
Simple Lattice Trapdoor Sampling
from a Broad Class of Distributions

Vadim Lyubashevsky1? and Daniel Wichs2 ??

1 Inria/ENS, Paris
2 Northeastern University

Abstract. At the center of many lattice-based constructions is an algorithm that samples a short
vector s, satisfying [A|AR − HG]s = t mod q where A,AR,H,G are public matrices and R is a
trapdoor. Although the algorithm crucially relies on the knowledge of the trapdoor R to perform this
sampling efficiently, the distribution it outputs should be independent of R given the public values.
We present a new, simple algorithm for performing this task. The main novelty of our sampler is
that the distribution of s does not need to be Gaussian, whereas all previous works crucially used the
properties of the Gaussian distribution to produce such an s. The advantage of using a non-Gaussian
distribution is that we are able to avoid the high-precision arithmetic that is inherent in Gaussian
sampling over arbitrary lattices. So while the norm of our output vector s is on the order of

√
n to n -

times larger (the representation length, though, is only a constant factor larger) than in the samplers
of Gentry, Peikert, Vaikuntanathan (STOC 2008) and Micciancio, Peikert (EUROCRYPT 2012), the
sampling itself can be done very efficiently. This provides a useful time/output trade-off for devices with
constrained computing power. In addition, we believe that the conceptual simplicity and generality of
our algorithm may lead to it finding other applications.

1 Introduction

At the core of many lattice-based cryptosystems is the many-to-one one-way function fA(s) =
As mod q, where A ∈ Zm×nq is a random (short & fat) matrix and s ∈ Zmq is a “short” vector. The
works of [Ajt96,Ajt99] showed that this function is one-way under a worst-case lattice assumption,
and moreover, that there is a way to sample a random A along with a trapdoor that allows one
to invert the function fA. However, since the function fA is many-to-one, the choice of which pre-
image we sample might depend on which trapdoor for A we use. Not leaking information about the
trapdoor, which is used as a secret key in cryptographic schemes, is essential for security – both
“provable” and actual. Some early lattice schemes, such as GGH [GGH97] and NTRU [HHGP+03]
signatures, did not have security proofs, and it was subsequently shown that obtaining a small
amount of signature samples was enough to completely recover the secret key [NR09].

The first algorithm which was able to sample pre-images of fA without leaking any information
about the trapdoor was devised in the breakthrough work of Gentry, Peikert, and Vaikuntanathan
[GPV08]. It was able to output such a pre-image s according to a discrete Gaussian distribution
using a short basis of the lattice L⊥q (A) := {v ∈ Zm : Av = 0 mod q} as a trapdoor. Following the
intuition of the two-sided sampler of Agrawal, Boneh, and Boyen [ABB10], Micciancio and Peikert
introduced a sampling procedure that did not explicitly require a short basis of the underlying
lattice [MP12]. In particular, instead of sampling a uniformly random matrix, they sampled a
statistically close matrix A′ = [A|AR−HG], where A is a uniformly random (short & fat) matrix
over Zq, R is a matrix with small coefficients, H is any matrix invertible over Zq, and G is a special

? Partially supported by the French ANR-13-JS02-0003 “CLE” Project
?? Supported by NSF grants 1347350, 1314722, 1413964.

(publicly-known) matrix that allows one to easily compute a small vector x satisfying Gx = t mod q
for any t ∈ Znq . We think of A,AR,G,H as publicly known and think of R as a secret trapdoor.
They showed how to sample a short pre-image s = (s1, s2) given some target t so as to satisfy:

fA′(s) = A′s = [A|AR−HG]s = As1 + (AR−HG)s2 = t mod q. (1)

Furthermore, they ensure that the distribution of s does not depend on the trapdoor R.
The intuition for how the Micciancio-Peikert sampler produces short vectors while hiding the

exact value of R is as follows. If we define A′ = [A|AR−HG] and R′ =

[
R
−I

]
, then A′R′ = HG.

To sample an s such that A′s = t mod q, one first samples a vector w from a particular distribution,
then samples a discrete Gaussian vector z satisfying Gz = H−1(t−A′w) mod q, and finally outputs
s = w + R′z. One can check that A′s = A′w + A′R′z = t − HGz = t mod q. The main part
of [MP12] consisted of proving that the distribution of s is independent of R. If z is a discrete
Gaussian with a large-enough standard deviation, then the distribution of R′z is also a discrete
Gaussian with covariance matrix approximately R′R′T . Then, if the distribution of w was also a
discrete Gaussian with covariance matrix s2I − R′R′T , the covariance matrix of the distribution
of s = w + R′z is very close to the sum of the covariance matrices [Pei10], which is s2I, and is
therefore independent of R.1

Both the GPV sampling algorithm and the Micciancio-Peikert sampler strongly rely on the
Gaussian nature of the output distribution. The GPV algorithm samples vectors along the Gram-
Schmidt decomposition of the trapdoor, which ends up being Gaussian due to the rotational in-
variance of the Gaussian distribution. Similarly, the Micciancio-Peikert sampler crucially relies on
the convolution theorem for Gaussian distributions, which is also an implicit consequence of the
rotational invariance.

1.1 Our result

Our main result is another sampler (which is very much inspired by the works of [ABB10] and
[MP12]) that outputs an s satisfying Equation (1) that does not inherently rely on the special
properties of any distribution. For example, it is able to output an s = (s1, s2) where both s1 and
s2 come from (different) uniform distributions, or the distribution of s2 could be uniform while s1
is a discrete Gaussian. The algorithm is also conceptually very simple. To sample an s, we rewrite
As1+(AR−HG)s2 = t mod q as Gs2 = H−1(A(s1+Rs2)−t) mod q. We first pick the variable y
corresponding to s1 +Rs2 according to some distribution Py. Once this y is fixed, the value of s2 is
deterministically determined via the equation Gs2 = H−1(Ay− t) mod q according to some rule –
for example, if G is the “powers-of-2” matrix (see (4) in Section 3.2), then s2 is just a concatenation
of the binary decompositions of each coefficient of H−1(Ay − t) mod q.2 Once s2 is chosen, the
value of s1 is uniquely determined to be s1 = y−Rs2. At this point, outputting s = (s1, s2) would
leak R, and we need to use rejection sampling to break the dependency. The idea is similar to that
in [Lyu09,Lyu12], except that in our case y and s2 are dependent on each other (in particular,
the only entropy in the whole algorithm is in y and in the coins that are eventually used for the

1 The matrix H does not in any way help in the inversion procedure. It is present only because it is very useful in
constructions of various schemes such as CCA-secure encryption, digital signatures, and identity-based encryption
schemes (we refer the reader to [MP12] for more details).

2 One could choose s2 according to some (non-deterministic) distribution instead, but we do not at present see any
reason to do so.

2

rejection sampling) and one needs a more careful argument to show that the distribution of (s1, s2)
can have a distribution that is independent of R.

The main advantage of our sampler lies in its conceptual simplicity and the generality of its
output distribution. A hidden cost of discrete Gaussian sampling over arbitrary lattices is that it
requires the storage of, and computation with, vectors of real numbers (for example, the Gram-
Schmidt orthogonalization in [GPV08] or the square root of the covariance matrix in [Pei10,MP12])
with precision of at least the security parameter. This could pose a serious implementation obstacle
on devices in which storage space and/or computational power are at a premium.3 Using our new
sampling algorithm, on the other hand, we can choose the distributions for s1 and s2 to be uniform,
and then one only needs to perform uniform sampling over Zq and the rejection sampling part of
the algorithm simply involves checking whether all the coefficients are in a particular interval (see
the first example in Section 3.2). If a little more processing power or storage capacity is available,
we can change the distribution of s1 to a discrete Gaussian over Zm, which will make the outputs
slightly shorter but will require some additional resources for doing discrete Gaussian sampling over
Zm (cf. [DDLL13,DG14,PDG14]) and for the rejection sampling step (see the second example in
Section 3.1).

The main disadvantage of our sampler is that the norm of the produced vector s1, and therefore
the norm of the entire vector s = (s1, s2) of our algorithm, is larger by at least a

√
n factor than of

the ones produced by the samplers of [GPV08,MP12] (see the examples in Section 3.2). In practice,
having the norms of the outputs be larger by a factor of O(

√
n) results in the bit-length of the

output s to increase by a factor of 2 or 3 (e.g. compare [GLP12] to [DDLL13]). Therefore we believe
that our sampler provides a time vs. size trade-off that is most useful in instances where Gaussian
sampling over arbitrary lattices is either not possible or prohibitively expensive.

2 Preliminaries

Let X,Y be distributions or random variables with support S. We define their statistical distance
by SD(X,Y) = 1

2

∑
s∈S |Pr[X = s]− Pr[Y = s]|. We write X ≈ε Y and say that X and Y are ε-

statistically close to denote that SD(X,Y) ≤ ε. For a random variable X, we define the min-entropy
of X as H∞(X) := − log(maxx Pr[X = x]).

Lemma 2.1 (Leftover Hash Lemma). [HILL99,NZ96] Let H = {h : D → R} be a universal
hash function family, meaning that for all x 6= y ∈ D we have Prh←H[h(x) = h(y)] ≤ 1/|R|. Let
X be any random variable with support D and min-entropy H∞(X) ≥ log(|R|) + 2 log(1/ε). Then

(h, h(x)) is ε-statistically close to (h, r) where h
$← H, x $← X and r

$← R.
In particular, for a prime q, setting D = Zmq , R = Znq and H = {hA(x) := Ax | A ∈ Zn×mq },

for any distribution x over Zmq having entropy H∞(x) ≥ n log(q) + 2 log(1/ε) we have (A,Ax) is

ε-statistically close to (A, r) where A
$← Zn×mq and r

$← Znq .

Lemma 2.2. [Lyu12, Lemma 4.7]
Let f, g be probability distributions with the property that

∃M ∈ R+ such that, Pr
z

$←f
[Mg(z) ≥ f(z)] ≥ 1− ε

3 It should be pointed out that the signature schemes of [Pei10,MP12] can do a lot of the necessary high-precision
computations “offline” before receiving the message to be signed. In such an ”online/offline” model, this can save
on the computation time during the online phase, but the storage space still remains an issue.

3

Ideal Distribution

1: Generate s2
$← P2

2: Generate s1
$← P1|As1 = t + (HG−AR)s2 mod q

3: Output s = (s1, s2)

Real Distribution

1: Generate y
$← Py

2: Compute s2 ← G−1
(
H−1(Ay − t) mod q

)
3: Compute s1 ← y −Rs2
4: Output (s1, s2) with probability P1(s1)

M·Py(s1+Rs2)

5: If nothing was output, GOTO 1.

Fig. 1. Ideal and Real Distributions

then the distribution of the output of the following algorithm A:

1: z
$← g

2: output z with probability min
(

f(z)
Mg(z) , 1

)
is within statistical distance ε/M of the distribution of the following algorithm F :

1: z
$← f

2: output z with probability 1/M

Moreover, the probability that A outputs something is at least (1− ε)/M .

3 The Sampling Algorithm

Given matrices A ∈ Zn×mq , R ∈ Zm×lq , G ∈ Zn×lq , H ∈ Zn×nq and a target t ∈ Znq , we would like to
output a short vector s = (s1, s2) that satisfies

[A|AR−HG]s = As1 + (AR−HG)s2 = t mod q (2)

and furthermore, the distribution of s is independent of R given the “public” values A,AR,H,G.
In other words, if we think of R as a trapdoor needed to perform the sampling, we want to ensure
that the sample s should not reveal anything about the trapdoor R.

We present a general framework for performing such sampling with many different choices on
the distribution of s1, s2. The framework is defined in terms of three component distributions that
we call P1, P2 and Py. Using these three distributions, we compare between an efficiently sampleable
distribution which uses R and which we call the “real distribution”, and an “ideal distribution”
which is not efficiently sampleable but does not use R. We present the ideal and real distributions
in Figure 1. The ideal distribution directly samples s2 from the desired distribution P2, and then
samples s1 from some distribution P1 conditioned on the fact that Equation (2) should be satisfied.
Clearly, since R is never used in the sampling procedure of the ideal distribution, it does not depend
on R, but only on the publicly-available information.

The real distribution that our sampling algorithm samples from, first generates a y from an
intermediate distribution Py. This y will now deterministically determine both s2 and s1. To com-
pute s2, we first compute H−1(Ay − t) mod q ∈ Znq , and then find an s2 in the support of P2

such that Gs2 = H−1(Ay − t) mod q. By our choice of G, this value of s2 will be unique and
easily computable, and we denote it by s2 = G−1(H−1(Ay − t) mod q).4 We then compute s1 as
y−Rs2. At this point, the distribution of (s1, s2) is not as in the ideal distribution. To correct the

discrepancy, we use rejection sampling, and output (s1, s2) with probability P1(s1)
M ·Py(s1+Rs2)

where M

is some positive real (if this fraction is greater than 1, we define the probability to be 1).

4 This is an abuse of notation since G−1 is not a matrix but rather a deterministic function satisfying G·G−1(z) = z.

4

In Section 3.1, we state the relationships between the matrices and the distributions that are
required for our sampling algorithm to produce a distribution statistically close to the ideal distri-
bution. Then in Section 3.2, we give two illustrative examples of instantiations over general lattices
and polynomial rings.

3.1 Requirements and security proof

Theorem 3.1. Consider matrices A ∈ Zn×mq , R ∈ Zm×lq , G ∈ Zn×lq , and H ∈ Zn×nq , and distri-

butions P1, P2, Py over Zm, Zl, and Zm respectively, such that the following four conditions are
satisfied:

1. For the two distributions s
$← P1 and s

$← Py, the statistical distance between As mod q and the
uniform distribution over Znq is at most 2−(n log q+λ).

2. H is invertible modulo q.

3. The function G mapping the support of P2 to Znq , defined by G(s) = Gs, is 1-to-1 and onto
and is efficiently invertible via a function G−1. Furthermore, P2 is uniformly random over its
support.

4. Pr
(x1,x2)

$←IdealDistribution

[
P1(x1)

Py(x1+Rx2)
≤M

]
≥ 1− 2−λ for some positive M = poly(λ).

then the outputs of the ideal distribution and the real distribution are ε-close for ε = O(λM) · 2−λ.
Furthermore, the expected number of iterations of the sampling algorithm is ≈M .

Proof. We first describe an intermediate distribution, which we will call the hybrid distribution
defined as follows.

Hybrid Distribution without Rejection:

Generate s2
$← P2

Generate y
$← Py|(Ay = t + HGs2 mod q)

Compute s1 ← y −Rs2
Output s = (s1, s2)

We also define a “Hybrid Distribution with Rejection” which first samples (s1, s2) from the

above-described Hybrid Distribution and then outputs it with probability P1(s1)
M ·Py(s1+Rs2)

, else tries
again.

Lemma 3.2. Let f be the probability density function of the Ideal Distribution and g be the prob-
ability density function of the Hybrid Distribution (without rejection). Then

f(x1,x2)

g(x1,x2)
=

P1(x1)

Py(x1 + Rx2)
(1 + δ) for some δ : − 2 · 2−λ ≤ δ ≤ 3 · 2−λ

In particular, this means that the Ideal Distribution is O(λM)2−λ close to the Hybrid Distribu-
tion with Rejection.

5

Proof.

f(x1,x2)

g(x1,x2)
=

Pr
s2

$←P2
[s2 = x2] · Pr

s1
$←P1

[s1 = x1|As1 = t + (HG−AR)x2 mod q]

Pr
s2

$←P2
[s2 = x2] · Pr

y
$←Py

[y = x1 + Rx2|Ay = t + HGx2 mod q]

=
Pr

s1
$←P1

[s1 = x1] · Pr
y

$←Py
[Ay = t + HGx2 mod q]

Pr
y

$←Py
[y = x1 + Rx2] · Pr

s1
$←P1

[As1 = t + (HG−AR)x2 mod q]

=
P1(x1)

Py(x1 + Rx2)
·

Pr
y

$←Py
[Ay = t + HGx2 mod q]

Pr
s1

$←P1
[As1 = t + (HG−AR)x2 mod q]

=
P1(x1)

Py(x1 + Rx2)
· q
−n + δ1
q−n + δy

where − q−n2−λ ≤ δ1, δy ≤ q−n2−λ (3)

=
P1(x1)

Py(x1 + Rx2)
(1 + δ) where − 2 · 2−λ ≤ δ ≤ 3 · 2−λ

Line 3 follows from the requirement of Theorem 3.1 that the distributions of Ay mod q and As1 mod

q are q−n2−λ-close to uniformly random over Znq when y
$← Py and s1

$← P1. This proves the first
part of the lemma.

For the second part of the lemma, we define one more hybrid distribution, that we call the “Hy-
brid Distribution with Ideal Rejection”. It is the same as the “Hybrid Distribution with Rejection”,

but we set the rejection probability to γideal = min
(

f(s1,s2)
M(1+δ+)g(s1,s2)

, 1
)

for δ+ = 3 · 2−λ. This is

instead of the rejection probability γreal = min
(

P1(s1)
MPy(s1+Rs2)

, 1
)

used in the original “Hybrid Distri-

bution with Rejection” (in real life, we don’t know γideal exactly, and therefore are forced to use γreal

as an approximation). Note that by the first part of the lemma, γideal = min
(

(1+δ)P1(s1)
M(1+δ+)Py(s1+Rs2)

, 1
)

for some δ ∈ [−2 · 2−λ, δ+] and therefore |γreal− γideal| ≤ 5(2−λ). Furthermore, in the “Hybrid Dis-
tribution with Ideal Rejection”, the rejection sampling step only occurs at most cλM times with
probability 1− (1− 1/(1 + δ+M))cλM ≥ 1− 2−λ for a sufficiently large constant c. Therefore, the
statistical distance between the “Hybrid Distribution with Rejection” and the “Hybrid Distribution
with Ideal Rejection” is at most O(λM)2−λ.

Next, we show that the “Hybrid Distribution with Ideal Rejection” is O(λ2−λ)-statistically close
to the ideal distribution. This relies on the rejection sampling lemma (Lemma 2.2). We note that
by requirement (4) of the theorem: we have for δ+ = 3 · 2−λ:

Pr
(s1,s2)

$←f
[M(1 + δ+)g(s1, s2) ≥ f(s1, s2)] = Pr

(s1,s2)
$←f

[
f(s1, s2)

g(s1, s2)
≤M(1 + δ+)

]
≥ Pr

(s1,s2)
$←f

[
P1(s1)

Py(s1 + Rs2)
≤M

]
≥1− 2−λ

Therefore, by the “rejection sampling lemma” (Lemma 2.2), each iteration of the “Hybrid Distri-
bution with Ideal Rejection” outputs something which is 2−λ/M statistically close to outputting a
sample from the idea distribution with probability 1/M(1 + δ+). Furthermore, the rejection sam-
pling step only occurs at most cλM times with probability 1 − (1 − 1/(1 + δ+M))cλM ≤ 2−λ for

6

a sufficiently large constant c. Therefore, the statistical distance between the “Hybrid Distribution
with Ideal Rejection” and the “Ideal Distribution” is at most O(λ)2−λ.

Combining the above, the statistical distance between the “Hybrid Distribution with Rejection”
and the “Ideal Distribution” is O(λM)2−λ as claimed.

ut

Now we introduce another distribution that we call the “Real Distribution without Rejection”
which matches the real distribution without the rejection sampling step:

Real Distribution without Rejection:

Generate y
$← Py

Compute s2 ← G−1
(
H−1(Ay − t) mod q

)
Compute s1 ← y −Rs2.
Output (s1, s2).

Lemma 3.3. The statistical distance between the “Real Distribution without Rejection” and the
“Hybrid Distribution without Rejection” is at most 2−λ. In particular, this also means that the
statistical distance between the “Real Distribution with Rejection” and the “Hybrid Distribution
with Rejection” is at most O(λM)2−λ.

Proof. Let us define a randomized function f(u) which gets as input u ∈ Znq and does the following:

Sample: s2
$← P2|t + HGs2 = u mod q.

Sample: y
$← Py|Ay = u mod q.

Compute: s1 ← y −Rs2.
Output: (s1, s2).

It is easy to see that, when u
$← Znq , then f(u) is equivalent to the “Hybrid Distribution”. This

is because the distribution of t + HGs2 mod q for s2 ← P2 is indeed uniformly random (due to
requirements (2) and (3) of Theorem 3.1).

On the other hand, if we instead sample u by choosing y′
$← Py and setting u := Ay′ mod q

then f(u) is equivalent to the “Real Distribution without Rejection”.

Therefore, the statistical distance between the hybrid and real distributions without rejection

sampling is the statistical distance between Ay′ mod q : y′
$← Py and the uniform distribution

over Znq . By definition, this is at most 2−(n log q+λ) ≤ 2−λ.

The distributions with rejection sampling just depends on at most O(λM) copies of the cor-
responding distributions without rejection sampling with overwhelming probability 1 − 2−λ and
therefore we can use the hybrid argument to argue that the statistical distance between them is at
most O(λM)2−λ. ut

Combining the above lemmas, proves the theorem. ut

3.2 Two examples

We will now give two examples of matrices and distributions that satisfy the requirements of
Theorem 3.1. Even though the examples are specific in the choices of parameters, we believe that
they illustrate the techniques needed to apply our algorithm in other scenarios.

7

In both examples, we will let q be some prime5, set m = l = ndlog qe, and define G as the
matrix

G =


1 2 4 . . . 2dlog qe

1 2 4 . . . 2dlog qe

. . .

1 2 4 . . . 2dlog qe

 (4)

Notice that with this G, for every element t ∈ Zn with coefficients between 0 and q − 1 there
is a unique vector s2 ∈ {0, 1}m such that Gs2 = t (without reduction modulo q). We denote
this vector by s2 = G−1(t), but note that this is an abuse of notation as the matrix G is not
actually an invertible matrix. The distribution P2 in our examples will simply be the distribution
of s2 = G−1(t) for a uniformly random t ∈ Zn having coefficients between 0 and q − 1. Such a
choice of G and P2 satisfy requirement (3) of the theorem.

We will choose our matrix A at random from Zn×mq and the distributions P1, Py to have min-
entropy at least 3n log q + 4λ.6 This ensures that, by the Leftover Hash Lemma (Lemma 2.1), the

statistical distance between (A,A · s mod q) and (A, r) where s
$← P1 (resp. Py) and r

$← Znq , is

bounded by 2−(n log q+2λ). Let’s say that a fixed matrix A is “good for P1” (resp. “good for Py”) if

the statistical distance between As and r is at most ε = 2−n log q+λ when s
$← P1 (resp. s

$← Py).
Then, by Markov’s inequality, the probability that a random A is good for P1 (resp. good for Py)
is at least 1−2−λ. Let’s say that A is “good” if it is good for both P1 and Py. By the union bound,
a random A is good with probability at least 1− 2 · 2−λ. Therefore if the distributions P1, Py have
min-entropy at least 3n log q + 4λ, requirement (1) of the theorem is satisfied with probability at
least 1− 2 · 2−λ.

In both examples, we will take the matrix R to be uniformly random from {−1, 0, 1}m×m. The
important property we will need from R is that the norm of Rs2 is not too large.

By the Chernoff bound, we obtain that for any s2 ∈ {0, 1}m, there exists a k∞ = Θ
(√

λm
)

such that

Pr
R

$←{−1,0,1}m×m
[‖Rs2‖∞ ≤ k∞] ≥ 1− 2−2λ. (5)

For the distribution P2 over {0, 1}m, we say that a fixed matrix R is `∞-good if Pr
s2

$←P2
[‖Rs2‖∞ >

k∞] ≤ 2−λ. By the above equation we have Pr
s2

$←P2,R
$←{−1,0,1}m×m

[‖Rs2‖∞ > k∞] ≤ 2−2λ and

therefore by Markov inequality, a random R is `∞-good with probability 1− 2−λ.

We can also establish a bound on the `2 norm of Rs2. By [Ver10, Theorem 5.39], for all s2 ∈
{0, 1}m, there exists a k2 = Θ(m+

√
λm) = Θ(m) such that

Pr
R

$←{−1,0,1}m×m
[‖Rs2‖ ≤ k2] ≥ 1− 2−2λ. (6)

5 The requirement that q is prime only comes from the use of the leftover hash-lemma, and it can be relaxed. For
example, it suffices that the smallest prime divisor of q is at least as large as 2‖s‖∞. Alternatively, if q is a product
of primes and s has high entropy modulo each of the primes, then we can use the leftover-hash lemma for each
prime divisor separately. For simplicity, we only mention these relaxations in passing and concentrate on the case
when q is prime in what follows.

6 This entropy lower bound is not really a restriction on the distributions P1 and Py. The distributions that we will
need to pick to satisfy property (4) of the theorem will easily meet this bound.

8

For the distribution P2 over {0, 1}m, we say that a fixed matrix R is `2-good if Pr
s2

$←P2
[‖Rs2‖ >

k2] ≤ 2−λ. By the same reasoning as above, a random R is `2-good with probability 1− 2−λ.
We now proceed to show how to pick the distributions P1 and Py to satisfy the requirement (4)

of the theorem. We will assume that the randomly-chosen A and R are good for these distributions
(as defined above), which happens with overwhelming probability 1− 4 · 2−λ. In our first example,
both P1 and Py will be uniform distributions in some cube. The advantage of such distributions is
that they are particularly easy to sample. Our second example will have both of these distributions
be discrete Gaussians over Zm. The advantage of using discrete Gaussians rather than the uniform
distribution is that the norm of s1 will end up being smaller. The disadvantage is that sampling
the discrete Gaussian distribution over Zm is a more involved procedure than sampling the uniform
distribution over Zq. Still, sampling a discrete Gaussian over Zm is more efficient and requires less
precision than sampling such a distribution over an arbitrary lattice.

Example for P1 and Py being uniform in an m-dimensional integer cube. We define the
distribution P1 (respectively Py) to be the uniform distribution over all vectors x ∈ Zm such that
‖x‖∞ ≤ mk∞ (respectively ‖x‖∞ ≤ mk∞ + k∞). And we set the constant

M =

(
2mk∞ + 2k∞ + 1

2mk∞ + 1

)m
≈ e. (7)

We will now show that the above choices satisfy the necessary requirements of Theorem 3.1.
First, we will lower-bound the entropies of P1 and Py.

H∞(Py) > H∞(P1) = − log

(
1

(2mk∞ + 1)m

)
> m logm > n log n log q > 3n log q + 4λ,

and so the first requirement of the theorem is satisfied.
We will conclude by showing that requirement (4) of the theorem is also satisfied. First, it’s

easy to see that for any x1 output by the ideal distribution, P1(x1) = 1
(2mk∞+1)m . Additionally,

for any x1 in the support of P1, if ‖Rx2‖∞ ≤ k∞, then x1 + Rx2 is in the support of P2, and so
Py(x1 + Rx2) = 1

(2mk∞+2k∞+1)m . Therefore if ‖Rx2‖∞ ≤ k∞, we have

P1(x1)

Py(x1 + Rx2)
=

(
2mk∞ + 2k∞ + 1

2mk∞ + 1

)m
<

(
1 +

1

m

)m
< e, (8)

and so

Pr
(x1,x2)

$←IdealDistribution

[
P1(x1)

Py(x1 + Rx2)
≤M

]
≥ Pr

(x1,x2)
$←IdealDistribution

[‖Rx2‖∞ ≤ k∞] ≥ 1− 2−λ,

where the last inequality follows by our choice of k∞.
Note that since s1 is chosen to have coordinates of size mk∞ = Θ(m1.5

√
λ), we have ‖s‖ ≈

‖s1‖ = Θ(m2
√
λ). We also point out that the rejection sampling part of our sampler in Figure 1

is actually very simple and one does not in fact need to compute any probability distributions or
even the value of M in equation (7) – simply looking at the infinity norm of s1 is enough. If s1 (in
line 3) is outside the support of P1 (i.e. ‖s1‖∞ > mk∞), then P1(s1) = 0 and we always reject. On

the other hand, if ‖s1‖∞ ≤ mk∞, then P1(x1)
MPy(x1+Rx2)

= 1 (by (7) and (8)), and we always accept.

9

Example for P1 and Py being discrete Gaussians over Zm. The discrete Gaussian distribu-
tion with standard deviation σ over Zm is defined as

Dm
σ (x) =

e−‖x‖
2/2σ2∑

v∈Zm
e−‖v‖2/2σ2 .

In this example, we will define both P1 and Py to be distributions Dm
σ for σ = 2k2

√
λ, and

we set the constant M = e1+1/8λ. We will first lower-bound the min-entropy of P1. Notice that
the heaviest element of the distribution is 0, and from the proof of [Lyu12, Lemma 4.4], we have∑
v∈Zm

e−‖v‖
2/2σ2

> (
√

2πσ − 1)m. Thus,

H∞(P1) = − log (Dm
σ (0)) = − log

 1∑
v∈Zm

e−‖v‖2/2σ2

 > m log σ > 3n log q + 4λ.

We will now move on to prove that requirement (4) of Theorem 3.1 is also satisfied. First, we
write

P1(x1)

Py(x1 + Rx2)
=

e−‖x1‖2/2σ2

e−‖x1+Rx2‖2/2σ2 = e(2〈x1,Rx2〉+‖Rx2‖2)/2σ2 ≤ e
〈x1,Rx2〉

σ2
+1/8λ,

where the last inequality follows from our assumption that the random R satisfies the condition in
Equation (6).

We now would like to upper-bound the above quantity when x1,x2 are distributed according
to the ideal distribution. If we let t′ = t + (HG −AR)x2, then the probability that the absolute
value of the dot product 〈x1,Rx2〉 is less than some arbitrary positive real r is

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r|Ax1 = t′] =
Pr

x1
$←P1

[Ax1 = t′ | |〈x1,Rx2〉| ≤ r] · Pr
x1

$←P1
[|〈x1,Rx2〉| ≤ r]

Pr
x1

$←P1
[Ax1 = t′]

By [Lyu12, Lemma 4.3], we have that for r = 2k2σ
√
λ,

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r] > 1− 2−λ.

Furthermore,

H∞(P1 | |〈x1,Rx2〉| ≤ r) ≥ H∞(P1)− log(1− 2−λ) > H∞(P1)− 1 > m log σ > 3n log q + 4λ,

which allows us to apply the Leftover Hash Lemma (Lemma 2.1) to conclude that

Pr
x1

$←P1

[|〈x1,Rx2〉| ≤ r|Ax1 = t′] ≥ q−n − δ1
q−n + δ1

· (1− 2−λ) ≥ (1− δ)(1− 2−λ)

where δ1 ≤ q−n2−λ and δ < 3 · 2−λ. If we let f be the distribution of the ideal distribution, then
putting everything together, we obtain that

Pr
(x1,x2)

$←f

[
P1(x1)

Py(x1 + Rx2)
≤ e1+1/8λ

]
≥ Pr

(x1,x2)
$←f

[
2〈x1,Rx2〉+ ‖Rx2‖2

2σ2
≤ 1 + 1/8λ

]
= Pr

x1
$←P1

[|〈x1,Rx2〉| ≤ 2k2σ
√
λ|Ax1 = t′]

≥ (1− 3 · 2−λ) · (1− λ) > 1− 4 · 2−λ.

10

Since s1 is chosen from Dm
σ for σ = 2k

√
λ = Θ(m

√
λ), the norm of s1 is tightly concentrated

around Θ(m1.5
√
λ) [Ban93]. Therefore choosing the distribution P1 to be a discrete Gaussian rather

than uniform (as in the previous example), allowed us to keep the distribution P2 of s2 exactly the
same, while reducing the expected length of the vector s1.

Sampling over polynomial rings. Just like the sampler of [MP12], ours also naturally extends
to sampling vectors over polynomial rings R = Z[x]/(f(x)), where f(x) is a monic polynomial with
integer coefficients. This allows the sampler to be used in constructions of more efficient lattice
primitives based on the hardness of Ring-SIS [PR06,LM06] and Ring-LWE [LPR13a].

For sampling over polynomial rings, one can keep all the notation exactly the same, simply
taking care that all additions and multiplications that were done over the rings Z and Zq are
now done over the rings Z[x]/(f(x)) and Zq[x]/(f(x)). The only thing to be careful about is the
application of the leftover hash lemma for satisfying part (1) of Theorem 3.1. If the ring is a field
(i.e. f(x) is irreducible over Zq), then everything is very simple because the function mapping s to
As is still universal. If, on the other hand, f(x) does split, then the function becomes an almost
universal hash function whose universality may degrade with the number of terms into which f(x)
splits. In particular, if f(x) splits into many terms, then it may in fact be impossible to reach the
necessary statistical distance for satisfying condition (1), and one will instead need to use different
distributions and leftover hash lemmas, (cf. [Mic07, Theorem 4.2], [SS11, Theorem 2], [LPR13b,
Theorem 7.4]).

4 Acknowledgements

We thank the anonymous reviewers for their useful suggestions.

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In
EUROCRYPT, pages 553–572, 2010.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages 99–108,
1996.

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages 1–9, 1999.
[Ban93] Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathe-

matische Annalen, 296:625635, 1993.
[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal

gaussians. In CRYPTO (1), pages 40–56, 2013.
[DG14] Nagarjun C. Dwarakanath and Steven D. Galbraith. Sampling from discrete gaussians for lattice-based

cryptography on a constrained device. Appl. Algebra Eng. Commun. Comput., 25(3):159–180, 2014.
[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction

problems. In CRYPTO, pages 112–131, 1997.
[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A

signature scheme for embedded systems. In CHES, pages 530–547, 2012.
[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. In STOC, pages 197–206, 2008.
[HHGP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman, and William Whyte.

Ntrusign: Digital signatures using the ntru lattice. In CT-RSA, pages 122–140, 2003.
[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.
[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In

ICALP (2), pages 144–155, 2006.

11

[LPR13a] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. J. ACM, 60(6):43, 2013. Preliminary version appeared in EUROCRYPT 2010.

[LPR13b] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-lwe cryptography. In EURO-
CRYPT, pages 35–54, 2013.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures.
In ASIACRYPT, pages 598–616, 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755, 2012.
[Mic07] Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions.

Computational Complexity, 16(4):365–411, 2007.
[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EU-

ROCRYPT, pages 700–718, 2012.
[NR09] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of GGH and NTRU

signatures. J. Cryptology, 22(2):139–160, 2009.
[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–52,

1996.
[PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced lattice-based signatures on reconfigurable

hardware. In CHES, pages 353–370, 2014.
[Pei10] Chris Peikert. An efficient and parallel gaussian sampler for lattices. In CRYPTO, pages 80–97, 2010.
[PR06] Chris Peikert and Alon Rosen. Efficient collision-resistant hashing from worst-case assumptions on cyclic

lattices. In TCC, pages 145–166, 2006.
[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as secure as worst-case problems over ideal lattices.

In EUROCRYPT, pages 27–47, 2011.
[Ver10] Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. CoRR,

abs/1011.3027, 2010.

12

