
SHipher: Families of Block Ciphers based on
SubSet-Sum Problem

Xiali Hei
Guandong University of Finance & Economics

Temple University

Binheng Song
Tsinghua University

February 11, 2014

Abstract

In this paper, we describe the families of block ciphers named SHipher. We
show a symmetric encryption framework based on the SubSet-Sum problem.
This framework can provide families of secure, flexible, and any-size block ci-
phers. We have extensively cryptanalyzed our encryption framework. We can
easily control the computational cost by a key selection. Also, this framework
offers excellent performance and it is flexible and general enough to admit a
variety of implementations on different non-Abelian groups. In this paper, we
provide one implementation using a group of matrices whose determinants are
1. This implementation accepts any block size satisfying 3l − 1. If l = 21, the
block size is 62 bits, which suits for full spectrum of lightweight applications.
While if l = 341, the block size is 1022, which provides high security level up
to resistant 2684 differential-attack effort and 21022 brute-force attack effort.

Keywords: Block cipher; SubSet-Sum problem; Framework; Non-Abelian
group

1 Introduction

There are a lot of symmetric encryption schemes such as SIMON and SPECK [6],
Advanced Encryption Standard (AES) [1], and Blowfish [10]. Most of them are based
on Feistel networks or diffusion or substitution, while our scheme proposed in this
paper is inspired by a pure mathematically NP-hard problem (SubSet-Sum problem)
with general group operators. The problem we used in this paper is a SubSet-Sum
problem (SSSP) on a group. Such problems are not well investigated except the SSSP
over addition. Our scheme accepts any block size. We name it as SHipher.

1

The security level of SHipher depends on the block size and the key K. It is also a
key-dependent symmetric cipher. It can be applied in lightweight applications as well
as heavyweight applications. In our implementation, when l = 341, it can provide
an encryption scheme resistant to 2684 differential-attack effort and 21022 brute-force
attack effort.

In this paper, we first present the framework to generate the SHipher families.
After that we get the security requirements and rules for the parameter design through
extensive cryptanalysis. We show that the G is supposed to be a non-Abelian group
and the size of the conjugate equivalence class will affect the security strength. After
that, we describe an implementation of this family based on a group consisting of the
matrices whose determinants are 1. Then we analyze the encoding-decoding scheme
of the plain texts and cipher texts. At last we conduct the performance evaluation
using SHipher-library.

Our contributions are summarized as follows:

• A symmetric encryption framework based on SubSet-Sum problem is proposed.
This framework is very flexible and accepts any block size and varied imple-
mentations. It is suitable for both lightweight and heavyweight applications.

• We present a complete implementation based on a group of matrices whose
determinants are 1. This implementation admits any block size satisfying 3l−1.

The remainder of this paper is organized as follows: In Section 2 we describe the
framework model to design an encryption scheme based on SSSP. We analyze the
encryption model and give the security requirements of it in Section 3. In Section 4
we present one detailed implementation based on this framework. We evaluate our
implementation in Section 5. We extend our scheme to other groups in Section 6. In
Section 7, we review the related work, and we conclude the paper and discuss the
future work in Section 8.

2 Construction Framework

Let G = (S,
⊕

) be a non-Abelian group. Generally, we use a w-bit binary number
to represent an element of S, and use its element of S to represent a plain text or its
cipher text. x−1 is the inverse of element x on the group G.

2.1 Global sets

The encryption algorithm is based on a global set A. It is a perfectly chosen random
subset of S and ‖A‖ = n. The global set is a set passed various randomness tests.
We use a binary file having the size 64 ∗ w to represent it. For examplein our imple-
mentation, if we choose w = 1022 and n = 64 ∗ 1022, then the size of such a file is
about 64MB.

2

2.2 Key Generation and Encryption Scheme

Since ‖A‖ = n, we can use a binary number i with the length log2n to represent the
index of an element of A.

We can randomly choose 2m elements from A, whose indices in A are i0, i1, ... i2m−1.
Since the elements may be duplicated, we allow identical indices.

A shared key K = {i0‖i1‖...‖i2m−1}, and its length is 2m ∗ log2n.
Encryption algorithm: We assume that p ∈ S is a plain text and its cipher

text is b. Then the relationship between them is shown as follows,

p =
⊕m−1

j=0 aij
⊕

b
⊕2m−1

j=m aij ; (2-1)

where aij is the element in A whose index is ij. We can get b by Equation (2-1) as
follows:

b =
⊕0

j=m−1 a
−1
ij

⊕
p
⊕m

j=2m−1 a
−1
ij

; (2-2)

where a−1ij
is the inverse element of aij on the group G.

Definition 1. We call the following problem is a generalized SubSet-Sum Problem
(GSSSP): given S and b to find a subset B of S such that the sum of all the elements
in B over operator

⊕
equals b.

If the set S is composed of integers and the operator is plus, then the above prob-
lem degrades to a SSSP.

Theorem 1. The problem of given b to get p without known the indices of aij is
a harder problem than a GSSSP.

Proof: In equation (2-2), if one wants to find p with known b and without known
the indices of aij , the problem can be transferred to a GSSSP as follows:

To find p, we have to find the subset B whose elements’ sum is b, and then guess
which element of B is p. So it is harder than a GSSSP.

Conjecture 1. To most group operator, the GSSSP is a NPC problem. Specifi-
cally, it holds when the operator is a matrix operation.

3 Security analysis

3.1 Brute-Force Attacks

If an attacker wants to get the key, he/she needs to get the indices of the elements
in A used by the encryption scheme. The probability of getting them via one-time
guess is n−2m = 2−2mlog2n. If w = 1022, n = 64 ∗ 1022, then log2n = log2(64 ∗ 1022).
According to the requirement of security level, we can choose m = 32, the successful
rate of one-time brute-force test is 2−1022 = 2−w.

The bigger the m is, the less the probability of being broken is. However, the
bigger the m is, the more complex our encryption algorithm is because we need 2m

3

group operations of w-bit binary numbers. Hence, there is a tradeoff. In the case
of same security level, the greater the n is, the less the m is. This means that the
memory overhead increases and the computation overhead decreases.

Additionally, the length of w will affect the computational complexity. The greater
the w is, the computation complexity of each group operation increases. When we
choose the multiplication, it increases quadratically with the length of w increases.

If the length w is too small, then the randomness strength of each encryption
block is not suitable.

If a file with the length T can be split into T/w pieces, we will encrypt each
piece. The total computational complexity is T/w ∗ f(w) ∗ 2m, where the f(w) is the
computational complexity of

⊕
operator on w-bit numbers.

3.2 Differential Attacks

In our scheme, encryption needs to get the inverse of aij and
⊕

operations on group
G, while decryption only needs the

⊕
operations.

We focus on the differential attacks at
⊕

operator. They are the left reverse
multiplication and right reverse multiplication of a cipher text using the same key.

Suppose the p and p′ are different plain texts and b and b′ are their cipher texts
respectively, then

b−1
⊕

b′ =
⊕2m−1

j=m pij
⊕

p−1
⊕

p′
⊕m

j=2m−1 p
−1
ij

; (3-3)

If the
⊕

is abelian, then b−1
⊕

b′ = p−1
⊕

p′. That means the difference of two
cipher texts equals to the difference of two plain texts. Then the differential attacks
work.

If
⊕

is non-abelian, then b−1
⊕

b′ and p−1
⊕

p′ are conjugate.
The larger the size of [b−1

⊕
b′] on a group G is, the more verifications an attacker

needs to crack the encryption scheme via brute-force attacks. The best case is that
[b−1

⊕
b′] = ‖A‖.

4 Implementation

We choose n w-bit random numbers, whose first 1/3 bits are nonzero. They consist
of set A and we publish A. We assume S including all the w-bit binary numbers.
Then, we define the

⊕
as follows:

Let x, y ∈ A, we split x into three pieces x1, x2, x3 equally. Then, the length of
xt (t = 1, 2, 3) is w/3 bits. We treat y similarly. Then we consider x1, x2 and x3

as elements in Z2(w/3) = {0, 1, ..., 2w/3 − 1}. We choose a prime number of length
(w/3 + 1) bits as the q. Then we write x as a following matrix:

Mx =

(
x1 x2

x3
x2x3+1

x1

)
(mod q); (4-4)

This design makes sure det(Mx) = 1 because (x1 × x2x3+1
x1
− x3 × x2) mod q = 1.

4

Then
x
⊕

y = Mx ·My (mod q); (4-5)

where Mx ·My is an ordinary matrix multiplication.

4.1 Special Cases of Plain Text and Cipher Text

Special case of plain text: for a plain text pi, if pi1 is 0, then pi1 is not invertible
over modular q. Thus we can not construct a matrix Mpi . To make sure that we
can construct such a matrix of any plain text block, we add a redundant bit 1 to the
highest bit of pi. Thus, we can make sure the determinant of corresponding plain text
matrix is 1 according to our design for Mpi .

Special case of cipher text: assume the corresponding cipher text matrix is(
u v
h r

)
. (4-6)

Since its determinant is 1, then we can represent it as three numbers. a) if u 6= 0, we
can use (u, v, h) to represent it. b) if u = 0, we represent it as (v, h, r). So we need a
redundant bit to distinguish these two cases.

How to tune the encoding and decoding methods:
Plain text: we change a message pi into 1‖pi, and split it into (pi1 , pi2 , pi3) equally,

where ‖pi1‖ = l. l represents the length of a binary string. As a result, the length of
the every plain text is w = 3l − 1. Since we want w to be close to 1024, we choose
l = 341.

Cipher text: we know that the determinant of the cipher text matrix is 1. In
its matrix (

u′ v′

h′ r′

)
, (4-7)

if u′ 6= 0, it can be presented as (1, u′, v′, h′); otherwise if u′ = 0, it can be presented as
(0, v′, h′, r′). The first bit indicates whether the first element in the ciphertext matrix
is 0 or not. If its first element is not 0, we add 1 to the highest bit indicating that
the first element is not 0 and use the first three elements to represent this matrix.
Otherwise, we add 0 to the highest bit to indicate that the first element is 0 and use
the other three elements to represent the matrix. After the encryption, the length of
cipher text is 3∗(l+1)+1 = 3l+4 bits. So the memory overhead is (3l+4)−(3l−1) = 5
bits for each block.

A given matrix on group G has 22[(w+1)/3+1] = 22(w+4)/3 conjugate matrices, we
need 22(w+4)/3 verifications to get b−1

⊕
b′ by its conjugate matrices via differential

attacks.

4.2 Group Operation Algorithm

Algorithm 1 illustrates the algorithm of a group operator. We first need 2 multiplica-
tions, 1 additions, and 1 inverse operation over modular q. Then each group operator
needs 2 multiplications and 4 additions.

5

Algorithm 1 Group Operator Algorithm
1: Input: x, y.
2: Output: x

⊕
y.

3: Split 1‖x into x1, x2, and x3 equally. So does 1‖y.
4: Using Euclid Algorithm to get x4 = x2x3+1

x1
mod q and y4 = y2y3+1

y1
mod q;

5: Matrix Mx = (x1, x2;x3, x4) mod q; Matrix My = (y1, y2; y3, y4) mod q;
6: x

⊕
y = Mx ·My mod q;

4.3 The Inverse of the Group Operation Algorithm

Since ‖Mx‖ = 1 and 1−1mod q=1, the modular inverse of it is M−1
x = M∗

x =
(x4,−x3;−x2,
x1) mod q. Algorithm 2 illustrates the algorithm to get it. The computational com-
plexity of it is Θ(logq) logq-bit integer divisions. This algorithm needs 2 additions.

Algorithm 2 Modular Inverse Algorithm of a 2-2 Matrix

1: Input: Mx = (x1, x2;x3, x4) mod q;
2: Output: M−1

x .
3: M−1

x = (x4,−x3;−x2, x1) mod q;
4: −x3 = q − x3, −x2 = q − x2;
5: RETURN M−1

x ;

4.4 Encryption Algorithm

Algorithm 3 illustrates the encryption algorithm, where k is the number of blocks that
plain text p has. Notice that aij is an element of A, we will compute the Maij

and

M−1
aij

in advance. So we consider them as part of encoding-decoding phases. Thus, we

exclude them when we compute the basis computations needed here. Totally, it needs
16(m− 1) + 17k multiplications, 8(m− 1) + 9k additions, and k inverse operations.

Algorithm 3 Encryption Algorithm

1: Input: Plaintext p = {p1, ..., pk}; K = {i0||i1||...i2m−1}.
2: Output:Ciphertext b = {b1, ..., bk}.
3: H1 =

⊕0
j=m−1 a

−1
ij

; H2 =
⊕m

j=2m−1 a
−1
ij

;
4: for each s in [1, 2, ..., k] do
5: bs = H1

⊕
ps
⊕

H2;

4.5 Decryption Algorithm

Algorithm 4 illustrates the decryption Algorithm, where k is the number of blocks
that cipher text b has. Similarly, it needs 16(m−1)+17k multiplications, 8(m−1)+9k
additions, and k inverse operations in total.

6

Algorithm 4 Decryption Algorithm

1: Input: Ciphertext b = {b1, ..., bk}; K = {i0||i1||...i2m−1}.
2: Output:Plaintext p = {p1, ..., pk}.
3: H3 =

⊕m−1
j=0 aij ; H4 =

⊕2m−1
j=m aij ;

4: for each s in [1, 2, ..., k] do
5: ps = H3

⊕
bs
⊕

H4;

5 Performance analysis

We now provide some information on the performance achieved by the SHipher-
toolkit. We measure the private key generation time, encryption time, and decryp-
tion time produced by running SHipher-keygen, SHipher-enc, and SHipher-dec. The
measurements were taken on a personal computer with a 64-bit, 2.66 Ghz Intel(R)
CPU. The implementation uses the group we discussed in Section 4. Here, assuming
k = 1 (only one block message), we first choose w=62, l = 21, and q=2098081
over a 22-bit finite field. On the test machine, the GMP library can compute
the inverse of an element over modular q in less than 1.7ms, and both multiplica-
tion and addition take about 0.002ms. Randomly selecting elements for the global
set is also a significant operation, requiring about 2ms. So the SHipher-enc needs
(24m + 2) ∗ 0.002 + 1.7=(0.048m + 1.704) ms and the SHipher-dec needs the same
time. (3.4m + 1.7)ms are consumed by encoding the elements we selected and plain
text or cipher text.

Then we choose w=125 and l = 42 over a 43-bit finite field, as well as q =
4466156694371. On the test machine, the GMP library can compute the inverse of
a matrix in less than 1.75ms, and multiplication and addition take about 0.002ms
respectively. Randomly selecting elements for the global set is also a significant
operation, requiring about 2.5ms. So the SHipher-enc needs (24m + 2) ∗ 0.002 +
1.75=(0.048m+1.754)ms and the SHipher-dec needs the same time. (3.5m+1.75)ms
are consumed by encoding the elements we selected and plain text or cipher text. It
is better to encode the elements in A and publish them. We can see that the time
consumed is related to the size of K = 2mlog2n.

Compare them with the results in [3], when block size =125 bits, our implemen-
tation is a little faster than KATAN [2], and a little slower than AES [1], KLEIN [3],
and PRESENT [4]. We have restricted our comparisons exclusively to the above ci-
phers. However, our framework is based pure mathematical problem, which can be
thoroughly analyzed and optimized.

As expected, SHipher-keygen runs in time precisely linear in the length of the
key it is issuing. The running time of SHipher-enc and SHipher-dec are also almost
perfectly linear with respect to the length of the key K. The matrix inverse operations
significantly contribute to the running time as well as the multiplication operations
over group G.

In summary, SHipher-keygen, SHipher-enc, and SHipher-dec run in a predictable
amount of time based on the value of w and K. The performance of them depends on

7

the group operation. In all cases, the toolkit consumes almost no overhead beyond
the cost of the underlying group operations and random selection of elements. If we
choose suitable group, large private keys are possible in practice while maintaining
reasonable running times.

From Section 4.1, we know that the memory overhead of SHipher is 5 bits for each
block in our implementation. And it can resist 22(w+4)/3 differential attack effort.

6 Extension

Our encryption framework uses the key to decide which elements to be added or
computed. It is a key-dependent encryption framework. A crypto system designer
can have a different encryption scheme after changing the non-Abelian group. This
encryption framework admits a variety of implementations on non-Abelian groups.

7 Related Work

There are a lot of lightweight block ciphers such as SIMON and SPECK [6], AES [1],
KATAN [2], KLEIN [3], and PRESENT [4]. We have restricted our comparisons
exclusively to the above ciphers. Consequently, we don’t consider other interesting
lightweight stream ciphers like HUMMINGBIRD-2 [5], GRAIN [7], TRIVIUM [8],
and SALSA20 [9]. Comparing with the above block ciphers, the expression of our
scheme is simple. And the block size of our scheme is more flexible. Also, the users can
choose different implementations according to their security requirements. Besides,
our framework provides a new way to design symmetric block ciphers.

8 Conclusions and Future Work

We created a symmetric crypto framework based on SubSet-Sum problem. Our sym-
metric encryption framework is easy to implement and give us another way to design
crypto systems. At the same time, it provides flexible security strength. It also can
be applied to many applications. We provided an implementation of our framework.

In the future, it would be interesting to consider these new encryption families as
one-time pad encryption schemes. The primary challenge in this line of work is to find
an efficient non-Abelian group. We believe an important endeavor would be to find a
more suitable non-Abelian group for this framework. Furthermore, it is an important
issue to investigate properties which the groups should satisfy to implement a good
cipher system under this framework.

References

[1] J. Daemen and V. Rijmen, “The design of Rijndeal”, Springer, Berlin, 2002.

8

[2] C. D. Cannière, o. Dunkelman, and M. Knežević, “KATAN and KTANTAN -
a family of small and efficient hardware-oriented block ciphers”, in CHES 2009,
Lecture Notes in Computer Science, no. 5747, pp. 272 - 288, Springer-Verlag,
2009.

[3] Z. Gong, S. Nikova, and Y. W. Law, “KLEIN: a new family of lightweight block
ciphers”, in RFIDsec ’11 Workshop Proceedings, Cryptology and Information
Security Series, no. 6, pp. 1 - 18, IOS Press, 2011.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An Ultra- Lightweight Block
Cipher”, in CHES 2007, Lecture Notes in Computer Science, no. 4727, pp. 450 C
66, Springer-Verlag, 2007.

[5] D. Engels, M. Saarinen, and E. Smith, “The Hummingbird-2 lightweight authen-
ticated encryption algorithm”, in Cryptology ePrint Archive, Report 2011/126,
2011.

[6] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK Families of Lightweight Block Ciphers”, in Cryptology
ePrint Archive, Report 2013/404, 2013.

[7] M. Hell, T. Johansson, A. Maximov, and W. Meier, “The Grain Family of Stream
Ciphers”, in New Stream Cipher DesignsThe eSTREAM Finalists, Lecture Notes
in Compter Science, no. 4986, pp. 179 C 90, Springer-Verlag, 2008.

[8] C. D. Canniere and B. Preneel, “TRIVIUM Specifications”, in ECRYPT Stream
Cipher Project Report 2005/030, 2005.

[9] D. J. Bernstein, “The Salsa20 Family of Stream Ciphers”, in New Stream Cipher
DesignsThe eSTREAM Finalists, Lecture Notes in Compter Science, no. 4986,
pp. 84 C 97, Springer-Verlag, 2008.

[10] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,
“Twofish: A 128-Bit Block Cipher”, https://www.schneier.com/paper-twofish-
paper.pdf.

9

