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Abstract. For large ranks, there is no good algorithm that decides whether

a given lattice has an orthonormal basis. But when the lattice is given with

enough symmetry, we can construct a provably deterministic polynomial-time
algorithm to accomplish this, based on the work of Gentry and Szydlo. The

techniques involve algorithmic algebraic number theory, analytic number the-

ory, commutative algebra, and lattice basis reduction.

1. Introduction

Let G be a finite abelian group and let u ∈ G be a fixed element of order
2. Define a G-lattice to be an integral lattice L with an action of G on L that
preserves the inner product, such that u acts as −1. The standard G-lattice is the
modified group ring Z〈G〉 = Z[G]/(u+ 1), equipped with a natural inner product;
we refer to Sections 2, 5, and 6 for more precise definitions. Our main result reads
as follows:

Theorem 1.1. There is a deterministic polynomial-time algorithm that, given a
finite abelian group G with an element u of order 2, and a G-lattice L, decides
whether L and Z〈G〉 are isomorphic as G-lattices, and if they are, exhibits such an
isomorphism.

We call a G-lattice L invertible if it is unimodular and there is a Z〈G〉-module
M such that L⊗Z〈G〉M and Z〈G〉 are isomorphic as Z〈G〉-modules (see Definition
9.5 and Theorem 11.1). For example, the standard G-lattice is invertible. The
following result is a consequence of Theorem 1.1.

Theorem 1.2. There is a deterministic polynomial-time algorithm that, given a
finite abelian group G equipped with an element of order 2, and invertible G-lattices
L and M , decides whether L and M are isomorphic as G-lattices, and if they are,
exhibits such an isomorphism.
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Deciding whether two lattices are isomorphic is a notorious problem. Our results
show that it admits a satisfactory solution if the lattices are equipped with sufficient
structure.

Our algorithms and runtime estimates draw upon an array of techniques from
algorithmic algebraic number theory, commutative algebra, lattice basis reduction,
and analytic number theory.

An important ingredient to our algorithm is a powerful novel technique that was
invented by C. Gentry and M. Szydlo in Section 7 of [3]. We recast their method in
the language of commutative algebra, replacing the “polynomial chains” that they
used to compute powers of ideals in certain rings by tensor powers of modules. A
number of additional changes enabled us to obtain a deterministic polynomial-time
algorithm, whereas the Gentry-Szydlo algorithm is at best probabilistic.

The technique of Gentry and Szydlo has seen several applications in cryptogra-
phy, as enumerated in [7]. By placing it in an algebraic framework, we have already
been able to generalize the method significantly, replacing the rings Z[X]/(Xn− 1)
(with n an odd prime) used by Gentry and Szydlo by the larger class of modified
group rings that we defined above, and further extensions appear to be possible.
In addition, we hope that our reformulation will make it easier to understand the
method and improve upon it. This should help to make it more widely applicable
in a cryptographic context.

The structure of the paper is as follows. Sections 2–4 contain background on
integral lattices. In particular, we derive a new bound for the entries of a matrix
describing an automorphism of a unimodular lattice with respect to a reduced basis
(Proposition 3.4). Sections 5–7 contain basic material aboutG-lattices and modified
group rings. Important examples of G-lattices are the ideal lattices introduced in
Section 8. In Sections 9–11 we begin our study of invertible G-lattices, giving
several equivalent definitions and an algorithm for recognizing invertibility. Section
12 is devoted to the following pleasing result: a G-lattice is G-isomorphic to the
standard one if and only if it is invertible and has a vector of length 1. In Sections
13–14 we show how to multiply invertible G-lattices and we introduce the Witt-
Picard group of Z〈G〉, of which the elements correspond to G-isomorphism classes
of invertible G-lattices. It has properties reminiscent of the class group in algebraic
number theory; in particular, it is a finite abelian group (Theorems 14.2 and 14.5).
We also show how to do computations in the Witt-Picard group. In Section 15
we treat the extended tensor algebra Λ, which is in a sense the hero of story: it
is a single algebraic structure that comprises all rings and lattices occurring in our
main algorithm. Section 16 shows how Λ can be used to assist in finding vectors
of length 1. In Section 17 we use Linnik’s theorem from analytic number theory in
order to find auxiliary numbers in our main algorithm, and our main algorithm is
presented in Section 18.

For the purposes of this paper, commutative rings have an identity element 1,
which may be 0. If R is a commutative ring, let R∗ denote the group of elements
of R that have a multiplicative inverse in R.

2. Integral lattices

We begin with some background on lattices and on lattice automorphisms (see
also [6]).
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Definition 2.1. A lattice or integral lattice is a finitely generated abelian group
L with a map 〈 · , · 〉 : L× L→ Z that is

• bilinear: 〈x, y + z〉 = 〈x, y〉 + 〈x, z〉 and 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for all
x, y, z ∈ L,

• symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ L, and
• positive definite: 〈x, x〉 > 0 if 0 6= x ∈ L.

As a group, L is isomorphic to Zn for some n ∈ Z≥0, which is called the rank
of L and is denoted rank(L). In algorithms, a lattice is specified by a Gram matrix
(〈bi, bj〉)ni,j=1 associated to a Z-basis {b1, . . . , bn} and an element of a lattice is
specified by its coefficient vector on the same basis. The inner product 〈 · , · 〉
extends to a real-valued inner product on L⊗ZR and makes L⊗ZR into a Euclidean
vector space.

Definition 2.2. The standard lattice of rank n is Zn with 〈x, y〉 =
∑n
i=1 xiyi.

Its Gram matrix is the n× n identity matrix.

Definition 2.3. The determinant det(L) of a lattice L is the determinant of the
Gram matrix of L; equivalently, det(L) is the order of the cokernel of the map
L → Hom(L,Z), x 7→ (y 7→ 〈x, y〉). A lattice L is unimodular if this map is
bijective, i.e., if det(L) = 1.

Definition 2.4. An isomorphism L
∼−→ M of lattices is a group isomorphism

ϕ from L to M that respects the lattice structures, i.e., 〈ϕ(x), ϕ(y)〉 = 〈x, y〉 for
all x, y ∈ L. If such a map ϕ exists, then L and M are isomorphic lattices.
An automorphism of a lattice L is an isomorphism from L to itself. The set of
automorphisms of L is a finite group Aut(L) whose center contains −1.

In algorithms, isomorphisms are specified by their matrices on the given bases
of L and M .

Examples 2.5.

(i) “Random” lattices have Aut(L) = {±1}.
(ii) Letting Sn denote the symmetric group on n letters and o denote semidi-

rect product, we have Aut(Zn) ∼= {±1}noSn. (The standard basis vectors
can be permuted, and signs changed.)

(iii) If L is the equilateral triangular lattice in the plane, then Aut(L) is the
symmetry group of the regular hexagon, which is a dihedral group of order
12.

3. Reduced bases and automorphisms

The main result of this section is Proposition 3.4, in which we obtain some
bounds for LLL-reduced bases of unimodular lattices. We will use this result to give
bounds on the complexity of our algorithms and to show that the Witt-Picard group
(Definition 14.1 below) is finite. If L is a lattice and a ∈ L⊗Z R, let |a| = 〈a, a〉1/2.

Definition 3.1. If {b1, . . . , bn} is a basis for a lattice L, and {b∗1, . . . , b∗n} is its

Gram-Schmidt orthogonalization, and bi = b∗i +
∑i−1
j=1 µijb

∗
j with µij ∈ R, then

{b1, . . . , bn} is LLL-reduced if

(i) |µij | ≤ 1
2 for all j < i ≤ n, and

(ii) |b∗i |2 ≤ 2|b∗i+1|2 for all i < n.
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Remark 3.2. The LLL basis reduction algorithm [5] takes as input a lattice, and
produces an LLL-reduced basis of the lattice, in polynomial time.

Lemma 3.3. If a = (µij)ij ∈ M(n,R) is a lower-triangular real matrix with µii = 1
for all i and |µij | ≤ 1/2 for all j < i, and a−1 = (νij)ij, then

|νij | ≤


0 if i < j

1 if i = j
1
3

(
3
2

)i−j
if i > j.

Proof. Define e ∈ M(n,R) by eij = 0 if j ≥ i and eij = 1
2 if j < i. Define

h ∈ M(n,R) by hi+1,i = 1 for i = 1, . . . , n − 1 and hij = 0 otherwise. Then

e =
∑∞
j=1

1
2h

j = h
2(1−h) . Thus, 1− e = (1− 3h/2)/(1− h) and

(1− e)−1 = (1− h)/(1− 3h/2)

= (1− h)

∞∑
j=0

(
3

2

)j
hj =

∞∑
j=0

(
3

2

)j
hj −

∞∑
j=0

(
3

2

)j
hj+1 =


1 0 · · · 0
3
2 1 · · · 0

( 3
2 )2 3

2 · · · 0
...

...
. . .

...
( 3

2 )n−1 ( 3
2 )n−2 · · · 1

−


0 0 · · · 0 0 0
1 0 · · · 0 0 0
3
2 1 · · · 0 0 0
...

...
. . .

...
...

...
( 3

2 )n−2 ( 3
2 )n−3 · · · 3

2 1 0

 ,

which has ij entry 0 if i < j, and 1 if i = j, and 1
3

(
3
2

)i−j
if i > j.

Since en = 0 = (1− a)n, we have (1− e)−1 =
∑n−1
i=0 e

i and a−1 =
∑n−1
i=0 (1− a)i.

If c = (cij)ij ∈ M(n,R), let |c| denote (|cij |)ij . If c, d ∈ M(n,R), then c ≤ d means

that cij ≤ dij for all i and j. We have |a−1| ≤
∑n−1
i=0 |1−a|i ≤

∑n−1
i=0 e

i = (1−e)−1.
This gives the desired result. �

Proposition 3.4. If {b1, . . . , bn} is an LLL-reduced basis for an integral unimod-
ular lattice L and {b∗1, . . . , b∗n} is its Gram-Schmidt orthogonalization, then

(i) 21−i ≤ |b∗i |2 ≤ 2n−i,
(ii) |bi|2 ≤ 2n−1 for all i ∈ {1, . . . , n},
(iii) |〈bi, bj〉| ≤ 2n−1 for all i and j,
(iv) if σ ∈ Aut(L), and for each i we have σ(bi) =

∑n
j=1 aijbj with aij ∈ Z,

then |aij | ≤ 3n−1 for all i and j.

Proof. It follows from Definition 3.1 that for all 1 ≤ j ≤ i ≤ n we have |b∗i |2 ≤
2j−i|b∗j |2, so for all i we have

21−i|b∗1|2 ≤ |b∗i |2 ≤ 2n−i|b∗n|2.

Since L is integral we have |b∗1|2 = |b1|2 = 〈b1, b1〉 ≥ 1, so |b∗i |2 ≥ 21−i. Let-

ting Li =
∑i
j=1 Zbj , we have |b∗i | = det(Li)/det(Li−1). Since L is integral and

unimodular, |b∗n| = det(Ln)/det(Ln−1) = 1/det(Ln−1) ≤ 1, so |b∗i | ≤ 2n−i, giving
(i).
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Since {b∗i } is orthogonal we have

|bi|2 = |b∗i |2 +

i−1∑
j=1

µ2
ij |b∗j |2 ≤ 2n−i +

1

4

i−1∑
j=1

2n−j

= 2n−i + (2n−2 − 2n−i−1) = 2n−2 + 2n−i−1 ≤ 2n−1,

giving (ii). Now (iii) follows by applying the Cauchy-Schwarz inequality |〈bi, bj〉| ≤
|bi||bj | and (ii).

For (iv), define {c1, . . . , cn} to be the basis of L that is dual to {b1, . . . , bn},
i.e., 〈ci, bj〉 = δij for all i and j, where δij is the Kronecker delta symbol. Then
aij = 〈cj , σ(bi)〉 so

(3.5) |aij | ≤ |cj ||σ(bi)| = |cj ||bi|.

Define µii = 1 for all i and µij = 0 if i < j, and let M = (µij)ij ∈ M(n,R). Then
(b1 b2 · · · bn) = (b∗1 b

∗
2 · · · b∗n)M t. For 0 6= x ∈ L⊗Z R, define x−1 = x/〈x, x〉. This

inverse map is characterized by the properties that 〈x, x−1〉 = 1 and Rx−1 = Rx;
so (x−1)−1 = x. Since the basis dual to {b∗i }i is {(b∗i )−1}i, and M gives the change
of basis from {b∗i }i to {bi}i, it follows that the matrix (M t)−1 gives the change of
basis from {(b∗i )−1}i to {ci}i. Thus,

(c1 · · · cn) = ((b∗1)−1 · · · (b∗n)−1)M−1.

Letting (νij)ij = M−1, by Lemma 3.3 we have cj =
∑
i≥j(b

∗
i )
−1νij with νii = 1

and |νij | ≤ 1
3

(
3
2

)i−j
if i > j. By (i) we have |(b∗i )−1|2 ≤ 2i−1. Thus,

|cj |2 ≤
∑
i≥j

2i−1ν2
ij ≤ 2j−1 +

1

9

∑
i>j

2i−1

(
9

4

)i−j
≤ 2j−1 +

2j−1

9

n−j∑
k=1

(
9

2

)k

= 2j−1 +
2j

63

[(
9

2

)n−j+1

− 9

2

]
=

2j−1

7

[(
9

2

)n−j
+ 6

]

≤ 1

7

(
9

2

)n−1

+
6

7

(
9

2

)n−1

=

(
9

2

)n−1

.

Now by (ii) and (3.5) we have |aij |2 ≤ 9n−1, as desired. �

Remark 3.6. It is easier to get the weaker bound |aij | ≤ 2(n2), as follows. Write

bj = b#j + y with y ∈
∑
i 6=j Rbi and b#j orthogonal to

∑
i6=j Rbi. With cj as in the

proof of Proposition 3.4, we have cj = (b#j )−1, by the characterizations of (b#j )−1

and cj . Since 1 = det(L) = det(
∑
i 6=j Zbi)|b

#
j | we have

|cj | = |det(
∑
i 6=j

Zbi)| ≤
∏
i 6=j

|bi| ≤ 2(n−1)2/2

by Hadamard’s inequality and Proposition 3.4(ii). By (3.5) and Proposition 3.4(ii)

we have |aij | ≤ 2(n2).
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4. Short vectors in lattice cosets

We show how to find the unique vector of length 1 in a suitable lattice coset,
when such a vector exists.

Proposition 4.1. Suppose L is an integral lattice, 3 ≤ m ∈ Z, and C ∈ L/mL.
Then the coset C contains at most one element x ∈ L with 〈x, x〉 = 1.

Proof. Suppose x, y ∈ C, with 〈x, x〉 = 〈y, y〉 = 1. Since x, y ∈ C, there exists
w ∈ L such that x− y = mw. Using the triangle inequality, we have

m〈w,w〉1/2 = 〈x− y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 = 1 + 1 = 2.

Since m ≥ 3 and 〈w,w〉 ∈ Z≥0, we have w = 0, and thus y = x. �

Algorithm 4.2. Given a rank n integral lattice L, an integer m such that m ≥
2n/2 + 1, and C ∈ L/mL, the algorithm computes all y ∈ C with 〈y, y〉 = 1.

(i) Compute an LLL-reduced basis for mL and use it as in §10 of [6] to com-
pute y ∈ C such that 〈y, y〉 ≤ (2n − 1)〈x, x〉 for all x ∈ C, i.e., to find an
approximate solution to the nearest vector problem.

(ii) Compute 〈y, y〉.
(iii) If 〈y, y〉 = 1, output y.
(iv) If 〈y, y〉 6= 1, output “there is no y ∈ C with 〈y, y〉 = 1”.

Proposition 4.3. Algorithm 4.2 is a deterministic polynomial-time algorithm that,
given a integral lattice L, an integer m such that m ≥ 2n/2 + 1 where n = rank(L),
and C ∈ L/mL, outputs all y ∈ C with 〈y, y〉 = 1. The number of such y is 0 or 1.

Proof. Suppose x ∈ C with 〈x, x〉 = 1. Since x, y ∈ C, there exists w ∈ L such that
x− y = mw. Using the triangle inequality, we have

m〈w,w〉1/2 = 〈x− y, x− y〉1/2 ≤ 〈x, x〉1/2 + 〈y, y〉1/2 < (1 + 2n/2)〈x, x〉1/2 ≤ m,
so 〈w,w〉1/2 < 1. Since 〈w,w〉 ∈ Z≥0, we have w = 0, and thus y = x. If 〈y, y〉 6= 1,
there is no x ∈ C with 〈x, x〉 = 1. �

5. G-lattices

We introduce G-lattices and G-isomorphisms. From now on, suppose that G
is a finite abelian group equipped with a fixed element u of order 2, and that
n = #G/2 ∈ Z.

Definition 5.1. Let S be a set of coset representatives of G/〈u〉 (i.e., #S = n and
G = S t uS), and for simplicity take S so that 1 ∈ S.

Definition 5.2. A G-lattice is a lattice L together with a group homomorphism
f : G → Aut(L) such that f(u) = −1. For each σ ∈ G and x ∈ L, define σx ∈ L
by σx = f(σ)(x).

The abelian group G is specified by a multiplication table. The G-lattice L is
specified as a lattice along with, for each σ ∈ G, the matrix describing the action
of σ on L.

Definition 5.3. If L and M are G-lattices, then a G-isomorphism is an isomor-
phism ϕ : L

∼−→ M of lattices that respects the G-actions, i.e., ϕ(σx) = σϕ(x) for
all x ∈ L and σ ∈ G. If such an isomorphism exists, we say that L and M are
G-isomorphic, or isomorphic as G-lattices.
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6. The modified group ring Z〈G〉

We define a modified group ring A〈G〉 whenever A is a commutative ring. We
will usually take A = Z, but will also take A = Z/mZ and Q and C.

If H is a group and A is a commutative ring, the group ring A[H] is the set of
formal sums

∑
σ∈H aσσ with aσ ∈ A, with addition defined by∑

σ∈H
aσσ +

∑
σ∈H

bσσ =
∑
σ∈H

(aσ + bσ)σ

and multiplication defined by

(
∑
σ∈H

aσσ)(
∑
τ∈H

bττ) =
∑
ρ∈H

(
∑
στ=ρ

aσbτ )ρ.

For example, if H is a cyclic group of order m and h is a generator, then as rings
we have Z[X]/(Xm − 1) ∼= Z[H] via the map

∑m−1
i=0 aiX

i 7→
∑m−1
i=0 aih

i.

Definition 6.1. If A is a commutative ring, then writing 1 for the identity element
of the group G, we define the modified group ring

A〈G〉 = A[G]/(u+ 1).

Every G-lattice L is a Z〈G〉-module, where one uses the G-action on L to define
ax whenever x ∈ L and a ∈ Z〈G〉. This is why we consider A〈G〉 rather than the
standard group ring A[G]. Considering groups equipped with an element of order

2 allows us to include the cyclotomic rings Z[X]/(X2k + 1) in our theory.

Definition 6.2. Define the scaled trace function t : A〈G〉 → A by

t(
∑
σ∈G

aσσ) = a1 − au.

This is well defined since the restriction of t to (u+1)A[G] is 0. The map t is the
A-linear map satisfying t(1) = 1, t(u) = −1, and t(σ) = 0 if σ ∈ G and σ 6= 1, u.

Definition 6.3. For a =
∑
σ∈G aσσ ∈ A〈G〉, define a =

∑
σ∈G aσσ

−1.

The map a 7→ a is a ring automorphism of A〈G〉. Since a = a, it is an involution.
(An involution is a ring automorphism that is its own inverse.) One can think of
this map as mimicking complex conjugation (cf. Lemma 7.3(i)).

Remark 6.4. If L is aG-lattice and x, y ∈ L, then 〈σx, σy〉 = 〈x, y〉 for all σ ∈ G by
Definition 2.4. It follows that 〈ax, y〉 = 〈x, ay〉 for all a ∈ Z〈G〉. This “hermitian”
property of the inner product is the main reason for introducing the involution.

Definition 6.5. For x, y ∈ Z〈G〉 define 〈x, y〉Z〈G〉 = t(xy).

Recall that n = #G/2 and S is a set of coset representatives of G/〈u〉. The
following two results are straightforward.

Lemma 6.6. Suppose A is a commutative ring. Then:

(i) A〈G〉 = {
∑
σ∈S aσσ : aσ ∈ A} =

⊕
σ∈S Aσ;

(ii) if a =
∑
σ∈S aσσ ∈ A〈G〉, then

(a) t(a) = a1,
(b) t(ā) = t(a),
(c) t(aā) =

∑
σ∈S a

2
σ,

(d) a =
∑
σ∈S t(σ

−1a)σ,
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(e) if t(ab) = 0 for all b ∈ A〈G〉, then a = 0.

Proposition 6.7. (i) The additive group of the ring Z〈G〉 is a G-lattice of rank
n, with lattice structure defined by 〈 · , · 〉Z〈G〉 and G-action defined by σx = σx
where the right hand side is ring multiplication in Z〈G〉.

(ii) As lattices, we have Z〈G〉 ∼= Zn.

Definition 6.8. We call Z〈G〉 the standard G-lattice.

The set S of coset representatives for G/〈u〉 is an orthonormal basis for the
standard G-lattice.

Example 6.9. Suppose G = H × 〈u〉 with H ∼= Z/nZ. Then Z〈G〉 ∼= Z[H] ∼=
Z[X]/(Xn − 1) as rings and as lattices. When n is odd (so G is cyclic), then,
sending X to −X, we have Z〈G〉 ∼= Z[X]/(Xn − 1) ∼= Z[X]/(Xn + 1).

Example 6.10. If G is cyclic, then Z〈G〉 ∼= Z[X]/(Xn + 1), identifying X with a

generator of G. If G is cyclic of order 2r, then Z〈G〉 ∼= Z[X]/(X2r−1

+ 1) ∼= Z[ζ2r ],
where ζ2r is a primitive 2r-th root of unity.

Remark 6.11. The ring Z〈G〉 is an integral domain if and only if G is cyclic and
n is a power of 2 (including 20 = 1). (If g ∈ G is an element whose order is odd or
2, and g 6∈ {1, u}, then g − 1 is a zero divisor.)

7. The modified group ring over fields

The main result of this section is Lemma 7.3, which we will use repeatedly in the
rest of the paper. Recall that G is a finite abelian group of order 2n equipped with
an element u of order 2. If R is a commutative ring, then a commutative R-algebra
is a commutative ring A equipped with a ring homomorphism from R to A.

If K is a subfield of C and E is a commutative K-algebra with dimK(E) < ∞,
let ΦE denote the set of K-algebra homomorphisms from E to C. Then CΦE is a
C-algebra with coordinate-wise operations. The next result is not only useful for
studying modified group rings, but also comes in handy in Proposition 15.2 below.

Lemma 7.1. Suppose K is a subfield of C and E is a commutative K-algebra with
dimK(E) <∞. Assume #ΦE = dimK(E). Then:

(i) identifying ΦE with {C-algebra homomorphisms EC = C⊗K E → C}, the
map EC → CΦE , x 7→ (ϕ(x))ϕ∈ΦE is an isomorphism of C-algebras;

(ii)
⋂
ϕ∈ΦE

ker(ϕ) = 0 in E;

(iii) there is a finite collection {Kj}dj=1 of finite extension fields of K such that
E ∼= K1 × · · · ×Kd as K-algebras.

Proof. By the Corollaire to Proposition 1 in V.6.3 of [1], the set ΦE is a C-basis
for HomK(E,C) = HomC(EC,C), so the C-algebra homomorphism in (i) is an
isomorphism. Part (ii) follows immediately from (i).

By Proposition 2 in V.6.3 of [1], the K-algebra E is what Bourbaki calls an étale
K-algebra, and (iii) then follows from Theorem 4 in V.6.7 of [1]. �

Definition 7.2. Let Ψ denote the set of ring homomorphisms from Q〈G〉 to C.
We identify Ψ with the set of K-algebra homomorphisms from K〈G〉 to C, where
K is any subfield of C. The set Ψ can also be identified with the set of group
homomorphisms ψ : G→ C∗ such that ψ(u) = −1.
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We have #Ψ = n, since #Hom(G,C∗) = #G = 2n and the restriction map
Hom(G,C∗)→ Hom(〈u〉,C∗) is surjective. This allows us to apply Lemma 7.1 with
E = K〈G〉. If a ∈ C〈G〉, then a acts on the C-vector space C〈G〉 by multiplication,
and for ψ ∈ Ψ the ψ(a) are the eigenvalues for this linear transformation. Lemma
7.3(ii) justifies thinking of the map t of Definition 6.2 as a scaled trace function.

Lemma 7.3. (i) If ψ ∈ Ψ, then ψ(α) = ψ(ᾱ) for all α ∈ R〈G〉.
(ii) If a ∈ C〈G〉, then t(a) = 1

n

∑
ψ∈Ψ ψ(a).

(iii) If K is a subfield of C, then
⋂
ψ∈Ψ ker(ψ) = 0 in K〈G〉.

(iv) The map C〈G〉 → CΨ, x 7→ (ψ(x))ψ∈Ψ is an isomorphism of C-algebras.
(v) There are number fields K1, . . . ,Kd such that Q〈G〉 ∼= K1 × · · · × Kd as

Q-algebras.
(vi) Suppose K is a subfield of C and α ∈ K〈G〉. Then α ∈ K〈G〉∗ if and only if

ψ(α) 6= 0 for all ψ ∈ Ψ.
(vii) If z ∈ R〈G〉 is such that ψ(z) ∈ R for all ψ ∈ Ψ and

∑
ψ∈Ψ ψ(xxz) ≥ 0 for

all x ∈ R〈G〉, then ψ(z) ≥ 0 for all ψ ∈ Ψ.

Proof. For (i), since G is finite, ψ(σ) is a root of unity for all σ ∈ G. Thus,

ψ(σ) = ψ(σ)−1 = ψ(σ−1) = ψ(σ̄). The R-linearity of ψ and of Aut(C/R) now
imply (i).

We have 1
n

∑
ψ∈Ψ ψ(1) = 1 = t(1), and 1

n

∑
ψ∈Ψ ψ(u) = −1 = t(u), and for each

σ 6∈ 〈u〉 we have∑
ψ∈Ψ

ψ(σ) = −
∑

ψ∈Hom(G,C∗)
ψ(u)=1

ψ(σ) = −
∑

ψ∈Hom(G/〈u〉,C∗)

ψ(σ mod 〈u〉) = 0 = nt(σ).

Extending C-linearly gives (ii).
If K is a subfield of C, then Ψ = n = dimKK〈G〉. Thus we can apply Lemma

7.1, giving (iii), (iv), and (v).

By (iv) we have C〈G〉∗ ∼−→ (C∗)Ψ. This gives (vi) when K = C. If K is a subfield
of C and x ∈ K〈G〉∩C〈G〉∗ then multiplication by x is an injective map from K〈G〉
to itself, so is also surjective, so x ∈ K〈G〉∗. Thus K〈G〉∗ = K〈G〉 ∩ C〈G〉∗, and
(vi) follows.

For (vii), applying Lemma 7.1(iii) with K = R gives an R-algebra isomorphism

R〈G〉 ∼−→ Rr × Cs. The set Ψ = {ψj}r+2s
j=1 consists of the r projection maps ψj :

R〈G〉 → R ⊂ C for 1 < j ≤ r, along with the s projection maps ψj : R〈G〉 → C
and their complex conjugates ψs+j = ψj for r + 1 ≤ j ≤ r + s. By (i), if x =
(x1, . . . , xr, y1, . . . , ys) ∈ Rr×Cs, then x = (x1, . . . , xr, y1, . . . , ys). Taking x to have
1 in the j-th position and 0 everywhere else, we have 0 ≤

∑
ψ∈Ψ ψ(xxz) = ψj(z) if

1 ≤ j ≤ r and 2ψj(z) otherwise, giving (vii). �

8. Ideal lattices

As before, G is a finite abelian group of order 2n equipped with an element u
of order 2. Theorem 8.2 below gives a way to view certain ideals I in Z〈G〉 as
G-lattices, and Theorem 8.5 characterizes the ones that are G-isomorphic to Z〈G〉.

Definition 8.1. A fractional Z〈G〉-ideal is a finitely generated Z〈G〉-module in
Q〈G〉 that spans Q〈G〉 over Q. An invertible fractional Z〈G〉-ideal is a fractional
Z〈G〉-ideal I such that there is a fractional Z〈G〉-ideal J with IJ = Z〈G〉, where
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IJ is the fractional Z〈G〉-ideal generated by the products of elements from I and
J .

Theorem 8.2. Suppose I ⊂ Q〈G〉 is a fractional Z〈G〉-ideal and w ∈ Q〈G〉. Sup-
pose that II ⊂ Z〈G〉 · w and ψ(w) ∈ R>0 for all ψ ∈ Ψ. Then:

(i) w = w;
(ii) w ∈ Q〈G〉∗;
(iii) I is a G-lattice, with G-action defined by multiplication in Z〈G〉, and with

lattice structure defined by 〈x, y〉I,w = t(xy/w), with t as in Definition 6.2.

Proof. By Lemma 7.3(i) we have ψ(w) = ψ(w) = ψ(w̄) for all ψ ∈ Ψ. Now (i)

follows from Lemma 7.3(iii). Lemma 7.3(vi) implies (ii). Note that xy
w ∈ Z〈G〉,

since w generates the ideal II. Part (iii) now follows from (i) and (ii) of Lemma
7.3. �

Definition 8.3. Let L(I,w) denote the G-lattice I in Theorem 8.2(iii).

Example 8.4. We have L(Z〈G〉,1) = Z〈G〉.

Theorem 8.5. Suppose that I1 and I2 are fractional Z〈G〉-ideals, that w1, w2 ∈
Q〈G〉, that I1I1 ⊂ Z〈G〉 · w1 and I2I2 ⊂ Z〈G〉 · w2, and that ψ(w1), ψ(w2) ∈ R>0

for all ψ ∈ Ψ. Let Lj = L(Ij ,wj) for j = 1, 2. Then sending v to multiplication by
v gives a bijection from

{v ∈ Q〈G〉 : I1 = vI2, w1 = vvw2} to {G-isomorphisms L2
∼−→ L1}

and gives a bijection from

{v ∈ Q〈G〉 : I1 = vZ〈G〉, w1 = vv} to {G-isomorphisms Z〈G〉 ∼−→ L1}.

In particular, L1 is G-isomorphic to Z〈G〉 if and only if there exists v ∈ Q〈G〉 such
that I1 = (v) and w1 = vv.

Proof. Any Z〈G〉-module isomorphism ϕ : L2
∼−→ L1 extends to a Q〈G〉-module

isomorphism from L2 ⊗ Q = Q〈G〉 to L1 ⊗ Q = Q〈G〉, and any such map is
multiplication by some v ∈ Q〈G〉∗. Conversely, for v ∈ Q〈G〉, multiplication by
v defines a Z〈G〉-module isomorphism from L2 to L1 if and only if I1 = vI2.
When I1 = vI2, multiplication by v is a G-isomorphism from L2 to L1 if and
only if w1 = vvw2; this follows from Lemma 6.6(ii)(e), since for all a, b ∈ I2 we

have 〈a, b〉I2,w2
= t

(
ab
w2

)
and 〈av, bv〉I1,w1

= t
(
abvv
w1

)
. This gives the first desired

bijection. Taking I2 = Z〈G〉 and w2 = 1 gives the second bijection. �

We next show how to recover the Gentry-Szydlo algorithm from Theorem 1.1.
The goal of the Gentry-Szydlo algorithm is to find a generator v of a principal
ideal I of finite index in the ring R = Z[X]/(Xn − 1), given vv and a Z-basis for

I. Here, n is an odd prime, and for v = v(X) =
∑n−1
i=0 aiX

i ∈ R, its “reversal”

is v = v(X−1) = a0 +
∑n−1
i=1 an−iX

i ∈ R. We take G to be a cyclic group of
order 2n. Then R ∼= Z〈G〉 as in Example 6.9, and we identify R with Z〈G〉. Let
w = vv ∈ Z〈G〉 and let L = L(I,w) as in Definition 8.3. Then L is the “implicit
orthogonal lattice” in §7.2 of [3]. Once one knows w and a Z-basis for I, then one

knows L. Theorem 1.1 produces a G-isomorphism ϕ : Z〈G〉 ∼−→ L in polynomial
time, and thus (as in Theorem 8.5) gives a generator v = ϕ(1) in polynomial time.
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9. Invertible G-lattices

Recall that G is a finite abelian group of order 2n, with a fixed element u of
order 2, and S is a set of coset representatives for G/〈u〉. In Definition 9.5 we
introduce the concept of an invertible G-lattice. The inverse of such a lattice L is
the G-lattice L given in Definition 9.1.

Definition 9.1. If L is a G-lattice, then the G-lattice L is a lattice equipped with
a lattice isomorphism L

∼−→ L, x 7→ x and a group homomorphism G → Aut(L)

defined by σx = σ−1x for all σ ∈ G and x ∈ L, i.e., σx = σ x.

Existence follows by taking L to be L with the appropriate G-action. The G-

lattice L is unique up to G-isomorphism, and we have L = L.

Definition 9.2. If L is a G-lattice, define the lifted inner product

· : L× L→ Z〈G〉 by x · y =
∑
σ∈S
〈x, σy〉σ ∈ Z〈G〉.

This lifted inner product is independent of the choice of the set S, and is Z〈G〉-
bilinear, i.e., (ax) · y = x · (ay) = a(x · y) for all a ∈ Z〈G〉 and all x, y ∈ L. We
have

(9.3) 〈x, y〉 = t(x · y)

and x · y = y · x.

Example 9.4. If I, w, and L(I,w) are as in Theorem 8.2 and Definition 8.3, then

L(I,w) = L(I,w), and applying Lemma 6.6(ii)(d) with a = xy
w shows that x · y = xy

w .

In particular, if L = Z〈G〉, then L = Z〈G〉 with having the same meaning as in
Definition 6.3 for A = Z, and with · being multiplication in Z〈G〉. Note that when
w 6= 1, ideals I in Z〈G〉 do not inherit their lifted inner product from that of Z〈G〉.

Definition 9.5. A G-lattice L is invertible if the following three conditions all
hold:

(i) rank(L) = n = #G/2;
(ii) L is unimodular (see Definition 2.3);
(iii) for each m ∈ Z>0 there exists em ∈ L such that {σem + mL : σ ∈ G}

generates the abelian group L/mL.

It is clear from the definition that invertibility is preserved under G-lattice iso-
morphisms. Definition 9.5 implies that L/mL is a free (Z/mZ)〈G〉-module of rank
one for all m > 0. Given an ideal, it is a hard problem to decide if it is princi-
pal. But checking (iii) of Definition 9.5 is easy algorithmically; see Algorithm 10.2
below.

Lemma 9.6. If L is a G-lattice and L is G-isomorphic to the standard G-lattice,
then L is invertible.

Proof. Parts (i) and (ii) of Definition 9.5 are easy. For (iii), observe that the group
Z〈G〉 is generated by {σ1 : σ ∈ G}, so the group L is generated by {σe : σ ∈ G}
where e is the image of 1 under the isomorphism. Now let em = e for all m. �
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10. Determining invertibility

Fix as before a finite abelian group G of order 2n equipped with an element u
of order 2.

Algorithm 10.2 below determines whether aG-lattice is invertible. In Proposition
10.3 we show that Algorithm 10.2 produces correct output and runs in polynomial
time.

In [8] we obtain a deterministic polynomial-time algorithm on input a finite
commutative ring R and a finite R-module M , decides whether there exists y ∈M
such that M = Ry, and if there is, finds such a y. Applying this with R = Z〈G〉/(m)
and M = L/mL gives the algorithm in the following result.

Proposition 10.1. There is a deterministic polynomial-time algorithm that, given
G, u, a G-lattice L, and m ∈ Z>0, decides whether there exists em ∈ L such that
{σem + mL : σ ∈ G} generates L/mL as an abelian group, and if there is, finds
one.

Algorithm 10.2. Given G, u, and a G-lattice L, the algorithm decides whether L
is invertible.

(i) If rank(L) 6= n, output “no” (and stop).
(ii) Compute the determinant of the Gram matrix for L. If it is not 1, output

“no” (and stop).
(iii) Use Proposition 10.1 to determine if e2 (in the notation of Definition

9.5(iii)) exists. If no e2 exists, output “no” and stop. Otherwise, use
Proposition 10.1 to compute e2 ∈ L.

(iv) Compute the order q of the group L/(Z〈G〉 · e2).
(v) Use Proposition 10.1 to determine if eq exists. If no eq exists, output “no”.

Otherwise, output “yes”.

Proposition 10.3. Algorithm 10.2 is a deterministic polynomial-time algorithm
that, given G, u, and a G-lattice L, decides whether L is invertible.

Proof. If Step (ii) outputs “no” then L is not unimodular so it is not invertible.
We need to check Definition 9.5(iii) for all m’s in polynomial time. We show that it
suffices to check two particular values of m, namely m = 2 and q. By Lemma 10.4,
the group L/(Z〈G〉 · e2) is finite of odd order q. If no eq exists, L is not invertible.
If eq exists, then for all m ∈ Z>0 there exists em ∈ L that generates L/mL as a
Z〈G〉/(m)-module, as follows. We can reduce to m being a prime power pt, since
if gcd(m,m′) = 1 then L/mm′L is free of rank 1 over Z〈G〉/(mm′) if and only if
L/mL is free of rank 1 over Z〈G〉/(m) and L/m′L is free of rank 1 over Z〈G〉/(m′).
Lemma 10.4 now allows us to reduce to the case m = p. If p does not divide q, we
can take ep = e2. If p divides q, we can take ep = eq. �

Lemma 10.4. Suppose that L is a G-lattice, m ∈ Z>1, and e ∈ L. Then {σe+mL :
σ ∈ G} generates L/mL as an abelian group if and only if L/(Z〈G〉 · e) is finite of
order coprime to m.

Proof. The set {σe+mL : σ ∈ G} generates L/mL as an abelian group if and only
if L = Z〈G〉e + mL, and if and only if multiplication by m is surjective as a map
from L/(Z〈G〉 · e) to itself. Since L/(Z〈G〉 · e) is a finitely generated abelian group,
this holds if and only if L/(Z〈G〉 · e) is finite of order coprime to m. �
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11. Equivalent conditions for invertibility

In this section we prove Theorem 11.1, which gives equivalent conditions for
invertibility.

Theorem 11.1. If L is a G-lattice, then the following statements are equivalent:

(a) L is invertible;
(b) the map ϕ : L⊗Z〈G〉L→ Z〈G〉 defined by ϕ(x⊗y) = x·y is an isomorphism

of Z〈G〉-modules, where · is defined in Definition 9.2;
(c) there is a Z〈G〉-module M such that L⊗Z〈G〉M and Z〈G〉 are isomorphic

as Z〈G〉-modules, and as a lattice L is unimodular;
(d) L is G-isomorphic to L(I,w) for some fractional Z〈G〉-ideal I and some

w ∈ Q〈G〉∗ such that II = Z〈G〉 · w and ψ(w) ∈ R>0 for all ψ ∈ Ψ, with
L(I,w) as in Definition 8.3.

We will prove Theorem 11.1 in a series of lemmas. The equivalence of (a) and
(c) says that being invertible as a G-lattice is equivalent to being both unimodular
as a lattice and invertible as a Z〈G〉-module.

Definition 11.2. Suppose R is a commutative ring. An R-module is projective
if it is a direct summand of a free R-module. An R-module M is flat if whenever
N1 ↪→ N2 is an injection of R-modules, then the induced map M⊗RN1 →M⊗RN2

is injective.

Lemma 11.3. Suppose that L is a Z-free Z〈G〉-module of rank #G/2, and for each
m ∈ Z>0 there exists em ∈ L such that {σem +mL : σ ∈ G} generates the abelian
group L/mL. Then:

(i) there is a Z〈G〉-module M such that L⊕M ∼= Z〈G〉 ⊕ Z〈G〉, and
(ii) L is projective and flat as a Z〈G〉-module.

Proof. Let q = [L : Z〈G〉e2]. By Lemma 10.4, we have that q is finite and odd.
Let r = [L : Z〈G〉eq]. By Lemma 10.4, we have that r is finite and coprime
to q. Take a, b ∈ Z such that ar + bq = 1. Let N = Z〈G〉e2 ⊕ Z〈G〉eq and
M = Z〈G〉e2 ∩Z〈G〉eq. Since L has rank #G/2 we have N ∼= Z〈G〉⊕Z〈G〉. Define
p : N → L by (x, y) 7→ x + y and s : L → N by x 7→ (bqx, arx). Then p ◦ s is the
identity on L. Thus, L⊕ ker(p) ∼= N ∼= Z〈G〉 ⊕Z〈G〉. Since L is a direct summand
of a free module, L is projective. All projective modules are flat (by Example (1)
in I.2.4 of [2]). �

Recall that the notions of fractional Z〈G〉-ideal and invertible fractional Z〈G〉-
ideal were defined in Definition 8.1.

Lemma 11.4. If I is an invertible fractional Z〈G〉-ideal, then:

(i) if m ∈ Z>0, then I/mI is isomorphic to (Z/mZ)〈G〉 as a Z〈G〉-module;
(ii) I is flat;
(iii) if I ′ is a fractional Z〈G〉-ideal, then the natural surjective map I⊗Z〈G〉I

′ →
II ′ is an isomorphism.

Proof. Since I is an invertible fractional Z〈G〉-ideal, there is a fractional Z〈G〉-ideal
J such that IJ = Z〈G〉. Let F denote the partially ordered set of fractional Z〈G〉-
ideals. The maps from F to itself defined by f1 : N 7→ NI and f2 : N 7→ NJ are
inverse bijections that preserve inclusions. Since f1(Z〈G〉) = I, it follows that the
maximal Z〈G〉-submodules of I are exactly the mI such that m is a maximal ideal
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of Z〈G〉. By the Chinese Remainder Theorem, the map I →
∏

m I/mI is surjective,
where the product runs over the (finitely many) maximal ideals m that contain m.
It follows that there exists x ∈ I that is not contained in any mI. Since Z〈G〉x+mI
is a fractional ideal that is not contained in any proper submodule of I, it equals
I. Thus, I/mI is isomorphic to (Z/mZ)〈G〉 as a Z〈G〉-module. This proves (i).

For (ii), apply (i) and Lemma 11.3(ii).
Since I is flat, the natural map

I ⊗Z〈G〉 I
′ → I ⊗Z〈G〉 Q〈G〉 ∼= I ⊗Z〈G〉 Z〈G〉 ⊗Z Q ∼= I ⊗Z Q = Q〈G〉

is injective, giving (iii). �

Let LQ = L ⊗Z Q. Then the inner product 〈 , 〉 on L extends Q-bilinearly to a
Q-bilinear, symmetric, positive definite inner product on LQ, and the lifted inner

product · extends Q-bilinearly to a Q〈G〉-bilinear map LQ × LQ → Q〈G〉.

Lemma 11.5. Suppose L is an invertible G-lattice. Then LQ = Q〈G〉γ for some
γ ∈ LQ. For such a γ, letting z = γ · γ ∈ Q〈G〉 we have:

(i) z ∈ Q〈G〉∗,
(ii) for all ψ ∈ Ψ we have ψ(z) ∈ R>0,
(iii) L · L = Z〈G〉,
(iv) if I = {x ∈ Q〈G〉 : xγ ∈ L}, then II = Z〈G〉z−1 and L(I,z−1)

∼= L as
G-lattices.

Proof. By Definition 9.5(iii) and Lemma 10.4 we have that for all m ∈ Z>1 there
exists em ∈ L such that the index i(m) = [L : Z〈G〉em] is finite and coprime to m.
It follows that LQ ∼= Q〈G〉 as Q〈G〉-modules. Thus, LQ = Q〈G〉γ for some γ ∈ LQ.
Let z = γ · γ ∈ Q〈G〉.

For all x, y ∈ Q〈G〉 we have 〈xγ, yγ〉 = t(xγ · yγ) = t(xyz). Since the inner
product is symmetric, using Lemma 6.6(ii)(e) we have z̄ = z. Thus for all ψ ∈ Ψ

we have ψ(z) = ψ(z̄) = ψ(z) by Lemma 7.3(i), so ψ(z) ∈ R. For all x ∈ Q〈G〉
we have 0 ≤ 〈xγ, xγ〉 = t(xxz) = 1

n

∑
ψ∈Ψ ψ(xxz) by Lemma 7.3(ii). By Lemma

7.3(vii) it follows that ψ(z) ≥ 0 for all ψ ∈ Ψ. If x ∈ Q〈G〉 and zx = 0, then
〈xγ, xγ〉 = t(xxz) = 0, so x = 0. Therefore multiplication by z is an injective, and
thus surjective, map from Q〈G〉 to itself. Thus z ∈ Q〈G〉∗ and ψ(z) ∈ R>0 for all
ψ ∈ Ψ, by Lemma 7.3(vi). This gives (i) and (ii).

Define L−1 = {y ∈ LQ : L ·y ⊂ Z〈G〉} and let m ∈ Z>1. We have L ⊃ Z〈G〉em ⊃
i(m)L, so em ∈ Q〈G〉∗γ and therefore em · em ∈ Q〈G〉∗. Now i(m)(em · em)−1em ∈
L−1, because for all x ∈ L one has i(m)x·(em ·em)−1em ⊂ Z〈G〉em ·(em ·em)−1em =
Z〈G〉. Therefore i(m) = em · i(m)(em · em)−1em ∈ L ·L−1 ⊂ Z〈G〉. This is true for
all m ∈ Z>1, so 1 ∈ L · L−1 and L · L−1 = Z〈G〉.

Now for y ∈ LQ one has y ∈ L if and only if y ∈ L, if and only if for all x ∈ L one
has 〈x, y〉 ∈ Z, if and only if for all x ∈ L and σ ∈ G one has 〈x, σy〉 = 〈σ−1x, y〉 ∈ Z,
if and only if for all x ∈ L one has x ·y ∈ Z〈G〉, if and only if y ∈ L−1. So L = L−1.
Thus L · L = Z〈G〉, giving (iii).

If I ⊂ Q〈G〉 is such that L = Iγ, then I
∼−→ L, x 7→ xγ as Z〈G〉-modules. Then

Z〈G〉 = L · L = IIγ · γ = IIz, so II = Z〈G〉z−1. Now 〈xγ, yγ〉 = t(xγ · yγ) =
t(xyz) = 〈x, y〉I,z−1 for all x, y ∈ I. Thus, L(I,z−1)

∼= L as G-lattices. This gives
(iv). �

We are now ready to prove Theorem 11.1.
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For (a) ⇒ (d), apply Lemma 11.5 with w = z−1.
For (d) ⇒ (b), by (d) we have L ⊗Z〈G〉 L = I ⊗Z〈G〉 I. Using Lemma 11.4(iii)

we have that the composition I ⊗ I ∼−→ II = Z〈G〉w ∼−→ Z〈G〉 is an isomorphism,
where the first map sends x ⊗ y to xy and the last map sends α to α/w. Since
x · y = xy/w, this gives (b).

For (b)⇒ (c), suppose (b) holds, i.e., the map ϕ : L⊗Z〈G〉L→ Z〈G〉, x⊗y 7→ x·y
is an isomorphism of Z〈G〉-modules. Then L is unimodular, as follows. Consider
the maps:

L→ HomZ〈G〉(L,Z〈G〉)→ Hom(L,Z)→ Hom(L,Z)

where the left-hand map is the Z〈G〉-module isomorphism induced by ϕ, defined
by x 7→ (ȳ 7→ x · y), the middle map is f 7→ t ◦ f , and the right-hand map is
g 7→ (y 7→ g(ȳ)). The latter two maps are group isomorphisms; for the middle map

note that its inverse is f̂ 7→ (x 7→
∑
σ∈S f̂(σ−1x)σ). The composition, which takes

x to (y 7→ t(x · y) = 〈x, y〉), is therefore a bijection, so L is unimodular. Then (c)
holds by taking M = L.

For (c) ⇒ (a), by Lemma 7.3(v) we have Q〈G〉 ∼=
∏
j∈J Kj with #J < ∞ and

fields Kj . Each Q〈G〉-module V is V =
∏
j∈J Vj with each Vj a Kj-vector space.

With V = L⊗Z Q and W = M ⊗Z Q we have∏
j∈J

(Vj ⊗Kj Wj) = V ⊗Q〈G〉W ∼= Q〈G〉 ∼=
∏
j

Kj .

This holds if and only if for all j we have (dimKjVj)(dimKjWj) = 1, which holds
if and only if for all j we have dimKjVj = dimKjWj = 1. This holds if and only
if V ∼= W ∼= Q〈G〉 as Q〈G〉-modules. Thus, L and M may be viewed as fractional
Z〈G〉-ideals in Q〈G〉, and LM is principal, so L and M are invertible fractional
Z〈G〉-ideals. By Lemma 11.4(i), if I is an invertible fractional Z〈G〉-ideal, then
I/mI is cyclic as a Z〈G〉-module, for every positive integer m. Thus L/mL is
cyclic as a Z〈G〉-module, so (a) holds.

This concludes the proof of Theorem 11.1.

12. Short vectors in invertible lattices

Recall that G is a group of order 2n equipped with an element u of order 2.
The main result of this section is Theorem 12.4, which shows in particular that a
G-lattice is G-isomorphic to the standard G-lattice if and only if it is invertible and
has a short vector (i.e., a vector of length 1).

Definition 12.1. We will say that a vector e in an integral lattice L is short if
〈e, e〉 = 1.

Example 12.2. The short vectors in the standard lattice of rank n are the 2n
signed standard basis vectors {(0, . . . , 0,±1, 0, . . . , 0)}. Thus, the set of short vec-
tors in Z〈G〉 is G.

Proposition 12.3. Suppose L is an invertible G-lattice. Then:

(i) if e is short, then {σ ∈ G : σe = e} = {1};
(ii) if e is short, then 〈e, σe〉 is 1 if σ = 1, is −1 if σ = u, and is 0 for all

other σ ∈ G;
(iii) e ∈ L is short if and only if e · e = 1, with inner product · defined in

Definition 9.2.
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Proof. Suppose e ∈ L is short. Let H = {σ ∈ G : σe = e}. For all σ ∈ G, by
the Cauchy-Schwarz inequality we have |〈e, σe〉| ≤ (〈e, e〉〈σe, σe〉)1/2 = 〈e, e〉 = 1,
and |〈e, σe〉| = 1 if and only if e and σe lie on the same line through 0. Thus
〈e, σe〉 ∈ {1, 0,−1}. Then 〈e, σe〉 = 1 if and only if σ ∈ H. Also, 〈e, σe〉 = −1 if
and only if σe = −e if and only if σ ∈ Hu. Otherwise, 〈e, σe〉 = 0. Thus for (i,ii),
it suffices to prove H = {1}. Let m = #H.

Let T be a set of coset representatives for G mod H〈u〉 and let S = T ·H, a set of
coset representatives for G mod 〈u〉. If a =

∑
σ∈S aσσ ∈ (Z/mZ)〈G〉 is fixed by H,

then aτσ = aσ for all σ ∈ S and τ ∈ H, so a ∈ (
∑
τ∈H τ)(Z/mZ)〈G〉. By Definition

9.5, Theorem 11.1, and Lemma 11.4, there is a Z[H]-module isomorphism L/mL ∼=
(Z/mZ)〈G〉. Since e + mL is fixed by H, we have e + mL ∈ (

∑
τ∈H τ)(L/mL),

so em ∈ mL + (
∑
τ∈H τ)L. Write e = mε1 + (

∑
τ∈H τ)ε2 with ε1, ε2 ∈ L. Since

〈e, τε2〉 = 〈τe, τε2〉 = 〈e, ε2〉 for all τ ∈ H, we have

1 = 〈e, e〉 = m〈e, ε1〉+
∑
τ∈H
〈e, τε2〉 = m〈e, ε1 + ε2〉 ≡ 0 mod m.

Thus, m = 1 as desired. Part (iii) follows directly from (ii) and Definition 9.2. �

This enables us to prove the following result.

Theorem 12.4. Suppose L is a G-lattice. Then:

(i) if L is invertible, then the map

{G-isomorphisms Z〈G〉 → L} → {short vectors of L}

that sends f to f(1) is bijective;
(ii) if e ∈ L is short and L is invertible, then {σe : σ ∈ G} generates the

abelian group L;
(iii) L is G-isomorphic to Z〈G〉 if and only if L is invertible and has a short

vector;
(iv) if e ∈ L is short and L is invertible, then the map G→ {short vectors of L}

defined by σ 7→ σe is bijective.

Proof. For (i), that f(1) is short is clear. Injectivity of the map f 7→ f(1) follows
from Z〈G〉-linearity of G-isomorphisms. For surjectivity, suppose e ∈ L is short.
Proposition 12.3(ii) says that {σe}σ∈S is an orthonormal basis for L. Parts (ii) and
(i) now follow, where the G-isomorphism f is defined by x 7→ xe for all x ∈ Z〈G〉.
Part (iii) follows from (i) and Lemma 9.6. Part (iv) is trivial for Z〈G〉, and L is
G-isomorphic to Z〈G〉, so we have (iv). �

13. Tensor products of G-lattices

Recall that G is a finite abelian group with an element u of order 2. We will
define the tensor product of invertible G-lattices, and derive some properties.

Definition 13.1. Suppose that L and M are invertible G-lattices. Define the
Z〈G〉-bilinear map

· : (L⊗Z〈G〉M)× (L⊗Z〈G〉M)→ Z〈G〉, (a, b) 7→ a · b

by letting (x⊗v) ·(y⊗w) = (x ·y)(v ·w) for all x, y ∈ L and v, w ∈M and extending
Z〈G〉-bilinearly. Take L⊗Z〈G〉M to be L⊗Z〈G〉M , with x⊗ v = x⊗ v.
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Example 13.2. Let L = L(I1,w1) and M = L(I2,w2) where I1, I2 are fractional

Z〈G〉-ideals, w1, w2 ∈ Q〈G〉∗ are such that ψ(wi) ∈ R>0 for all ψ ∈ Ψ, and IiIi =
Z〈G〉wi for i = 1, 2. Then L⊗Z〈G〉M may be identified with I1I2 via Lemma 11.4,

and L⊗Z〈G〉M with I1I2, and the dot product I1I2× I1I2 → Z〈G〉 from Definition

13.1 becomes a · b = ab/(w1w2) as in Example 9.4. This is precisely the lifted inner
product of the G-lattice L(I1I2,w1w2) (which is invertible by Theorem 11.1). We
thus have

(13.3) L(I1,w1) ⊗Z〈G〉 L(I2,w2) = L(I1I2,w1w2).

Theorem 13.4. Let L and M be invertible G-lattices. Then L ⊗Z〈G〉 M is an

invertible G-lattice with inner product 〈a, b〉 = t(a · b), where the dot product is
defined in Definition 13.1 and equals the lifted inner product for this G-lattice.

Proof. By Theorem 11.1 we may assume that L = L(I1,w1) and M = L(I2,w2) where
I1, I2 are fractional Z〈G〉-ideals, w1, w2 ∈ Q〈G〉∗ are such that ψ(wi) ∈ R>0 for all
ψ ∈ Ψ, and IiIi = Z〈G〉wi for i = 1, 2. In this case, we already checked the theorem
in Example 13.2. �

Proposition 13.5. Suppose that L, M , and N are invertible G-lattices. Then we
have the following G-isomorphisms:

(i) L⊗Z〈G〉M ∼= M ⊗Z〈G〉 L,
(ii) (L⊗Z〈G〉M)⊗Z〈G〉 N ∼= L⊗Z〈G〉 (M ⊗Z〈G〉 N),
(iii) L⊗Z〈G〉 Z〈G〉 ∼= L,

(iv) L⊗Z〈G〉 L ∼= Z〈G〉.

Proof. By Theorem 11.1 we may reduce to the case where the invertible G-lattices
are of the form L(I,w). Then (13.3) immediately gives (i) and (ii). For (iii) and (iv),

note that Z〈G〉 = L(Z〈G〉,1), and if L = L(I,w) then L ∼= L(I,w)
∼= L(Iw−1,w−1) =

L(I−1,w−1). �

Remark 13.6. One can extend parts (i), (ii), and (iii) of Proposition 13.5 to
general G-lattices, by replacing L ⊗Z〈G〉 M by its image in LQ ⊗Q〈G〉 MQ. That
image is a G-lattice with lifted inner product given by the same formula.

14. The Witt-Picard group

As before, G is a finite abelian group of order 2n equipped with an element u of
order 2.

Definition 14.1. We define

WPicZ〈G〉 = {[L] : L is an invertible G-lattice},
where the symbols [L] are chosen so that [L] = [M ] if and only if L and M are
G-isomorphic.

Theorem 14.2. The set WPicZ〈G〉 is an abelian group, with group operation defined

by [L] · [M ] = [L⊗Z〈G〉M ], with identity element [Z〈G〉], and with [L]−1 = [L].

Proof. This follows immediately from Theorem 13.4 and Proposition 13.5. �

Corollary 14.3. Suppose that L and M are invertible G-lattices. Then L and M
are G-isomorphic if and only if L⊗Z〈G〉M and Z〈G〉 are G-isomorphic.
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Proof. This follows immediately from Theorem 14.2. �

The following description of WPicZ〈G〉 is reminiscent of the definition of class
groups in algebraic number theory.

Proposition 14.4. Let IZ〈G〉 denote the group of invertible fractional Z〈G〉-ideals.
Then the group WPicZ〈G〉 is isomorphic to the quotient of the group

{(I, w) ∈ IZ〈G〉 ×Q〈G〉∗ : II = Z〈G〉w and ψ(w) ∈ R>0 for all ψ ∈ Ψ}

by its subgroup {(Z〈G〉v, vv) : v ∈ Q〈G〉∗}.

Proof. Define the map by (I, w) 7→ [L(I,w)]. Surjectivity follows from Theorem
11.1, and the kernel is the desired subgroup by Theorem 8.5. �

Just as for the class group, we have:

Theorem 14.5. The group WPicZ〈G〉 is finite.

Proof. If L is an invertible G-lattice and {b1, . . . , bn} is an LLL-reduced basis, and

for σ ∈ G we have σ(bi) =
∑n
j=1 a

(σ)
ij bj with a

(σ)
ij ∈ Z, then |〈bi, bj〉| ≤ 2n−1

and |a(σ)
ij | ≤ 3n−1 for all i, j, and σ, by Proposition 3.4(iii) and (iv). Thus there

are only finitely many possibilities for ((〈bi, bj〉)ni,j=1, (a
(σ)
ij )i,j=1,...,n;σ∈G). If L′ is

also an invertible G-lattice with LLL-reduced basis {b′1, . . . , b′n}, and if we have

〈bi, bj〉 = 〈b′i, b′j〉 and a
(σ)
ij = a

′(σ)
ij for all i, j, and σ, then the group isomorphism

L → L′, bi 7→ b′i is an isomorphism of G-lattices. The finiteness of WPicZ〈G〉 now
follows. �

We call WPicZ〈G〉 the Witt-Picard group of Z〈G〉. The reason for the nomen-
clature lies in Theorem 11.1. If R is a commutative ring, an invertible R-module
is an R-module L for which there exists an R-module M with L ⊗RM ∼= R. The
Picard group PicR is the set of invertible R-modules up to isomorphism, where the
group operation is tensoring over R. This addresses the module structure, while
Witt rings reflect the structure as a unimodular lattice.

Algorithm 14.6. Given invertible G-lattices L and M equipped with LLL-reduced
bases, the algorithm outputs L⊗Z〈G〉M with an LLL-reduced basis and an n×n×n
array of integers to describe the multiplication map L×M → L⊗Z〈G〉M .

(i) Compute the tensor product L⊗Z〈G〉M and its lattice structure and mul-
tiplication map L×M → L⊗Z〈G〉M .

(ii) Compute an LLL-reduced basis for L⊗Z〈G〉M .

One way to perform step (i) in Algorithm 14.6 is to use Proposition 10.1 (with
m = 2) in order to realize L and M as LI,w and LI′,w′ , and take the products II ′

and ww′. Another (probably less efficient) option is to directly use the definition
of tensor product, i.e., compute L⊗Z〈G〉M as

(L⊗Z M)/(
∑
i,j,σ

Z(σbi ⊗ b′j − bi ⊗ σb′j))

where L ⊗Z M =
⊕

i,j Z(bi ⊗ b′j). With either choice, Algorithm 14.6 runs in
polynomial time.

Applying Algorithm 14.6 gives the following polynomial-time algorithm.
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Algorithm 14.7. Given G and u as usual, G-lattices L and L′ equipped with LLL-
reduced bases, a positive integer m, and elements d ∈ L/mL and d′ ∈ L′/mL′, the
algorithm computes L⊗Z〈G〉 L

′ and the element d⊗ d′ ∈ (L⊗ L′)/m(L⊗ L′).
(i) Apply Algorithm 14.6 to compute L⊗Z〈G〉 L

′.
(ii) Lift d to L and d′ to L′, and then apply the map

L× L′ → L⊗Z〈G〉 L
′ → (L⊗ L′)/m(L⊗ L′).

For all G, u, and m ∈ Z>0, there is a bound on the runtime of the previous
algorithm that holds uniformly for all L, L′, d, and d′, and this bound is polynomial
in the length of the data specifying G, u, and m.

Applying basis reduction, and iterating Algorithm 14.7 using an addition chain
for r, gives the following polynomial-time algorithm. It replaces the polynomial
chains in §7.4 of the Gentry-Szydlo paper [3].

Algorithm 14.8. Given G, u, a G-lattice L, positive integers m and r, and d ∈
L/mL, the algorithm computes L⊗r and d⊗r ∈ L⊗r/mL⊗r.

Note that it is log(r) and not r that enters in the runtime. This means that very
high powers of lattices can be computed without coefficient blow-up, thanks to the
basis reduction that takes place in Algorithm 14.6(ii). The fact that this is possible
was one of the crucial ideas of Gentry and Szydlo.

15. The extended tensor algebra Λ

The extended tensor algebra Λ is a single algebraic structure that comprises all
rings and lattices that our main algorithm needs, including their inner products.

Suppose L is an invertible G-lattice. Letting L⊗0 = Z〈G〉 and letting L⊗m =

L⊗Z〈G〉 · · · ⊗Z〈G〉 L (with m L’s) and L⊗(−m) = L
⊗m

= L⊗Z〈G〉 · · · ⊗Z〈G〉 L for all
m ∈ Z>0, define the extended tensor algebra

Λ =
⊕
i∈Z

L⊗i = . . .⊕ L⊗3 ⊕ L⊗2 ⊕ L⊕ Z〈G〉 ⊕ L⊕ L⊗2 ⊕ L⊗3 ⊕ . . .

(“extended” because we extend the usual notion to include negative exponents
L⊗(−m)). Each L⊗i is an invertible G-lattice, and represents [L]i. For simplicity,

we denote L⊗i by Li. For all j ∈ Z we have Lj = L
j

= L−j . Note that computing
the G-lattice L−1 = L is trivial; just compose the G-action map G→ GL(n,Z) with
the map G → G, σ 7→ σ. The ring structure on Λ is defined as the ring structure
on the tensor algebra, supplemented with the lifted inner product · of Definition
9.2. Let ΛQ = Λ⊗Z Q.

Proposition 15.1. (i) The extended tensor algebra Λ is a commutative ring
containing Z〈G〉 as a subring;

(ii) for all j ∈ Z, the action of G on Lj becomes multiplication in Λ;
(iii) Λ has an involution x 7→ x extending both the involution of Z〈G〉 and the

map L
∼−→ L;

(iv) if j ∈ Z, then the lifted inner product · : Lj ×Lj → Z〈G〉 becomes multiplica-

tion in Λ, with Lj = L
j
;

(v) if j ∈ Z, then for all x, y ∈ Lj we have 〈x, y〉 = t(xy);
(vi) if j ∈ Z and e ∈ Lj is short, then e = e−1 in L−j;
(vii) if γ is as in Lemma 11.5, then γ ∈ Λ∗Q, one has LiQ = Q〈G〉γi for all i ∈ Z,

and ΛQ may be identified with the Laurent polynomial ring Q〈G〉[γ, γ−1].
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(viii) if e ∈ L is short, then Λ = Z〈G〉[e, e−1].

Proof. The proof is straightforward. It is best to begin with (vii). �

All computations in Λ and in Λ/mΛ =
⊕

i∈Z L
i/mLi with m ∈ Z>0 that oc-

cur in our algorithms are done with homogeneous elements only, where the set of
homogeneous elements of Λ is

⋃
i∈Z L

i.
If A is a commutative ring, let µ(A) denote the subgroup of A∗ consisting of the

roots of unity, i.e., the elements of finite order. The following result will allow us
to construct a polynomial-time algorithm to find k-th roots of short vectors, when
they exist.

Proposition 15.2. Suppose L is an invertible G-lattice, r ∈ Z>0, and ν is a short

vector in the G-lattice Lr. Let A = Λ/(ν − 1). Identifying
⊕r−1

i=0 L
i ⊂ Λ with its

image in A, we can view A =
⊕r−1

i=0 L
i as a Z/rZ-graded ring. Then:

(i) G ⊆ µ(A) ⊆
⋃r−1
i=0 L

i,
(ii) {e ∈ L : e · ē = 1} = µ(A) ∩ L,
(iii) |µ(A)| is divisible by 2n and divides 2nr,
(iv) the degree map µ(A)→ Z/rZ that takes e ∈ µ(A) to j such that e ∈ Lj is

surjective if and only if µ(A) ∩ L 6= ∅, and
(v) there exists e ∈ L for which e · ē = 1 if and only if #µ(A) = 2nr.

Proof. Since the ideal (ν − 1) = (ν−1 − 1) = (1 − ν) = (ν − 1), the map a 7→ a
induces an involution on A.

Next we show that the natural map
⊕r−1

i=0 L
i → Λ/(ν − 1) = A is bijective. For

surjectivity, by Proposition 15.1(vi) we have νLj = Lj+r for all j ∈ Z, and thus
Lj+r and Lj have the same image under the natural map Λ → Λ/(ν − 1) = A.

For injectivity, suppose 0 6= a =
∑j
i=h ai ∈ Λ with h ≤ j, with all ai ∈ Li,

and with ah 6= 0 and aj 6= 0. Then (ν − 1)a =
∑j+r
i=h bi with bi ∈ Li where

bh = −ah 6= 0 and bj+r = νaj 6= 0, and therefore (ν − 1)a /∈
⊕r−1

i=0 L
i. Hence we

have (ν − 1)Λ ∩
⊕r−1

i=0 L
i = {0}.

Recall that Ψ is the set of C-algebra homomorphisms from C〈G〉 to C. Letting
AQ = A ⊗Z Q, we have AQ = ΛQ/(ν − 1)ΛQ and ΛQ =

⊕
i∈Z L

i
Q. Since L is

invertible, by Lemma 11.5 there exists γ ∈ LQ such that LQ = Q〈G〉 · γ with
z = γγ ∈ Q〈G〉∗ and ψ(z) ∈ R>0 for all ψ ∈ Ψ. By Proposition 15.1(vii) we have

γ ∈ L∗Q, and LjQ = Q〈G〉 · γj for all j ∈ Z, and ΛQ =
⊕

i∈Z L
i
Q = Q〈G〉[γ, γ−1].

Thus, there exists δ ∈ Q〈G〉∗ such that ν = δγr. The set of ring homomorphisms
from A to C can be identified with the set of ring homomorphisms from AQ to
C, which is {ring homomorphisms ϕ : ΛQ → C : ϕ(ν) = 1}. The latter set can be
identified with {(ψ, ζ) : ψ ∈ Ψ, ζ ∈ C∗, ψ(δ)ζr = 1} via the map ϕ 7→ (ϕ|Q〈G〉, ϕ(γ))

and its inverse (ψ, ζ) 7→ (
∑
i aiγ

i 7→
∑
i ψ(ai)ζ

i), and has size nr = dimQ(AQ).

Since 1 = νν = (δγr)(δγr) = δδzr, we have ψ(δ)ψ(δ)ψ(z)r = 1 = ψ(δ)ψ(δ)(ζζ)r,
so ψ(z)r = (ζζ)r. Since ψ(z) ∈ R>0, we have ψ(z) = ζζ. Since γ = zγ−1, we

now have ϕ(γ) = ϕ(z)ζ−1 = ζ = ϕ(γ). By Lemma 7.3(i) we have ψ(ᾱ) = ψ(α)
for all α ∈ Q〈G〉. Since AQ is generated as a ring by Q〈G〉 and γ, it follows that

ϕ(ᾱ) = ϕ(α) for all α ∈ AQ and all ring homomorphisms ϕ : AQ → C.
Applying 7.1 with to the commutative Q-algebra AQ shows that

⋂
ϕ kerϕ = 0.

Let E = {e ∈ A : ee = 1}, a subgroup of A∗.
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If e ∈ µ(A), then ϕ(e) is a root of unity in C for all ring homomorphisms

ϕ : A → C, so 1 = ϕ(e)ϕ(e) = ϕ(e)ϕ(e) = ϕ(ee). Since
⋂
ϕ kerϕ = 0, we have

ee = 1. Thus, µ(A) ⊆ E.

Conversely, suppose e ∈ E. Write e =
∑r−1
i=0 εi with εi ∈ Li, so e =

∑r−1
i=0 εi

with εi ∈ L−i = Lr−i in A. We have 1 = ee =
∑r−1
i=0 εiεi, the degree 0 piece of

ee. Applying the map t of Definition 6.2 and using (9.3) we have 1 =
∑r−1
i=0 〈εi, εi〉.

It follows that there exists j such that 〈εj , εj〉 = 1, and εi = 0 if i 6= j. Thus,

E ⊆
⋃r−1
i=0 {e ∈ Li : 〈e, e〉 = 1}, giving (i). By Proposition 12.3(iii) and Example

12.2 we have E ∩ Z〈G〉 = G, so µ(Z〈G〉) = G.
The degree map from E to Z/rZ that takes e ∈ E to j such that e ∈ Lj

is a group homomorphism with kernel E ∩ Z〈G〉 = G. Therefore, #E divides
#G#(Z/rZ) = 2nr. Thus, E ⊆ µ(A) ⊆ E, so E = µ(A) and we have (ii) and (iii).
The degree map is surjective if and only if #µ(A) = 2nr, and if and only if 1 is in
the image, i.e., if and only if µ(A) ∩ L 6= ∅. This gives (iv). Part (v) now follows
from (ii). �

Remark 15.3. In the proof of Proposition 15.2 we showed that µ(Z〈G〉) = G.

16. Short vectors

Recall that G is a finite abelian group of order 2n equipped with an element u
of order 2. The main result of this section is Algorithm 16.4.

Definition 16.1. The exponent of a finite group H is the least positive integer k
such that σk = 1 for all σ ∈ H.

The exponent of a finite group H divides #H and has the same prime factors
as #H.

Definition 16.2. Let k denote the exponent of G.

By Theorem 12.4, the G-isomorphisms Z〈G〉 ∼−→ L for a G-lattice L are in one-
to-one correspondence with the short vectors of L, and if a short e ∈ L exists, then
the short vectors of L are exactly the 2n vectors {σe : σ ∈ G}. With k the exponent
of G, we have (σe)k = σkek = ek in Λ. Hence for invertible L, all short vectors in
L have the same k-th power ek ∈ Λ. At least philosophically, it is easier to find
things that are uniquely determined. We look for ek first, and then recover e from
it.

The n of [3] is an odd prime, so the group exponent k = 2n, and Z〈G〉 embeds
in Q(ζn) × Q, where ζn ∈ C∗ is a primitive n-th root of unity. Since the latter is
a product of only two number fields, the number of zeros of X2n − v2n is at most
(2n)2, and the Gentry-Szydlo method for finding v from v2n is sufficiently efficient.
If one wants to generalize [3] to the case where n is not prime, then the smallest t
such that Z〈G〉 embeds in F1× . . .×Ft with number fields Fi can be as large as n.
Given ν, the number of zeros of Xk−ν could be as large as kt. Finding e such that
ν = ek then requires a more efficient algorithm, which we attain with Algorithm
16.4 below.

An order is a commutative ring A whose additive group is isomorphic to Zn for
some n ∈ Z≥0. We specify an order by saying how to multiply any two vectors in a
given basis. In [9] we prove the following result, and give the associated algorithm.
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Proposition 16.3. There is a deterministic polynomial-time algorithm that, given
an order A, determines a set of generators for the group µ(A) of roots of unity in
A∗.

Algorithm 16.4. Given G, u, an invertible G-lattice L, and ν ∈ Lk given as a sum
of products of k factors from L, with k the exponent of G, the algorithm determines
whether there exists e ∈ L such that ν = ek and e · ē = 1, and if so, finds one.

(i) Compute the order A = Λ/(ν − 1).
(ii) Check whether νν = 1. If νν 6= 1, output “no e exists”. If νν = 1, apply

Proposition 16.3 to compute generators for µ(A) with A = Λ/(ν − 1).
(iii) Apply the degree map µ(A) → Z/kZ from Proposition 15.2(iv) to the

generators, and check whether the images generate Z/kZ. If they do not,
output “no e exists”; if they do, compute an element e ∈ µ(A) whose image
under the degree map is 1.

(iv) Check whether ν = ek. If not, output “no e exists”. If so, output e.

In step (ii), one could equivalently check whether 〈ν, ν〉 = 1.

Proposition 16.5. Algorithm 16.4 is a deterministic polynomial-time algorithm
that, given G, u, an invertible G-lattice L, and ν ∈ Lk, with k the exponent of G,
determines whether there exists e ∈ L such that ν = ek and e · ē = 1, and if so,
finds one.

Proof. We apply Proposition 15.2 with r = k. Suppose Step (iii) produces e ∈ µ(A)
of degree 1. Then e ∈ µ(A) ∩ L = {ε ∈ L : ε · ε̄ = 1} by Proposition 15.2(ii). By
Proposition 12.3(iii), this set is the set of short vectors in L. By Theorem 12.4(iv),
if a short ε ∈ L exists, then the short vectors in L are exactly the 2n vectors
{σε : σ ∈ G}, which all have the same k-th power since k is the exponent of G.
By this and Proposition 15.2(iv), if any step fails then the desired e does not exist.
The algorithm runs in polynomial time since #µ(A) = 2nk ≤ (2n)2 by Proposition
15.2(v). �

17. Finding auxiliary prime powers

In this section we present an algorithm to find auxiliary prime powers ` and
m. To bound the runtime, we use Heath-Brown’s version of Linnik’s theorem in
analytic number theory.

Recall that G is a finite abelian group equipped with an element u of order 2,
and k is the exponent of G.

Definition 17.1. For m ∈ Z>0 let k(m) denote the exponent of the unit group
(Z〈G〉/(m))∗.

Lemma 17.2. Suppose p is a prime number and j ∈ Z>0. Then:

(i) (Z/pjZ)∗ ⊂ (Z〈G〉/(pj))∗;
(ii) if p is odd, then the exponent of (Z/pjZ)∗ is (p− 1)pj−1;
(iii) if p ≡ 1 mod k, then k(pj) = (p− 1)pj−1.

Proof. Parts (i) and (ii) are easy. For (iii), we proceed by induction on j. If p ≡ 1
mod k, then p is odd. We first take j = 1. The map x 7→ xp is a ring endomorphism
of Z〈G〉/(p) and is the identity on G, since the exponent k divides p− 1. Since G
generates the ring, the map is the identity and therefore xp = x for all x ∈ Z〈G〉/(p)
and xp−1 = 1 for all x ∈ (Z〈G〉/(p))∗.
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Now suppose j > 1. Suppose x ∈ Z〈G〉 maps to a unit in Z〈G〉/(pj). By the

induction hypothesis, x(p−1)pj−2 ≡ 1 mod pj−1. Thus, x(p−1)pj−2

= 1 + pj−1v for
some v ∈ Z〈G〉. Since (j − 1)p ≥ j we have

x(p−1)pj−1

= (1 + pj−1v)p = 1 +

(
p

1

)
pj−1v + · · ·+ p(j−1)pvp ≡ 1 mod pj .

Thus, k(pj) divides (p− 1)pj−1 for all j ∈ Z>0. Part (iii) now follows from (i) and
(ii). �

Theorem 17.3 (Heath-Brown, Theorem 6 of [4]). There is an effective constant
c > 0 such that if a, t ∈ Z>0 and gcd(a, t) = 1, then the smallest prime p such that
p ≡ a mod t is at most ct5.5.

Algorithm 17.4. Given positive integers n and k with k even, the algorithm
produces prime powers ` = pr and m = qs with `,m ≥ 2n/2 +1 such that p ≡ q ≡ 1
mod k and and gcd(ϕ(`), ϕ(m)) = k, where ϕ is Euler’s phi function.

(i) Try p = k+1, 2k+1, 3k+1, . . . until the least prime p ≡ 1 mod k is found.
(ii) Find the smallest r ∈ Z>0 such that pr ≥ 2n/2 + 1.
(iii) Try q = p + k, p + 2k, . . . until the least prime q ≡ 1 mod k such that

gcd((p− 1)p, q − 1) = k is found.
(iv) Find the smallest s ∈ Z>0 such that qs ≥ 2n/2 + 1.
(v) Let ` = pr and m = qs.

Proposition 17.5. Algorithm 17.4 runs in time (n+ k)O(1).

Proof. Algorithm 17.4 takes as input n, k ∈ Z>0 with k even, and computes positive
integers r and s and primes p and q such that:

• p ≡ q ≡ 1 mod k,
• gcd((p− 1)pr−1, (q − 1)qs−1) = k,
• pr ≥ 2n/2 + 1, and
• qs ≥ 2n/2 + 1.

We next show that Algorithm 17.4 terminates, with correct output, in the
claimed time. By Theorem 17.3 above, the prime p found by Algorithm 17.4 sat-
isfies p ≤ ck5.5 with an effective constant c > 0. Primality testing can be done
by trial division. If p − 1 = k1k2 with every prime divisor of k1 also dividing k
and with gcd(k2, k) = 1, then to have gcd((p − 1)p, q − 1) = k it suffices to have
q ≡ 2 mod p and q ≡ 1 + k mod k1 and q ≡ 2 mod k2. This gives a congruence
q ≡ a mod p(p − 1) for some a with gcd(a, p(p − 1)) = 1. Theorem 17.3 implies
that Algorithm 17.4 produces a prime q with the desired properties and satisfying
q ≤ c(p2)5.5 ≤ c(ck5.5)11 = c12k60.5. The upper bounds on p and q imply that
Algorithm 17.4 runs in time (n+ k)O(1). �

Remark 17.6. In practice, Algorithm 17.4 is much faster than implied by the proof
of Proposition 17.5; Theorem 17.3 is unnecessarily pessimistic, and in practice one
does not need to find a prime q that is congruent to 2 mod pk2 and to 1+k mod k1.
In work in progress, we get better bounds for the runtime of our main algorithm,
and avoid using the theorem of Heath-Brown or Algorithm 17.4, by generalizing
our theory to the setting of “CM orders”.

Algorithm 17.4 immediately yields the following algorithm.
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Algorithm 17.7. Given G and u, the algorithm produces prime powers ` and m
such that `,m ≥ 2n/2 + 1 and gcd(k(`), k(m)) = k, where k is the exponent of G,
and produces the values of k(`) and k(m).

(i) Compute n and k.
(ii) Run Algorithm 17.4 to compute prime powers ` = pr and m = qs with

`,m ≥ 2n/2 + 1 such that p ≡ q ≡ 1 mod k and gcd(ϕ(`), ϕ(m)) = k.
(iii) Compute k(`) = (p− 1)pr−1 and k(m) = (q − 1)qs−1.

By Lemma 17.2(iii), Algorithm 17.7 produces the desired output. It follows from
Proposition 17.5 that Algorithm 17.7 runs in polynomial time (note that the input
in Algorithm 17.7 includes the group law on G).

Remark 17.8. Our prime powers ` and m play the roles that in the Gentry-
Szydlo paper [3] were played by auxiliary prime numbers P, P ′ > 2(n+1)/2 such that
gcd(P−1, P ′−1) = 2n. Our k(`) and k(m) replace their P−1 and P ′−1. While the
Gentry-Szydlo primes P and P ′ are found with at best a probabilistic algorithm,
we can find ` and m in polynomial time with a deterministic algorithm. (Further,
the ring elements they work with were required to not be zero divisors modulo P ,
P ′ and other small auxiliary primes; we require no analogous condition on ` and m,
since by Definition 9.5, when L is invertible then for all m, the (Z/mZ)〈G〉-module
L/mL is free of rank 1.)

The next result will provide the proof of correctness for a key step in our main
algorithm.

Lemma 17.9. Suppose e is a short vector in an invertible G-lattice L, suppose
`,m ∈ Z≥3, and suppose e`m ∈ L is such that e`m + `mL generates L/`mL

as a (Z/`mZ)〈G〉-module. Then ek(m) is the unique short vector in the coset

e
k(m)
`m + mLk(m), and there is a unique s ∈ ((Z/`Z)〈G〉)∗ such that ek(m) ≡ se

k(m)
`m

mod `Lk(m). If further b ∈ Z>0 and bk(m) ≡ k mod k(`), then ek is the unique
short vector in sbek`m + `Lk.

Proof. Since e is short, we have Z〈G〉e = L. Thus for all r ∈ Z>0, the coset e+ rL
generates L/rL as a Z〈G〉/(r)-module. We also have that e`m + mL generates
L/mL as a Z〈G〉/(m)-module, and e`m+ `L generates L/`L as a Z〈G〉/(`)-module.
Thus, there exist ym ∈ (Z〈G〉/(m))∗ and y` ∈ (Z〈G〉/(`))∗ such that e`m = yme

mod mL and e`m = y`e mod `L. It follows that e
k(m)
`m ≡ ek(m) mod mLk(m) and

e
k(`)
`m ≡ ek(`) mod `Lk(`).

We have (Z/`Z)〈G〉e = L/`L = (Z/`Z)〈G〉e`m. Thus

(Z/`Z)〈G〉 · ek(m) = Lk(m)/`Lk(m) = (Z/`Z)〈G〉 · ek(m)
`m ,

so

(17.10) ek(m) ≡ sek(m)
`m mod `Lk(m)

for a unique s ∈ ((Z/`Z)〈G〉)∗. We have e · ē = 1, so e ∈ Λ∗ and e+ `Λ ∈ (Λ/`Λ)∗.
By (17.10) we have (e + `Λ)k(m) = s(e`m + `Λ)k(m) in Λ/`Λ =

⊕
i∈Z L

i/`Li. It
follows that e`m + `Λ ∈ (Λ/`Λ)∗.

If ak(`)+bk(m) = k with a ∈ Z, then ek = (ek(`))a(ek(m))b ≡ (e
k(`)
`m )a(se

k(m)
`m )b ≡

sbek`m mod `Λ, so sbek`m + `Lk contains the short vector ek of Lk. In both cases,
uniqueness follows from Proposition 4.1. �
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18. The main algorithm

We present the main algorithm. That it is correct and runs in polynomial time
follows from the results above; see the discussion after the algorithm. As before, k
is the exponent of the group G and k(j) is the exponent of (Z〈G〉/(j))∗ if j ∈ Z>0.

Algorithm 18.1. Given G, u, and a G-lattice L, the algorithm determines whether
there exists a G-isomorphism Z〈G〉 ∼−→ L, and if so, computes one.

(i) Apply Algorithm 10.2 to check whether L is invertible. If it is not, termi-
nate with “no”.

(ii) Apply Algorithm 17.7 to produce prime powers ` and m as well as k(`)
and k(m).

(iii) Use Proposition 10.1 to compute e`m.

(iv) Use Algorithm 14.8 to compute the pair (Lk(m), e
k(m)
`m + `mLk(m)). Use

Algorithm 4.2 to decide whether the coset e
k(m)
`m +mLk(m) contains a short

vector νm ∈ Lk(m), and if so, compute it. Terminate with “no” if none
exists.

(v) Compute s ∈ (Z/`Z)〈G〉 such that νm = se
k(m)
`m + `Lk(m) in Lk(m)/`Lk(m).

(vi) Use the extended Euclidean algorithm to find b ∈ Z>0 such that bk(m) ≡ k
mod k(`).

(vii) Use Algorithm 14.6 to compute the lattices L2, L3, . . . , Lk as well as data
for the multiplication maps L× Li → Li+1 (for 1 ≤ i < k). Also compute
ek`m + `Lk ∈ Lk/`Lk.

(viii) Compute sb ∈ (Z/`Z)〈G〉, and compute sbek`m ∈ Lk/`Lk. Use Algorithm
4.2 to decide whether the coset sbek`m+`Lk contains a short vector ν ∈ Lk,
and if so, compute it. Terminate with “no” if none exists.

(ix) Apply Algorithm 16.4 to find e ∈ L such that ν = ek and e · ē = 1 (or to

prove there is no G-isomorphism), and let the map Z〈G〉 ∼−→ L send x to
xe.

Remark 18.2. Note that we do not use Algorithm 14.8 to compute Lk. This is
because Algorithm 16.4 requires more information about Lk than is provided by
Algorithm 14.8, namely, the information needed for the construction of the order
A.

Proposition 18.3. Algorithm 18.1 is a deterministic polynomial-time algorithm
that, given a finite abelian group G, an element u ∈ G of order 2, and a G-lattice
L, outputs a G-isomorphism Z〈G〉 ∼−→ L or a proof that none exists.

Proof. By Theorem 12.4(iii), the G-lattice L is G-isomorphic to Z〈G〉 if and only if
L is invertible and has a short vector. Algorithm 10.2 checks whether L is invertible.
If it is, we look for an e ∈ L such that eē = 1.

Algorithm 17.7 produces prime powers `,m ≥ 2n/2+1 such that gcd(k(`), k(m)) =
k. The algorithm in Proposition 10.1 produces e`m, which then serves as both em
and e`. Algorithm 4.2 finds a short vector νm (if it exists) in the coset e`m +
mLk(m) ∈ Lk(m)/mLk(m). If e ∈ L is short, then νm = ek(m) by Lemma 17.9.
Algorithm 4.2 produces a short ν in the coset sbek`m + `Lk or proves that none
exists. By Lemma 17.9, if e ∈ L is short then ν = ek. Algorithm 16.4 then finds a
short vector e ∈ L, or proves that none exists. The map x 7→ xe gives the desired
G-isomorphism from Z〈G〉 to L. �
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Remark 18.4. There is a version of the algorithm in which checking invertibility
in step (i) is skipped. In this case, the algorithm may misbehave at other points,
indicating that L is not invertible and thus not G-isomorphic to Z〈G〉 by Lemma
9.6. At the end one would check whether 〈e, e〉 = 1 and 〈e, σe〉 = 0 for all σ 6= 1, u.
If so, then {σe}σ∈S is an orthonormal basis for L, and x 7→ xe gives the desired
isomorphism; if not, no such isomorphism exists.

Thanks to Corollary 14.3, we can convert Algorithm 18.1 to an algorithm to test
whether two G-lattices are G-isomorphic (and produce an isomorphism).

Algorithm 18.5. GivenG, u, and two invertibleG-lattices L andM , the algorithm
determines whether there is a G-isomorphism M

∼−→ L, and if so, computes one.

(i) Compute L⊗Z〈G〉M .

(ii) Apply Algorithm 18.1 to find a G-isomorphism Z〈G〉 ∼−→ L⊗Z〈G〉M , or a
proof that none exists. In the latter case, terminate with “no”.

(iii) Using this map and the map M ⊗Z〈G〉M → Z〈G〉, y ⊗ x 7→ y · x, output
the composition of the (natural) maps

M
∼−→ Z〈G〉 ⊗Z〈G〉M

∼−→ L⊗Z〈G〉M ⊗Z〈G〉M
∼−→ L⊗Z〈G〉 Z〈G〉

∼−→ L.
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