∩ (−2ρ, 2ρ). For a message M ∈ ZQ, the ciphertext is a vector

c = Φ(p1,p2)(M + eQ) = (M + eQ mod p1,M + eQ mod p2).

– Dec(sk, c): For a ciphertext c = (c1, c2), output M = Φ−1(p1,p2)
(c1, c2) = (c1p̄1 + c2p̄2 mod

N) mod Q.
– Add(c1, . . . , c`): Output c =

∑`
i=1 ci through component-wise integer additions.

The asymmetric version of the CLS scheme can be constructed by publishing encryptions
of zeros. The security of the resulting scheme can be proved using the leftover hash lemma
over the lattices. For details, we refer to the original paper [2].

This scheme is simple and efficient additive homomorphic encryption. The authors pro-
vided concrete parameters for 128-bit security with implementation results which shows that
the decryption and the addition is faster than the previous additive homomorphic schemes.

In the next section, we cryptanalyze the CLS scheme and it turns out that their parameter
choice is too optimistic.

3 Cryptanalysis of the CLS scheme

In this section, we describe the known plaintext attack against the CLS scheme with imple-
mentation results. Proposed parameters are weak and it needs only seconds to recover the
message.

In the following, we assume that all ciphertexts are fresh.

3.1 Message Recovery Attack against the CLS scheme

Our attack uses an orthogonal lattice which has various applications in cryptanalysis includ-
ing the hidden subset sum problem analyzed by Nguyen and Stern in [9]. The orthogonal
lattice attack is used to estimate the security of the ACD-based FHE scheme [5]. Similarly,
an orthogonal lattice attack is also considered to analyze the parameter of the CLS scheme
in the original paper [2], where an orthogonal lattice constructed from (k−1) components of
ciphertext vectors is used to find a hidden prime pk when N =

∏k
j=1 pj . And it is concluded

that ρ = (k − 1)η + 2λ is a safe choice when the security parameter is λ.
In the following, we describe a different orthogonal lattice attack using all k components

of ciphertext vectors. To thwart our attack, ρ should be enlarged greatly, which reduces
the homomorphic capacity. Our attack does not disclose the hidden prime, but reveals hid-
den linear equations of the messages, which enables to recover the message on the target
ciphertext.

In this section, we cryptanalyze the CLS scheme when N = p1p2. When ρ is set to be
(k − 1)η + 2λ, choosing k = 2 is the most efficient on the same ciphertext size. The general
case will be treated in the next section.

We follow the same strategy as in the previous orthogonal lattice attacks [9, 5]. The analy-
sis is slightly different, and simplified because of the conditions on the parameters, in our case.

To describe the proposed attack, let N = p1p2 and ci = Φ(p1,p2)(Mi + eiQ) = (Mi +
eiQ mod p1,Mi + eiQ mod p2) = (ci,1, ci,2) with known messages Mi ∈ ZQ for i = 1, . . . , t.
Let the target ciphertext c = Φ(p1,p2)(M + eQ) = (c1, c2) with an unknown message M .
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Let the hidden vector e = (M+eQ,M1+e1Q, . . . ,Mt+etQ). From ci and c, we construct
two vectors vj = (cj , c1,j , . . . , ct,j) for j = 1, 2. By the construction, it is easy to see that
vj = e mod pj . To see the relation to the hidden subset sum problem, let e′j ∈ Zt+1 such
that

e− vj = pje
′
j for j = 1, 2. (1)

Using (1), we obtain the following equation:

v1 − v2 = p2e
′
2 − p1e′1. (2)

Since only v1 − v2 is known, the equation (2) can be seen as a variant of the hidden
subset sum problem. The difference lies in that e′1 and e′2 are nearly parallel and have entries
roughly (2λ + logQ)-bit whereas hidden vectors are random independent binary vectors in
the hidden subset sum problem [9]. This leads us to the consequence that, e′1 and e′2 can
not be obtained directly from the (much shorter) reduced basis of the lattice generated by
e′1 and e′2. And this is the reason why our attack does not disclose the hidden primes.

In the following, we show that the orthogonal lattice still contains enough information to
recover the message of the target ciphertext.

The attack goes in two steps.

– Step 1: Find a short vector x in L⊥v1−v2
such that 〈x, e − v1〉 = 0 which yields a linear

equation over the integers.
– Step 2: Viewing the above linear equation 〈x, e−v1〉 = 0 modulo Q, we eliminates e and
ei’s, and recover the message.

For the first step, we construct an orthogonal lattice L⊥v1−v2
of dimension t. Let x be a

vector in the lattice L⊥v1−v2
. Then, the following holds:

〈x, e− v1〉 ≡ 〈x,v1 − v1〉 = 0 (mod p1),

〈x, e− v1〉 ≡ 〈x,v2 − v1〉 = 0 (mod p2).

Thus, we get the following equation:

〈x, e− v1〉 ≡ 0 (mod N).

Now if ‖x‖ is less than N/‖e− v1‖ ≈ 22η−ρ−logQ = 2η−2λ−logQ, then

‖〈x, e− v1〉‖ ≤ ‖x‖‖e− v1‖ < N,

which implies that the inner product 〈x, e−v1〉 is actually zero over the integers. This yields
an integer linear equation and finding a such short vector is enough to proceed to the next
step.

In the second step, we actually recover the messageM . Using the vector x = (x0, x1, . . . , xt) ∈
L⊥v1−v2

obtained in the first step, we can obtain the following integer linear equation:

〈x, e− v1〉 = x0 · (M + eQ− c1) +

t∑
i=1

xi · (Mi + eiQ− ci,1) = 0.

Viewing this equation modulo Q, we get

x0 · (M − c1) +
t∑
i=1

xi · (Mi − ci,1) = 0 (mod Q). (3)

And solving the equation (3) modulo Q yields the message M if gcd(x0, Q) = 1. As long as
x0 6≡ 0 (mod Q), we can still recover the partial message. Repeating these two steps with

4



different known ciphertexts would eventually yield the message.

We now briefly analyze the above algorithm using the proposed parameters. As in the
Table 1, ρ is set to be η+2λ for the security parameter λ = 128 with logQ = 256 [2]. Since η
is ranged from 1536 to 2706, η−2λ− logQ > 1000. Thus, it is enough to find a vector in the
lattice L⊥v1−v2

of length less than 21000. Since this lattice has a determinant ‖v1 − v2‖ ≈ 2η

and the dimension is t, we need to choose t such that η/t < η − 2λ − logQ. Setting t = 3
satisfies the condition and lattice basis reduction of dimension three lattice is quite easy. As
is described in the next subsection, our attack is efficient.

Remark 1. Any vector x ∈ L⊥v1−v2
of length less than N/‖e − v1‖ can be used to generate

integer linear equation. Thus, one can use several linearly independent vectors to reduce the
required number of known plaintexts.

3.2 Experimental results

We implemented our attack on the proposed parameters [2] using Sage [11] with a desktop
computer running on 2.8GHz with 12GB RAM. With three known plaintexts and the target
ciphertext, we first constructed a lattice basis L⊥v1−v2

using kernel command. Then LLL
algorithm [8] is applied to find a reduced basis. In our experiment, at least one of the two
short vectors in a reduced basis has a first component coprime to Q, and the message is
successfully recovered.

We note that the experiments are performed 100 times on the three parameters. As in
the Table 1, the message can be obtained less than 2 seconds.

Table 1. Message Recovery Attack, Timing results

λ η ρ logQ logA t Time (seconds)

128 1536 1792 256 1134 3 < 1
128 2194 2450 256 1536 3 1
128 2706 2962 256 2048 3 1.8

4 Orthogonal Lattice Attack for k ≥ 2

The CLS scheme in [2] is instantiated with a product of two prime modulus N = p1p2 due
to the efficiency reason. The extension to the three or more primes is very natural. In this
section, we show that our attack can be extended to this case. The analysis shows that the
CLS scheme would lose efficiency to thwart the proposed attack.

Throughout this section, we will use the following notations. Let N =
∏k
j=1 pj be (pos-

sibly) secret modulus. Let us assume that we know t ciphertexts ci = (ci,1, ci,2, . . . , ci,k) =
(Mi + eiQ mod p1, . . . ,Mi + eiQ mod pk) for i = 1, ..., t with corresponding plaintexts Mi.
Let the target ciphertext c = (c1, . . . , ck) = (M + eQ mod p1, . . . ,M + eQ mod pk).

Let e = (M + eQ,M1 + e1Q, . . . ,Mt + etQ) be a hidden vector. For j = 1, . . . , k, we con-
struct vectors vj = (cj , c1,j , c2,j , ..., ct,j) ∈ Zt+1 from known ciphertexts and target ciphertext.
Note that vj = e mod pj . Let L = L⊥v2−v1,...,vk−v1

be an orthogonal lattice obtained from
vj ’s. Throughout this section, we will use L for this lattice. The following lemma says that
any vector in this lattice yields a linear equation modulo N .

Lemma 1. For any vector x ∈ L⊥v2−v1,...,vk−v1
, the following holds for j = 1, . . . , k:

〈x, e− vj〉 ≡ 0 (mod N)
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Proof. It is easy to see that 〈x, e − v1〉 ≡ 0 (mod N) since e − v1 ≡ 0 (mod p1) by the
construction and 〈x, e−v1〉 ≡ 〈x,vj−v1〉 = 0 (mod pj) for j = 2, . . . , k since x is contained
in L⊥v2−v1,...,vk−v1

. Now we have 〈x, e − vj〉 ≡ 0 (mod N) since 〈x, e − vj〉 = 〈x, e − v1〉 −
〈x,vj − v1〉 ≡ 0 (mod N) for j = 2, . . . , k. ut

Similar to the previous section, we need to find short vectors from the lattice L of di-
mension (t − k + 2) using lattice basis reduction algorithms. We note that the determinant
of L is at most

∏k−1
i=1 ‖vi‖ ≈ 2(k−1)η.

By Lemma 1, we know that x ∈ L implies that 〈x, e − v1〉 ≡ 0 modulo N . Thus,
‖x‖ < N/‖e− v1‖ imples that 〈x, e− v1〉 = 0. Viewing this integer linear equation modulo
Q, we can recover the message M similar to the previous section, once we obtained a short
vector x ∈ L such that the first component of x is coprime to Q. This coprime condition can
be easily satisfied by trying several short vectors or using different known ciphertexts. And
the satisfying probability is rather high assuming that the first component of x is random
modulo Q. For example, when Q = 2256 [2] to provide 256-bit message space, the probability
is 1

2 . For a prime Q, the probability is Q−1
Q . Thus, the only obstacle might be the possibility

of getting short vectors of length less than N/‖e− v1‖ ≈ 2kη−ρ−logQ.

By the Minkowski’s theorem, we know that L contains a vector of length less than√
n detL1/n ≈

√
n 2(k−1)η/n where n = t − k + 2 is a dimension of L. Ignoring

√
n, we get

the following condition:

(k − 1)η

n
< kη − ρ− logQ⇐⇒ t >

(k − 1)η

kη − ρ− logQ
+ k − 2. (4)

Let t0 = d(k−1)η/(kη−ρ−logQ)+k−2e. Then finding the shortest vector in a t0-dimensional
lattice suffices to break the CLS scheme with high probability.

On the other hand, LLL [8] algorithm is guaranteed to find a vector of length less than
2(n−1)/4 detL1/n ≈ 2(n−1)/4+(k−1)η/n. Thus when the following condition is satisfied, we can
expect to recover the message in polynomial time:

n− 1

4
+

(k − 1)η

n
< kη − ρ− logQ where n = t− k + 2. (5)

Since a+b ≥ 2
√
ab for positive a,b, the left hand side of (5) is minimized when (n−1)/4 =

(k − 1)η/n. Then ignoring
√

(n− 1)/n term, we get the following condition:√
(k − 1)η < kη − ρ− logQ. (6)

This proves the following theorem.

Theorem 1 The CLS scheme with parameter (ρ, η, k;Q) is insecure if one of the following
conditions are satisfied:

1. d(k − 1)η/(kη − ρ− logQ) + k − 2e is small,

2. (6) is satisfied.

Since kη − ρ − logQ is logA for the symmetric CLS scheme where A is the maximum
number of allowed additions among fresh ciphertexts, this theorem means that

√
(k − 1)η

should be larger than logA. To provide 2λ additions, parameters should be set to be (k −
1)η = ω(λ2). Considering only this attack, larger k reduces ciphertexts slightly since γ =
k
k−1(k − 1)η.

In the next section, we will analyze the computational co-ACD problem.
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5 Analysis of the computational co-ACD problem

In this section, we examine the computational co-ACD problem assuming that the modulus
N is known. We note that N is public in the threshold version of the CLS scheme.

Let N = p1p2 with co-ACD samples ci = (ci,1, ci,2) = (eiQ mod p1, eiQ mod p2) for i =
1, . . . , t. Let e = (e1Q, . . . , etQ) be a secret vector. Now, as we have done in previous sections,
construct two vectors vj = (c1,j , . . . , ct,j) for j = 1, 2 from ci’s. Note that vj = e mod pj for
j = 1, 2, once again. By the Chinese remainder theorem, we have the following equation:

e− v1 ≡ (v2 − v1)p̄2 (mod N),

where p̄2 = p1(p
−1
1 mod p2) mod N . Similar to the lattice used against the ACD problem

in [5], considering the above equation, we construct a lattice generated by the following
(t+ 1)× t matrix:

L =


(c1,2 − c1,1) (c2,2 − c2,1) . . . (ct,2 − ct,1)

N
N

. . .

N

 =

(
v2 − v1

N It×t

)

Note that the length of the first row vector of L is ‖v2−v1‖ ≈ 2η. This is about the half size
of N ≈ 22η. On the other hand, our target solution is (p̄2, ∗, . . . , ∗) ·L = (e1Q−c1,1, . . . , etQ−
ct,1) = e− v1 where ‖e− v1‖ ≈ 2ρ+logQ < N .

For simplicity, let L be a lattice generated by this matrix. Since our target vector is much
longer than the shortest vector v2−v1 in L, the best we can hope is that the second shortest
vector in L is e−v1 (modulo v2−v1). Using detL = N t−1 ≈ 22η(t−1) and ‖v2−v1‖ ≈ 2η, we
expect that the length of the second shortest vector in L would be `2 = (22η(t−1)−η)1/(t−1) =

22η−
η
t−1 . Thus, we can expect to find e−v1 in this lattice (modulo v2−v1) if ‖e−v1‖ < `2.

This yields the following condition on t:

t >
η

2η − ρ− logQ
+ 1. (7)

By choosing t satisfying (7) and using lattice basis reduction algorithms on a t-dimensional
lattice L, we can obtain ṽ which is close to e − v1 when t is small. Now, assuming that
e− v1 = ṽ + x(v2 − v1) with a bound |x| < 2ρ+logQ−η, we can use the first component α, β
of the first two non-zero shortest vectors in L to construct a degree-2 polynomial f(x) =
(αx+β)(αx+β+c1,1−c1,2). Finding a small root x0 of f(x) modulo N using Coppersmith’s
method [3] and computing the greatest common divisor, gcd(N,αx0 + β), would factor N .

In experiments using Sage [11], N is easily factored for the parameter (η, logQ) =
(1536, 256) when ρ is smaller than 2700.
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