
XPIR : Private Information Retrieval for Everyone

Carlos Aguilar-Melchor
XLIM laboratory, Université de Limoges, 123, av. Albert Thomas, 87060 Limoges Cedex, France

Joris Barrier
LAAS-CNRS laboratory, 7 Avenue du Colonel Roche 31077 Toulouse Cedex, France

Laurent Fousse
Universit de Grenoble, Laboratoire Jean-Kuntzmann, Grenoble, France

Marc-Olivier Killijian
LAAS-CNRS laboratory, 7 Avenue du Colonel Roche 31077 Toulouse Cedex, France

NOTE: XPIR is free (GPLv3) software and available at
MASKED_FOR_REVIEW, see the appendix for details.

Abstract
A Private Information Retrieval (PIR) scheme is a pro-
tocol in which a user retrieves a record from a database
while hiding which from the database administrators.
PIR can be achieved using mutually-distrustful repli-
cated databases, trusted hardware, or cryptography. In
this paper we focus on the later setting which is known
as single-database computationally-Private Information
Retrieval (cPIR). Classic cPIR protocols require that
the database server executes an algorithm over all the
database content at very low speeds which impairs their
practical usage.

In [1], given certain assumptions, realistic at the time,
Sion and Carbunar showed that cPIR schemes were not
practical and most likely would never be. To this day,
this conclusion is widely accepted by researchers and
practitioners. Using the paradigm shift introduced by
lattice-based cryptography, we show that the conclusion
of Sion and Carbunar is not valid anymore: cPIR is of
practical value. This is achieved without compromising
security, using standard encryption schemes, and conser-
vative parameter choices.

In order to prove this, we provide a fast and easy
to use cPIR library and do a performance analysis, il-
lustrated by use-cases, highlighting that cPIR is practi-
cal in a large span of situations. The library allows a
server to process its data at a throughput ranging from 1
Gbps on a single core of a commodity CPU to almost 10
Gbps on a high-end processor using its multi-core capa-
bilities. After replying to a first query (or through pre-
computation), there is a x3 to x5 speedup for subsequent
queries. The performance analysis shows for example

that it is possible to privately receive an HD movie from
a Netflix-like database (with 35K movies) with enough
throughput to watch it in real time, or to build a sniffer
over a Gbit link with an obfuscated code that hides what
it is sniffing.

This library is modular, allowing alternative homo-
morphic encryption modules to be plugged-in. We pro-
vide a slow but compact number theory crypto module
that uses Paillier encryption, and a fast crypto module
with Ring-LWE based encryption. The library has an
auto-optimizer that chooses the best protocol parame-
ters (recursion level, aggregation) and crypto parameters
for a given setting. This greatly simplifies its usage for
non-specialists. Given the complexity of parameter set-
tings in lattice-based homomorphic encryption and the
fact that cPIR adds a second layer of choices that inter-
act with crypto parameter settings, we believe this auto-
optimizer will also be useful to specialists.

1 Introduction
Homomorphic encryption has followed a curious path in
the history of cryptography. Since the very beginning
of public key cryptography, in the early seventies, it has
been presented as a holy grail able to provide the most
incredible and powerful applications. Yet, even with the
recent breakthroughs due to lattice based cryptography,
homomorphic encryption is almost never used in prac-
tice.

Among the potential applications of homomorphic
encryption, one of the oldest and most emblematic
is single-database computationally-Private Information
Retrieval. With such a protocol, a user can retrieve a
record out of n from a database, without having to reveal
which one to the database administrators (security being

1

MASKED_FOR_REVIEW

derived from computational hardness assumptions). A
trivial way to obtain such privacy is to simply download
the whole database and to dismiss the elements the client
is not interested in.

Private Information Retrieval (PIR) schemes aim to
provide the same confidentiality to the user (with regard
to the choice of the requested element) that downloading
the entire database does, with sub-linear communication
cost. PIR was introduced by Chor, Goldreich, Kushile-
vitz, and Sudan in 1995 [2]. They proposed a set of
schemes to implement PIR through replicated databases
that provide users with information-theoretic security,
so long as some of the database replicas do not collude
against the users.

Note, however, that PIR schemes do not ensure
database confidentiality: a user can retrieve more than
a database element using a PIR scheme without the
database being aware of it. A PIR scheme ensuring that
users retrieve a single database element with each query
is called a Symmetric PIR (or SPIR) scheme. Generic
transformations exist from PIR to SPIR but this is be-
yond the scope of this paper (see [3]).

In this paper, we focus on PIR schemes that do
not need the database to be replicated, which are usu-
ally called single-database PIR schemes. User pri-
vacy in these schemes is either ensured only against
computationally-bounded attackers, or relies on trusted
hardware. More precisely we focus in the single-
database computationally-Private Information Retrieval
(cPIR) setting, where no trusted hardware is used. In-
stead, these schemes are based on cryptographic algo-
rithms allowing to compute over encrypted data. This re-
places the assumption of the presence of a tamper-proof
trusted hardware by an assumption on the computational
security of the cryptographic primitives used. However,
this comes at a price.

1.1 Performance Issues in cPIR
A major issue with computationally-private information
retrieval schemes is that they are computationally expen-
sive. Indeed, in order to answer a query, a database must
process all of its entries. If a given protocol does not pro-
cess some entries, the database will learn that the user is
not interested in them. This would reveal to the database
partial information on which entry the user is interested
in, and therefore, it is not as private as downloading the
whole database and retrieving locally the desired entry.
The computational cost for a server replying to a cPIR
query is therefore linear1 on the database size. More-
over, most of the schemes have a very large cost per bit
in the database, a multiplication over a large modulus.

1In fact, in [4], Lipmaa proves that using a particular representation
of the database, this lower bound on computation is slightly sublinear
(in O(n/log(log(n))).

This restricts both, the database size and the throughput
shared by the users and thus, limits their usage for many
databases as well as for other applications such as pri-
vate keyword search [5].

In the 14th Annual Network and Distributed System
Security Symposium (NDSS’07), Sion and Carbunar
presented a paper on cPIR practicality [1]. They showed
that the existing, number theory based, cPIR protocols
were not practical and that it was always faster to send
the whole database than to compute a cPIR reply. In-
deed, basing the security of the underlying number the-
oretic encryption schemes on the hardness to factor a
1024 bit RSA modulus, one could not expect a cPIR
scheme to process the database at more than a megabit
per second. Sending the whole database over most of the
current Internet connexions is at least an order of mag-
nitude faster (and generally two orders of magnitude in
local area networks). They also argued that this perfor-
mance gap would continue as long as usual laws on com-
putational power and bandwidth evolution do.

Focused issue: As in [1], we tackle the issue of prac-
tical usage of cPIR. The main performance metric we
use is the time needed for a client to retrieve an element
privately, supposing one or more clients are querying a
server with a commodity-CPU and can exchange data
with the server at various speeds (xDSL, FTTH, etc.).
We consider that the client is ready to pay a significant
overhead for privacy, and compare the time needed us-
ing different approaches (trivial full database download,
number-theory based cPIR, lattice-based cPIR, etc.).

1.2 Related Work
As number theoretic approaches failed to provide effi-
cient cPIR schemes, some alternatives to number the-
ory were explored [6, 7, 8], but all of them were
based on non-standard problems and have been bro-
ken [9, 10, 11, 12, 13].

The (broken) schemes of Aguilar et al. [7] and Tros-
tle and Parrish [8] represented the state-of-the-art in ef-
ficient private information retrieval, allowing to reach
processing speeds of hundreds of megabits per second
on high-end CPUs and up to one gigabit per second on
GPUs [14]. Together, these works total about eighty ci-
tations, and have been used as a fundamental building
block (or as a benchmark) in major and recent venues
such as Usenix Security [15] (2011), NDSS [16, 17]
(2013, 2014), and PETs [18, 19, 20, 21] (2010, 2012,
2014). This paper presents a potential replacement for
them with some additional features: security is based on
a standard problem, Ring-LWE[22], with conservative
parameters choices; multi-gigabit per second processing
throughput on an average CPU; and an auto-optimizer to
simplify its usage by non specialists.

A noteworthy exception to this list of broken schemes

2

is the cPIR scheme of Gasarch and Yerukhimovich [23]
which relies on a lattice-based standard encryption
scheme [24]. However, this underlying encryption
scheme has an extremely large expansion factor (large
ciphertexts encoding only a few bits) that compromises
the efficiency of the cPIR scheme, which was never pub-
licly implemented.

Alternatives to cPIR Oblivious RAM (ORAM) proto-
cols, which are used to access (and write on) a database
privately, can handle very efficiently databases of many
Terabits. However, ORAM and PIR protocols are used
for different applications and cannot be exchanged one
another. Indeed, in the ORAM setting the database con-
tent is encrypted data outsourced from the user. ORAM
cannot be used directly to privately download elements
from a public database (e.g. Netflix) which is the
paradigm of PIR.

It is possible to transform an ORAM protocol into
a PIR protocol using a trusted hardware module (e.g.
see [25]). When using a trusted hardware module is
an acceptable constraint, such protocols allow clients to
send expressive queries (interpretable by the module) to
define the elements to be retrieved and have very low
overhead.

Instead of using a trusted hardware module, it is also
possible to build extremely efficient PIR protocols using
replicated databases as shown by Olumofin and Gold-
berg [26]. If replicating a database and ensuring that
some of the replicas do not collude against the users is
an acceptable constraint, such protocols allow clients to
retrieve data privately with a very small computational
and communication overhead.

A very interesting recent work by Devet and
Goldberg[21] has recently proposed using replicated-
database PIR and cPIR jointly to achieve high per-
formance results without compromising security when
databases collude. This paper uses Aguilar et al.’s cPIR
scheme [7] as a building block and requires the database
to be replicated, so it does not correspond to our setting.
Replacing [7] with our protocol would result on an im-
portant performance boost and provide a secure instance
of their construction.

Works considering only computational or communi-
cation costs In the Oblivious Transfer setting [27], the
objective is to limit the computational cost for the user
and the database without considering communication ef-
ficiency. The whole database is sent encrypted from the
server to the client together with some extra informa-
tion, with the added benefit that the server is guaranteed
that the client can retrieve information about one ele-
ment only per query.

Some cPIR protocols focus only on communica-
tion efficiency without considering computational costs.

In [28], a communication efficient cPIR protocol, from
an asymptotic perspective, is built based on a fully-
homormorphic scheme. The underlying encryption
scheme we use is just an additively-homomorphic build-
ing block in [28] but our objective is to allow users to
retrieve elements faster than the trivial solution of down-
loading the entire database in realistic settings. This im-
plies taking into account computational and communi-
cation constraints.

In [29], an implementation of a fully-homomorphic
encryption based scheme (close to what is done in [28])
is given. The contribution of this scheme is on the com-
munication overhead, which they show to be very small
in some settings (when multiple database elements are
retrieved). Computational costs are considered but this
paper does not give a contribution in this sense that the
database is at best processed at 20Kbits/s which is be-
low the processing throughput of classic, number-theory
based, cPIR schemes. As already noted, sending the
whole database can be done at a higher throughput in
most settings allowing to retrieve an element privately
much faster.

1.3 Contributions and Roadmap
First and foremost this paper shows that cPIR is a usable
primitive in a large variety of settings, with standard se-
curity assumptions and conservative parameter choices.
Section 3 is dedicated to prove this assertion. This con-
tradicts the main result from Sion and Carbunar [1],
which was the reference on cPIR usability. The anal-
ysis of Sion and Carbunar remains correct, but one of
their main assumptions (that cPIR would be based on
number-theoretic schemes) does not need to be true any
more, thanks to the arrival of lattice-based homomorphic
encryption schemes.

Second, the NTT and Ring-LWE based private
information retrieval scheme and implementation we
describe in this paper offer multi-gigabit processing
throughput on a commodity CPU, and an optimizer to
automatically setup the system for a given setup (hard-
ware/network/application/security). This contribution
required a considerable conception and development ef-
fort, as in order to maximize performance we had to
circumvent standard big number and linear-algebra li-
braries, and optimization for a large variety of settings
required many extra remote measuring and configura-
tion function orchestrated by an optimizer.

In Section 2, we present the basic tools a reader
should be comfortable with in order to understand the
rest of the paper: homomorphic encryption, which al-
lows to compute over encrypted data; the objectives and
the classical approaches to obtain private information re-
trieval protocols; and a special setting of cPIR called
private keyword searching, in which instead of retriev-

3

ing elements by their index as usually done in cPIR we
retrieve elements based on the keywords they are asso-
ciated to. In Section 3, we directly jump into the per-
formance analysis of our library. The objective of this
section is twofold: show how our library behaves on a
large variety of settings and motivate the reader to dig
into the details of Section 4, which presents the structure
of our library and explains the performance results. The
main part of the paper ends with a Conclusion. The first
appendix presents first the cryptographic system based
on Ring-LWE for which most of our performance results
are presented as well as a discussion regarding security
(parameter choices, randomness generation, etc.). This
can thus be skipped by the non-specialist but is included
in the paper to show that the performance obtained is
by no means the result of aggressive parametrization or
of using an underlying non-standard cryptosystem. The
second appendix presents the interface of our client and
server to illustrate its ease of use.

2 Basic Tools

In order to allow two different levels of reading (one for
the non-specialist in cryptography, and a deeper one) we
split the following subsections in two : we first introduce
the most important facts and then give more details and
formalism.

2.1 Homomorphic Encryption

Basics: In this paper we are interested in additively
homomorphic encryption schemes. These encryption
schemes are randomized, that is for each plaintext there
are many possible ciphertexts. Encryptions of the plain-
text 0 can be combined with some data m through an
operation we call Absorb and the result will remain an
encryption of 0 (we say they erase the data). Encryp-
tions of the plaintext 1 can also be combined with some
data m through Absorb and the result will be an encryp-
tion of m (we say they absorb the data). It is also pos-
sible to combine ciphertexts with an operation we note
Sumwhich obviously results in the sum of the associated
plaintexts.

As for each plaintext there are many possible cipher-
texts, the ciphertexts space must be larger than the plain-
text space and so must be their bitsize. We note F the
expansion factor of the cryptosystem (which is defined
as the size in bits of the ciphertexts divided by the size
in bits of the plaintexts). This factor is typically a small
number F ≥ 2. As a reference, Figure 1 presents some
plaintext and ciphertext sizes for different parameters of
our Ring-LWE based encryption scheme.

Parameters Max Sec Plaintext Ciphertext F
(1024,60) 97 ≤ 20Kbits 128Kbits ≥ 6.4
(2048,120) 91 ≤ 100Kbits 512Kbits ≥ 5.12
(4096,120) 335 ≤ 192Kbits 1Mbit ≥ 5.3

Figure 1: Some parameter sets for our Ring-LWE encryption
scheme. Ciphertexts are made of two polynomials. The first
parameter defines the number of coefficients per polynomial
and the second the number of bits of each coefficient (which
is stored in 64bit integers). From these values, ciphertext sizes
can be easily deduced. Maximum theoretical security is only
attained if enough noise is included in the ciphertexts and the
noise generator matches this security. Plaintext size is slowly
(logarithmically) reduced if we want to do a lot of Sum oper-
ations. Similarly, the expansion factor stays very close to its
optimum.

More precisely: Additively homomorphic encryp-
tion schemes are defined by four algorithms: KeyGen,
to generate keys; Enc the encryption function; Dec the
decryption function; Sum which takes as input a set
of ciphertexts α1, · · · ,αn with corresponding plaintexts
a1, . . . ,an and outputs a ciphertext α with corresponding
plaintext a1 + . . .+an; and Absorb which takes as input
some data m and a ciphertext of i and outputs a cipher-
text of i∗m.

It is worth noting that to be secure (see the Appendix
for a more formal definition) such a scheme has to be
randomized. More formally, Enc is a randomized algo-
rithm that for an input (pk,a) outputs a ciphertext from
a large set following a given probability distribution. It
is also worth noting that in our application of homomor-
phic encryption, the same entity encrypts and decrypts
data and can use a secret key homomorphic encryption
scheme.

Lattice based cryptography has brought to homomor-
phic encryption the possibility to build much more ver-
satile schemes than the ones we use in this paper, the so
called fully homomorphic encryption schemes (see [30]
for the seminal result and [31] for references on this pro-
lific field). But from a fundamental point of view it has
done more than that. It has completely changed the un-
derlying mathematical structure, and one of the conse-
quences is that we can use tools that greatly accelerate
the Sum and Absorb operations, which are fundamen-
tal to cPIR protocols.

In this paper, we use a Ring-LWE based homomor-
phic encryption scheme: the symmetric scheme pre-
sented in [28] with some pre and post-processing to
improve performance in the cPIR setting. As the pre
and post-processing is public and reversible, security
is directly based on the ring learning with errors prob-
lem (Ring-LWE) [22], as for the unmodified scheme
in [28]. The hardness of Ring-LWE is one of the major
assumptions used to build lattice-based cryptosystems,

4

and since it was presented at Eurocrypt’10, it has be-
come probably the most standard and used one.

2.2 Private Information Retrieval
Basics: In this paper, we use a simple cPIR protocol
based on [32], described hereafter. It can be used with
any additively homomorphic encryption scheme. The
server hosts a database of n `-bit files. The client sends a
query of n ciphertexts. The i-th ciphertext will be com-
bined to the i-th database element through the Absorb
operation by the server. Thus, a client wanting to re-
trieve the i0-th element of the database will form the
query so that all the ciphertexts are different encryptions
of 0 except the i0-th which is an encryption of 1. Using
the basic properties of the encryption scheme described
above, when the database will do the absorb operations,
all the elements will be erased (i.e. become encryptions
of 0) except the i0 which will be absorbed (become an
encryption of the i0-th database element). The database
then calls Sum over the resulting ciphertexts and sends
the result to the client. The client decrypts it and will
obtain the i0-th database element as desired.

If the encryption scheme ensures that the database
cannot distinguish between encryptions of 0 and encryp-
tions of 1 (which is the security definition required for
the scheme as stated in the Appendix), the database can-
not know which is the absorbed element and which are
the erased ones and thus cannot know which element has
been retrieved.

With this simple approach, query size is n times the
size of a ciphetext and reply is roughly `× F , F be-
ing the expansion factor of the encryption scheme used
(more details below). To reduce query size it is possible
to use this protocol recursively. We describe recursion
below but it can be considered as a black-box operation
which takes as parameter an integer d called dimension
and results in a scheme in which the client only needs
to send d × n1/d and the reply will be of size Fd × `.
For example if F = 2 and we have a database with one
million elements, it is possible to: send a query of 106

ciphertexts and get the database element with an expan-
sion factor of 2 (d = 1, no recursion); send a query of
2× 1000 ciphertexts and get the database element with
an expansion factor of 4 (d = 2); send a query of 3×100
ciphertexts and get the database element with an expan-
sion factor of 8 (d = 3); etc.

More details: The protocol can be formally described
as follows:

Basic cPIR Protocol
Setup (user):

1. Set up an instance of the encryption scheme with security pa-
rameter k.

Query Generation to retrieve element i0:

1

2

3

4

5

6

7

8

9

0

1

0

0

1

0

0

1

0

0

0

1

8,i-181/2 8,i-182/2

8,i2

8,i

8,i8

5

Figure 2: Recursive usage of a cPIR scheme.

1. For i from 1 to n generate the i-th query element qi as

• A random encryption of zero if i 6= i0

• A random encryption of one if i = i0

2. Send the ordered set {q1, · · · ,qn} to the database.

Reply Generation:

1. Compute and return R := Sumn
i=1Absorb(mi,qi).

Information extraction:

1. Decrypt R and recover mi0 .

It is important to note that if database files are large
it is possible to process the database iteratively. For
large files, as ciphertexts can only carry a limited amount
of information, the database is chopped into adequately
sized chunks and one reply is generated for each chunk
using the above scheme. The client then has to concate-
nate the decrypted chunks in order to obtain the com-
plete file.

As noted, to reduce query size it is possible to re-
cursively use this protocol. The basic idea is that we can
split the database in

√
n databases (to avoid cumbersome

notations we suppose that
√

n is an integer). Suppose
the element the client wants to retrieve is in the i-th po-
sition of the j-th sub-database. The client sends a first
cPIR query to retrieve an i-th element from a database
with

√
n elements. For each of the sub-databases, the

server computes a cPIR reply based on that query. In-
stead of sending these replies, he stores them as a new
temporary database containing

√
n elements (as there is

one reply for each sub-database). The user is interested
in only one of those replies, the one that comes from
the j-th sub-database. He therefore sends a second cPIR
query for retrieving a j-th element from a

√
n-element

database. The server computes the cPIR reply which is
sent to the user. Decrypting this reply the client gets the
j-th element of the temporary database, and decrypting
this again he obtains the element he wanted: the i-th el-
ement from the j-th database. Of course the client can
send both queries together and this can be generalized
to any level of recursion. In practice, a recursion of d
levels leads to a query size in O(dn1/d) and a reply size
in `×Fd .

5

In Figure 2 a database of nine elements is divided in
three elements. The client wants to retrieve the eighth
and sends two queries: one that allows him to retrieve
the second element of each sub-database; and another
one that allows him to retrieve the reply from the third
database. This tree representation highlights the gener-
ality of the approach. By adding a level to this tree it is
clear that a user sending three queries can retrieve an el-
ement among 27 and so on. It is possible to make differ-
ent choices on how the database is split and to change the
cryptographic parameters used on each level to improve
the performance of recursion. For a complete descrip-
tion, generalization and optimization of this process, the
reader is referred to [33] which proposes many interest-
ing variants. In our library, we have decided to stick to
the basic approach for recursion although it would be
interesting to develop other optimizations, such as those
proposed in [33].

2.3 Private Searching
Basics: The basic idea of private keyword search [34]
is that the database can arrange its elements by group-
ing them using keywords. With this technique, users can
get, using a cPIR protocol, all the database elements that
match a given keyword. In this case, the query size is
proportional to the amount of possible keywords D (for
keyword Dictionary size) and the computational cost for
the server may change as a database entry that is associ-
ated to multiple keywords will be copied once in front of
each keyword. More precisely, the computational cost
will be the database size times the average amount of
keywords a database element matches (which depends a
lot on the application).

It is also possible to use this approach to filter
streamed data based on private criteria [35]. The idea
is to build ephemeral keyword-based databases for each
message passing on the stream. These databases have
null elements everywhere except in front of the key-
words that the passing message matches. The computa-
tional cost to process a packet is therefore its size times
the number of keywords it matches (null elements cost
nothing to process). With such an approach it is possible
to build a filter that outputs for every passing message
an encryption of zero when the message does not match
the keyword and an encryption of the message when it
does.

We use this approach to build a sniffer over a giga-
bit link in Section 3 that is only interested in messages
corresponding to a given IP address. In this sniffer, the
streamed messages are the packets on the network, the
keywords are the set of IP addresses used in a local area
network, and a packet matches the IP-keyword corre-
sponding to its source and destination address. The snif-
fer’s code includes a cPIR query selecting the IP that

is secretly being observed and thus even analyzing the
code of the sniffer it is not possible to learn which is the
IP address as the chosen keyword is hidden in the cPIR
query.

More details: Note that the filter always outputs a
ciphertext and that it is not possible to distinguish useful
outputs from encryptions of zero. It is however possi-
ble to compress the output so that encryptions of zero
are packed and useful outputs preserved, even if it is not
known which of the outputs are useful, with little over-
head. These techniques are beyond the scope of this pa-
per (see [36] for the most recent proposal on the subject).

3 Performance Analysis and Use-Cases
Our library is modular and allows several choices of un-
derlying encryption schemes. The optimizer tests which
approach (full database download with no cryptography,
cPIR with Paillier’s cryptosystem, cPIR with the lattice-
based encryption scheme) is able to give the best re-
sults and advices the cPIR client program to use it. In
this Section, we focus on results with our underly-
ing lattice-based encryption scheme which generally
gives the best results, and thus all the performance
results are obtained forcing the optimizer’s choice. A
discussion on when the optimizer will choose other al-
ternatives is given in Section 4.4.

In this section, we analyze the performance of
XPIR using essentially two metrics: latency and user-
perceived throughput. The latency measurement is the
round-trip time from the moment the client starts gen-
erating the cPIR query to the moment it has finished to
decrypt the reply received from the database. Our li-
brary pipelines the different phases: query generation
and query sending in one direction; and reply generation,
reply sending, reply reception and reply decryption in
the other direction. Thus, latency is supposed to follow
the formula: MAX(queryGenTime, querySendTime) +
MAX(replyGenTime, replySendTime, replyDecTime).
Our optimizer can take this into account and select the
different available parameters to minimize this value if
asked to.

User-perceived throughput is the throughput (mea-
sured in bits per second) at which the user is able to get
the requested element. Again, due to the pipelining be-
tween the server and the client this value is supposed to
follow the formula: MIN(processingTput/n, serverUpT-
put, clientDownTput, clientDecTput), n being the num-
ber of elements in the database. Indeed, the server pro-
cesses the n elements iteratively at a given throughput,
and sends a processed chunk of information for every n
chunks of the database processed (hence the quotient in
the first argument of the MIN function).

We will consider two types of settings for our
databases: static databases in which pre-processing

6

of the database elements can be done; and dynamic
databases whose contents are ephemeral (TV Streams,
sensor data, etc.) and which cannot be pre-processed
ahead of time. Pre-processing is independently executed
for each element at speeds that vary from 5Gbps (for a
high-end laptop) to 10Gbps (for a high end server) as
shown in Section 4.2. A database is thus considered
static if the life-time of an element is well larger than its
conversion time (e.g. 1-2 seconds for a 10Gbit movie)
and the elements are known early enough with respect to
the first cPIR transaction in which they will be used.

To illustrate the versatility of our library, we highlight
performance values with four use-cases combining dy-
namic/static settings and throughput/latency goals. For
high throughput applications we use a Netflix-like server
(relatively static data) and a sniffer that obfuscates what
he is interested in (dynamic data). For low latency appli-
cations we use a Match.com-like online dating database
server (relatively static data) and a private stock-market
information service (dynamic data).
Experimental setting: To show that our library is us-
able by everyone for many applications we use com-
modity hardware in almost all the settings. Our cPIR
Server runs on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz (mobile), and 8GB of DDR3 RAM.
As our library is able to process database content very
fast, the data storage medium considerably influences
performance, specially if this data is pre-preprocessed.
In our evaluation, we use two media: RAM (100Gbit/s
access), or an OCZ Vertex 460 SSD (4Gbit/s access).
The contiguous read speed of our SSD is sufficient to
feed the server in all of the dynamic data settings. If data
is static, we are able to process it quite faster than what a
usual SSD disk can offer. If the database is in RAM this
is of course not an issue, but in some applications such
as the Netflix-like server, the database is huge and does
not fit in RAM. We discuss this issue in the associated
Section.
Security: In most of our performance results, our opti-
mizer found that the best parameters for our Ring-LWE
scheme were: polynomials of degree 2048 and a mod-
ulus of 120 bits, or polynomials of degree 1024 and a
modulus of 60 bits. According to the usual assumptions
presented in the Appendix, the former set of parameters
is able to provide 91 bits of security, and the latter 97.
As noted in the appendix, we use noise large enough
to attain such security. To generate this noise, we use
Salsa20/20 [37] (Salsa20/20 is able to provide up to 256
bits of security), and thus even if a set of parameters
for Ring-LWE is able to provide theoretically more se-
curity, 256 is thus an upper bound (this is the standard
maximum security usually considered).

Security scales extremely well in lattice-based cryp-
tography. For a constant moduli, security increases ex-

100000

1e+06

1e+07

1e+08

1e+09

1e+10

10 100 1000 10000 100000

T
hr

ou
gh

tp
ut

(b
/s

)

n number of files in the db

128kbps-mp3
400kbps-720p/30fps

800kbps-720p/60fps
2Mbps-1024p

d=1
d=2

d=1 256-bit sec.

Figure 3: User-perceived throughput of XPIR streaming static
data on a MSI GT60 laptop with a Core i7-3630QM 2.67GHz.
The red filled (91 bits security) and green dash-and-dotted (256
bits security) lines give throughput when no recursion is done
(i.e. database is processed as a one dimension array) and the
blue dashed line with one level of recursion (i.e. database
is processed as a two dimension array). The horizontal lines
correspond to the needed throughput to see a movie in 1024p
(2Mbps), 720p 60Hz (800Kbps) and 720p 30Hz (400Kbps),
or to listen to a 128Kbps audio file. Performance on a server
with a better processor (e.g. ten-core Xeon E7-4870) roughly
doubles and caps at that level as RAM bandwidth is saturated.

ponentially with the polynomial degree and computa-
tional costs increase only (almost) linearly. For exam-
ple, if we use polynomials of degree 4096 (instead of
2048) with a modulus of 120 bits, the theoretical secu-
rity can go up to 335 bits. Again, in our implementa-
tion security is bounded to 256 bits. In such a high se-
curity setting, query generation, reply pre-computation,
reply generation, and reply decryption have a cost that is
just increased by a factor 2 (more precisely 2.18 for pre-
computation and 2 for the rest). With such parameters,
each ciphertext can contain more data (almost twice),
and thus the security increase comes at very little cost.
We will present the costs with the high security (4096,
120) parameter set in the first figure, and then let the
optimizer choose the best parameters, with a minimum
security set to 91 bits to be able to use the (2048, 120)
parameters which are a good compromise between ci-
phertext size, reply generation throughput and security.

3.1 High Throughput on Static Databases
Figure 3 shows the user-perceived throughput achieved
using our library on the experimental setting laptop.
High-throughput applications (i.e. applications requir-
ing a high user-perceived reception throughput) only
make sense if the database elements are big enough, if
they are very small and quickly sent we consider the
essential issue is latency which will be studied in Sec-
tion 3.3. We therefore consider here only databases with
files going from 10Mbit and up. Our experimental re-

7

sults showed user-perceived throughput is independent
of file sizes when they were in that range, henceforth the
lines in this Figure are valid for any file size greater or
equal to 10Mbit.

The red line shows performance when no recursion
is done (i.e. when the database is seen as a one dimen-
sional array of n elements and query size is proportional
to n). This line was obtained using the best parameters
for throughput (which were given by the optimizer): no
recursion, no aggregation, and Ring-LWE cryptography
with polynomials of degree 2048 and a modulus of 120
bits. With these parameters, ciphertext size (and thus
query element size) is 500Kbits and the expansion fac-
tor of encryption is F ' 5. Therefore, in order to get an
element at a user-perceived throughput of 2Mbits/s ac-
tually 10Mbits/s of bandwidth will be used. This set-
ting is the most favorable from a throughput point of
view, but query size can be a problem when the number
of elements n grows, as we will see in Figure 4. Note
that this line is pretty close to the straight line defined
by 15/n Gbps (more precisely values slowly drift from
19/n Gbps to 14/n Gbps for large n values).

The green line shows the same results as the red line
in a higher security setting (256 bits security). As noted
previously this has almost no impact on processing but
doubles the size of each ciphertext and query size (as we
will see in Figure 4). Note that the scale is logarithmic,
and thus even if the difference with the red line is very
small, in this setting performance is roughly 10% worse.

The blue line shows performance with one level of
recursion (i.e. when the database is seen as a two-
dimensional

√
n×
√

n array and query size is propor-
tional to 2

√
n). Recursion results in a significant com-

putational overhead for small databases as the database
is processed a first time resulting in an intermediate
database of size F

√
n, that we have to process again be-

fore getting the final reply. In our implementation the
cost of processing this database is roughly ten times the
usual cost. If

√
n >> 10F computation over this inter-

mediate database is negligible as it is small enough with
respect to the initial database. Indeed, the Figure shows
that the overhead of a level of recursion fades out as n
grows.
Initial latency: Even if obtaining the best user-perceived
throughput is the goal of an application, an important
parameter is how much the user will have to wait un-
til he starts receiving the requested stream. Figure 4
highlights the benefit of using a level of recursion for
databases with many elements. This is specially true
when n≥ 1000 as we have seen that this implies almost
no computational overhead in this case. On a FTTH line,
latency will be below ten seconds (if we use d=2 for
n≥ 1000). An ADSL line has limited upload bandwidth,
henceforth latency ranges from 5 to 500 seconds. There-

0.01

0.1

1

10

100

1000

10000

100000

1e+06

10 100 1000 10000 100000

La
te

nc
y

(s
)

n number of files in the db

ADSL 1/20 Mbps - d=1
ADSL 1/20 Mbps - d=2

ADSL - d=1 256-bit sec.
FTTH 100/100Mbps - d=1
FTTH 100/100Mbps - d=2

FTTH - d=1 256-bit sec.

Figure 4: Initial latency before the user starts to receive
streaming data (mainly due to query generation and transmis-
sion time to the server). Thin lines are for ADSL and thick
lines for FTTH. Colors and line styles are associated to the
same settings as in Figure 3. The results highlight that latency
grows linearly in n in dimension 1 and in

√
n in dimension 2,

and that the main bottleneck is the available upload bandwidth.

fore, in such a case, one level of recursion should defi-
nitely be used, even if it implies a significant overhead
for the reply generation. The strange behaviour of the
FTTH lines for a small number of elements comes from
the fact that we use TCP sockets to transmit the queries
and for very small time values, buffering and window-
ing gets in the way. It is possible to tune the low level
sockets or to use UDP to have a more linear behaviour if
needed for a given application.

The Netflix Use-case: The Netflix movie database is
composed2 of 100.000 movies that can be streamed
to individual users. These movies are stored as in-
dividual static files and can thus be pre-processed of-
fline for performance improvement. H.265 - High Ef-
ficiency Video Coding (HEVC) is the forthcoming stan-
dard for videostreams compression[38, 39]. The attained
compression levels with this codec enable to watch
720p streams at bitrates between 400Kb/s for 30fps and
800Kb/s for 60fps and 1024p at 2Mb/s. A typical bitrate
for audio streams is 128Kbps for quality MP3s. These
levels (128, 400Kbps, 800Kbps and 2Mb/s are repre-
sented by horizontal dashed lines on Figure 3).

Henceforth, a private Netflix-like server based on
XPIR can allow a user to privately receive a streamed
movie with different tradeoffs between privacy and qual-
ity. If the user is willing to receive a 720p-30fps video
stream he can hide his choice among 35K movies
from the server. He can get better video quality at the
expense of some privacy, hiding his choice among just
17K movies he can get a stream at 720p-60fps and hid-
ing it among 7K movies he can get it at 1024p-60fps.

2or was composed in 2009 according to the Wikipedia page for
Netflix.

8

To reach that level of privacy, the server has to
dedicate one full processor per user. However, if k-
anonymity is enough, the movie catalog could be ran-
domly (and diversely) arranged in smaller sets of k files
in order to reduce the computation necessary for the
server. For example, if movies are arranged in ran-
dom anonymity sets of 100 movies, each processor
can serve up to 350 users (twice that number with
a higher tier processor than the one we used). We are
conscious that the use of cPIR in the Netflix scenario,
while certainly good for privacy may prove to be a prob-
lem regarding both copyright management and account-
ing. We essentially used this use-case as an illustration
of the excellent performance attained by XPIR, at a mas-
sive scale, and not to discuss the fact that Netflix should
use cPIR to stream its clients, or that it would be com-
mercially possible.
Medium Access Issues: Obtaining results with databases
of up to 10 Gbits was simple as they fit in RAM. To
obtain performance results with the largest databases,
we processed them in large chunks that did fit in our
RAM removing the transfer times for each chunk. If
we use our SSD disk to access the data and take into
account the transfer times, disk access is the bottleneck
and thus we obtain as performance result a straight line
at 2/n Gbps (as our disk allows 4 Gbps access and pre-
computed data is twice larger than the initial data). In the
use-case described, this would mean that the anonymity
sets (or amount of users a processor can handle) would
be divided by a factor seven. We consider though that in
applications requiring very large databases and through-
put, such as the Netflix-like use-case, the provider has
high performance disks. In order to match the computa-
tional performance of our library it is possible to use for
example two OCZ Vertex RevoDrive PCIe SSD in RAID
0 which delivers 30Gbps contiguous read throughput,
at roughly a cost of 1000$. Note that if the server has
multiple clients in parallel, the disk access cost does not
grow if the threads access data synchronously, and thus
scalability is not necessarily an issue.

3.2 High-Throughput on Dynamic Databases
At first sight, dynamic databases are similar to static
ones apart that data is dynamic and cannot be pre-
processed offline, such as it is the case with IPTV for
example. However, they can have a large span of shapes
and contents and are not always a simple extension of
static databases to ”infinite size” files. An exhaustive
analysis of dynamic databases is beyond the scope of
this paper, but show two different settings : IPTV and a
private sniffer.

The first setting is pretty simple : usual datastreams
that cannot be preprocessed such as for IPTV. Figure 5
presents the same results as 3 but with dynamic data. As

1000

10000

100000

1e+06

1e+07

1e+08

1e+09

10 100 1000 10000 100000

T
hr

ou
gh

tp
ut

(b
/s

)

n number of files in the db

128kbps

400kbps

2Mbps

d=1
d=2

Figure 5: User-perceived throughput of XPIR streaming dy-
namic data on a MSI GT60 laptop with a Core i7-3630QM
2.67GHz. The red line gives throughput when no recursion
is done (i.e. database is processed as a one dimension array)
and the blue line with one level of recursion (i.e. database
is processed as a two dimension array). The horizontal lines
correspond to the needed throughput to see a movie in 1024p
(2Mbps), 720p-60fps (800Kbps) and 720p-30fps (400Kbps),
or to listen to a 128Kbps audio file. Performance on a server
with a better processor (e.g. ten-core Xeon E7-4870) can be
two to three times higher (note that scale is logarithmic).

one can see, the user-perceived throughput is roughly
divided by six. For an IPTV like application, a single
processor can handle one hundred 720p-30fps streams
for 50 simultaneous clients (e.g. classical TV), or five
thousand such streams for a single client (e.g. a large set
of distant IP web cameras). The second setting is more
tricky, as the dynamic data elements are most of the time
null, and the non nulls can be very small. We describe
this setting in our second use-case.
The Private Sniffer Use-Case: In this use-case we sup-
pose someone creates a sniffer that stores all the pack-
ets that have a given source IP address, but wants to en-
sure that nobody that would find the sniffer and analyze
its code could learn which IP the sniffer is interested
in. As described in Section 2.3, this is possible using
cPIR. With this approach, a cPIR query is generated and
each query element is associated to a given source IP.
The first question we can ask is: how large can be the
IP range? Suppose we use either (1024,60) parameters
or (2048,120) parameters with Ring-LWE encryption.
Each query element is 128Kbit long in the former case
and 512Kbit in the latter. If we aim to cover a class B
network range (65535 addresses) the query size will be
1Gbyte in the former case and 4Gbytes in the latter.3 Our
results on processing throughput have proven to be inde-
pendent of how many elements the query has, as long is

3In fact, the IP range can be arbitrarily large if we associate multi-
ple IPs, or a hash of the IP to each query element. In that case we will
obtain packets from different IP sources and the size of the query will
determine the efficiency of the filtering done.

9

it fits in RAM, which we assumed to be true.
For every packet the sniffer intercepts, he builds a

database such that each query element is associated to
a null element, except the query element corresponding
to the source IP of the intercepted packet which is asso-
ciated to the packet. Then the sniffer generates a cPIR
reply storing the reply in the disk using the compres-
sion techniques described in Section 2.3. The dynamic
database is thus pretty special as it is almost null and the
element to process will be often much smaller (between
320 bits and 12Kbits) than what can be absorbed in a ci-
phertext (roughly 20Kbits for the smaller parameters and
90Kbits for the larger ones). A trivial implementation
will thus not use all the power our library can provide in
other settings.

The red line in Figure 6 gives the throughput at which
the sniffer is able to process the intercepted packets. As
packets are much smaller than classical plaintext size,
we choose the smallest cryptographic parameters possi-
ble, i.e. (1024,60). We consider that after absorption the
ciphertext can undergo up to one thousand sums (for op-
erations such as insertion on a bloom filter, etc.). Given
the internal structure of our cryptosystem, this implies
that plaintext size is 15Kbits. If we generate a cPIR re-
ply for each 40 byte incoming packet, most of the space
available in the resulting ciphertext will be lost, but the
cPIR reply generation operation will not cost less (for
null elements the operation is free, but for small ele-
ments the operation costs as much as for elements of
the size of a plaintext). Thus, if we deal with packets of
400 bytes instead of 40, the cPIR reply generation costs
the same, but we process ten times more information. As
even for the largest sizes (we consider usual packet sizes,
up to the classic Maximum Transmission Unit -MTU- of
1500 bytes), a packet always fits in the plaintext, the pro-
cessing throughput is linear on the packet size.

If we consider a classic bimodal distribution (40%
very small packets, 40% close to MTU packets, 20% in-
between packets) such as those described in [40], the
sniffer is able process a link at 600Mbps (purple line).
If we consider the sniffer is not interested in very
small packets (ACKs mostly), it can process a link at
slightly over 1Gbps (green line). If we buffer packets
and do not generate a cPIR reply until we have enough
data from a given source IP address to fill a plaintext, we
can do much better. In this case we can choose parame-
ters giving better processing speeds such as (2048,120).
In such a setting we can process a link at roughly
3Gbps (blue line), for parameters (2048,120) if we
buffer 90Kbits of data for a given IP source before gener-
ating a cPIR reply (using the higher security parameters
we get almost the same performance but with a query
twice larger).

Of course, implementing a complete private search-

1

10

100

1G

10G

40 300 600 900 12001500

T
hr

ou
gh

tp
ut

(M
b/

s)

Packet size

Buffered
paper distribution (no ACK)

paper distribution
Fixed packet sizes

Figure 6: Packet processing throughput for the sniffer use-
case using XPIR on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz. In the red line, performance is measured
for each packet size, in bytes in the x-axis, independently (i.e.
measuring performance just processing 40 bytes packets, then
measure performance for 80 bytes packets etc.). The green
line gives the processing throughput when the traffic follows a
classic bimodal distribution such as found in [40]. The purple
line gives throughput for a traffic following the same pattern
but for which we ignore packets smaller or equal to 60 bytes
(basically ACKs). The blue line gives performance if we wait
for traffic to fill buffers and only generate cPIR replies when
enough information has been collected to fill a ciphertext.

ing prototype would imply looking into other concerns,
such as making sure that other aspects (packet intercep-
tion, compression function such as Bloom filters on the
output, etc.) are able to cope with this throughput, but
this is beyond the scope of this paper.

3.3 Low Latency on Static/Dynamic
Databases

In this Section, we want to evaluate XPIR latency, i.e.
round trip time (RTT), in settings where data is static or
dynamic. Figure 7 shows the RTT achieved using our li-
brary on the experimental setting laptop with static data
and Figure 8 with dynamic data. The x-axis represents
the size of the database ranging from 1Mb to 1Tb. The
green line shows the request processing time (RP), the
red line shows the RTT with no network (i.e. the client
on the same machine as the server), and the various blue
lines represent the RTT with a FTTH network for dif-
ferent values for n. While, when considering through-
put, the request processing and data importation were
the most striving parameters, when looking at RTT, per-
formance results of a balance between reply processing
time and upload/download times.

It is very important to note that usual techniques in
cPIR such as aggregation and recursion (see Sections 2.2
and 4.3) are mandatory to keep RTT low. In Figure 7
we used parameters (1024,60) for the Ring-LWE cryp-
tosystem and thus query element size is 128kb and F '

10

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1M 10M 100M 1G 10G 100G 1T

T
im

e
(s

)

n.l size of the db

RP
RTT no network
RTT FTTH n=1

RTT FTTH n=10
RTT FTTH n=100

RTT FTTH n=1000

Figure 7: Round-trip (RTT) and request processing (RP)
times of XPIR serving static data on a MSI GT60 laptop with a
Core i7-3630QM 2.67GHz on a FTTH network. In databases
where n is close to 1 cPIR is naturally inefficient with re-
spect to trivial download. When the client is local RTT (red
thick dashed line) matches RP (green thick filled line), spe-
cially for large databases. Each thin blue line gives RTT for a
fixed n and varying database sizes. For large databases reply
size is the limiting factor, which explains why performance is
closer and closer to ideal RTT as n grows (when n grows for a
fixed database size ` shrinks). For small databases, query size
is the limiting factor. RTT does not grow as n grows because
the optimizer uses aggregation to reach the best RTT.

6. For n = 10000 and l = 1Mb, if no aggregation and
no recursion is used, sending the query (10000∗128kb)
over the FTTH link takes 12.8 seconds and sending the
reply (6*1Mb) takes 0.06 seconds while generating the
query (at 2.2 Gbps) takes 0.05 second, processing it (at
10 Gbps) takes 0.1 second and decrypting the reply (at
5.6Gbps) takes about 1ms.

Using aggregation and recursion, when beneficial, the
optimizer can set the cPIR parameters in order to trans-
form the shape of a database with a high n value into
a database with a smaller n. This is why, on both Fig-
ures, the higher n the lower is the RTT. Indeed, the
shape of the database is transformed in order to lower
this parameter if a smaller n is more favorable. As one
can observe, the high n lines tend to approach the RTT
limit which is the RP line. The only difference between
static and dynamic databases lies in the request process-
ing speed that is impacted by the need to pre-process
the data in the dynamic case. One can observe the dif-
ferent values of request processing (red dashed lines on
both Figures). Henceforth, with dynamic databases, the
high n lines will tend towards the RP line later, i.e. with
larger databases. This implies that in most networked
situations RTT will be similar for static and dynamic
databases, except for the largest ones.

Match.com Use-Case: In this use-case we consider
that an online dating database server wants to provide
paying private keyword search mechanism to its clients.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1M 10M 100M 1G 10G 100G 1T

T
im

e
(s

)

n.l size of the db

RP
RTT no network
RTT FTTH n=1

RTT FTTH n=10
RTT FTTH n=100

RTT FTTH n=1000

Figure 8: Round-trip (RTT) and request processing (RP)
times of XPIR serving dynamic data on a MSI GT60 lap-
top with a Core i7-3630QM 2.67GHz on a FTTH network.
The comments on Figure 7 also apply. As data is not al-
ready pre-processed, request processing time is higher, but up-
load/download times do not change. This explains why blue
lines are almost identical except for the fact that the gap to
reach ideal RTT is smaller. In practice this implies that RTT
is not affected much by pre-processing except for very large
databases.

When using this system, users can define some public
criteria, such as the city in which they would like to
meet people (which is anyways probably revealed by
their IP), and maybe some other personal choices they
don’t care to reveal. This first set of public parameters
will allow to reduce the database size over which a sec-
ond search, based on private criteria, will be done. The
users can then do a cPIR with keyword search (see Sec-
tion 2.3) to get all the profiles matching a set of private
keywords. If we suppose the database has on million
profiles, each of one megabit, the complete database will
be of one Terabit. We must also take into account that
each profile will probably match a set of keywords and
that reply generation costs are multiplied by the aver-
age number of matching keywords in a private keyword
search. If we suppose that the average profile has five
keywords, using the RTT given in Figure 7 a user would
have to wait for ten minutes before having a reply which
is probably too much for a web experience. Using the
public keyword pre-filtering we described we can hope
to divide the size of the database by a factor 10 to 100
(if users are distributed in various cities and public key-
words are specific enough) which would lower the wait-
ing time to 6-60 seconds, a much more reasonable time
for a search. Of course if we consider Match.com 5 Mil-
lions users (according to Wikipedia’s page which cites
2014 sources) and profles of multiple megabytes, public
filtering will have to be much more efficient. But the fact
that we are able to grasp having usable cPIR protocols in
such large social networks was unthinkable not that long
ago.

11

NYSE Use-Case: In this last use-case, we are in-
terested in exercizing XPIR on dynamic streams with
the lowest latency possible. The New-York Stock Ex-
change (NYSE) Secure Financial Transaction Infras-
tructure (SFTI) high-end service serves 5-10Gbps of
data concerning various worldwide stock markets. The
Bloomberg “snooping” scandal is a good illustration of
why one would want to keep private the financial infor-
mation one is interested in. One can see two different
type of usage with this application: oriented towards
throughtput or towards latency. In the first case, a client
may want to register to a given set of streams of informa-
tion, e.g. the ARM Holdings plc (ARMH) stream, and
get served with all the information concerning this com-
pany coming from stock markets, analysts, etc. with a
constant stream of up to date information. In such a case,
the application is very similar to an IPTV service where
the datastream concerns financial information instead of
a TV stream. Refer to Section 3.2 for the performance
in this situation.

In the second case, a client wants to retrieve as fast
as possible the last bunch of information concerning a
company. In this case, the stock market service can be
seen as collecting data generated by remote sensors and
giving access to this dynamic data to its clients on a per
request basis. The most striving question is thus how
long does it take for the client to retrieve the informa-
tion on a given company, in other words, how fresh is
the data? For example, suppose a user wants to grab
some information from the last 100ms (we cannot ex-
pect to get much more recent data given the underlying
network RTTs). In the SFTI 5Gbit stream the amount
of data corresponding to 100ms should be 500Mbits. As
such data is composed of many elements we can expect
that latency will be close to the optimal line in Figure 8
and thus the user should get the information in roughly
100ms, which is a reasonable waiting time for informa-
tion that already is old of 100ms.

4 Subroutine Analysis
4.1 General Architecture

Optimizer

PIR

Homomorphic Crypto

Homomorphic Crypto Interfaces

O
p

ti
m

iz
a
ti

o
n

 I
n

te
rf

a
c
e
s

Figure 9: Architecture of the library

From a logical point of view, our proposal has three dif-
ferent blocks: a set of homomorphic encryption schemes

(Paillier, Ring-LWE-based, NTRU-based); a classic,
homomorphic encryption based, cPIR protocol (client,
server, query generator, reply generator, reply extractor);
and an optimizer which provides the best parameter set-
tings for the cPIR protocol and encryption scheme, given
a strategy (smallest RTT, least resources, lower price)
and a set of fixed parameters (database description, se-
curity, bandwidth, computational power). We will there-
fore present the library following the same structure.

Modules are pluggable and only need to implement
given interfaces (in green in Fig. 9) to work together.
Encryption modules can be easily added in our architec-
ture. Replacing the cPIR application is also possible but
requires more work and such a possibility is beyond the
scope of this paper.

4.2 The Homomorphic Encryption Module

Pailler NTTLWE NTTNTRU

GMP FlintNTTTools

Homomorphic Crypto Interfaces

Figure 10: Encryption module architecture

On the homomorphic encryption module our main con-
tribution is a C++ class called NTTTools. This class pro-
vides a set of tools to create and manipulate polynomials
on the classic ideal lattice setting (i.e. working mod-
ulo an integer and modulo a polynomial Xn +1, n being
a power of two). This class uses different techniques,
namely the Number Theoretic Transform (NTT) and a
Chinese Remainder Theorem (CRT) representation (see
the following below for a detailed description) to ensure
high performance.

Using this object we have implemented two lattice-
based encryption schemes: NTTLWE, based on a classic
Ring-LWE approach [22]; and NTRU, based on the re-
cent provably secure versions of NTRU [41]. In order to
do comparisons with classical homomorphic encryption
schemes we have also done a Paillier implementation
based on GMP [42]. In Fig. 10 we have tried to illustrate
the fact that NTTLWE and NTRU essentially rely on
NTTTools for their operations and the less possible on
multi-precision libraries such as GMP and FLINT [43].
Paillier’s scheme, on the other hand, which is based on
large integer modular exponentiation, is entirely based
on GMP.

4.2.1 NTTTools
When working in an ideal lattice setting, such as the one
of Ring-LWE and NTRU, we usually work with poly-
nomials of a given degree n and coefficients are taken

12

modulo a given integer p. Typically, n is a multiple of
two above 512 and p is a product of primes of at least
30 bits. When many homomorphic operations are to
be done p grows rapidly, and in the extreme case of
fully-homomorphic encryption its bitsize grows to the
hundreds. Additions of polynomials in these rings are
done coefficient by coefficient and multiplications are
polynomial products. Coefficients are reduced modulo
an integer and polynomials are reduced modulo Xn +1,
which ensures constant representation size for the poly-
nomials when going through such operations. Prod-
ucts with polynomials of such a high degree incur huge
computation costs, with standard multiplication in O(n2)
and even with other techniques such as Karatsuba in
O(n1.585).

In the NTTTools object we use two techniques to re-
duce computational cost: NTT representation of polyno-
mials [44] and Chinese Remainder Theorem (CRT) rep-
resentation of integers. The Homomorphic-Encryption
Library of Halevi and Shoup [45] implements the en-
cryption scheme of Brakerski, Gentry and Vaikun-
tanathan [46]. They provide an object they called
Double-CRT which provides NTT and CRT representa-
tion of polynomials as NTTTools does. We will compare
to this work in this section.

Using the NTT and the CRT to accelerate polynomial
multiplications is standard and will not be described in
detail in this paper, we will just focus on the impact of
their usage. The reader is for example referred to [45].
Using an NTT representation allows to compute poly-
nomial multiplications with a linear cost in n instead of
quadratic for the trivial algorithm. Transforming a poly-
nomial into NTT form and back can be done in quasi-
linear speed (in O(n logn)). The CRT representation en-
sures that the multiplication cost is also linear in log p,
instead of quadratic for a trivial algorithm. Transform-
ing an integer into CRT representation and back has a
quadratic cost in log p.

Figure 11 gives performance results for pre-
processing, which corresponds to importing data into
NTT/CRT polynomials by applying the associated trans-
forms, and processing, which correspond to Fused Mul-
tiply and Add (FMA) operations. The data splitting
and CRT (if done) operations are pretty fast, and the
main performance bottleneck is computing the NTT in
our polynomial ring. Tests correspond to the same lap-
top as in Section 3 using all of its cores with multi-
threading. Activating multi-threading is important as
there are memory bandwidth issues that have an im-
pact on performance. The tests shown are consistent
with the performance results shown in Section 3: pre-
processing is done roughly at 5Gbits/s and processing at
20Gbits/s. Using parameters (2048,120) gives optimal
performance as the input size to polynomial size ratio is

Parameters (1024,60) (2048,120) (4096,120)
Input size (per poly) 20Kbits 100Kbits 192Kbits

Pre-processing (per poly) 4.2us 19us 38us
Pre-processing (PIR tput) 4.8Gbps 5.2Gbps 5Gbps
Processing (per poly) 0.57us 2.3us 4.8us
Processing (PIR tput) 18Gbits/s 22Gibts/s 20Gbits/s

Figure 11: PIR pre-processing and processing time and
throughput on a MSI GT60 laptop with a Core i7-3630QM
2.67GHz, for different crypto parameters. Input sizes are the
maximum plaintext sizes given in Figure 1. Pre-processing of
a polynomial corresponds to NTT and CRT transforms. In-
verse transforms give similar results. Processing corresponds
to a fused multiply and add (FMA). This operation’s through-
put will vary a lot depending on memory saturation: in this
setting, if all operands and result change on each operation,
processing time is multiplied by three with respect to the given
values. Here we used the same memory transfers as in our PIR
scheme: for a given thread only one operand varies most of the
time. Throughput is given with respect to input data: in pre-
processing for each polynomial (Input size) bits are treated;
in processing two polynomials must be processed to deal with
(Input size) bits.

the best.
The NTTTools object has an initialization function,

that for a given set of parameters initializes different
variables needed for the NTT (roots of unity, its inverses,
etc.), and CRT computation (pre-computed quotients of
fixed integers for Shoup’s modular multiplications, lift-
ing integers, etc.). It provides some other useful func-
tions such as: import/export functions to convert raw
data into polynomials (by splitting it in sets of coeffi-
cients of given bitsize and computing the NTT-CRT rep-
resentation) and back; arithmetic functions to perform
additions, multiplications and fused multiplications-
additions of polynomials (using pre-computed data on
the modulus to accelerate modular operations); gener-
ation functions to get random4 polynomials for a uni-
form distribution or for bounded coefficients following
a gaussian (both are pretty useful for lattice-based cryp-
tography); etc.

Comparison with [45] The Double-CRT object pro-
posed in [45] is much more elaborated than NTTTools
and has many functions needed for fully-homomorphic
encryption that we have not implemented. It is also more
flexible as polynomial degrees can be arbitrary whereas
in NTTTools polynomials degrees must be a power of
two.

On the other side, the simplicity of our setting has al-
lowed us to do some interesting choices. First we use
Harvey’s NTT algorithm [47] which is very fast but only
works for some polynomials degrees (powers of two).

4As already stated, to generate randomness we use the pseudo-
random number generator based on Salsa20/20 described in [37].

13

We also define statically the primes potentially form-
ing the moduli which leads to various compile-time op-
timizations. And last but not least, we have built our
library almost entirely from scratch without using any
external library (Double-CRT is built over NTL which
in turn is built over GMP) which results in a big perfor-
mance improvement.

The only function that is based on an external li-
brary is poly2mpz which transforms a polynomial in
an NTT-CRT representation into a vector with the coef-
ficients of the corresponding polynomial with arbitrary
precision integers, using GMP. This function is exclu-
sively used on decryption, and only for some parameters
sets.

HElib supposes that the user defines the homomor-
phic computations he needs to do and then an underly-
ing routine defines a complete FHE context for him. In
particular the user cannot choose to just use one or two
primes, so we had to tweak the code to do comparable
tests.

Performance for polynomial multiplications and ad-
ditions is slightly faster (between x2 and x3) with NTT-
Tools, as Fig. 12 shows. The gap is much larger for pre-
computation (x50). The reason for that is our choice to
restrict ourselves to powers of two for polynomial de-
grees, which opens up the usage of nice algorithms such
as the one in [47].

Parameters (1024,60||44) (2048,120||132)
Pre-processing (Double-CRT) 178us 1100us
Pre-processing (NTTTools) 4.2us 19us
Processing (Double-CRT) 5us 27us
Processing (NTTTools) 2.3us 9.6us

Figure 12: Pre-processing (NTT and CRT) and processing
(multiply and add) times with Double-CRT and NTTTools.
Modulus size must be a multiple of 44 in Double-CRT (this
allows them to do double precision floating point operations
for modular reductions). We chose moduli sizes to be the clos-
est possible. Tests are on a single-core (as Double-CRT gave
a segmentation fault with openmp) of a MSI GT60 laptop with
a Core i7-3630QM 2.67GHz. Pre-processing is much faster
with NTTTools (x50), mainly due to Harvey’s NTT algorithm
(which is usable as we restricted ourselves to powers of two for
polynomial degrees). In processing the gap is smaller (between
x2 and x3) but NTTTools still performs better.

Finally, memory usage is much lower with NTT-
Tools, which is not surprising given that we are in a
simpler setting. For polynomials of degree 1024 and 60-
bit coefficients, the memory footprint in NTTTools is of
8 Kbytes by default and twice that with pre-computed
quotients. Using Double-CRT it is harder to evaluate
the footprint as some data (such as the FHE context)
is shared, but for large amounts of Double-CRT objects

memory usage increases linearly at 40Kbytes per object.
NTTTools and the schemes we developed based on it

will therefore be an interesting replacement of Double-
CRT for those looking for fast basic polynomial compu-
tation on the ideal setting or simple homomorphic op-
erations. Those looking for more advanced operations
should use Double-CRT.

4.2.2 NTT-based Ring-LWE Encryption

Our scheme is basically the symmetric homomorphic
encryption scheme of [28], which is described in the
Appendix. The homomorphic encryption scheme result-
ing from the modifications we propose is, from a secu-
rity point of view, equivalent to the scheme described
in the appendix as all the modifications are public and
reversible.

The basic idea is that the polynomials that usually de-
scribe the inputs (secret key, randomness, messages) are
preprocessed by computing their NTT. After decryption
an inverse NTT is performed to retrieve the message.
With such a transformation, encryption and decryption
can be done by coordinate-wise multiplication and addi-
tions which leads to very high performance results.

Describing how each algorithm is transformed by the
usage of the NTT is of little interest and pretty straight-
forward. There are only two important points. The first
is that each time there is an uniform polynomial in the
encryption scheme algorithms we do not need to com-
pute a NTT. Indeed the NTT and inverse NTT are one-
to-one functions that map a finite space to itself and thus
are permutations of their domain. Thus taking a uniform
element and applying the NTT is exactly the same as just
taking a uniform element. The second is that each time
there is a product to compute, one of the two terms is
long-lived (the secret key, or a constant). It is therefore
always possible to use Shoup’s rapid modular multipli-
cations.

Having these two ideas in mind it is easy to see that
encryption requires only the computation of a single
NTT and some basic operations (negligible compared to
the NTT). This is specially true as all the arithmetic op-
erations we do are coordinate-wise and use a CRT repre-
sentation allowing to handle numbers through the basic
instruction set. This is not true for decryption. At first
sight, the most costly operation in decryption will be the
inverse NTT. It is, if we use a modulus of 60 bits, but not
for larger moduli. Indeed, it is important to notice that
all the arithmetic operations use the basic instruction set
except the separation of the noise and the message in
the decryption function. If we are using more than one
modulus, in order to separate the noise and the message
in the scheme described in the Appendix, we need to get
the value of each coordinate in non CRT representation.
This is done by multiplying the elements of the CRT tu-

14

 102
 231

 500

 1000

 1500

 2000

 2500

60 120 180 240

T
im

e
 (

u
s)

Modulus bitsize

Enc
Dec

Figure 13: Encryption and decryption times for polynomial
degree 4096 and varying modulus size, on a MSI GT60 lap-
top with a Core i7-3630QM 2.67GHz. Note that encryption
costs increase linearly in the modulus size but also the size
of the associated ciphertexts and plaintexts. The large jump
in decryption costs comes from the usage of GMP for moduli
strictly above 60 bits.

ple by what we call lifting coefficients. This operation
is done without modulus reduction and requires a few
multiplications of log2 q bits elements. For this opera-
tion we need to use a multiprecision library. In practice
the decryption cost is multiplied by a factor 10 as soon
as we start using such a library. Figure 13 shows this
evolution.

This is the only point in which we use GMP on the
NTTLWE object (by using the poly2mpz function of
NTTTools). In practice this results in a very significant
performance drop. Thus, even if higher moduli give bet-
ter results for expansion factor or cPIR reply generation
throughput, the optimizer will almost never choose pa-
rameters with a moduli beyond 120 bits as decryption
costs quickly become the main bottleneck for perfor-
mance.

Note however that for a modulus of 60 bits, perfor-
mance is surprisingly high. We are able to generate
a query at 2.2Gbits/s and decrypt an incoming reply
at 5Gbits/s. This is quite independent of the polyno-
mial degree as the costs of encryption and decryption
increase linearly in it but ciphertext and plaintext size
too. In practice, a laptop can send queries and receive
and decrypt at max available bandwidths in all settings,
using a single core. With a modulus of 120 bits, en-
cryption scales well as it is possible to generate a query
at 2.5Gbits/s, but decryption suffers from the CRT lift-
ing and an incoming reply can ”only” be decrypted at
710Mbits/s.

4.2.3 NTT-based NTRU Encryption

We used a similar approach to develop an NTT-based
NTRU encryption scheme. However, even with a mod-
uli of 60 bits, the decryption step requires a double pre-
cision floating point division for each coordinate of a ci-

phertext. The decryption performance is so low when
compared with NTTLWE that NTTNTRU is never cho-
sen by the optimizer as a suitable replacement of NT-
TLWE. For these reasons we will not provide specific
details about this part of the library.

4.3 The cPIR Module

Homomorphic Crypto Interfaces

PIRQueryGenerator PIRReplyExtractor PIRReplyGenerator
NTT

PIRReplyGenerator
GMP

PIRClient PIRServer

Figure 14: cPIR architecture

To be precise, the cPIR module as described in the gen-
eral architecture is composed of a sub-module which
contains all the cPIR objects and functions (query gen-
erator, reply generator, reply extractor); and a wrap-
per sub-module which provides the classical cPIR on a
database application (client, server). This wrapper mod-
ule also implements most of the interface to optimize
this application through functions allowing to measure
network and cPIR processing performance.

Our main contribution in this module is the general-
ity and flexibility it provides. It can handle cPIR tech-
niques such as recursion and aggregation (more on this
below) and can be used with any homomorphic encryp-
tion scheme implementing a given interface.

Recursion and Aggregation The cPIR protocol used
is basically the protocol of Kushilevitz and Ostrovsky.
By itself the protocol is not a contribution of this paper
(but to the best of the authors knowledge this is the first
time it is fully implemented with all its generality) so we
won’t describe it more in detail than what we did in Sec-
tion 2.2. As noted in that Section, in order to download
the i-th element of a database with n `-bit long elements,
a client using d levels of recursion sends a query com-
posed of d×n1/d ciphertexts and receives a database re-
ply of size Fd × `, F being the expansion factor of the
encryption scheme used.

If a database has many small elements, it may be in-
teresting to aggregate them. The cPIR Client and Server
are able to do element aggregation. With it, for any inte-
ger α , the n elements of ` bits are seen as n/α elements
of up to α × ` bits (with some rounding and padding if
n/α is not an integer). One natural case in which ag-
gregation will be sued is if absorption size is larger than
`. For example if each ciphertext can absorb 32kbits of
information but database elements are only 1kbit long
aggregating them in groups of 32 elements will reduce
query size without increasing reply size.

15

The Homomorphic Encryption Interface The cPIR
module has been built so that any homomorphic en-
cryption scheme implementing a given set of generic
interfaces can be used with it. Of course, the encryp-
tion scheme must implement basic encryption opera-
tions such as encrypt and decrypt and basic homomor-
phic operations such as Absorb and Sum, but there are
other less evident functions that need to be implemented.
For example, the cryptosystem must be able to propose
a set of instantiations for a given security level. It must
also be able to do self-tests for client and server perfor-
mance, and provide informations such as plaintext, and
cihertext, and key sizes, etc. All these functions are doc-
umented in the library.

4.4 Optimizer

PIRClient

PIRServerOptimizer

Homomorphic Crypto (crypto params)

PIRQueryGerator + PIRReplyExtractor
& network

PIRReplyGenerator & network

Figure 15: Optimization architecture

The optimizer module provides the best parameters
given a target function: round trip time (since the query
starts being generated until the reply is completely de-
crypted), total resources (total cpu time for the client
and server plus total network time), or cost (based on
a cloud service cost per second of CPU and Gigabyte of
network usage of a quad-core server). By default these
function are optimized in a reasonable mode in which
the function to minimize is added to a scaled version of
the total resources so that the amount of resources used
does not grow to much for a small improvement on the
unmodified target function. It is possible to change this
behavior at compilation to strictly optimize unmodified
target functions. Adding or modifying target functions
is also very easy.

Modus Operandi The optimizer can be called directly.
However, the cPIR client has some nice tools that are
skipped if we use it that way. If a user only wants to
obtain the optimizer results he can call the cPIR client
in dry-run mode. The cPIR client, whether it is on dry-
run mode or not, parses the options from the command
line and configuration files, does network performance
tests and gives a set of fixed variables to the optimizer.
The optimizer searches the best parameters considering
those fixed variables as constraints.

Among these variables there is a database description
(number of elements and size), bandwidth values, mini-

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

100000

1Mb 10Mb 100Mb 1G 10G 100G 1T

T
im

e
(s

)

n.l size of the db (Mb)

theoretical RP
theor. RTT n=1

theor. RTT n=10
theor. RTT n=100

theor. RTT n=1000
experimental RTT n=1000

Figure 16: Theoretical and experimental Round-trip times
(RTT) and theoretical request processing times (RP) of XPIR
serving static data on a MSI GT60 laptop with a Core i7-
3630QM 2.67GHz on a FTTH network. The experimental re-
sults (crosses) show that the optimizer defines the aggregation
parameter to lower n (the number of database elements) when
needed so that the performance result always matches the best
theoretical line. Results are optimal for small databases and
reasonable but not optimal for large databases.

mum security bits, the target function and constraints on
the different parameters. Among those constraints there
can be maximums, minimums, or fixed values for pa-
rameters such as aggregation and recursion, and a given
encryption scheme or even a given set of parameters for
an encryption scheme. Given these constraints, the op-
timizer defines a space of possibilities to explore and
does a full search estimating the target function values
to find the best option. The only exception to full search
is aggregation, for which there is a dichotomy until the
number of possibilities is small enough. The reason why
we do a dichotomy for aggregation is that its effects are
pretty easy to evaluate when the space of possibilities is
big: query related costs go down and reply related costs
go up. For other parameters this is not true and thus we
can hardly do convexity assumptions. Even with the full
space search for most of the parameters, the optimizer
runs in a few milliseconds and gives very good results.

To illustrate the optimizer work, Figure 16 shows
both the theoretical and experimental round trip time for
various database sizes and n values. The red line rep-
resents the theoretical request processing necessary to
handle the database size, the blue lines represent the the-
oretical RTT when it is bounded by networking issues
(uploading requests or downloading replies). These the-
oretical lines represent what would be the RTT for var-
ious n when no aggregation nor recursion is used. For
example, for n= 1000 in 1Mb to 1Gb databases, upload-
ing the request would take 1 second. The blue crosses
show the experimental results obtained with the help of
the optimizer. As one can see, in practice, the optimizer
chooses the cPIR parameters in order to match (almost

16

all the time) the best RTT attainable. For example, in
the case of 10Mb database, it used aggregation to match
the theoretical n = 10 performance. The differences ob-
served in some cases can be explained by practical con-
cerns, e.g. the 0.7 second RTT for 1Mb database is due
to delays introduced by the networking layers or the dif-
ference with the optimal RTT (near RP time) for large
databases such as 100Gb and 1Tb are due to the fact that
the optimizer chose recursion instead of aggregation but
underestimated its cost. Generally speaking, we can say
that the choices of the optimizer are not always the per-
fect ones but on the other hand are always reasonable.

Other cryptosystems As noted before, in almost all
situations the Ring-LWE based cPIR is chosen by the
optimizer, as it gives the best results. In some extreme
cases however, the optimizer chooses to do a Paillier
based cPIR or a trivial (full-database download) PIR.
The Paillier based cPIR will be chosen for extremely
small bandwidths in which case the cPIR reply gen-
eration throughput is not important as most of time is
spent sending the reply and reply expansion factor is the
most important parameter. On the opposite side, triv-
ial PIR will be of course the natural choice when avail-
able bandwidth is higher than our database processing
throughput. The limit should therefore be not very far of
15Gbps for static pre-processed databases, and 3Gbps
for dynamic databases. Other settings in which trivial
PIR will be the natural choice exist. An example is for
database with two to four elements. In this case a cPIR
reply with our Ring-LWE scheme will be larger than the
database itself due to our encryption scheme’s expan-
sion factor. Another example is for very small databases
in which query size may be larger than database size.
For example, using an ADSL connection (1Mbps up-
load / 20Mbps download) on a 10Mbit database with
ten elements, sending a Ring-LWE query will take at
least 1 second, whereas the full database download only
needs half a second (note that using aggregation to re-
duce query size does not solve the issue). Of course,
such settings may in some situation correspond to real
life situations, but are pretty scarce.

5 Conclusion
Lattice based cryptography has done a lot of noise with
its breakthroughs on worst-case to average-case reduc-
tions and on fully-homomorphic encryption. However
it has been for a long time seen as impractical, despite
its excellent asymptotic results. This field of research
has matured a lot. The arrival of the ideal lattice set-
ting, and the development of many performance tweaks
has changed completely the attainable performance in a
non-asymptotic sense. cPIR has often been considered
as a protocol that would never be practical [1]. Lattice-

based cryptography brings a real overhaul on this, as
cPIR becomes feasible even for people that don’t own a
high-end server. We have shown that our protocol can be
used to process a wide range of databases in a few sec-
onds, even for 100Gb databases. This would have taken
thousands of seconds with a number theory cryptosys-
tem as Paillier, which would have processed the database
at 1Mbit/s. Sending the database, even over a 100Mbit/s
link would have increased by a factor one hundred the
times we presented in our experiments. These results
are on a commodity laptop, using a high end server in a
multi-core setting can only increase this difference fur-
ther. However this is not our purpose, what we wanted
to highlight is that lattice-based cryptography has trans-
formed the utterly impractical into something feasible
by everyone. As we want to show that it is feasible by
everyone, we have included the auto-optimize tools that
will allow anybody to use our library without being an
expert on cryptography. We are eager to hear from these
people’s experiences.

References
[1] R. Sion and B. Carbunar, “On the Computational

Practicality of Private Information Retrieval,” in
14th ISOC Network and Distributed Systems Secu-
rity Symposium (NDSS’07), San Diego, CA, USA,
2007.

[2] B. Chor, O. Goldreich, E. Kushilevitz, and M. Su-
dan, “Private Information Retrieval,” in 46th IEEE
Symposium on Foundations of Computer Science
(FOCS’95), Pittsburgh, PA, USA, pp. 41–50, IEEE
Computer Society Press, 1995.

[3] W. Gasarch, “A Survey on Private Information Re-
trieval,” Bulletin of the European Association for
Theoretical Computer Science, vol. 82, pp. 72–
107, Feb. 2004. Columns: Computational Com-
plexity.

[4] H. Lipmaa, “First cpir protocol with data-
dependent computation,” in Proceedings of the
12th International Conference on Information Se-
curity and Cryptology, ICISC’09, (Berlin, Heidel-
berg), pp. 193–210, Springer-Verlag, 2010.

[5] R. Ostrovsky and W. E. Skeith III, “Private Search-
ing on Streaming Data,” in Advances in Cryptology
- CRYPTO 2005: 25th Annual International Cryp-
tology Conference, Santa Barbara, California,
USA, August 14-18, 2005, Proceedings, vol. 3621
of Lecture Notes in Computer Science, pp. 223–
240, Springer, 2005.

[6] A. Kiayias and M. Yung, “Secure Games with
Polynomial Expressions,” in ICALP: Annual Inter-

17

national Colloquium on Automata, Languages and
Programming, 2001.

[7] C. Aguilar Melchor and P. Gaborit, “A Fast Private
Information Retrieval Protocol,” in The 2008 IEEE
International Symposium on Information Theory
(ISIT’08), Toronto, Ontario, Canada, pp. 1848–
1852, IEEE Computer Society Press, 2008.

[8] J. T. Trostle and A. Parrish, “Efficient com-
putationally private information retrieval
from anonymity or trapdoor groups,” in ISC
(M. Burmester, G. Tsudik, S. S. Magliveras,
and I. Ilic, eds.), vol. 6531 of Lecture Notes in
Computer Science, pp. 114–128, Springer, 2010.

[9] D. Bleichenbacher, A. Kiayias, and M. Yung, “De-
coding of Interleaved Reed Solomon Codes over
Noisy Data,” in Automata, Languages and Pro-
gramming, 30th International Colloquium, ICALP
2003, Eindhoven, The Netherlands, June 30 - July
4, 2003. Proceedings (J. C. M. Baeten, J. K.
Lenstra, J. Parrow, and G. J. Woeginger, eds.),
vol. 2719 of Lecture Notes in Computer Science,
pp. 97–108, Springer, 2003.

[10] D. Coppersmith and M. Sudan, “Reconstructing
curves in three (and higher) dimensional space
from noisy data,” in Proceedings of the 35th An-
nual ACM Symposium on Theory of Computing,
STOC’2003 (San Diego, California, USA, June 9-
11, 2003), (New York), pp. 136–142, ACM Press,
2003.

[11] S. Arora and R. Ge, “New algorithms for learn-
ing in presence of errors,” in Automata, Languages
and Programming, 30th International Colloquium,
ICALP 2003, Eindhoven, The Netherlands, June 30
- July 4, 2003. Proceedings, pp. 403–415, Springer,
2011.

[12] J. Bi, M. Liu, and X. Wangi, “Cryptanalysis of a
homomorphic encryption scheme from isit 2008,”
in Information Theory Proceedings (ISIT), 2012
IEEE International Symposium on, pp. 2152–2156,
2012.

[13] T. Lepoint and M. Tibouchi, “Cryptanalysis of
a (somewhat) additively homomorphic encryption
scheme used in pir,” in WAHC’15 - 3rd Workshop
on Encrypted Computing and Applied Homomor-
phic Cryptography, 2015.

[14] C. Aguilar Melchor, B. Crespin, P. Gaborit, V. Jo-
livet, and P. Rousseau, “High-speed Private Infor-
mation Retrieval Computation on GPU,” in Sec-
ond International Conference on Emerging Secu-

rity Information, Systems and Technologies (SE-
CURWARE’08), Cap Esterel, France, pp. 263–
272, IEEE Computer Society Press, 2008.

[15] P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov,
and I. Goldberg, “Pir-tor: Scalable anony-
mous communication using private information re-
trieval.,” in USENIX Security Symposium, 2011.

[16] R. Henry, Y. Huang, and I. Goldberg, “One (block)
size fits all: Pir and spir with variable-length
records via multi-block queries,” Proceedings of
NDSS, 2013.

[17] T. Mayberry, E.-O. Blass, and A. H. Chan, “Effi-
cient private file retrieval by combining oram and
pir,” in Proceedings of Annual Network & Dis-
tributed System Security Symposium, pp. 1–11,
Citeseer, 2014.

[18] E.-O. Blass, R. Di Pietro, R. Molva, and M. nen,
“Prism privacy-preserving search in mapreduce,”
in Privacy Enhancing Technologies (S. Fischer-
Hbner and M. Wright, eds.), vol. 7384 of Lecture
Notes in Computer Science, pp. 180–200, Springer
Berlin Heidelberg, 2012.

[19] F. Olumofin, P. Tysowski, I. Goldberg, and U. Hen-
gartner, “Achieving efficient query privacy for
location based services,” in Privacy Enhancing
Technologies (M. Atallah and N. Hopper, eds.),
vol. 6205 of Lecture Notes in Computer Science,
pp. 93–110, Springer Berlin Heidelberg, 2010.

[20] F. Olumofin and I. Goldberg, “Privacy-preserving
queries over relational databases,” in Privacy En-
hancing Technologies (M. Atallah and N. Hopper,
eds.), vol. 6205 of Lecture Notes in Computer Sci-
ence, pp. 75–92, Springer Berlin Heidelberg, 2010.

[21] C. Devet and I. Goldberg, “The best of both
worlds: Combining information-theoretic and
computational pir for communication efficiency,”
in Privacy Enhancing Technologies, pp. 63–82,
Springer, 2014.

[22] V. Lyubashevsky, C. Peikert, and O. Regev, “On
ideal lattices and learning with errors over rings,”
in EUROCRYPT’2010, vol. 6110 of Lecture Notes
in Computer Science, pp. 1–23, Springer, 2010.

[23] W. Gasarch and A. Yerukhimovich, “Compu-
tational inexpensive PIR,” 2006. Draft avail-
able online at http://www.cs.umd.edu/

˜arkady/pir/pirComp.pdf.

[24] O. Regev, “New lattice based cryptographic con-
structions,” Journal of the ACM, vol. 51, no. 6,
pp. 899–942, 2004.

18

http://www.cs.umd.edu/~arkady/pir/pirComp.pdf
http://www.cs.umd.edu/~arkady/pir/pirComp.pdf

[25] S. W. Smith and D. Safford, “Practical server pri-
vacy with secure coprocessors,” IBM Systems Jour-
nal, vol. 40, no. 3, pp. 683–695, 2001.

[26] F. Olumofin and I. Goldberg, “Revisiting the com-
putational practicality of private information re-
trieval,” in Financial Cryptography and Data Se-
curity (G. Danezis, ed.), vol. 7035 of Lecture Notes
in Computer Science, pp. 158–172, Springer Berlin
Heidelberg, 2012.

[27] Gilles Brassard and Claude Crépeau and Jean-
Marc Robert, “All-or-Nothing Disclosure of Se-
crets,” in CRYPTO (A. M. Odlyzko, ed.), vol. 263
of Lecture Notes in Computer Science, pp. 234–
238, Springer, 1986.

[28] Z. Brakerski and V. Vaikuntanathan, “Fully homo-
morphic encryption from ring-lwe and security for
key dependent messages,” in Advances in Cryp-
tology - CRYPTO 2011 - 31st Annual Cryptology
Conference, vol. 6841, p. 501, 2011.

[29] Y. Dorz, B. Sunar, and G. Hammouri, “Bandwidth
efficient pir from ntru,” in 2nd Workshop on Ap-
plied Homomorphic Cryptography and Encrypted
Computing - WAHC’14, pp. 195–207, Springer,
2014.

[30] C. Gentry, “Fully homomorphic encryption us-
ing ideal lattices,” in Proceedings of STOC’09,
pp. 169–178, ACM Press, 2009.

[31] H. Lipmaa, “Fully homomorphic encryption refer-
ence list.”

[32] J. P. Stern, “A New Efficient All-Or-Nothing Dis-
closure of Secrets Protocol.,” in 13th Annual In-
ternational Conference on the Theory and Appli-
cation of Cryptology & Information Security (ASI-
ACRYPT’98), Beijing, China, vol. 1514 of Lecture
Notes in Computer Science, pp. 357–371, Springer,
1998.

[33] H. Lipmaa, “An oblivious transfer protocol with
log-squared communication,” in 8th Informa-
tion Security Conference (ISC’05), Singapore,
vol. 3650 of Lecture Notes in Computer Science,
pp. 314–328, Springer, 2005.

[34] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Rein-
gold, “Keyword Search and Oblivious Pseudoran-
dom Functions,” vol. 3378 of Lecture Notes in
Computer Science, pp. 303–324, Springer, 2005.

[35] R. Ostrovsky and W. E. Skeith III, “Private search-
ing on streaming data,” J. Cryptology, vol. 20,
no. 4, pp. 397–430, 2007.

[36] M. Finiasz and K. Ramchandran, “Private Stream
Search at the same communication cost as a regular
search: Role of LDPC codes,” in Information The-
ory Proceedings (ISIT), 2012 IEEE International
Symposium on, pp. 2556–2560, 2012.

[37] T. Güneysu, T. Oder, T. Pöppelmann, and
P. Schwabe, “Software speed records for lattice-
based signatures,” in Post-Quantum Cryptography
(P. Gaborit, ed.), vol. 7932 of Lecture Notes
in Computer Science, pp. 67–82, Springer-
Verlag Berlin Heidelberg, 2013. Document ID:
d67aa537a6de60813845a45505c313, http://
cryptojedi.org/papers/#lattisigns.

[38] ISO/IEC, “High efficiency coding and media de-
livery in heterogeneous environments – part 2:
High efficiency video coding,” Tech. Rep. ISO/IEC
23008-2:2013, International Standards Organiza-
tion Publication, 2013.

[39] J. Ohm, G. Sullivan, H. Schwarz, T. K. Tan,
and T. Wiegand, “Comparison of the coding ef-
ficiency of video coding standards;including high
efficiency video coding (hevc),” Circuits and Sys-
tems for Video Technology, IEEE Transactions on,
vol. 22, pp. 1669–1684, Dec 2012.

[40] R. Sinha, C. Papadopoulos, and J. Heide-
mann, “Internet packet size distributions: Some
observations,” Tech. Rep. ISI-TR-2007-643,
USC/Information Sciences Institute, May 2007.
Orignally released October 2005 as web page
http://netweb.usc.edu/˜rsinha/
pkt-sizes/.

[41] D. Stehlé and R. Steinfeld, “Making ntruencrypt
and ntrusign as secure as standard worst-case prob-
lems over ideal lattices,” IACR Cryptology ePrint
Archive, vol. 2013, p. 4, 2013.

[42] T. Granlund, “GMP: The GNU Multiple Precision
Arithmetic library.” https://gmplib.org/,
1991–2014.

[43] W. Hart, F. Johansson, and S. Pancratz, “FLINT:
Fast Library for Number Theory,” 2014. Version
2.4.1, http://flintlib.org.

[44] N. Gttert, T. Feller, M. Schneider, J. Buchmann,
and S. Huss, “On the design of hardware build-
ing blocks for modern lattice-based encryption
schemes,” in Cryptographic Hardware and Em-
bedded Systems CHES 2012 (E. Prouff and
P. Schaumont, eds.), vol. 7428 of Lecture Notes in
Computer Science, pp. 512–529, Springer Berlin
Heidelberg, 2012.

19

http://cryptojedi.org/papers/#lattisigns
http://cryptojedi.org/papers/#lattisigns
http://netweb.usc.edu/~rsinha/pkt-sizes/
http://netweb.usc.edu/~rsinha/pkt-sizes/
https://gmplib.org/
http://flintlib.org

[45] S. Halevi and V. Shoup, “Design and implementa-
tion of a homomorphic-encryption library,” 2013.

[46] Z. Brakerski, C. Gentry, and V. Vaikuntanathan,
“(leveled) fully homomorphic encryption without
bootstrapping,” in Proceedings of the 3rd Innova-
tions in Theoretical Computer Science Conference,
ITCS ’12, (New York, NY, USA), pp. 309–325,
ACM, 2012.

[47] D. Harvey, “Faster arithmetic for number-theoretic
transforms,” J. Symb. Comput., vol. 60, pp. 113–
119, 2014.

[48] Z. Brakerski, C. Gentry, and S. Halevi, “Fully
homomorphic encryption without bootstrap-
ping,” in ITCS 2012 (to appear), Available at
http://eprint.iacr.org/2011/277, 2012.

[49] D. Pointcheval, “Le chiffrement asymétrique et
la sécurité prouvée,” Habilitation à diriger des
recherches, Université Paris VII, 2002.

[50] S. Goldwasser and S. Micali, “Probabilistic en-
cryption,” Journal of Computer and System Sci-
ences, vol. 28, no. 2, pp. 270–299, 1984.

[51] R. Lindner and C. Peikert, “Better key sizes (and
attacks) for lwe-based encryption,” in CT-RSA
(A. Kiayias, ed.), vol. 6558 of Lecture Notes in
Computer Science, pp. 319–339, Springer, 2011.

A Our Ring-LWE Encryption Scheme
This is basically the symmetric homomorphic encryp-
tion scheme of [28] with a composite modulus. Se-
curity reduction is preserved using the same argu-
ments as in [48]. From the security point-of-view, one
must achieve indistinguishability against chosen plain-
text attacks which corresponds to the highest security
an homomorphic encryption scheme can achieve (see
e.g. [49]). Based on the analysis of [28], our scheme
ensures indistinguishability if the standard lattice prob-
lem Ring-LWE is hard. This property offers strong guar-
anties on ciphertext secrecy as proved by Goldwasser
and Micali [50]. When used for a cPIR protocol, an en-
cryption scheme with indistinguishability against plain-
text attacks ensures that two queries for two different el-
ements of a database are indistinguishable, using a stan-
dard hybrid argument.
Notations: Zq denotes the set of relative integers mod-
ulo q (and not q-adic integers). If S is a set x ← S
represents a uniform sample from S, for a distribution
χ , x ← χ represents a sample following that distribu-
tion. Rq = Zq[X]/ < Xn + 1 > represents the polyno-
mials such that after each operation they are reduced by
division modulo Xn +1. Unless specified otherwise, all

scalar operations are mod q. For two polynomials a,b ∈
Rq, a+b is the polynomial obtained by adding their co-
efficients, a ∗ b is the usual polynomial multiplication
reduced modulo Xn +1, and a⊗b is the polynomial ob-
tained by multiplying their coefficients coordinate-wise.

ParamGen(1k,ha):
Input: A security parameter k; A maximum number of
additions ha
Output: A modulus q; A degree n for a quotient polyno-
mial; A distribution χ

KeyGen(q,n):
Input: A modulus q; A polynomial degree n
Output: A polynomial in Rq = Zq[X]/ < Xn +1 >

1. Output : s← Rq

Encrypt(s,m):
Input: A secret key s in the polynomial ring Rq; A mes-
sage m in the polynomial ring Rq with coefficients in
[0..t[
Output: A ciphertext (a,b) ∈ R2

q

1. a← Rq

2. e← χ

3. e′ = e⊗ tv +m where tv ∈ Rq has all its coefficients
set to t

4. b = (a∗ s)+ e′

5. Output: (a,b)

Decrypt(s,(a,b)):
Input: A secret key s ∈ Rq; A ciphertext (a,b) ∈ R2

q
Output: A plaintext m ∈ Zn

t

1. e = b− (a∗ s)

2. Output: m = e mod t

Add((a1,b1),(a2,b2)):
Input: Two ciphertexts, encryptions of m1 and m2
Output: A ciphertext that decrypts to m1 +m2 mod t

1. Output: (a1 +a2,b1 +b2)

Absorb(p,(a,b)):
Input: A polynomial p ∈ Rq with coefficients in {0..t−
1}; A ciphertext (a,b) ∈ R2

q, encryption of a polynomial
m
Output: A ciphertext which decrypts to m∗ p

1. Output: (p∗a, p∗b)

20

ParamGen takes as an input a security parameter k
and a maximum number of additions ha and outputs a set
of parameters. For performance reasons we force among
the outputs of this function n∈{1024,2048,4096} and q
to be a multiple of 60-bit or 30-bit primes such that each
each prime is congruent to 1 modulo 2n (in order to be
able to use the NTT). This function generates parameters
following the same approach as in [51], with some more
conservative choices. The noise distribution is a discrete
gaussian of parameter s = k, the security parameter. For
any value of k greater or equal to 80, we therefore use a
noise level well above the bound needed by the security
reductions s > 2

√
n for all values of n. As usual we

truncate this distribution taking into account the security
to be below a statistical distance of 2−k.

In order to obtain k bits of security we consider an at-
tacker that wants to obtain an advantage ε = 2−k/2 with
τ = 2−k/2 computing cycles. As noted in [51] this is
the best strategy for an attacker in our setting. As a
query can be composed of many ciphertexts, we sup-
pose that the attacker is able to build an attack with an
optimal amount of ciphertexts. For a couple of param-
eters (n,q) we start by setting k to a small value, iter-
atively increase it, and test if it fulfills the conditions
of [51]. More precisely, for each test we follow the ap-
proach of [51] to fix the size of the aimed vector size for
LLL using the advantage β = (q/s)

√
(ln(1/ε)/π). We

then define the best root Hermite factor δ the attacker
is able to use in LLL using τ = 2−k/2 cycles which is
given by log(τ) = 1.8/ log(δ)− 80 (note that we con-
sider cycles and not seconds, which changes the constant
in this formula with respect to [51]). We then compute
the shortest vector we can get with LLL given δ which
is 22
√

n logq logδ and see if it is below the aimed vector
size. If so, the test is failed. If not, we increase k and do
another test.

B Using the library
This section is a reshaped version of the file
README.md at the root of MASKED_FOR_REVIEW.
It is included in the paper:

• to help the reader that wants to experiment with the
library,

• to give some ideas of how installation/usage works
for the reader that does not want or cannot experi-
ment with it.

B.1 Installation
Requirements: g++≥4.8, gcc≥4.8, on a 64-bit Linux
OS XCode, Macports, gcc≥4.8, clang on Mac OSX.

Get a copy of the project with:
MASKED_FOR_REVIEW

Then execute the following commands to compile ev-
erything (boost, gmp, mpfr, create essential files, build
client and server):

$ cd xpire
$ make

When this is done you can check that the server/client
work correctly with the following commands:

$ cd server
$./check-correctness

The first test should be pretty long (to build initial per-
formance caches) and then a set of tests should display
CORRECT or ”Skipping test...”. If you get INCOR-
RECT tests then something went wrong ...

B.2 Usage
XPIR is composed of a server and a client. Both must be
started on their respective directories. Thus to start the
server execute:

$ cd server
$./build/PIRServer

And to start the client execute (on a different terminal):

$ cd client
$./build/PIRClient

By default the client tries to reach a local server but a
given IP address and port can be specified, use –help to
get help on the different options for distant connections.

If run without options the PIR server will look for
files in a directory db inside the server directory and
consider each file is a database element. The client will
present a catalog of the files and ask the user to choose a
file. When this is done the client will run an optimizer to
decide which are the best cryptographic and PIR param-
eters to retrieve the file. Then he will send an encrypted
PIR Query (i.e. a query that the server will mix with the
database without understanding which element it allows
to retrieve) to the server. The server then computes an
encrypted PIR reply and sends it to the client. Finally,
the client will decrypt this reply and store the resulting
file in the reception directory inside the client directory.

B.3 Available options for the server
(PIRServer command)

-h,--help
Print a help message with the different options.

-z, --driven arg
Server-driven mode. This mode is to be used when mul-
tiple clients will connect to the server with the same
cryptographic and PIR parameters. This allows the

21

MASKED_FOR_REVIEW
MASKED_FOR_REVIEW

server to import the database into RAM and to perform
precomputations over the database for the first client
which *significantly increases the performance for the
following clients if LWE-based cryptography is used*.
The first client will ask for a given configuration (de-
pending on its optimizer and on the command-line con-
straints given to the client). After this configuration
client, the server will tell the following clients that he
is in server-driven mode and that the configuration is
imposed. The configuration given by the first client is
stored in file arg or in exp/PIRParams.cfg if arg is not
specified for further usage (see -L option).

-L, --load file arg
Load cryptographic and PIR parameters from arg file.
Currently unavailable (see issues).

-s, --split file arg (=1)
Only use first file in db directory and split it in arg
database elements. This allows to have a large database
with many fixed size elements (e.g. bits, bytes, 24-bit
depth points) into a single file which is much more effi-
cient from a file-system point of view than having many
small files. Building databases from a single file with
more complex approaches (e.g. csv, or sqlite files) would
be a great feature to add to XPIR.

-p, --port arg (=1234)
Port used by the server to listen to incoming connections,
by default 1234.

--db-generator
Generate a fake database with random elements instead
of reading it from a directory. This is useful for perfor-
mance tests. It allows to deal with arbitrary databases
without having to build them on the file-system and to
evaluate performance costs without considering disk ac-
cess limitations.

-n, --db-generator-files arg (=10)
Number of files for the virtual database provided by the
DB generator.

-l [--db-generator-filesize] arg
(=12800000)
Filesize in bytes for the files in the virtual database
provided by the DB generator.

--no-pipeline No pipeline mode. In this mode
the server executes each task separately (getting the PIR
Query, computing the reply, sending it). Only useful to
measure the performance of each step separately.

B.4 Available options for the client (PIR-
Client command)

-h, --help
Display a help message.

-i, --serverip arg (=127.0.0.1)

Define the IP address at which the client will try to con-
tact the PIRServer.

-p [--port] arg (=1234)
Define the port at which the client will try to contact the
PIRServer.

-c, --autochoice
Don’t display the catalog of database elements and au-
tomatically choose the first element without waiting for
user input.

--dry-run
Enable dry-run mode. In this mode the client does not
send a PIR Query. It runs the optimizer taking into ac-
count the command-line options and outputs the best pa-
rameters for each cryptosystem (currently NoCryptogra-
phy, Paillier and LWE) with details on the costs evalu-
ated for each phase (query generation, query sending,
reply generation, reply sending, reply decryption). If a
server is available it interacts with it to set the parame-
ters: client-server throughput and server-client through-
put. It also requests from the server the performance
cache to evaluate how fast the server can process the
database for each possible set of cryptographic parame-
ters. If no server is available it uses default performance
measures. The other parameters are set for the default
example: a thousand mp3 files over ADSL, aggregation
disabled and security k=80. Each of these parameters
can be overridden on the command line.

--verbose-optim
Ask the optimizer to be more verbose on the interme-
diate choices and evaluations (as much output as in the
dry-run mode).

--dont-write
Don’t write the result to a file. For testing purposes, it
still will process the reply (decryption of the whole an-
swer).

-f, --file arg
Use a config file to test different optimizations in dry-
run mode (see exp/sample.conf). Must be used with the
–dry-run option or it is ignored.

B.5 Available options for the optimizer
(through PIRClient command)

-n, --file-nbr arg
Used in dry-run mode only: Override the default number
of database elements.

-l, --file-size] arg
Used in dry-run mode only: Override the default
database element size (in bits).

-u, --upload arg
Force client upload speed in bits/s (bandwidth test will
be skipped). This is valid in dry-run or normal mode

22

(e.g. if a user does not want to use more than a given
amount of his bandwidth).

-d, --download arg
Force client download speed in bits/s (bandwidth test
will be skipped). This is valid in dry-run or normal
mode.

-r, --crypto-params arg
Limit with a regular expression arg to a subset of the
possible cryptographic parameters. Parameters are de-
pendent on each cryptographic system:
** NoCryptography if a trivial full database download is
to be done after which PIRClient stores only the element
the user is interested in.
** Paillier:A:B:C if Paillier’s cryptosystem is to be used
with A security bits, a plaintext modulus of B bits and a
ciphertext modulus of C bits.
** LWE:A:B:C if LWE is to be used with A security bits,
polynomials of degree B and polynomial coefficients of
C bits.
For example it is possible to force just the cryptosystem
with NoCryptography.* or LWE.*, or ask for a specific
parameter set like Paillier:80:1024:2048. Specifying the
security with this option is tricky as it must match ex-
actly so better use -k for this purpose.

-k, --security arg (=80)
Minimum security bits required for a set of crypto-
graphic parameters to be considered by the optimizer.

--dmin arg (=1)
Min dimension value considered by the optimizer. Di-
mension is also called recursion in the literature. It is
done trivially (see the scientific paper) and thus for di-
mension d query size is proportional to d×n1/d and re-
ply size is exponential in d. For databases with many
small elements a d¿1 can give the best results, but only
in exceptional situations having d > 4 is interesting.

--dmax arg (=4)
Max dimension value considered by the optimizer.

-a, --alphaMax arg (=0)
Max aggregation value to test (1 = no aggregation, 0 = no
limit). It is sometimes interesting to aggregate a database
with many small elements into a database with fewer but
larger aggregated elements (e.g. if database elements are
one bit long). This value forces the optimizer to respect
a maximum value for aggregation, 1 meaning that ele-
ments cannot be aggregated.

-x, --fitness arg (=1)
Set fitness method to:
0=SUM Sum of the times on each task
1=MAX Max of server times + Max of client times
2=CLOUD Dollars in a cloud model (see source code)
This sets the target function of the optimizer. When
studying the different parameters the optimizer will

choose the one that minimizes this function. 0 corre-
sponds to minimizing the resources spent, 1 to mini-
mizing the round-trip time (given that server operations
have are pipelined and client operations are also, inde-
pendently, pipelined), 2 corresponds to minimizing the
cost by associating CPU cycles and bits transmitted to
money using a cloud computing model.

23

	Introduction
	Performance Issues in cPIR
	Related Work
	Contributions and Roadmap

	Basic Tools
	Homomorphic Encryption
	Private Information Retrieval
	Private Searching

	Performance Analysis and Use-Cases
	High Throughput on Static Databases
	High-Throughput on Dynamic Databases
	Low Latency on Static/Dynamic Databases

	Subroutine Analysis
	General Architecture
	The Homomorphic Encryption Module
	NTTTools
	NTT-based Ring-LWE Encryption
	NTT-based NTRU Encryption

	The cPIR Module
	Optimizer

	Conclusion
	Our Ring-LWE Encryption Scheme
	Using the library
	Installation
	Usage
	Available options for the server (PIRServer command)
	Available options for the client (PIRClient command)
	Available options for the optimizer (through PIRClient command)

